Категория: Двигатель

Как помыть двигатель авто – Как правильно помыть двигатель самому — DRIVE2

Как правильно мыть двигатель — DRIVE2

Любой механизм нуждается в очистке от загрязнений. Двигатель машины – не исключение. Есть мнение, что у загрязненного двигателя…

— худшая теплоотдача
— возможна потеря мощности
— возможно увеличение расхода топлива
— утечка тока
— неустойчивая работа
— сложнее найти неполадки (утечка масла и других жидкостей может быть незаметной)

Среди автовладельцев есть ярые противники мойки двигателя. По их мнению, ополаскивание «сердца» машины может привести к нежелательным последствиям, которые будут куда хуже «слегка» ухудшенной теплоотдачи и толстого слоя пыли.

Причины:

— мойщики сами толком не знают, как это правильно делать
— если бы все было легко и просто, администрация не писала бы, что не несет ответственности за работоспособность автомобиля после мойки двигателя

Эксперты разделились на два лагеря. Подобно автовладельцам, одни заявили, что мыть двигатель вовсе необязательно.

В представительстве KIA порекомендовали больше обращать внимание на чистоту радиатора, очищая его от пуха и грязи. Что касается мойки двигателя, в представительстве южнокорейской марки настоятельно порекомендовали делать это на специализированных СТО, где используются специальные очищающие средства. Делать это вручную специалисты не советуют хотя бы потому, что самостоятельно не удастся отмыть действительно въевшуюся грязь или потеки масла.

— Мойка двигателя – сугубо личное дело. Если хозяин машины не обслуживает автомобиль самостоятельно, а возраст самой машины невелик, вовсе не нужно регулярно ополаскивать двигатель. В данном случае риск не оправдан – у автовладельца больше шансов увеличить расходы на ремонт, нежели улучшить или сохранить эксплуатационные характеристики своей машины. Ничего критичного произойти не может. Даже, если не мыть двигатель на протяжении 5-7 лет», — рассказали в сервисном центре Nissan.

— Двигатель автомобиля не зря называют «сердцем» автомобиля. Если человек будет жить в грязи и пыли, злоупотреблять алкоголем и вообще вести нездоровый образ жизни, работа его сердца ухудшится. То же касается авто. Если не ухаживать за мотором, рано или поздно, он даст сбой. В частности, могут произойти сбои в работе электроники, может снизиться вязкость масла, возникает риск пожара из-за потеков масла… да и вряд ли кому-то приятно проверять уровень масла, пачкаясь от каждой детали двигателя. Я считаю, что мыть двигатель нужно. Тем более в нашей стране, где дороги никто не очищает от пыли и грязи. Лишним это не будет, но мыть мотор нужно с умом», — считает специалист по ремонту двигателей.

— Иногда двигатель мыть нужно. Это как генеральная уборка в квартире. Двигатель ведь тоже загрязняется, на его составляющие, как подвижные, так и неподвижные попадает грязь (абразив, техжидкости), которая оказывает негативное влияние. Это и коррозия из-за гигроскопичности накопившейся грязи, и возможность засорения контактов в плохо защищенных разъемах проводки, и возможность попадания мелкодисперсных частиц грязи в емкости с техжидкостями, при их открывании. К тому же, грязный двигатель сложнее обслуживать и можно элементарно запачкаться при заполнении бочка омывателя. Вот банальные причины зачем его мыть. Но делать это часто не следует, особенно при эксплуатации в городских условиях, считает начальник департамента сервиса Корпорации УкрАВТО.

Двигатели современных автомобилей мыть безопаснее – степень защиты у них от воды выше, изоляция лучше. Двигатели более старых автомобилей, особенно карбюраторные, мыть опаснее – могут не завестись. Причина банальна – попадание воды на контакты системы зажигания, реже – в карбюратор и корпус воздушного фильтра.

Самое главное правило – тщательное высушивание подкапотного пространства. крайне нежелательна и мойка силового агрегата на «горячую». Лучше, чтобы перед ополаскиванием двигатель немного остыл – хотя бы до 40-45С. Но лучше до комнатной температуры.

Независимо от того, хотите вы мыть двигатель на специализированной мойке или самостоятельно, нужно соблюдать определенные правила:

— нельзя мыть мотор на холодную или, наоборот, при рабочей температуре. Оптимальная температура – 30-40С

— вода должна быть приблизительно такой же температуры, как и сам двигатель (допустимо +10С)

— воздухозаборник должен быть прикрыт от попадания воды (например, с помощью кулька, закрепленного скотчем)

— если есть сигнализация, ее нужно тоже «укрыть» во избежание попадания воды

— нужно защитить проводку, электрооборудование и аккумулятор (например, с помощью кулька, закрепленного скотчем)

— опасно очищать двигате

www.drive2.ru

Как безопасно помыть двигатель автомобиля своими руками

Чистота автомобиля должна поддерживаться всегда как внешне, так и внутренне. Особенно это касается мотора. Как помыть двигатель автомобиля самостоятельно, можно узнать из наших рекомендаций.

Зачем нужно мыть двигатель автомобиля

Заботясь об авто, надо вовремя его заправлять качественным топливом, менять масло, обращать внимание на чистоту. Как снаружи, так и внутри. Это касается самой важной части — мотора.

Зачем нужно мыть двигатель машины:

  • Чтобы предупредить поломки. Испаряющиеся жидкости частично оседают на стенках ДВС, смешиваются с пылью, прилипают друг на друга, образуя слои. Такой налёт препятствует нормальной теплоотдаче. Из-за этого ДВС перегревается, нарушается его работа. Могут возникнуть такие неприятности, как износ сальника, патрубка или маслопровода. Возможны неполадки с электропроводкой. Скопление грязи затрудняет контроль за протечкой тормозной и охлаждающей жидкости, моторного масла.
  • Для предотвращения возгораний. Капли осевших масел воспламеняются при нагревании.
  • Машину с чистым двигателем легче продать.
  • Чтобы найти неисправность. Если ДВС без грязи, то можно сразу понять, где поломка. Например, обнаружить место локализации протечки, определить состояние уплотнителей.
  • Для быстрого технического обслуживания. Машину будет просто приятнее осматривать, менять свечи или масло.

Если моторный отсек чистый, то обслуживание машины пройдёт намного быстрее, чем при грязном.

Взглянем на вопрос с другой стороны и посмотрим, почему лучше воздержаться от этого. Проблемы, которые могут поджидать при мойке:

  • Можно случайно повредить электропроводку сильным напором воды.
  • Если использовать специальные растворы, которые не предназначены для этих целей, можно получить возгорание моторного отсека. Особенно это касается тех моментов, когда имеет место сушка при помощи фенов или других подобных средств.
  • Если не до конца просушить двигатель и завести его, то можно спровоцировать его поломку или короткое замыкание.

Выбираем моющие средства

Так чем же помыть и очистить двигатель любимого автомобиля в домашних условиях самостоятельно? Чтобы очистить его, обычным мылом не обойтись. К тому же бытовые моющие средства непригодны для этих целей. Чтобы хорошо убрать загрязнения с мотора, лучше прикупить специальные вещества. Они могут быть как универсальными, так и специализированными:

  • Универсальные. Разработаны для мойки не только машины в целом, но и для мытья пространства под капотом.
  • Специализированные. Могут быть как для устранения масел, так и для очистки от пыли и грязи. Предназначенные как для двигателя, так и для других частей машины.

Чтобы вымыть с мотора грязь, можно использовать флакон с ручным типом распылителя. Но он удобен лишь тогда, когда ДВС, прочие составные части прилегают друг к другу неплотно. При других условиях лучше использовать аэрозольный распылитель. Так можно обработать труднодоступные части ДВС.

Способы мойки мотора

Когда вопрос о том, чем помыть двигатель автомобиля решён, определимся, как это делать. И вот несколько распространенных способов:

  • Сухая чистка. Используют жидкость или пену в аэрозольном баллончике. Смывать водой после нанесения вещества не нужно. Перед применением такого средства необходимо прогреть двигатель, но не до слишком горячего состояния. Если нанести средство на холодный мотор, то чистка не будет эффективна. На некоторые части ДВС наносить запрещается, в инструкции об этом указано. Сам процесс тоже очень трудоёмок.
  • Мойка паром. Этот профессиональный способ не подходит для домашнего использования. Только специалист знает, как правильно помыть и не повредить двигатель.
  • Керхер. Не самый безопасный способ бесконтактной чистки. Вода под высоким давлением способна повредить некоторые части ДВС. Небольшое количество жидкости также может попасть внутрь мотора и вызвать его поломку или коррозию.
  • Ополаскивание водой. Предварительно наносится специальное средство для чистки. Через некоторое время оно просто смывается потоком воды. Такой метод самый распространённый, но не защищает от попадания влаги в мотор.

Подкапотное пространство нуждается в промывке всего лишь раз в год.

Порядок мойки двигателя

Прежде чем разбираться, как правильно помыть двигатель авто, надо сначала его подготовить к этой процедуре:

  • Отсоединение минусовой клеммы аккумулятора.
  • Разборка защиты ДВС.
  • Предохранение проводов, датчиков плёнкой. Надо их обернуть плотно и скрепить всё, по возможности, скотчем. Рекомендуется обработать водоотталкивающими веществами. Это поможет избежать непредвиденных поломок вследствие проникновения туда жидкости.
  • Отсоединение всех деталей, что мешают свободному доступу к ДВС.

Так как же самостоятельно очистить от загрязнений моторный отсек автомобиля? Рассмотрим данный вопрос в зависимости от тех средств, что будут использованы.

Как правильно помыть двигатель при помощи аэрозоля:

  • Наносим вещество равномерно на ДВС.
  • Ждём некоторое время, около 5-10 мин.
  • При помощи микрофибры или мягкой тряпки очищаем мотор.

Как правильно и бережно помыть двигатель автомобиля водой самостоятельно:

  • Остужаем ДВС до 50 град.
  • Производим механическую очистку обрабатываемой поверхности.
  • Наносим химию.
  • Ждём 10-15 мин.
  • Обливаем водой или обрабатываем с помощью керхера. Важно при таком мытье не подносить распылитель ближе, чем на 50 см.

Полезные рекомендации

  • Перед применением моющего средства нужно внимательно ознакомиться с инструкцией.
  • Обязательно нужно предварительно подготовить мотор к мытью.
  • По возможности надо сначала убрать грязь с поверхности, протерев ДВС тряпкой.
  • При мытье автомобиля водой, надо обязательно просушить его при помощи компрессора.
  • Затем нужно проверить машину. Если она заводится как обычно, то всё было сделано правильно. Если мотор глохнет, или появляются посторонние шумы, значит в процессе мойки что-то пошло не так.

Чистота — залог исправности машины. Автолюбитель будет уверен, что железный конь не выйдет из строя в ненужный момент. Главное — знать, как и чем помыть двигатель автомобиля. Старайтесь чистить мотор своего железного коня хотя бы раз в год. Тогда многих поломок получится избежать.

remontautomobilya.ru

Как и чем мыть двигатель автомобиля: инструкция с фото и видео

Пословица «Чистота — залог здоровья!» относится не только к человеку, но и к автомобилю. При частой эксплуатации грязь и пыль с дорожного полотна оседают на корпус и портят внешний вид. Кроме того, соль, которой посыпают дороги в зимнее время, активизирует процесс электрохимической коррозии. В дождливую погоду она прилипает на узлы, расположенные под днищем (КПП, кардан, глушитель, ходовая часть, подвеска и т.д.), и разрушает поверхностный слой металла. Но сегодня мы не будем затрагивать эту тему, поскольку есть вопрос поважнее — грязный двигатель. Владельцы часто моют свой автомобиль, однако, забывают про моторный отсек. А ведь после года эксплуатации там собирается большое количество масляного налёта, который ни к чему хорошему не приведёт.

Грязный двигатель автомобиля

Слой липкой субстанции плотно прикипает к картеру с корпусом и отодрать его сможет не каждый, тем более, если он столетней давности. Несмотря на это, автомобилисты всё равно придумывают разные способы, которые мы рассмотрим в этой статье.

Оглавление:

Зачем мыть двигатель автомобиля

Есть множество мнений по этому поводу. Часть автовладельцев говорит, что мотор вообще мыть не надо, а кто-то сдувает с него каждую пылинку. И всё-таки, нужно ли мыть двигатель? Да. Прежде всего это пригодится хотя бы с эстетической точки зрения, не говоря уже про другие негативные последствия грязного двигателя:

  • Перегрев. Основная проблема, которая со временем настигает почти каждый автомобиль. Вообще в ДВС используется жидкостная система охлаждения, но, невзирая на это, значительная часть тепла отводится за счёт обдува мотора, то есть, при помощи воздуха. Когда масло с грязью налипает на стенки картера и ГБЦ, процесс теплоотдачи сильно снижается. Следовательно, больше нагружается основная система, а мотор испытывает небольшой перегрев. Возможно он незначительный, но при длительной эксплуатации двигателя в таких условиях повышается его износ.

    Грязь повышает износ двигателя,в некоторых случаях может вызывать перегрев или закипание двигателя

  • Трудность в обслуживании. Весомый аргумент чистому мотору. Даже новая машина нуждается в мелком ремонте (замена свечей зажигания, фильтрующих элементов, масла, антифриза и т.д.). То есть, лезть под капот в любом случае придётся, а, значит, доведётся пачкать руки о загрязнённый двигатель. Когда он вымыт, работа проходит быстрее и приятнее.

    Под грязным капотом элементарно неприятно производить замену или ремонт деталей

  • Пожароопасность. Во время езды температура в моторном отсеке достигает предельных значений. Под её действием частицы масла и топлива со стенок двигателя начинают испаряться и заполнять всё пространство под капотом. В теории эти пары могут воспламениться. Представим ситуацию, что из-под выпускного коллектора просекают раскалённые выхлопные газы с искрами, которые и являются источником подпала. Такое случается довольно редко, тем не менее, на практике уже случалось.

    Грязь в двигателе в редких случаях может спровоцировать пожароопасную ситуацию

Согласитесь, эти факторы заставляют задуматься о чистоте моторного отсека. То есть, мыть его не только можно, но и нужно. Это избавит вас от лишних проблем и, возможно, сэкономит деньги. Кроме того, всегда легко будет подлезть к труднодоступным местам, не вымазав руки. А если будет течь масло или антифриз, то на чистом корпусе это отчётливо проявится — достаточно хотя бы раз в год мыть мотор.

Подготовка двигателя к мойке

Делать это лучше всего при какой-нибудь поломке. Тогда мотор демонтируется с автомобиля, снимается всё навесное оборудование и пациент готов к процедуре. Однако, загрязняется он намного чаще, нежели ломается, поэтому делать всё придётся на месте. Вот в этом и вся проблема. Кроме неуязвимого к воде металлического блока, под капотом располагаются различные датчики и электронные системы, которых в современном автомобиле больше, чем болтов. Если на них попадёт хоть капля влаги, машину можно гнать в автосервис, поскольку обязательно что-то не будет работать. Дабы такого не случилось, нужно соблюдать некоторые рекомендации и быть по максимуму аккуратным в этом деле.

  1. По логике вещей нужно сначала защитить электронную часть, с чем поможет обычный широкий скотч. Отсоединяем и снимаем аккумулятор, после чего заматываем клеммы. Внимательно осмотрите все датчики и соединения проводов, которые расположены снаружи, и постарайтесь как можно лучше их изолировать. Обеспечить гарантированную защиту не получится, но подстраховаться не помешает. Особенно обращайте внимание на зажигание и генератор, чтобы не залить их водой.

    Изоляция деталей от воды

  2. После электронной части можно разобраться с защитой моторного отсека, которая внизу крепится болтами к корпусу автомобиля. Сняв её, вы получите доступ к передней части двигателя.

    Снятие защиты моторного отсека

  3. Следующим шагом станет защита контактов и разъёмов. Сделать это можно при помощи специальных составов, продающихся в аэрозольных баллончиках. Они имеют водоотталкивающее свойство, которое и сохранит соединения из цветных металлов от коррозии.

    Специальное средство для защиты электроконтаков

  4. Осталась самая объёмная часть работы — демонтаж навесного оборудования. Здесь чем больше получится снять, тем удобнее будет мыть. В идеале должен остаться только один блок с головкой. Тогда удастся подлезть практически во все места и сделать мотор максимально чистым. В этом моменте главное не выкручивать свечи, поскольку вода не должна попасть внутрь цилиндра.

    С автомобиля рекомендуется снять всё навесное оборудование

При снятии оборудования внимательно следите за тем, как оно стояло. Класть всё демонтированное лучше в одно место, чтобы не потерять. Ответственной частью также является отсоединение проводки. Здесь тоже нужно следить за тем, как подключались все фишки, поскольку в дальнейшем на поиски нужного разъёма уйдёт много времени.

Чем помыть двигатель автомобиля

После подготовки можно приступать к мытью. Но для этого нужно ещё выбрать правильное средство. Оно не должно навредить материалу, из которого сделан блок и другие части, а также без проблем удалить весь масляный налёт. Такие вещества продаются в любом автомобильном магазине и стоят не очень дорого, то есть, проблем с выбором и покупкой не возникнет.

Средств для очистки двигателя много и они разнообразны

Поэтому проще сказать, чем нельзя мыть мотор, какие средства могут навредить ему, а какие нет. Чтобы узнать это, нужно также учитывать из какого материала он сделан. Чаще всего блок двигателя изготавливают из чугуна или сплава алюминия, следовательно, его нельзя подвергать воздействию кислоты, которая в большом количестве содержится в различных средствах. Также нужно внимательно относиться и к пластмассовым деталям, дабы не испортить их.

Для мойки мотора НЕ РЕКОМЕНДУЮТСЯ следующие вещества, так как они малоэффективны или опасны:

  • Средство для мытья посуды. Самый плохой и безнадёжный вариант, поскольку справиться с машинным маслом ему не под силу.
  • Бензин, керосин, ДТ и прочие горючие вещества. Многие используют их для мойки из-за того что они являются мощными растворителями. Попадая в масло, оно приобретает консистенцию воды, значит, удалить его с поверхности двигателя не составит труда. Однако, все они легко воспламеняются, что и ставит крест на эффективности. Если после процедуры под капотом осталась хоть капля такого вещества, то пожар обеспечен. К тому же растворители негативно влияют на пластмассовые изделия.
  • Вода. Бессмысленная трата времени, которая не даст вообще никакого результата.

Моющее средство для двигателя должно хорошо растворять масло и не содержать кислоту в своём составе, а также быть безопасным и не воспламеняться. Такие свойства имеют практически все специализированные жидкости, которые продаются в магазине запчастей. То есть, чтобы быстро и без проблем помыть мотор, средство лучше всего купить.

Как помыть двигатель автомобиля

Итак, вы подготовили мотор, держите в руках моющее средство и не знаете, что делать? Дальше осталась заключительная и самая сложная часть — собственно сам процесс мойки. От того насколько действующим окажется средство будет зависеть скорость и продолжительность. Соответственно, если масляный налёт растворится сразу, то останется только соскрести его и затем уже начисто довести водой, а, если нет, то придётся долго и нудно мучиться.

Однако, нужно ещё правильно помыть, чтобы двигатель после этого завёлся. Необходимо соблюдать некоторые рекомендации и делать всё по порядку.

  1. Самый простой способ мойки — установка высокого давления. Ею чаще всего пользуются на СТО. Тем не менее, настоятельно не рекомендуется мыть двигатель таким способом! Во-первых, картер и вообще вся поверхность мотора имеет множество различных неровностей и углублений, которые называются рёбра жёсткости. Если в них попадёт моющее средство и вода, то дождаться высыхания потом будет очень трудно. Во-вторых, защитить электрическую часть скотчем уже не получится, поскольку струя воды под высоким давлением проберётся в любое место. Особенно нежелательна вода для зажигания и генератора, чего исключить практически не получится. Также под капотом есть куча мелких предохранителей и датчиков, которые тоже боятся влаги. В-третьих, неаккуратными движениями можно повредить соты радиатора охлаждения или нарушить соединения в проводке. То есть, мыть двигатель таким способом — не лучшая идея.

    Мойку высокого давления для двигателя часто используют СТО, так как это быстро и просто. Но этот способ не рекомендуется использовать. В частности потому что вызывает попадание влаги в некоторые детали авто, в которых её не должно быть

  2. Остаётся один выход — работать вручную. Это далеко не самый быстрый и лёгкий способ, но он является самым надёжным и безопасным для мотора. Все инструменты, которые вам понадобятся, это набор разных щёток, резиновые перчатки и вода. Для начала следует изучить инструкцию моющего средства. Оно может быть готово к использованию либо требовать разбавки. В любом случае на упаковке всё будет расписано, а для особо одарённых нарисовано. Наносить его тоже нужно по-особому, чтобы равномерно промочить всю поверхность. Если с магазина посудина идёт с ручным распылителем, то думать ничего не надо. А в других случаях это приспособление придётся купить отдельно, перелить моющее средство в обыкновенную бутылку и продолжать работу.

    Ручная мойка — наиболее надёжный и безопасный способ для двигателя

  3. Итак, самая ответственная часть — нанесение. Распылять средство нужно по всей поверхности двигателя вручную и стараться как можно меньше попадать даже на хорошо защищённую электрическую часть. Если вы всё сделали правильно, то должна появиться пена (у большинства средств, но не всегда). После этого масляный налёт должен раствориться, то есть, следует подождать. Время действия обычно указывается на этикетке.

    Мойка двигателя своими руками

  4. Далее наденем перчатки и возьмём в руки щётку. Обратите внимание, что её волоски не должны быть железными, иначе останутся царапины на пластиковых деталях. Кроме того, многие блоки покрывают краской, следовательно, содрать её такой щёткой не составит проблем. То есть, она должна быть исключительно пластиковой.
  5. После того, как вы добрались до каждой ямки и вытерли оттуда всю грязь, можно смыть всё водой. Для этого подойдёт обычный шланг, натянутый на кран. Однако не на полную мощность! Открутив его, вы добьётесь тонкой струйки, что, собственно говоря, нам и нужно. Аккуратно направляя её на двигатель, всё будет стекать и останется чистая поверхность.

    Промывка двигателя водой после нанесения средства и его очистки

  6. Высохнуть мотор может сам. Для этого понадобится 24 часа. Однако, есть способ эффективнее — сжатый воздух. Продувая все щели и углубления, вы уберёте из них всю воду, только не у всех есть компрессор, поэтому для них остаётся актуальным первый вариант.

    Можно протереть видимые детали от влаги обычной тряпочкой

После ручной мойки можно быть уверенным, что двигатель без проблем заведётся и будет чётко работать, в то время как аппарат высокого давления такого гарантировать не может.

Как помыть двигатель автомобиля — видео

Если вам нужны видеоинструкции, то ниже вы можете найти пару отличных роликов по данной теме:

Как и чем мыть двигатель автомобиля: инструкция с фото и видео

5 (100%) 2 проголосовало

avtoskill.ru

Чем помыть двигатель автомобиля в домашних условиях

Мойка подкапотного пространства и двигателя для многих автолюбителей может являться как вынужденной процедурой, так и стремлением содержать автомобиль в максимальной чистоте и исправности. В первом случае возникает острая необходимость отмыть с двигателя моторное масло и другие технические жидкости, которые образовали потеки вследствие различных неисправностей. Также двигатель зачастую становится грязным после проведения ремонта.

Во втором случае мойка двигателя производится для поддержания чистоты и удаления так называемой грязевой «шубы». По мнению большого числа владельцев слой грязи на моторе ухудшает эффективность отвода тепла от двигателя, а также может служить причиной неисправностей электрооборудования и т.д. Что касается самого процесса очистки двигателя от грязи, можно воспользоваться услугами автомойки для удаления грязи струей воды под давлением, а также более деликатно помыть мотор самому.

Рекомендуем также прочитать статью о том, как помыть двигатель автомобиля Керхером. Из этой статьи вы узнаете об особенностях мойки мотора под давлением и необходимой подготовке агрегата к данному способу очистки ДВС от грязи.

Читайте в этой статье

Мойка двигателя своими руками

В самом начале отметим, что мыть двигатель оптимально в сухую и теплую погоду, что позволяет быстро избавиться от повышенной влажности под капотом после мойки. Для удаления различных загрязнений двигателя активно используются специальные составы. Также применяются «мягкие» автошампуни, не содержащие кислот.

Отметим, что в домашних условиях для мойки мотора вполне подойдет кухонное средство для мытья посуды. Такие средства хорошо удаляют жир, а также не содержат агрессивных компонентов, которые способны причинить вред пластиковым, резиновым и другим элементам в подкапотном пространстве.

Дополнительно потребуется обычный полиэтиленовый пакет или фольгу, губку, резиновые перчатки, тряпку и щетку с мягкой щетиной. Не рекомендуется использовать жесткие щетки, особенно со щетиной из металла, так как существует риск поцарапать мягкие поверхности. Также под рукой стоит иметь немного пищевой соды для очистки окислившихся электроконтактов. 

Как правильно мыть мотор

  1. Перед началом мойки двигателю необходимо дать остыть в случае его нагрева до рабочих температур. Игнорирование данного требования может привести к тому, что под струей холодной воды существует риск быстрого остывания и последующей деформации разогретой ГБЦ.
  2. Следующим шагом станет отключение клемм с аккумулятора. Что касается автомобилей с гибридным двигателем, тогда необходимо уточнить место расположения аккумуляторных батарей на конкретной модели. Необходимо добавить, что зачастую батареи гибридов расположены в задней части авто, так что мойка мотора на гибридном автомобиле в этом случае не представляет опасности.
  3. Далее определенные элементы в подкапотном пространстве необходимо защитить от попадания влаги. Для этого понадобится указанные выше полиэтилен и фольга. В первую очередь закрывается воздухозаборник двигателя. Для этого отлично подойдет пакет, который для надежности крепления дополнительно следует обмотать скотчем или изолентой. Всегда помните, попадание воды через воздуховод может привести к серьезной поломке ДВС! Также в обязательном порядке закрывается катушка зажигания, АКБ и другие доступные контакты, клеммы и элементы электрической цепи. В труднодоступных местах для защиты от попадания влаги следует использовать фольгу.
  4. Затем можно приступить к подготовке моющего раствора для двигателя. Для этого на 1 л. теплой воды добавляется около 20-50 мл. моющего средства. Что касается автошампуней, которые используют для мытья кузова, их применение не рекомендовано по причине возможного наличия агрессивных реагентов.
  5. Приступать к мойке двигателя необходимо с легкого смачивания поверхностей водой. Воду можно разбрызгать кисточкой. После этого губка смачивается в моющем растворе, после чего следует начинать протирку загрязненных поверхностей. В тех местах, куда трудно добраться, следует использовать щетку или кисточку. Детали, покрытые раствором, оставляют на 5 минут.
  6. Если на моторе имеются масляные пятна или потеки, тогда подобные загрязнения можно удалить при помощи зубной щетки. Стоит добавить, что данный способ подходит как для пластиковых, так и металлических поверхностей. Еще одним способом для удаления жирных пятен является раствор керосина и воды. Такое решение не желательно использовать для пластика и окрашенных поверхностей. Наносится керосин с водой при помощи мягкой тряпки, после чего поверхность оттирается и сразу промывается небольшим количеством воды.
  7. Завершающим этапом становится ополаскивание двигателя после мойки. Во время данного процесса следует соблюдать осторожность. Сведение к минимуму общего количества воды, попадающей в места расположения электрических контактов и электрооборудования (даже при учете того, что элементы закрыты пакетами и фольгой), снизит риск нежелательного проникновения влаги. Старайтесь не смывать моющий состав обильной струей из шланга или использовать оборудование, которое подает воду под давлением.
  8. По окончании следует убедиться в отсутствии необходимости повторной очистки ДВС и отдельных участков в подкапотном пространстве. При необходимости комплексную или частичную мойку следует повторить.

Сушка двигателя после мойки

Сразу после мойки заводить мотор нельзя, так как двигатель нужно сушить. Для просушки агрегата хорошо подойдут обычные бумажные полотенца. С их помощью необходимо максимально качественно убрать воду. После этого можно снять защиту в виде пакетов и фольги. Убедитесь в том, что влага не попала на защищенные элементы. При обнаружении капель воды на разъемах и электроконтактах их также следует тщательно просушить.

Напоследок добавим, что в случае обнаружения коррозии и окисления контактов АКБ можно воспользоваться раствором пищевой соды и воды в соотношении 1:1. Данный раствор наносится при помощи зубной щетки и позволяет произвести очистку указанных частей. Затем необходимо протереть места очистки смоченной в воде тканью, после чего потребуется полностью удалить остатки влаги при помощи сухого бумажного полотенца или тряпки.

Читайте также

krutimotor.ru

Как правильно мыть двигатель автомобиля

Уделяя внимание внешнему виду автомобиля, важно помнить про его внутреннее состояние. Интенсивная эксплуатация со временем приводи к износу деталей, что впоследствии обязывает автовладельца обращаться к услугам станции технического обслуживания. В таком случае замена, вышедшей из стоя детали, неизбежна. Но качественный уход и своевременное обслуживание узлов и агрегатов сокращает риск образования существенных дефектов, приводящих к сбою работы целых систем.

Проблемы загрязнённого двигателя

Для многих необходимость мытья мотора остаётся спорным вопросом. Но стоит ли сомневаться, что каждая деталь за годы эксплуатации склона к появлению загрязнений. Другой вопрос: какие проблемы ожидают автовладельца, игнорирующего важность процедуры очистки силового агрегата. При этом важно понимать, что автомобиль является целостной системой, и неполадки в одной области непременно потянут за собой нарушение работы остальных узлов.

Проблемы, связанные с загрязнением двигателя:

  1. Теплоотдача. Толстый слой грязи и пыли оказывает пагубное влияние на процесс передачи тепла. Затрудняется процедура охлаждения мотора воздухом, подаваемым из радиатора.
  2. Потеря мощности. Это нарушение является производной от плохой теплоотдачи и в свою очередь приводит к другим погрешностям работы.
  3. Увеличение расхода топлива. Вследствие потери мощности неизбежно увеличивается расход поглощаемого топлива. Быстрый износ большинства деталей при таких обстоятельствах неизбежен.
  4. Пожароопасность. Одна из самых больших проблем, которая может быть спровоцирована обилием загрязнений внутри двигателя – это вероятность самовозгорания. Мотор устроен таким образом, что масляные пары должны выветриваться. Из-за скопления пыли и грязи масло оседает на стенках моторного отсека. При нагреве двигателя появляется опасность возгорания.

К сожалению, это далеко не весь список неисправностей, к которым может привести чрезмерное загрязнение силового агрегата. Кроме этого, велика вероятность утечки тока и масла. Общая картина выглядит так: двигатель работает нестабильно, а причины выявить сложно. Многие специалисты станций техобслуживания отказываются брать в ремонт автомобили с грязным двигателем, объясняя это затруднительным процессом произведения работ.

Отсюда можно сделать вывод, что обеспечить чистоту моторного отсека – задача владельца автомобиля, но о том, как помыть двигатель самостоятельно, знают далеко не все.

Зачем мыть двигатель и моторный отсек

Вопросы, зачем мыть двигатель и моторный отсек и надо ли это делать долгие годы продолжают оставаться спорным. Среди автовладельцев есть противники данного процесса, аргументирующие свою позицию тем, что процедурой может быть нанесён вред, степень которого гораздо больше, чем от грязи. Сильным аргументом к такому утверждению является наличие защиты моторного отсека от попадания пыли и грязи в любом автомобиле.

Даже эксперты разделяются во мнении. Одни рекомендуют больше внимания уделять чистоте радиатора, другие же продолжают настаивать на регулярном проведении мойки двигателя и моторного отсека. Европейские производители утверждают, что автомобили сконструированы таким образом, что пыль и грязь не способны снизить его эксплуатационные характеристики.

Исследованию данного вопроса посвящено немало социальных опросов, а также опросов по этому делу специалистов станций технического обслуживания и конструкторов автомобильных концернов. По-прежнему единой точки зрения нет.

Каждый автовладелец сам принимает решение мыть или не мыть, но если взять во внимание тот факт, что автодороги нашей страны далеки от совершенства, а пыль и грязь являются верными спутниками любого автомобилиста, то становится ясно, что масштаб проблемы может быть существенно недооценён европейскими экспертами.

Заглядывая под капот, добропорядочный хозяин машины способен сам определить, насколько хорошо хотя бы с точки зрения эстетики выглядит моторный отсек. Необязательно для этого быть профессионалом. Достаточно посмотреть на корпус двигателя и, обнаружив на стенках толстый слой масла, покрытого пылью и грязью, сделать вывод, что в таком состоянии двигатель работать эффективно не способен. Дополнительная неоправданная нагрузка в любом случае оказывает отрицательное влияние на работу всех без исключения систем и приводит к быстрому износу деталей. Возможно, на европейских автомобильных трассах дело с уровнем загрязнения подкапотного пространства и обстоит иначе, но, учитывая особенности российской климатогеографической зоны и механизма работы автодорожных служб, рассчитывать на отсутствие пыли и грязи российским автолюбителям не стоит.

Прежде чем перейти к процедуре, стоит отметить преимущества автомобилей, моторный отсек которых регулярно подвергается очистке:

  1. Чистый мотор не склонен к перегреву.
  2. Эстетичный внешний вид моторного отсека делает процедуру замены масла и фильтров или регулировки свечей зажигания более приятной.
  3. В чистом моторном отсеке легче выявить такую неисправность, как утечка масла.
  4. Снижается риск возникновения пожара.

Если же речь идёт о продаже авто, то вопрос о надобности проведения процедуры становится не актуальным. Чистота моторного отсека говорит о бережной эксплуатации автомобиля прежним владельцем.

Подготовка двигателя к мойке

Перед началом процедуры мытья двигателя необходимо произвести подготовительные работы. Это делается с целью защиты узлов от нежелательного попадания влаги.

Что нужно сделать:

  • демонтировать детали, ограничивающие доступ к двигателю;
  • отсоединить минусовую клемму аккумулятора;
  • снять защиту моторного отсека;
  • обработать близлежащие детали влагоотталкивающей аэрозолью;
  • накрыть датчики, разъёмы и провода поли этиленовой пленкой.

На этом подготовка к мойке двигателя заканчивается. После проведения работ можно приступать к мойке.

Чем помыть двигатель автомобиля в домашних условиях

Существует два типа моющих средств:

  • специализированные;
  • универсальные.

Специализированные моющие средства используются на станциях техобслуживания и предназначены для конкретного вида загрязнений, к примеру, если нужно очистить двигатель от налёта масла. В то время как универсальным под силу справиться с любым видом грязи, они предназначены для проведения комплексной очистки.

Выбор лучшего моющего средства для мытья двигателя во многом зависит от марки и модели автомобиля. По типу ёмкости очистители делятся на те, которые выпускаются во флаконах с ручным распылителем, и на те, что представлены в качестве спреев. В зависимости от объёма подкапотного пространства можно использовать те или другие.

Для того чтобы определить, чем помыть двигатель автомобиля своими руками, следует обратиться к списку лучших и самых востребованных средств.

Restone Heavy Duty

Универсальное моющее средство для двигателя. Выпускается в болоне объёмом 360 мл., оснащённом аэрозольным клапаном. Средство отлично справляется с незначительными загрязнениями разных типов, однако для удаления многолетних скоплений грязи не подходит. Применяется в качестве профилактических мер. Инструкция по применению химического состава предполагает нанесение средства на разогретый двигатель.

Restone Heavy Duty

STP

Универсальный моторный очиститель. Представлен в баллоне-аэрозоли объемом 500 мл. Эффективно справляется с разным уровнем загрязнённости агрегата. Рекомендуется наносить на прогретый до рабочей температуры двигатель, оставлять на 10 – 15 мин., после чего удалять небольшим количеством воды.

Liqui Moly

Данное средство очень популярно как на станциях техобслуживания, так и в домашних условиях. Это спрей-очиститель, доступный в специальном флаконе объемом 400 мл. Отлично удаляет налёт пыли любой давности, а также эффективно борется с масляными загрязнениями.

Liqui Moly

Лавр

Универсальный очиститель российского производства, выпускаемый в виде концентрата для последующего разбавления. Доступен в разных вариантах расфасовки. Обладает высокой эффективностью при очистке ДВС. Обладает защитным действием против коррозии.

Лавр

Как правильно мыть мотор

Человеку без опыта в этом деле будет достаточно сложно справиться с задачей. Но, ознакомившись с инструкцией, как правильно мыть мотор, и следуя её пунктам, достичь желаемого результата можно.

Если учесть тот факт, что далеко не каждый специалист станции техобслуживания способен профессионально справиться с задачей мытья двигателя, а ответственности за исправность автомобиля СТО на себя не возлагает, то лучше тщательно изучив механизм процедуры, произвести её самостоятельно.

Правила мытья двигателя:

  1. Произвести изоляцию узлов, неустойчивых к влаге с помощью поли этилена и скотча. Нужно обязательно закрыть блок управления двигателем, генератор, воздушный фильтр, аккумулятор, электропроводку.
  2. Обработать труднодоступные детали спреем с водоотталкивающим составом.
  3. Разогреть двигатель до рабочей температуры. Мыть мотор в холодном или горячем состоянии запрещено, это может привести к деформации головки блока цилиндров. Наиболее подходящая температура – 40 С.
  4. Нанести очищающий состав на двигатель и стенки моторного отсека.
  5. По истечении времени, указанного в инструкции по применению химического вещества, удалить средство влажным полотенцем или небольшим количеством воды. Температура наносимых на двигатель жидкостей должна соответствовать температуре двигателя.

Инструкцию о том, как правильно помыть двигатель самостоятельно, можно получить на станции технического обслуживания. При этом обязательно нужно соблюдать правила техники безопасности: верхние дыхательные пути должны быть защищены от попадания паров моющего средства, поскольку его состав небезопасен для человеческого организма.

Сушка двигателя после мойки

После мойки необходимо тщательно удалить всю влагу с поверхности мотора. Для этого можно использовать бумажные салфетки или текстильные полотенца. Заводить автомобиль с влажным двигателем категорически противопоказано.

Периодичность процедуры мытья двигателя зависит от интенсивности эксплуатации транспортного средства, манеры езды, местности, в которой используется автомобиль. Определить, когда мотор загрязнён до критического состояния, не сложно, это видно не вооружённым взглядом. Если же по состоянию подкапотного пространства определить наличие проблемы не удаётся, лучше обратиться к профессионалам.

drivertip.ru

Что будет, если помыть двигатель? — журнал За рулем

Весной хочется сделать что-то приятное своему автомобилю, который всю зиму защищал вас от холода, снега и грязи. Многим хочется навести не только внешний лоск, но и порядок в моторном отсеке. Рассказываем, как это сделать, чтобы не причинить больше вреда, чем пользы.

Каждому свое

Давайте сразу разделим все автомобили на эксплуатируемые преимущественно на асфальте и те, которые много катаются по бездорожью. Наши советы касаются первых. Для вторых подсказки не нужны — их владельцы и сами все знают. Очевидно, что эти профессионалы или чересчур увлеченные любители — та категория автовладельцев, которая просто вынуждена периодически отмывать детали и узлы в моторном отсеке.

После таких покатушек не помыть мотор — грех.

После таких покатушек не помыть мотор — грех.

Мойка для них обязательна, чтобы наслоения грязи не мешали движению органов управления, а также не препятствовали охлаждению двигателя и коробки передач. Ведь слои глины толщиной до нескольких сантиметров могут образовывать своего рода керамический кокон на деталях. Тут можно посоветовать только одно: мойте машину, по возможности, вскоре после загрязнения, пока грязь не успела закаменеть.

Куда податься?

Теперь поговорим о другой категории автомобилей. Моторные отсеки этих машин хоть и загрязняются, но все-таки не столь интенсивно. Автолюбители, живущие в частных домах с приусадебными участками, чаще всего моют автомобили сами. Очистку машины большинство владельцев, особенно в крупных городах, осуществляют на платных автомойках. Помыть кузов снаружи, почистить коврики, а то и обивку салона — отлично, но вот пускать ли этих мойдодыров XXI века под капот?

Давайте вначале определимся, с какой целью вообще моют двигатель и моторный отсек.

Вы уверены, что всему этому хитросплетению проводов, трубочек, шлангов и приборов не будет вреда от пенистых химикалий?

Вы уверены, что всему этому хитросплетению проводов, трубочек, шлангов и приборов не будет вреда от пенистых химикалий?

Мойка на продажу

Пытаться отмыть мотор перед продажей — занятие весьма сомнительное. Многие покупатели осведомлены, что моют моторы зачастую с целью скрыть следы недавнего ремонта двигателя после интенсивного подтекания масла. Гораздо больше доверия у них вызывает запорошенный сухой пылью мотор, которого «не касалась рука человека». И я полностью согласен с этим мнением. Резюме: перед продажей машины двигатель, если он действительно сухой, — не мыть.

Мойка перед грандиозным ремонтом

Помыть силовой агрегат перед демонтажем — идея привлекательная: все же не так вымажешься при работах. Но я бы посоветовал если и мыть агрегат, то после этого его уже не запускать. А за время ремонта любая влага высохнет.

Мойка из любви к чистоте

Материалы по теме

www.zr.ru

Мойка двигателя, как правильно самому мыть двигатель. — Mazda 3, 2.0 л., 2007 года на DRIVE2

Уважаемые подписчики и гости, доброго времени суток .

Сегодня на повестке дня

1) Рассказ как я помыл в среду вечером не очень удачно двигатель .

2) Инструкция как правильно его мыть

Споров по поводу данной процедуры много и они наверное никогда не прекратятся . Кто то считает эту процедуру не нужной, кто то наоборот . Тут как говорится дело каждого !

Скажу так это уже третья мойка двигателя на этой машине, в этот раз не очень удачная. Но обо всем по порядку .

В среду после работы, заехал на мойку и договорился, что помою двигатель сам , именно сам держу керхер и лью куда хочу)
Уж если и накосячу то только я )))), цена чисто символическая .

Помыл, сполоснул, в этот раз использовал специальную пену для мойки двигателя- на мойке — какую не знаю , покурил и так как не было возможности поставить машинку на солнце .завел мин через 20 после мойки – все штатные узлы и агрегаты заработали без проблем, а вот «ангельские глазки» в одной фаре перестали светить. (причина попала вода в контакты- слабое место АГ — об этом в следующей записи )

Вывод – двигатель мыть можно и да же нужно (ведь дико приятно открыть капот а там чистота, плюс подкапотка у мазды очень красивая ) но если что то установлено не штатно – именно в этих узлах есть только риск .

И соответственно, так как каждая запись должна нести какую то пользу для всех пользователей делюсь инструкцией .

Как правильно мыть двигатель (правила которые нужно соблюдать и не будет проблем)


Обращаю внимание, что ничего и нигде не закрывал — просто вытащил ключи из зажигания

1) Лучше мыть двигатель самому, своими руками, так как только хозяин авто знает где и какие агрегаты расположены и куда лить смело а куда аккуратнее

2) Приехав на мойку – даем двигателю остыть (физику помнят все, и прекрасно понимают что происходит с металлом если он раскаленный а на него льем холодную воду.

3) Аккуратно начинаем споласкивать подкапотку водой, так же штатная шумка капота очень нежная с ней будьте ласковее )

4) Лучше использовать специальную химию для мытья двигателя а не пену для кузова

5) Ждем и тщательно смываем моющее средство —опять же льем именно туда куда можно — не надо напором к примеру лить на жгуты, фишки, коробку с предами и т д ! Все и так отмоется !

6) Протираем все что видим под капотом (в идеале если есть такая возможность дать авто постоять на солнце с открытым капотом что бы все просохло

7) Момент истины заводим (лучше при первом запуске избегать включение лишних приборов, ксенона, кондея и т д )

8) ВАЖНО – завелась машинка – ни в коем случае не газуем и не даем высоких оборотов, дайте ей постоять поработать на холостых мин 20

9) После уже включаем и проверяем работоспособность всех узлов, так же слушаем и смотрим подкапотку, что бы нигде ничего не пробивало !

Всем удачи на дорогах !

по традиции фото.

Вот в такую погоду решил двиг помыть

Капли — это дождик идет )

Совсем не нравится такой двиг!

www.drive2.ru

Двигатель b5 – B5-ME — двигатель Mazda Demio 1.5 литра

Двигатели Volkswagen Passat B5

Бензиновый двигатель AWT 1.8 л

Код AWT
ОГ EU-4 (EU-2)
Производство с 10.01
Рабочий объем, л. 1.781
Макс. мощность, кВт/об/мин 110/5700
Макс. крутящий момент, Нм/об/мин 210/1750 — 4600
Диаметр цилиндра, мм 81,0
Ход поршня, мм 86,4
Степень сжатия 9,3:1
Система впрыска/зажигания Motronic ME 7.5
Порядок работы цилиндров 1 — 3 — 4 — 2
Регулирование детонации 2 датчика детонации
Рециркуляция ОГ
Встроенная система диагностики +
Каталитический нейтрализатор ОГ +
Турбонадцув +
Охлаждение наддувочного воздуха +
Датчик кислорода/лямбдарегулирование 2 датчика кислорода
Система изменения фаз газораспределения +
Система подачи дополнительного воздуха +

Бензиновый двигатель AZM 2.0 л

Код двигателя AZM
Нормы токсичности ОГ EU-4
Производство с 10.01
Рабочий объем, л 1.984
Максимальная мощность, кВт/об/мин 172/3500
Максимальная мощность, кВт/об/мин 85/5400
Диаметр цилиндра, мм 82.5
Ход поршня, мм 92.8
Степень сжатия 10.3:1
Система впрыска/зажигания Simos 3.2
Порядок работы цилиндров 1 — 3 — 4 — 2
Регулирование детонации +
Рециркуляция ОГ
Встроенная система диагностики +
Каталитический нейтрализатор ОГ +
Устройство изменения длины впускного коллектора +
Лямбда-регулирование +
Электронная система управления подачей топлива +
Система подачи дополнительного воздуха/дожигания топлива +

Бензиновый двигатель АМХ и BBG 2.8 л

Код двигателя АМХ BBG
Нормы токсичности ОГ EU-4 EU-2-DDK
Производство С 10.01 с 06.02
Рабочий объем, л 2.771 2.771
Максимальная мощность, кВт/об/мин 142/6000 140/6000
Максимальный крутящий момент, Нм/об/мин 280/3200 260/3000 — 3200
Диаметр цилиндра, мм 82.5 82.5
Ход поршня, мм 86.4 86.4
Степень сжатия 10.6:1 10.1:1
истема впрыска/зажигания Motronic МЕ7.1 Motronic МЕ7.1
Регулирование детонации 2 датчика детонации 2 датчика детонации
Рециркуляция ОГ
Датчик кислорода/лямбда-регулирование 4 датчика 4 датчика
Каталитический нейтрализатор ОГ + +
Турбонадцув
Система подачи дополнительного воздуха + +
Электронная система управления подачей топлива + +
Система изменения фаз газораспределения + +
Система изменения геометрии впускного коллектора + +

Дизельные двигатели AWX, AVF и AVB TDI 1.9 л

Код двигателя AWX AVF AVB
Нормы токсичности ОГ EU-3 EU-3 EU-3
Производство с 10.01 с 01.04 с 06.02
Рабочий объем, л 1,896 1,896 1,896
Максимальная мощность, кВт/об/мин 96/4000 96/4000 74/4000
Максимальный крутящий момент, Нм/об/мин 285 / 1750 — 2500 310/1900 250/1900
Диаметр цилиндра, мм 79.5 79.5 79.5
Ход поршня, мм 95.5 95.5 95.5
Степень сжатия 19.0:1 19.0:1 19.0:1
Порядок работы цилиндров 1 — 3 — 4 — 2 1 — 3 — 4 — 2 1 — 3 — 4 — 2
Рециркуляция ОГ + + +
Каталитический нейтрализатор ОГ + + +
Турбонаддув + + +
Охлаждение наддувочного воздуха + + +

Дизельный двигатель AKN и BDG TDI 2.5 л

Код двигателя AKN BDG
Нормы токсичности ОГ EU-4 EU-3
Производство с 10.01 — 07.03 с 08.03
Рабочий объем, л 2,496 2,496
Максимальная мощность, кВт/об/мин 114/4000 120/4000
Максимальный крутящий момент, Нм/об/мин 310/1400 — 3500 350/1250 — 3600
Диаметр цилиндра, мм 78.3 78.3
Ход поршня, мм 86.4 86.4
Степень сжатия 18.5:1 18.5:1
Порядок впрыскивания 1 — 4 — 3 — 6 — 2 — 5 1 — 4 — 3 — 6 — 2 — 5
Рециркуляция ОГ + +
Каталитический нейтрализатор ОГ + +
Турбонаддув + +
Охлаждение наддувочного воздуха + +

Материалы по теме

carpod.ru

типы двигателей Б5,Б5+ полезная инфа — DRIVE2

PASSAT B5,B5+ Расположение датчиков под капотом основные двигатели.

1. Двигатель AHL (1999 МКП)

1. клапан абсорбера N80
2. ДМРВ (G70)
3. лямбда-зонд (G39)
6. ДТОЖ (G62)
7. коммутатор (N152)
8. блок ДЗ (J338)
10. разъем лямбда-зонда (4-х пиновый)
11. разъем ДПКВ (G28) (3-х пиновый)
12. разъем датчика детонации 1 (G61) (3-х пиновый)
13. земля
15. ЭБУ
17. клапан «флейты»
18. ваккуумник «флейты»
19. ДПКВ (G28)
20. датчик детонации 1 (G61)
21. РДТ
22. разъем датчика Холла (G40) (3-х пиновый)
23. форсунки
24. датчик Холла (G40)
26. воздушный фильтр

Двигатель ALZ (ANA то же самое, только без клапана рециркуляции ОГ N18)

1. клапан абсорбера N80
2. ДМРВ G70 с датчиком температуры воздуха на впуске G42
3. лямбда-зонд перед катализатором G39
4. лямбда-зонд после катализатора G130
5. клапан системы рециркуляции ОГ N18 (с потенциометром рециркуляции выхлопных газов G212)
6. комби-клапан СВВ
7. ДТОЖ G62
8. трансформатор зажигания N152
9. блок дросселя J338
10. 4-контактное штекерное соединение (коричневое для лямбда-зонда после катализатора G130 и подогрева лямбда-зонда Z29)
11. 4-контактное штекерное соединение (черное для лямбда-зонда перед катализатором G39 и подогрева лямбда-зонда Z19)
12. 3-контактное штекерное соединение (серое для датчика числа оборотов двигателя G28 ДПКВ)
13. 3-контактное штекерное соединение (зеленое для датчика детонации I G61)
14. соединение с массой
15. реле насоса СВВ J299
16. ЭБУ (Simos) J361
17. клапан вторичного воздуха N112
18. переключающий клапан впускного коллектора N156
19. ваккуумный привод переключения впускного коллектора («флейты»)
20. ДПКВ G28
21. датчик детонации 1 G61
22. регулятор давления топлива (РДТ)
23. 3-х контактное штекерное соединение для датчика Холла G40
24. инжекторы ( форсунки) N30…N33
25. датчик Холла G40
26. насос СВВ V101
27. воздушный фильтр

2. Двигатель AZM (2002)

1. клапан абсорбера N80
2. расходомер воздуха G70 ДМРВ с датчиком температуры воздуха G42
3. Комби-клапан СВВ
4. ДТОЖ G62 (двухконтурный — с датчиком температуры G2)
5. трансформатор зажигания N152
6. модуль управления дроссельной заслонки J338
7. 4-контактное штекерное соединение (коричневое для лямбда-зонда после катализатора G130 и подогрева лямбда-зонда Z29)
8. 4-контактное штекерное соединение (черное для лямбда-зонда перед катализатором G39 и подогрева лямбда-зонда Z19)
9. 3-контактное штекерное соединение (серое для датчика числа оборотов двигателя G28 ДПКВ)
10. 3-контактное штекерное соединение (зеленое для датчика детонации I G61)
11. 3-контактное штекерное соединение (коричневое для датчика детонации II G66)
12. Соединение с массой
13. Реле насоса вторичного воздуха J299
14. Реле для блока управления Simos (J363)
15. Плавкий предохранитель для насоса СВВ (S130)
16. ЭБУ Симос
17. корпус для ЭБУ
18. Клапан переключения впускного коллектора (N156)
19. Ваккуумный привод переключения коллектора
20. ДПКВ G28
21. Датчик детонации 1 G61
22. Датчик детонации 2 G66
23. Регулятор давления топлива РДТ
24. 3-контактное штекерное соединение (черное для датчика Холла G40 )
25. Форсунки N30…N33
26. датчик Холла G40
27. Лямбда-зонд после катализатора G130
28. Лямбда-зонд перед катализатором G39
29. Двигатель для насоса вторичного воздуха V101
30. Воздушный фильтр

3. Двигатели AEB, ATW, ANB, APU

1 — Воздушный фильтр
2 — Лямбда-зонд G39, ( момент затяжки 50 Нм )
(Место установки: спереди в приемной трубе )
3 — Лямбда-зонд после катализатора G130 (только для двигателей по норме D4 или OBD )
4 — Датчик температуры охлаждающей жидкости G62 (для блока управления двигателя, с датчиком индикации температуры охлаждающей жидкости G2)
5 — Клапан рециркуляции наддувочного воздуха N249
6 — Клапан подачи вторичного воздуха N112 (только для двигателей по норме D4 с системой вторичного воздуха)
7 — Модуль управления дроссельной заслонки -J338-
8 — Выключатель педали сцепления F36, выключатель стоп-сигналов -F, выключатель педали тормоза F47, датчик положения педали акселератора G79 и датчик 2 положения педали акселератора G185 ( в зоне ног водителя )
9 — 4-контактный штекерный разъем (черный для лямбда-зонда до катализатора G39)
10 — 4-контактный штекерный разъем (только для двигателей по норме D4 или OBD) (коричневый для лямбда-зонда после катализатора G130)
11 — Тройное штекерное соединение (серое для датчика числа оборотов двигателя G28 ( ДПКВ))
12 — Тройное штекерное соединение (зеленое для датчика детонации 1 G61)
13 — Тройное штекерное соединение (синее для датчика детонации 2 -G66)
14 — Реле насоса вторичного воздуха -J299 (только для двигателей по норме D4 )
15 — Блок управления Motronic -J220 (место установки: в защитном корпусе, слева в водоотводящем коробе)
16 — Датчик температуры воздуха на впуске -G42
17 — Датчик частоты вращения вала двигателя -G28 ( ДПКВ)
18 — Датчик давления наддува -G31 (кроме двигателя с буквенным обозначением AEB)
19 — Датчик детонации 2 -G66
20 — Датчик детонации 1 -G61
21 — Регулятор давления топлива (РДТ. в торце топливной рампы)
22 — Датчик Холла -G40
23 — Форсунка цилиндра 1 -N30 до форсунки цилиндра 4 -N33
24 — Катушки зажигания
Двигатели с буквенным обозначением ATW:
Катушка зажигания 1 с выходным каскадом -N70-
Катушка зажигания 2 с выходным каскадом -N127-
Катушка зажигания 3 с выходным каскадом -N291-
Катушка зажигания 4 с выходным каскадом -N292-
25 — Электромагнитный клапан ограничения давления турбонаддува -N75
Катушки зажигания —
Двигатели с буквенным обозначением AEB, ANB, APU:
Катушка зажигания 1 -N-
Катушка зажигания 2 -N128-
Катушка зажигания 3 -N158-
Катушк

www.drive2.ru

Техничка. Двигатель B5254T5 — Volvo S60, 2.0 л., 2012 года на DRIVE2

двигатель


Двигатель целиком изготавливается из алюминия.

Двигатель имеет компактную камеру сгорания типа «закрытая крышка» и V-образное расположение клапанов. Это дает оптимальное и быстрое заполнение и прямое прохождение через впускной коллектор в камеру сгорания (поперечный поток) и канал вывода.

Поверхности, образующиеся днищем поршня и полуразделенной камерой сгорания, вместе с центральным расположением свечи зажигания обеспечивают оптимальное сгорание воздушно-топливной смеси, низкую чувствительность к детонации и низкий, устойчивый уровень выбросов отработавших газов.

Амортизационное крепление двигателя состоит из кронштейна двигателя, зафиксированного на головке блока цилиндров. Кронштейн двигателя сопрягается с кронштейном, который закреплен на лонжероне. Другая точка крепления располагается между коробкой передач и кузовом. Третья точка крепления для поглощения реактивных и ротационных сил — на опорном кронштейне ведущего вала.

Головка блока цилиндров представляет собой «холодное» литье, технология исполнения которого немного длительнее, чем пресс-литье. Это сделано для того, чтобы объединить выпускной и впускной каналы, а также кожухи водяного и масляного охлаждения в одну конструкцию.

Двигатель одобрен согласно требованиям по выпуску Euro 5. Все подшипники неосвинцованы. Винты не содержат хром 6+.

Биоэтаноловый двигатель может работать на разном типе топлива. Двигатель оснащен новой головкой блока цилиндров с новыми гнездами клапанов на стороне впуска и новым топливным коллектором, в сравнении с бензиновыми двигателями. Эти детали имеют более твердую отделку, дающую более продолжительный срок службы, в то время: как биоэтаноловые двигатели (E85) с корродирующим уровнем мощности.

Зазор клапана несколько меньше, а форсунки имеют более высокую мощность, чем в бензиновом двигателе. Двигатель на биоэтаноле имеет более плотный интервал техобслуживания, чем бензиновый двигатель.

Бензиновый двигатель работает на топливе RON 95. Двигатель на биоэтаноле является многотопливным двигателем и работает на биоэтаноле (E85) или топливе RON 95, а также на всевозможных смесях этих двух видов топлива.

В биоэтаноловом двигателе имеется заранее установленный обогреватель блока двигателя, который следует использовать для облегчения запуска при низкой температуре воздуха. Кроме этого, количество бензина в горючей смеси должно увеличиваться при температуре ниже -10°С, чтобы облегчить запуск двигателя из холодного состояния. Поскольку биоэтанол обладает меньшим запасом энергии, чем бензин, то двигатель использует до 40% больше биоэтанола, чем бензина.

Блок двигателя

Блок двигателя

1.Крышка клапанной коробки
2.Головка блока цилиндров
3.Блок цилиндров
4.Средняя часть
5.Поддон картера

Блок двигателя состоит из пяти частей: головка блока цилиндров — из двух (1и 2) и блок двигателя — из трех частей (3, 4 и 5). Уплотнение между головкой блока цилиндров и блоком двигателя представляет собой обычную прокладку для головки блока цилиндров, в то время как уплотнение между другими зонами прилегания прокладки выполнено из жидких прокладок.

Головка цилиндров, корпус подшипника распределительного вала

www.drive2.ru

Двигатель Mazda B — Mazda B engine

Двигатель Mazda B
обзор
производитель Mazda
производство 1985-2005
раскладка
конфигурация Инлайн-четыре двигателя
водоизмещение
  • +1138 куб.см (69,4 у.е. в)
  • 1290 куб.см (79 у.е. в)
  • 1,324 см (80,8 у.е. в)
  • +1498 куб.см (91,4 у.е. в)
  • Куб.см тысяча пятьсот девяносто-семь (97,5 у.е. в)
  • +1839 куб.см (112,2 у.е. в)
Диаметр цилиндра
  • 68,0 мм (2,68 дюйма)
  • 71,0 мм (2,80 дюйма)
  • 78,0 мм (3,07 дюйма)
  • 83.0 мм (3.27 дюйма)
ход поршня
  • 67,5 мм (2,66 дюйма)
  • 78,4 мм (3,09 дюйма)
  • 83,6 мм (3,29 дюйма)
  • 85,0 мм (3,35 дюйма)
Блок материал Чугун
Руководитель материала алюминий
клапанного
горение
Тип топлива бензин
Нефть системы масляный отстойник
Система охлаждения С водяным охлаждением
Хронология
правопреемник Мазда Z двигатель

Мазда B-Series двигатель — не следует путать с Mazda B-Series грузовик — это небольшой по размеру, железо-блок, рядный четырехцилиндровый с ременным приводом SOHC и DOHC клапанного в диапазоне смещения от 1,1 до 1,8 литров. Он был использован от применения на передние колеса экономики к турбинным очного 4WD 323 GTX и задним приводом Miata , а также множество других моделей. Мазда B-серии является «невмешательство» дизайн, что означает , что поломка его зубчатого ремня не приводит к повреждению клапанов или поршней, так как открытие клапанов, глубина камеры сгорания и (в некоторых вариантах) формирование поршня позволяют достаточный зазор для открытых клапанов в любом возможном положении поршня.

B1

1,1 л (см тысячи сто тридцать восемь) В1 — (68.0×78.4 мм) — пришли только в качестве SOHC 8-клапана. Он был доступен в 1987-1989 Mazda 121 и более поздних версий модели Kia Sephia в европейских и азиатских рынках. Вариант с впрыском топлива был использован в избранном европейском рынке 1991-1995 Mazda 121S

BJ

1,3 л (1290 куб.см) BJ двигатель (78.0×67.5 мм) был DOHC 16-клапанный двигатель, используемый только на японском рынке Ford Festiva GT, GT-X, а модели GT-A (1986.10-1993.01, GT- А из марта 1991 года). Он развивает 88 л.с. (65 кВт) при 7000 оборотах в минуту и оснащен Мазда «EGi» инъекции одноточечной топлива . Это версия с коротким ходом из B5 / B6 двигателей.

B3

1,3 л (1324 куб.см) B3 — (71,0 × 83,6 мм). Он был доступен в SOHC вариантах и был найден в Kia сложенного 1988-1993 Ford Festiva , в 1987-1989 Mazda Familia и его производные, а также Mazda 121 (также известную как Autozam Revue) (54 л.с. и 72 л.с. версии ) и 1987-1989 Ford Laser и 1994-1997 Ford Aspire . Более поздние варианты были использованы в Mazda Demio Microcar как в конце 1999 года.

Топливо Введенный Двигатель: Мощность: 63 л.с. (47 кВт) при 5000 оборотов в минуту Крутящий момент: 73 lb⋅ft (99 Нм) при 3000 оборотах в минуту

Карбюраторная Двигатель: Мощность: 63 л.с. (47 кВт)

Более поздние версии (Мазда 323 91-98 и т.д.) производится 73 л.с. (54 кВт) при 5500 оборотах в минуту и ​​80 lb⋅ft (110 Нм) крутящего момента при 4000 оборотах в минуту

B5

Мощность крутящий момент Норма Топливная
система
предмет обстановки рынки
PS кВт при оборотах в минуту кгм Nm lbft при оборотах в минуту
8V
SOHC
B5 76 56 6000 11,4 112 82 3500 JIS нетто карбюратор 1987-1989 Familia BF / Ford Laser KE , 1987-1994 Familia BF Вагон , 1988.07-1989.02 Mazda этюд JDM, NZ
73 54 +5700 11,4 112 82 +3200 ЕЭК Familia Wagon BF Евросоюз
82 60 +5500 12,2 120 88 2500 Тимор S515 Род-Айленд
88 65 5000 13,8 135 100 4000 DIN EGI 1992-1997 второго поколения. Ford Festiva Aus
16V
SOHC
B5-M 91 67 +6500 12,4 122 90 4000 JIS нетто карбюратор 1989.02-1991.01 Familia BG , 1989-1994 Ford Laser KF / KH JDM, NZ
B5-MI 88 65 +6500 12,0 118 87 4000 JIS нетто EGI-S 1991-1998 Autozam Revue JDM
94 69 +6500 12,5 123 90 4000 JIS нетто 1990.02-1994.06 Familia BG JDM
B5-ME 80 59 +5500 12,2 120 88 2500 ЕЭК EGI 1992-1997 Kia Sephia Евросоюз
88 65 +5500 13,5 132 98 2500 JIS нетто
KS
1992-1994 Kia Sephia ROK , другие
92 68
100 74 +6300 12,1 119 88 5000 JIS нетто
KS
1993-2000 Ford Festiva / Kia Avella JDM, РК,
другие
100 74 6000 13,0 127 94 +4500 JIS нетто 1996-2002 Demio / Ford Festiva Mini Wagon JDM
16V
DOHC
B5-DE 105 77 +5500 15,0 147 108 4000 Канзас EGI 1992-2000 Kia Sephia , 1992-1997 Тимор S515i DOHC , 2000-2005 Kia Rio РК, RI,
другие
110 81 +6500 12,9 127 93 +5500 JIS нетто 1989-1991.08 Familia BG и Astina , 1989-1994 Ford Laser KF / KH JDM
115 85 +6500 13,5 132 98 5000 JIS нетто 1991.08-1994 Familia BG и Astina с AT JDM
120 88 +6500 13,5 132 98 +5500 JIS нетто 1991.08-1994 Familia BG и Astina с МТ JDM

8-клапанный, SOHC

1,5 л (1 498 сс) В5 — (78.0×78.4 мм) — The SOHC , 8-клапанный В5 увеличил смещение до 1,5 л , и было обнаружено в 1987-1989 Mazda Familia , в 1987-1989 Ford Laser . Он также был установлен на Mazda Etude купе и пятого поколения BF-серии Familia Wagon, как это продолжалось в производстве до 1994 года по новому BG.

16-клапанный, SOHC

Был также 16-клапанный, SOHC , B5-MI версия B5, как правило , установлены с впрыском одноточечной топлива ( «EGi»). Этот двигатель использовался в основном на японском внутреннем рынке. B5-МЕ, оснащенный электронной системой впрыска топлива, был использован Kia для нескольких своих автомобилей, а также в Mazda Demio .

16-клапанный DOHC

1,5 л (1 498 сс) B5D — (78.0×78.4 мм) — Японский только вариант B5 с впрыском топлива и пересмотренной головки / системы впуска. Найдено в 1989-1994 BG Фамилиа и Ford Laser выходе С. Мощность 120 л.с. (88 кВт) при 6500 оборотах в минуту и 13,5 kg⋅m (132 Нм; 98 lb⋅ft) при 5500 оборотах в минуту. Тимор S515i также использовали B5D с 110 л.с. при 5500 оборотах в минуту и 145 Нм при 4400 оборотах в минуту без изменения фаз газораспределения и с 9.2: 1 степень сжатия. B5D был также найден в Autozam AZ-3, в японской версии рыночной Mazda MX-3 , где производится 120 PS (88 кВт).

  • Позже Eunos Прессо и версии Семейства «INTERPLAY X» (1994) на есть двигатель B5-ZE, который производит 125 л.с. (92 кВт) при 7000 оборотах в минуту и ​​13,2 kg⋅m (129 Нм, 95 lb⋅ft) при 6000 оборотах в минуту Это был также установлен на японском рынке «Ford Laser» -badged версий Familia.

B6

1,6 л (см тысяча пятьсот девяносто семь) В6 — (78.0×83.6 мм) — Это было скучно-аут версия B3. 16-клапанный , SOHC B6 был обнаружен в 1985-1989 и 1990-1994 Мазда 323 , 1991-1993 Mazda MX-3 1987-1990 Mercury Tracer и 1985-1990 Ford Laser . 16-клапанный DOHC B6 был также найден в 1994-1998 Ford Laser KJ / KL , 1997-2004 Kia Sephia , Kia Shuma , 2000-2004 Kia Spectra и 2000-2005 Kia Rio (для экспортных рынков).

В Японии, Великобритании и Австралии топливо впрыскивается-версия называется B6F была доступна. В Европе B6 также пришел в 16-клапанный DOHC версии, в основном найдены в моделях Mazda 323 BG и 323F BG от 1989-1994. Этот двигатель был тот же 1,6 — литровый с впрыском топлива, но с двумя распределительными валами и 88 лошадиных сил. Версия Кии от B6 (16-клапанный DOHC) был немного более короткий ход (на 83,4 мм), для полного перемещения 1,594 куб. Этот двигатель был использован в Rio , Sephia II и Shuma .

8-клапанный, SOHC

16-клапанный, SOHC

16-клапанный DOHC

B6-2E

1,6 л (см тысячи пятьсот девяносто семь) B6-2E — (78.0×83.6 мм), также известный как B6-ME — Это был вариант B6-E с 16-клапанной головкой блока цилиндров SOHC.

B6T

1,6 л (см тысяча пятьсот девяносто семь) B6T — (78.0×83.6 мм) — Вездесущий с турбонаддувом , с впрыском топлива и промежуточным охлаждением 16-клапанный DOHC B6, выпущенный в 1985 году и используется в многочисленных моделей по всему миру , включая 1985-1989 Mazda Familia BFMR / BFMP (турбо), 1985-1989 Ford Laser TX3 турбо, и 1991-1994 Mercury Capri XR2. Этот двигатель был наиболее распространена в паре с 4WD трансмиссии , хотя FWD модели были также доступны.

Мощности и крутящий момент выход варьировался в зависимости от рынка из — за нормы выбросов и топлива. B6T доступны в Северной Америке пришел с 132 л.с. (98 кВт) и 136 (184 lb⋅ft Нм). Японская версия была немного более мощным, производя 140 л.с. (103 кВт) и 19,0 kg⋅m (186 Нм) за счет лучшей конструкции впускного коллектора и его способности работать 100 октановое топливо. Для специального ралли омологации BFMR Семейства GT-Ае модель , выпущенная в 1987 году, мощность и крутящий момент были повышены до 150 л.с. (110 кВт) и 20,0 kg⋅m (196 Нм) соответственно за счет использования несколько иной турбокомпрессора; Внутренности двигателя оставались в остальном идентичны.

B6D

Mazda B6D, третье поколение

1,6 л (см тысячи пятьсот девяносто семь) B6D — (78.0×83.6 мм) — То же укреплено и инжекторный 16-клапанный DOHC , В6 , но с более высоким сжатием, не турбо, и первым двигателем Mazda , чтобы отличать переменные инерциальную систему зарядки (VICS) , Наиболее часто встречается в 1985-1988 японского рынка Familias, этюды и лазеры, этот двигатель был обновлен в 1989 году с пересмотренным сжатия, головки и системы впуска (в том же духе до B5 DOHC) для 1989-1991 Familia и лазер, затем доработаны для 1991-1994 Mercury Capri и 1994 по 1996 год, второе поколение Mazda MX-3 RS. B6D третьего поколения оснащен сплав кулачковой крышка, а VLIM (ВМКС) потребление, было 9: 1 степень сжатия и производство 107 л.с. (79 кВт).

B6ZE (RS)

1,6 л (см тысячи пятьсот девяносто семь) B6ZE (RS) — (78×83.6 мм) — Разработаны для Mazda MX-5 / Miata (1989-05) и Мазда Фамилиа седан GS / LS 4WD полного рабочего дня (JP только, 1994-1998) , Двигатель использует DOHC 16-клапанный сплава головки с облегченным коленвалом и маховиком , чтобы позволить 7,200 оборотов в минуту красной линии. Алюминиевый поддон с охлаждающими ребрами является необычной особенностью этого двигателя. Версия США (1990-1993 годы) было 9,4: 1 степень сжатия и произвел 86 кВт (115 л.с.) при 6500 оборотах в минуту и 136 Нм (100 lbf⋅ft) крутящего момента при 5500 оборотах в минуту. Японская версия двигателя была 9.4: 1 степень сжатия и производится 120 л.с. (90 кВт) и 100 фунтов · футов (136 Н · м). Цифры мощности для европейской версии от 1989-93 было 115 л.с. (85 кВт) @ 6500 оборотов в минуту, и 100 фут-фунт (136 Н · м) @ 5500 оборотов в минуту. С 1994 года она имела 90 л.с. (66 кВт) и 95 фунт · фут (129 Н · м) за счет более сильных контроля выбросов и использовалась до 1997 года не был затем обновлен до 110 л.с. (82 кВт) и 99 фунт · фут (134 Н · м) для моделей 1999-2005.

B8

1,8 л (1839 куб.см) B8 (иногда «BP») не просто скучно , и погладил B6. Скорее всего , он использует новый блок с расширенным интервалом цилиндров. Отверстия составляет 83 мм , а ход составляет 85 мм. Этот SOHC двигатель был использован в различных австралийских 323s Mazda , американский 1990-1994 Mazda Protege , и в канадских вариантах 323 хэтчбека. Он пришел с четырьмя клапанами на цилиндр ( В8-ME или BP-ME ). Он имеет гидравлические компенсаторы, кулачок с ременным приводом, 8.9: 1 степень сжатия, 6000 оборотов в минуту красной линии, и впрыск топлива многоходовой. Силовые выходы:

  • 103 л.с. (77 кВт), 111 фунт-фут (США / канадский рынок)
  • 106 л.с. (78 кВт) при 5300 оборотах в минуту, 151 Нм (111 lb⋅ft) при 4000 оборотах в минуту (европейские рынки)

BP

1839 куб.см (1,8 л) ВР показывая отверстие х ход 83 мм × 85 мм (3,27 × 3,35 в в), является DOHC , 4 клапана на цилиндр вариант В8. Этот Инлайн-четыре двигателя был назван « ВР-ZE инженерами Mazda» и показал кованый коленчатый вал , поршень масла Омыватели, структурный алюминиевый масляный поддон с охлаждающими ребрами, 7000 оборотов в минуту красной линии , а также с переменной Intertia Система зарядки (VICS) , которая активируется с помощью управляющего соленоида при высоких оборотах в минуту , чтобы увеличить мощность в верхнем диапазоне оборотов. Двигателя в форме основания на 91 RON топлива производит 96 кВт (131 PS; 129 л.с.) при 6000 оборотах в минуту и 165 Нм (122 lbf⋅ft) при 4000 оборотов в минуту. Двигатель является любимым для обоих N / A и турбо автомобильных энтузиастов для его надежной конструкции, материалы и конструкции. Данный вариант может быть найден в следующих транспортных средствах:

Существует также версия SOHC невыполнения , что наиболее легко узнаваем по черному штампованным стали масляным поддоном. Она также имеет литой коленвал, без масла, Омыватели пластиковую масляную трубку и менее агрессивных распредвалов. Он находится в 1995-1998 Mazda Protege ES .

BPT

Mazda BPT — Турбированный 1.8L

BPT является турбинным и интеркулером вариант BP. Это произвело 180 PS (132 кВт) при 6000 оборотах в минуту и 24,2 kg⋅m (237 Нм, 175 lb⋅ft) крутящего момента при 4000 оборотах в минуту в JDM-спецификации от G7 + CJ26 AH7 коленчатого вала. 95 октановых рейтингом европейские модели только утверждал , 166 PS (122 кВт) при 5500 оборотах в минуту и 219 Нм (162 lb⋅ft) при 3000 оборотах в минуту.

Это показало турбокомпрессор IHI RHB5 VJ20, sidemount промежуточный охладитель, 330 куб.см Blacktop инжекторы (высокий импеданс). Версии BPT по Familia и лазерной были доступны только в моделях AWD, и показал вязкий LSD центральный и задний дифференциалы.

Приложения:

BPD

Двигатель мазда ППР (также обычно называют как BP2) был обновляют оригинального двигателя BP (иногда называемый ВР1 для ясности). Это показало больший кривошип нос, большую поршень нефти Омыватели, основную опорный подшипник пластину, более плавные впускные и выпускные порты. Это было также базовый двигатель для Mazda Familia GT-R и GT-Ae. Он широко известен как вариант «большой турбо» , как он используется намного больший IHI RHF6CB с водяным охлаждением турбокомпрессора (vj23). ПРЛ был использован в качестве основы для двигателя, с изменениями , таких как выхлопные клапаны с натриевым заполнены, большего (и на передней панели) промежуточный охладитель, больше (440 куб.см) низкого импеданса топливных форсунок и сильных внутренних двигателей , помогающих вверх на производительность двигатель для производства 209 л.с. (156 кВт) и 184 фунтов · футов (255 Н · м). Система VICS из N / A ВР была удалена, а также повышение вырезанной из БУДА. Этот двигатель был разработан для питания Mazda к выигрышу чемпионата мира по ралли, и , таким образом , используется в ограниченном производстве Mazda Familia GT-R (2200 построен) и GTAe (300 построен).

BP-4W

1999 MX-5 использует модифицированную BP, в BP-4W , который заменяет старый зал эффект двойной блок Cam Датчик угла , установленный в задней части выпускного кулачка с двумя отдельными Холла единиц на фронте — один на впускном эксцентрика и один , установленные на масляном насосе, в сторону шкива коленчатого вала. Она также имеет улучшенную всасываемую систему (лучший текучие головки блока цилиндров из — за углом впускных изменяются). Был также переход от более ранних проблематичных гидравлических подъемников для твердых лифтеров. Двигатель первоначально произвел 140 л.с. при 6500 оборотах в минуту и 119 фунт · фут при 5500 оборотах в минуту. США 2004-2005 Mazdaspeed MX-5 турбо основана на этом двигателе , а не более новой BP-Z3 и производит 178 лошадиных сил (180 PS; 133 кВт) при 6000 оборотах в минуту и 226 Нм; 166 lbf⋅ft (23 kg⋅m) от крутящего момента при 4500 оборотах в минуту со слегка пониженной степенью сжатия 9,5: 1. Mazdaspeed турбо двигатель не имеет VICS, но есть VTCS , который часто ошибочно быть связано с VICS.

Приложения:

BP-Z3

В 2001 году Мазда представила еще 1,8 л (+1839 см) BP-Z3 (также называемый ВР-VE ) вариант BP двигателя. Он имеет S-VT изменяемыми фазами газораспределения на впускном стороне, не более VICS , но есть система Variable Сушильные Control (VTCS) в BP-Z3. Аналогичный вид , но эффективно очень разный набор клапанов , которые ограничивают потребление на холодном пуске для целей выбросов, а не крутящий момент расширения набора частичных бабочек , которые увеличивают скорость, которые используются в VICS. Это было обнаружено в 2001+ Miata. Z семейство представляет собой эволюцию этого двигателя.

В Австралии с турбонаддувом версия этого двигателя производится 210 л.с. (157 кВт) и 206 фунтов · футов (280 Н · м) в Mazda MX-5 SP .

Смотрите также

Ссылки, ссылки

ru.qwertyu.wiki

Двигатель VW 1.8T (AEB, AWM)


Характеристики двигателей 1.8 20V

Производство Audi Hungaria Motor Kft.
Salzgitter Plant
Puebla Plant
Марка двигателя EA113
Годы выпуска 1994-2010
Материал блока цилиндров чугун
Система питания инжектор
Тип рядный
Количество цилиндров 4
Клапанов на цилиндр 5
Ход поршня, мм 86.4
Диаметр цилиндра, мм 81
Степень сжатия 9.5
Объем двигателя, куб.см 1781
Мощность двигателя, л.с./об.мин 150/5700
163/5700
170/5900
180/5500
190/5700
210/5800
225/5900
240/5700
Крутящий момент, Нм/об.мин 210/1750-4600
225/1750-4700
225/1950-5000
235/1950-5000
240/1950-4700
270/2100-5000
280/2200-5500
320/2300-5000
Топливо 95
Экологические нормы до Евро 5
Вес двигателя, кг ~150
Расход  топлива, л/100 км
— город
— трасса
— смешан.

13.0
7.5
9.4
Расход масла, гр./1000 км до 1000
Масло в двигатель 5W-30
0W-40
5W-40
Сколько масла в двигателе 3.5
Замена масла проводится, км  15000
 (лучше 7500)
Рабочая температура двигателя, град. 90
Ресурс двигателя, тыс. км
— по данным завода
 — на практике


300+
Тюнинг
— потенциал
— без потери ресурса

400+
н.д.
Двигатель устанавливался Audi A3/S3
Audi A4
Audi A6
Audi TT
Seat Cordoba
Seat Ibiza
Seat Exeo
Seat Leon
Seat Toledo
Skoda Octavia
Volkswagen Bora / Jetta / Vento
Volkswagen Golf
Volkswagen Passat
Volkswagen New Beetle

Неисправности и ремонт двигателя Фольксваген 1.8 турбо

Перед нами доработанный вариант широко известного атмосферного 1.8 литрового четырехцилиндрового двигателя VW, главным новшеством которого стало использование турбонаддува с маленьким интеркулером. Здесь применен чугунный блок цилиндров высотой 220 мм, в котором стоит коленвал с ходом поршня 86.4 мм, шатуны длинной 144 мм и поршни диаметром 81 мм и высотой 32.7 мм.

ГБЦ в моторе используется 20-ти клапанная, по 5 клапанов на цилиндр (3 впускных и 2 выпускных), с системой изменения фаз газораспределения на впускном валу. Имеются гидрокомпенсаторы, поэтому регулировать клапана на 1.8T вам не потребуется.
В приводе ГРМ используется ремень, менять который желательно каждые ~60.000 км, при обрыве ремня мотор загнет клапана.
В 2004 году данный мотор был заменен на новый, более совершенный и мощный VW 2.0 TFSI.

Модификации двигателя VW 1.8T

1. AEB (1997-1999) — мотор со степенью сжатия 9.5 и под экологический стандарт TLEV с ЭБУ Motronic M3.8.2. Давление наддува здесь 0.5 бар, а мощность 150 л.с. при 5700 об/мин, крутящий момент 210 Нм при 1750-4600 об/мин. Заменил двигатель AEB в 1999 году мотор ATW, который отличается электронной дроссельной заслонкой, подачей вторичного воздуха, ЭБУ Bosch Motronic ME7.5 и соответствием экологическому стандарты LEV. Эти двигатели ставили продольно.
2. AGU — аналог AEB для поперечной установки.
3. AJH, APH, ARX, ARZ, AUM, AVC, AWD, AWL, AWT, AWW, BJX, BKF, BKV, CFMA — 150 сильные вариации мотора, используется турбина KKK K03-005. Двигатели ставились на:  Audi A3, Audi A4, Audi A6, Audi TT, SEAT Ibiza, SEAT Exeo, Skoda Octavia, VW Bora, VW Golf IV GTI, VW New Beetle, VW Passat B5, VW Polo GTI.
4. AQX,AYP — модификации мощностью 156 л.с., степень сжатия 9.5. Производился для Seat Cordoba и Seat Ibiza.
5. BFB, BKB, CED — 160 сильные версии, используется турбина ККК К03-029. Двигатели ставились на: Audi A4, VW Passat.
6. AMB, AWM — модификации мощностью 170 л.с., используется турбина ККК К03-029, давление 0.7 бар. Моторы ставились на: Audi A4, VW Jetta, VW New Beetle,  VW Passat.
7. AJQ, APP, ARY, ATC, AUQ, AWP, BEK, BNU, BBU — вариации с отдачей в 180 л.с., используется турбина KKK K03-005. Ставились на: Audi A3, Audi A4, Audi TT,  SEAT León, SEAT Toledo, Skoda Octavia vRS, VW Bora, VW Golf 4 GTI, VW New Beetle, VW Polo GTI.
8. BEX, BVR — версии мощностью 190 сил, используется турбокомпрессор ККК К03-073. Ставились на: Audi A4, Audi TT.
9. APY, AUL, AMK — отдача модификаций 210 л.с., применяется турбинка ККК К04-015. Двигателями комплектовались: Audi S3, SEAT Leon Cupra R.
10. AMU, APX, BAM, BEA  — 225-ти сильные модификации с турбиной ККК К04-022. Двигатели ставились на: Audi TT, Audi S3, SEAT Leon Cupra R.
11. BFV — самая мощная из гражданских модификаций на базе данного моторчика, отдача двигателя 240 л.с. Используется турбокомпрессор ККК К04-023, степень сжатия 9. Данным силовым агрегатом комплектовался Audi TT.

Слабые места VW 1.8T, неисправности и их причины

Данный мотор, в области неисправностей, во многом повторяет своего атмосферного собрата, здесь такие же проблемы с оборотами, неустойчивой работой, могут присутствовать шумы, течи масла и проче прочее. Конкретика по этим вопросам здесь.
Ситуация немного осложняется наличием наддува, как следствие, повышенными нагрузками, стандартная турбина ходит +/- 250.000 км. В общем и целом силовой агрегат неплохой, при нормальном обслуживании мотор проездит довольно долго, ресурс двигателя ~300.000 км, в зависимости от манеры эксплуатации.

Тюнинг двигателя Volkswagen 1.8 Турбо 

Чип-тюнинг

Относительно атмосферников, тюнинг изначально турбовых двигателей вопрос не слишком сложный, если речь идет о небольшой прибавке. Самым простым и быстрым вариантом, в нашем случае, есть обыкновенный чип-тюнинг. В отличие от чиповки атмосферных двигателей, на турбине эта процедура имеет смысл.
Версии двигателей мощностью 150 л.с. можно сделать 180-200 сильными, конечный результат зависит от модификации мотора и его конструкции ГБЦ.
Для полной реализации потенциала стандартного турбокомпрессора делаем типичный чип-выхлоп-впуск. Стандартный фильтр меняем на нулевик либо ставим систему холодного впуска, интеркулер, убираем катализатор, ставим банку как у настоящих уличных гонщиков и получаем около 200-220 л.с.
Дальнейшее движение можно продолжить на турбо ките с фольксвагеновской турбиной ККК К04, процедура стандартная и проводится на каждом шагу. Отдача повышается до 240-250 л.с., этот вариант наиболее рациональный и лучший выбор в области цена-отдача. Если и этого мало, тогда нужно искать турбо-киты на турбинах Garrett GT28 или больше, портировать головку, пилить каналы, ставить соответствующие высокопроизводительные форсунки, выхлоп на 3″ трубе и прочее.

РЕЙТИНГ ДВИГАТЕЛЯ: 4-

<<НАЗАД

wikimotors.ru

Двигатель М5 Е60 S85B50 | Тюнинг, характеристики, масло


Характеристики двигателя S85B50

Производство Dingolfing Plant
Марка двигателя S85
Годы выпуска 2005-2010
Материал блока цилиндров алюминий
Система питания инжектор
Тип V-образный
Количество цилиндров 10
Клапанов на цилиндр 4
Ход поршня, мм 75.2
Диаметр цилиндра, мм 92
Степень сжатия 12.0
Объем двигателя, куб.см 4999
Мощность двигателя, л.с./об.мин 507/7750
Крутящий момент, Нм/об.мин 520/6200
Топливо 98
Экологические нормы Евро 4
Вес двигателя, кг 240
Расход  топлива, л/100 км (для E60 M5)
— город
— трасса
— смешан.

22.7
10.2
14.8
Расход масла, гр./1000 км до 1000
Масло в двигатель 10W-60
Сколько масла в двигателе, л 9.3
Замена масла проводится, км  7000-10000
Рабочая температура двигателя, град.
Ресурс двигателя, тыс. км
— по данным завода
 — на практике


200+
Тюнинг, л.с.
— потенциал
— без потери ресурса

750+
н.д.
Двигатель устанавливался BMW M5 E60
BMW M6 E63
КПП
— 6МКПП
— SMG III

ZF Type-G
Getrag 247
Передаточные отношения, 6МКПП 1 — 4.05
2 — 2.40
3 — 1.58
4 — 1.19
5 — 1.00
6 — 0.87
Передаточные отношения, SMG III 1 — 3.99
2 — 2.65
3 — 1.81
4 — 1.39
5 — 1.16
6 — 1.00
7 — 0.83

Надежность, проблемы и ремонт двигателя БМВ М5 Е60 S85

По сложившейся традиции, каждая новая М5 становится все больше и больше, это касается и М5 Е60, которая стала весить неприлично много. Следовательно, 400 л.с. прежнего S62 не хватило бы для успешной конкуренции с быстрыми Audi RS6 и Mercedes-Benz E55/E63 AMG. В отличие от всех прежних моторов, которые разрабатывались на базе гражданских движков, S85B50 был спроектирован с нуля и при конструировании использовались наработки от спортивного P84/5, использовавшийся на болиде F1 Williams FW27.
Двигатель BMW S85 получил легкий алюминиевый блок цилиндров с 10 цилиндрами, расположенными с 17 мм смещением и углом развала 90°, без гильз. Присутствуют также маслофорсунки для охлаждения поршней и алюминиевый поддон картера. По конструкции блок аналогичен N52. Коленвал усиленный кованый, шатуны легкие кованые, длинной 140.7 мм, поршни из алюминиевого сплава, под степень сжатия 12 и с компрессионной высотой 27.4 мм.
Головки блока цилиндров S85 алюминиевые, с 4 клапанами на цилиндр, с гидрокомпенсаторами, и с системой изменения фаз газораспределения на впускных и выпускных валах Double-VANOS (близкая к таковой на S62). Корректировка впускного распредвала 60°, выпускного 37°. Распредвалы на М5 Е60: фаза 268/260, подъем 11.7/11.5 мм. Диаметр впускных клапанов 35 мм, выпускных 30.5 мм, толщина стержня 5 мм. На впуске установлено 10 дроссельных заслонок в 2 ряда по 5 штук, на каждый цилиндр своя и оптимизированный под них ресивер. Производительность форсунок — 192 cc. Выпускные коллекторы 5-1, равнодлинные, по одному катализатору на каждый. Управляет двигателем М5 Е60 мозг DME MS S65.
Все это позволяет получить 507 л.с. при 7750 об/мин с 5 литров рабочего объема и раскручиваться двигателю до предельных 8250 об/мин.
Двигатель BMW S85 устанавливался на М5 Е60/E61 и на M6 E63/E64.
Для младшей модели М3 в кузове Е92, двигатель S85 был упрощен и получил имя S65B40.
Заменили S85B50 в 2010 году, вместе с остановкой производства М5 Е60 и на BMW M5 F10 стоял новый турбированный V8 S63.

Проблемы и недостатки двигателей BMW S85

Мотор М5 Е60 имеет проблему с преждевременным износом шатунных вкладышей (на всех версиях S85B50), которые требуют замены каждые 80 тыс. км. Такие работы лучше проводить заранее, чтобы не получить глобальных неприятностей с мотором. Ваносы также требуют периодического ремонта, хоть и не столь частого. В остальном мотор нормальный, если за ним ухаживали, не перегревали, качественно и вовремя обслуживали. Чаще всего все происходит не так, поэтому перед покупкой М5 Е60 или М6 Е63 диагностика обязательна.

Тюнинг двигателя БМВ М5 Е60

S85 Атмо. Строкер

Мотор S85 уже с завода имеет высокую мощность относительно своего рабочего объема и довольно сильно отжат, но некоторый запас еще остался. Наиболее простым и часто используемым способом поднять отдачу М5 Е60 является покупка спортивного выхлопа без катализаторов (вроде Supersprint), впуск Gruppe M, шкив и соответствующая настройка мозгов. Это даст около 50 л.с. Если к данному набору добавить распредвалы 294/282, дросселя Dinan и настроиться, то М5 Е60 покажет 580+ л.с. Весь этот набор позволит ехать 1/4 мили за 12 сек. Также существуют строкер киты, увеличивающие рабочий объем с 5 литров до 5.8, путем установки длинноходного коленвала 82 мм и поршней 94 мм, либо стандартные 92 мм (объем будет 5.6 л). М5 Е60 с объмом 5.8 л и со всем вышеописанным набором, покажет 620-630 л.с.

S85 Компрессор

Более дешевой альтернативой атмосферному тюнингу М5, есть покупка компрессор кита. Наиболее распространенный и проверенный вариант это ESS. Кит ESS S85 VT2, на базе Vortech V3Si, надует в стоковый мотор 0.5 бар и позволит снять 650 л.с. Достаточно надежный способ получить неплохую мощность. Не забудьте докупить шатунные вкладыши ESS. Все более мощные киты требуют серьезных денежных вливаний и подразумевают потерю надежности.

РЕЙТИНГ ДВИГАТЕЛЯ: 5

<<НАЗАД

wikimotors.ru

Самые надежные двигатели 2.5 литра — DRIVE2

На сей раз расставляем по местам атмосферные бензиновые моторы объемом 2,3–2,5 литра.
Рейтинг подготовлен совместно с компанией «Иномотор», которая около двадцати лет занимается профессиональным ремонтом двигателей. Мы брали во внимание хорошо изученные и популярные моторы, дебютировавшие 10–15 лет назад. Их чаще ставили на машины предпоследнего поколения, многие из которых очень популярны на вторичном рынке. Они уже накатали большие пробеги, дав достаточно материала для анализа. Ведь именно в период появления этих моторов произошло общее падение качества изготовления и как следствие существенное снижение ресурса и надежности.
Основной критерий при распределении мест — средний ресурс двигателей. Кроме того, обратим внимание на надежность отдельных систем и элементов, а также на качество изготовления. Технологии ремонта мы подробно рассматривали в материале «Вторая жизнь» (ЗР, 2016, № 1). Практически все элементы моторов можно восстановить — вопрос лишь в экономической целесообразности. Подходы к ремонту представленных в обзоре двигателей идентичны — разница лишь в количестве деталей, требующих лечения. Поэтому при сравнении обязательно учитываем стоимость и доступность запчастей.

Атмосферные бензиновые моторы ­объемом 2,3–2,5 литра почти не отличаются по ресурсу от своих младших двухлитровых братьев (ЗР, 2016, № 5, «Версии 2.0»), тем более что некоторые принадлежат к тем же семействам. Однако есть двигатели более капризные и требовательные к обслуживанию.

К сожалению, сложно составить подобный рейтинг для двигателей объемом менее двух литров — статистика по ним очень скудная. Восстановление стоит приличных денег, поэтому к мотористам почти не привозят агрегаты малой кубатуры. Владельцы предпочитают не ремонтировать их, а покупать так называемые контрактные двигатели — с пробегом, но привезенные из-за рубежа.

7-е место


BMW N52
Двигатель BMW N52 объемом 2,5 литра ставили на модели третьей и пятой серий — предпоследнего поколения (323i, 325i и 523i, 525i), а также на кроссовер Х3 первой генерации (25si). Ресурс мотора определяется износом цилиндропоршневой группы — 150 000 км. Качество деталей на удовлетворительном уровне. Двигатель имеет массу технически сложных и капризных систем и узлов, характерных для серии N,  — они начинают досаждать еще до наступления естественного износа цилиндров и поршневых колец.

Блок цилиндров отлит из магниевого сплава. С ним очень тяжело работать при восстановлении мотора, в частности при сварке. Стенки цилиндров покрыты алюсилом (алюминиево-кремниевый сплав). В теории он износостойкий, но на практике его активно стачивает абразив, образующийся из отложений при закоксовывании и залегании поршневых колец, к чему очень склонен этот мотор. Причина — в уменьшении толщины колец, что значительно повлияло на их жесткость. Менее жесткие кольца быстрее теряют исходную геометрию, закоксовываются и фактически перестают работать. Отсюда и повышенный расход масла, характерный для мотора N52. Кстати, это одна из тенденций в современном двигателестроении: снижение массы сказывается на надежности.
Высокий масляный аппетит двигателя подогревают и другие неисправности. К 100 000 км пробега износ направляющих втулок становится причиной повышенного люфта клапанов системы ГРМ, из-за чего масло через маслосъемные колпачки попадает прямо в камеру сгорания. Недолговечен и блок вентиляции картерных газов. Примерно к тому же пробегу масляные отложения забивают его клапан — и он начинает активно гнать масло во впускной трубопровод.

Цепь ГРМ и муфты изменяемых фаз газораспределения обычно не живут дольше 150 000 км. Из-за неравномерного растяжения цепь начинает шуметь и может даже перескочить на пару зубьев. В худших случаях возможен ее обрыв — и встреча поршней и клапанов неизбежна. Кроме механического износа муфт в механизме изменения фаз (после 100 000 км) масляные отложения забивают соленоид их управления. Из-за этого мотор переходит в аварийный режим.

После 100 000 км пробега начинает капризничать система изменяемого подъема впускных клапанов (Valvetronic), заменившая привычную дроссельную заслонку. Частенько заклинивает ее управляющий электромотор. Вдобавок из-за активного попадания масла в камеру сгорания на клапанах нарастает нагар, что ведет к их неполному закрытию (особенно на оборотах холостого хода), а чувствительная система воспринимает это как неисправность и зажигает лампу Check Engine на панели приборов.

Двигатель N52 не имеет заводских ремонтных размеров. Несмотря на сложности с магниевым сплавом, при критическом износе стенок цилиндров мотористы растачивают блок и устанавливают в него чугунные гильзы, сохраняя при этом номинальный размер поршневой группы. Оригинальные запчасти на двигатели BMW очень дороги, а заменителей им практически нет. Капитальный ремонт мотора N52 — самый затратный в рейтинге.

6-е место

www.drive2.ru

Какое масло заливать в 127 двигатель ваз – Какое масло заливать в 127 двигатель ваз

Какое масло заливать в 127 двигатель ваз

Как известно любому автовладельцу, первым делом после покупки любого автомобиля следует узнать о том, какое масло рекомендовано для двигателя этого транспортного средства. Второй вопрос – как часто его следует менять.

Рекомендации выбора моторного масла

Исходя из того, какой установлен в авто двигатель, имеются обобщенные рекомендации по выбору автомобильного масла. Благодаря этим рекомендациям, Вы не ошибетесь в выборе.
Имеются четыре нюанса, на которые следует обращать внимание.

Первый нюанс , который следует взять во внимание – это конечно же советы автопроизводителей. И это, на самом деле, закон, ведь только производитель может дать точные данные о нужных для автомобиля горюче-смазочных материалах.

Второй нюанс – это особенности местности, где будет использоваться данное транспортное средство.

Третий нюанс – степень изношенности двигателя (это можно определить по пробегу на спидометре или через компьютер).

Четвертый нюанс напрямую связан с третьим . Учитывается то масло, которое заливалось в прошлый раз. В случае, если ранее в машину заливалась полусинтетика, то нередки случаи, когда в трещинах резины, образуются специфические пробки. В этом случае, если замена происходит на синтетику, все эти пробки промоются и компрессия в движке будет не нарушена.

Автомобили Лада

В настоящее время отечественный производитель автомобилей Лада предлагает принципиально новые модели своих транспортных средств. На смену уже ставших легендами «копеек», «шестерок», «семерок» и других моделей пришли новые автомобили, такие как: Веста, ИксРэй, Гранта, Ларгус Кросс. Эти автомобили выглядят совершенно не так, как привычные «старички». Здесь присутствует европейский образ, который присущ современным автомобилям из зарубежья. Плюс к этому, стоимость автомобилей Лада весьма демократична и доступна для многих наших соотечественников. По этой причине на данный момент интерес к современным Ладам с каждым днем увеличивается.

Одним из самых доступных автомобилей от Лада является модель Гранта. Если Вам нужен новый автомобиль без каких-либо излишних наворотов и по низкой цене, то Лада Гранта, пожалуй, самый достойный вариант на рынке. Этот вариант автомобиля можно рассматривать для частых поездок за город – на дачу, в деревню. Транспортное средство прекрасно справляется с этими функциями.

Содержание двигателя Лада Гранта

Далее мы хотели бы рассказать Вам о том, как содержать мотор данного автомобиля, чтобы он стабильно выполнял свои функции. А именно, речь пойдет о том какое масло лучше заливать в двигатель Лада Гранта 16 клапанов 106 л.с…

Определившись с основными нюансами выбора автомобильного масла, нужно переходить к параметрам специфическим. Эти параметры напрямую связаны исключительно с двигателем Гранты. Этот двигатель имеет шестнадцать клапанов и бывает в двух вариантах «котлов». Есть также и еще один двигатель — турбированная версия, мощность которой составляет 120 л.с., но в статье мы будем рассказывать о том какое масло лучше заливать в двигатель Лада Гранта 16 клапанов 106 л.с.

Масла, заливающиеся на конвейере, имеют повышенные уровни вязкости. Это делается по причине некоторых моментов по притирке отдельных деталей мотора. Однако, после обкатки, масло необходимо будет сменить на более подходящее, которое будет обеспечивать стабильность мотора. Чтобы понять какое масло лучше заливать в двигатель Лада Гранта 16 клапанов 106 л.с, следует учесть первый нюанс рекомендации, о которой мы упоминали выше.

По советам производителя в движок с 16-ти клапанами предпочтительно лить синтетическое масло от компании Mobil 1 с маркировкой 0W-40. Однако, сразу же здесь вспоминаем третий нюанс. В случае, если пробег машины выше 100 000 км., то для мотора будет лучше заливать также Mobil 1, но с маркировкой уже 5W-50. В этом материале большая вязкость, благодаря которой между моторными деталями увеличится плотность. Также увеличится коэффициент сжатия. Меняя масло в Ладе Гранта, не забудьте поменять к этому и фильтр масляный.

ВНИМАНИЕ! 18+
В статье есть копипаст с разных источников:
oil-club
ЗаРулем
newchemistry

Затем с отрицательными и положительными температурами.

То есть если Вы хотите обеспечить уверенный пуск и эксплуатацию двигателя без ущерба последнему, то:

При -30 (возможен пуск до -35) выбираем масло 0w-40.
При -25 (возможен пуск до -30) выбираем масло 5w-40.
При -20 (возможен пуск до -25) выбираем масло 10w-40.

Точнее надо смотреть на температуру замерзания конкретного масла (Смотрим параметр Pour Point, C и вычитаем 7 — 10 гр. от указанной температуры и получаем примерную температуру прокачиваемости).

Нет ничего страшного, если вы будете лить зимой масло от одного и того же производителя с вязкостью зимой 0w-40, а летом 5w-40 (5w-40 зимой, 10w-40 летом). Такой режим эксплуатации не является основанием для промывки двигателя при каждой смене масла.

Шаг второй – разбираемся с ACEA:

Вот каким требованиям должны отвечать масла для двигателей ВАЗ по ACEA:
ACEA A3B3 и ACEA A3B4. Остальные оставим владельцам иномарок.

(Тут добавлю от себя! к счастью или сожалению
Для масла с вязкостью 10W-40 могут быть указаны следующие допуски:

Daimler MB-Approval 229.1 и 229.3
Volkswagen VW50200 VW50101 VW50500

Для масла с вязкостью 5W-40 могут быть указаны следующие допуски:

Daimler MB-Approval 229.3 и 229.5
Volkswagen VW50200 VW50500
GM / Opel Longlife
BMW Longlife 01
Porsche

Визуально сравним API, ACEA, допуски производителей и убедимся, что это не просто буковки:

Итак, при сравнении сразу видно, что требования норм по API SJ-SL-SM самые скромные. А самые жёсткие требования у Daimler MB-Approval 229.5

Категорически рекомендую пройти по ссылкам и увидеть своими глазами, есть ли у выбираемого вами масла хоть один реальный допуск. Имейте в виду, если название масла отличается хоть одним словом, другой вязкостью, хоть одной буквой — это другой продукт. Не может Вася Петров жить по паспорту Пети Васина, и наоборот. Есть хоть один допуск — масло можно брать. Нет – покупаете кота в мешке.

Шаг третий – в сторону классификации по API.

На сегодняшний день действуют классы: SJ, SL и SM. Не забиваем голову. Для двигателей ВАЗ подходят все указанные классы.

Проверить наличие сертификата можно ЗДЕСЬ, выбрав свою вязкость.

Примечание: сертификат API (как и АвтоВАЗ — на 2 года, Volkswagen — 3 года, Daimler Mercedes-Benz — 5 лет) выдаётся на ограниченный строк по времени, в течении которого производитель не имеет права менять состав масла без согласования с органом выдавшим сертификат соответствия. То есть если сертификат на масло когда-то был, то масло может иметь другой состав базы и присадок. Сертификация API является обязательной только в Америке, но если она получена на масло из европейской линейки, масло можно брать.

Шаг четвёртый – разбираемся с ТТХ масла.

Желательные характеристики масла для эксплуатации на территории России:

Для масел с вязкоcтью: 0w-40, 5w-40, 10w-40. А в связи со сложностью в понимании требований квалитета деятелями от АвтоВАЗ, рекомендую лить именно 40-ку.

Viscosity, mm2/s @ 100 єC — от 13 до 15,5
(кинематическая вязкость при 100°С)

Viscosity, mm2/s @ 40 єC — от 70 до 95.
(кинематическая вязкость при 40°С)

Viscosity Index — 160. Выше — лучше.
(индекс вязкости)

Viscosity, mPa.s -30 (-25) єC — 6200 при -35 для 0w-40, 6600 при -30 для 5w-40, 7000 при -25 для 10w-40. Меньше – лучше.
(вязкость при минусовых температурах)

Sulphated Ash, wt. % — 1.3. Не ниже 0,8, не выше 1,5.
(сульфатная зола)

TAN; mg KOH/g – не больше 2,5.
(кислотное число)

TBN; mg KOH/g — от 8 до 12. Больше – лучше. Если значение 6 — 7, то сокращаем интервал.
(щёлочное число)

Pour Point, єC – от -30. Ниже – лучше.
(температура застывания)

Flash Point, COC, єC — от 220. Больше – лучше.
(температура вспышки)

Noack Evaporation wt% — не выше 13. Меньше –лучше.
(летучесть, испаряемость)

HTHS – ≥3,5.
(высокотемпературная вязкость на сдвиг)

Шаг пятый – минералка, полусинтетика или синтетика.

Кратко рассмотрим что скрывается под этими понятиями и рассмотрим группы базовых масел по API:

Первое что нужно сделать владельцу «нового старого» автомобиля, это выяснить, какое именно масло в него залито, а также то, когда именно его придётся менять. И касается это, в первую очередь, двигателя, так как там «свежесть» масла наиболее актуальна. Именно об этом мы сегодня и поговорим.

Общие рекомендации по выбору масла

Несмотря на то, какой именно у вашего автомобиля двигатель, существуют общие рекомендации, которые не позволят вам ошибиться. В первую очередь, мы говорим о советах автопроизводителя. Как правило, это точные указания на то, какие именно жидкости подойдут наилучшим образом. При этом нужно учитывать особенности той местности, в которой машина будет эксплуатироваться.

Тип масла под конкретные условия эусплуатации

Вторым же пунктом будет фактор изношенности двигателя и то, какое масло в него заливалось ранее.

К примеру, если до этого в машине была полусинтетика, то есть вероятность того, что в небольших трещинках на резине могут образовываться пробки из отложений. И, при смене масла на синтетику, всё это будет вымыто, и компрессионные характеристики определённых узлов будут нарушены. Но, если с полусинтетикой всё ещё относительно нормально, то вот минеральное масло приносит множество проблем в процессе длительной эксплуатации.

Масло для 16-ти клапанного мотора Лада Гранта

Таблица моторных масел

Но, если с основными особенностями масла вы уже определились, то можно обратиться и к специфическим параметрам, которые касаются конкретного двигателя. Сегодня мы поговорим о моторе Лада Гранта с шестнадцатью клапанами. Таких силовых агрегатов в ассортименте производителя есть два, если не считать «турбированной» версии с мощностью в 120 лошадиных сил.

Масло, которое применяется в новом автомобиле, обладает повышенным уровнем вязкости. Это вызвано некоторыми особенностями притирки деталей друг к другу. Но, после этого, нужно будет искать подходящее масло.

По общей рекомендации производителя, 16-ти клапанные моторы предпочитают масло Mobil 1 0W-40 синтетического типа.

Тем не менее, данную жидкость стоит рекомендовать только в случае с автомобилями, пробег которых меньше ста тысяч километров.

Если же двигатель уже преодолел эту отметку, то внимание стоит обратить на масло типа Mobil 1 5W-50.

Оно, как можно понять из индекса, обладает несколько более подходящей вязкостью, что хорошо скажется на увеличении плотности между деталями. Этим, конечно же, не компенсируешь существенных недостатков в работе изношенного мотора, но коэффициент сжатия будет увеличен.

Одни из самых популярных автомобильных масел среди Грантоводов

Дополнительная информация

Во время замены масла, в обязательном порядке, нужно будет поменять масляный фильтр. Естественно, что оптимальным вариантом будет установка «рекомендованного» фильтра. Тем не менее, как показывает практика, с точно тем же успехом можно использовать даже наш отечественный «Салют» из Самары, который выпускается для модели ВАЗ-2108.

«Масляное голодание»

Сам же процесс замены фильтра будет стандартным. Следите только за тем, чтобы масло из фильтра не попало туда, куда не нужно. А вот новый фильтр должен быть залит свежим маслом приблизительно до половины. Делать это нужно в несколько заходов, так как вязкая жидкость не слишком хорошо проникает сквозь отверстия.

Смазываем масляный фильтр

Данная «хитрость» нужна для того, чтобы предотвратить, так называемое, «масляное голодание» мотора в первые секунды после его пуска. К тому же, не лишним будет смазать тем же маслом и уплотнительное кольцо из резины, относящееся к данному фильтру.

Уровень масла

16-ти клапанный мотор довольно чувствительный к уровню масла.

К примеру, если его будет слишком много (выше максимальной отметки на щупе), то существует достаточно высокий риск выхода из строя катализатора, а также сенсора, контролирующего массовый расход воздуха. Чтобы не ошибиться, применяется техника контроля на отраженном свете, так как цвет масла будет близким к прозрачному.

Можно ли использовать синтетическое масло?

16-ти клапанный мотор Лада Приора славится тем, что неплохо принимает различные типы масла. Помимо полусинтетики, которая считается стандартом, отлично показывает себя и синтетическое моторное масло. Оно рассчитано на современные 16-ти клапанные моторы, так что проблем с потекшими сальниками или же выгоранием не будет. К тому же, такое масло неплохо работает и в условиях сильных морозов. Мотор будет стартовать при температурах, более низких, нежели рекомендуется производителем.

Особенности 16-ти клапанных моторов 21126 и 21127

Ресурс двигателя будет равен двумстам тысячам километров.

Мотор, известный под индексом 21126, является более старой разработкой 2007 года, тогда как версия 21127 была выпущена в 2013 году. Как показывает практика, для них будет подходить точно такое же масло, как и для модели 21116. Не стоит обращать внимание и на год выпуска, так как технология изготовления существенно не дорабатывалась. Впрочем, сам производитель, а также рекомендации API, предполагают незначительные отличия в типе масла, которое подходит на силовой агрегат конкретного года выпуска.

16-ти клапанные моторы считаются довольно чувствительными к качеству масла. Поэтому стоит руководствоваться тем, что замена масла при эксплуатации автомобиля на грунтовых дорогах, должна проводиться в полтора раза чаще, а именно — один раз на десять тысяч километров пробега. В особо сложных условиях, этот отрезок можно сократить даже до семи тысяч километров.

Видео о выборе масла от «Теории ДВС» — рекомендую

kalina-2.ru

Какое масло лучше заливать в 16-ти клапанный двигатель Лада Гранта: тип, марка и вязкость

Первое что нужно сделать владельцу «нового старого» автомобиля, это выяснить, какое именно масло в него залито, а также то, когда именно его придётся менять. И касается это, в первую очередь, двигателя, так как там «свежесть» масла наиболее актуальна. Именно об этом мы сегодня и поговорим.

Общие рекомендации по выбору масла

Несмотря на то, какой именно у вашего автомобиля двигатель, существуют общие рекомендации, которые не позволят вам ошибиться. В первую очередь, мы говорим о советах автопроизводителя. Как правило, это точные указания на то, какие именно жидкости подойдут наилучшим образом. При этом нужно учитывать особенности той местности, в которой машина будет эксплуатироваться.

Тип масла под конкретные условия эусплуатации

Вторым же пунктом будет фактор изношенности двигателя и то, какое масло в него заливалось ранее.

К примеру, если до этого в машине была полусинтетика, то есть вероятность того, что в небольших трещинках на резине могут образовываться пробки из отложений. И, при смене масла на синтетику, всё это будет вымыто, и компрессионные характеристики определённых узлов будут нарушены. Но, если с полусинтетикой всё ещё относительно нормально, то вот минеральное масло приносит множество проблем в процессе длительной эксплуатации.

Масло для 16-ти клапанного мотора Лада Гранта

Таблица моторных масел

Но, если с основными особенностями масла вы уже определились, то можно обратиться и к специфическим параметрам, которые касаются конкретного двигателя. Сегодня мы поговорим о моторе Лада Гранта с шестнадцатью клапанами. Таких силовых агрегатов в ассортименте производителя есть два, если не считать «турбированной» версии с мощностью в 120 лошадиных сил.

Масло, которое применяется в новом автомобиле, обладает повышенным уровнем вязкости. Это вызвано некоторыми особенностями притирки деталей друг к другу. Но, после этого, нужно будет искать подходящее масло.

Mobil 1 0w-40 передняя этикетка

Mobil 1 0w-40 задняя этикетка

По общей рекомендации производителя, 16-ти клапанные моторы предпочитают масло Mobil 1 0W-40 синтетического типа.

Тем не менее, данную жидкость стоит рекомендовать только в случае с автомобилями, пробег которых меньше ста тысяч километров.

Если же двигатель уже преодолел эту отметку, то внимание стоит обратить на масло типа Mobil 1 5W-50.

Оно, как можно понять из индекса, обладает несколько более подходящей вязкостью, что хорошо скажется на увеличении плотности между деталями. Этим, конечно же, не компенсируешь существенных недостатков в работе изношенного мотора, но коэффициент сжатия будет увеличен.

Одни из самых популярных автомобильных масел среди Грантоводов

Дополнительная информация

Во время замены масла, в обязательном порядке, нужно будет поменять масляный фильтр. Естественно, что оптимальным вариантом будет установка «рекомендованного» фильтра. Тем не менее, как показывает практика, с точно тем же успехом можно использовать даже наш отечественный «Салют» из Самары, который выпускается для модели ВАЗ-2108.

«Масляное голодание»

Сам же процесс замены фильтра будет стандартным. Следите только за тем, чтобы масло из фильтра не попало туда, куда не нужно. А вот новый фильтр должен быть залит свежим маслом приблизительно до половины. Делать это нужно в несколько заходов, так как вязкая жидкость не слишком хорошо проникает сквозь отверстия.

Смазываем масляный фильтр

Данная «хитрость» нужна для того, чтобы предотвратить, так называемое, «масляное голодание» мотора в первые секунды после его пуска. К тому же, не лишним будет смазать тем же маслом и уплотнительное кольцо из резины, относящееся к данному фильтру.

Уровень масла

16-ти клапанный мотор довольно чувствительный к уровню масла.

К примеру, если его будет слишком много (выше максимальной отметки на щупе), то существует достаточно высокий риск выхода из строя катализатора, а также сенсора, контролирующего массовый расход воздуха. Чтобы не ошибиться, применяется техника контроля на отраженном свете, так как цвет масла будет близким к прозрачному.

Можно ли использовать синтетическое масло?

16-ти клапанный мотор Лада Приора славится тем, что неплохо принимает различные типы масла. Помимо полусинтетики, которая считается стандартом, отлично показывает себя и синтетическое моторное масло. Оно рассчитано на современные 16-ти клапанные моторы, так что проблем с потекшими сальниками или же выгоранием не будет. К тому же, такое масло неплохо работает и в условиях сильных морозов. Мотор будет стартовать при температурах, более низких, нежели рекомендуется производителем.

Особенности 16-ти клапанных моторов 21126 и 21127

Ресурс двигателя будет равен двумстам тысячам километров.

Мотор, известный под индексом 21126, является более старой разработкой 2007 года, тогда как версия 21127 была выпущена в 2013 году. Как показывает практика, для них будет подходить точно такое же масло, как и для модели 21116. Не стоит обращать внимание и на год выпуска, так как технология изготовления существенно не дорабатывалась. Впрочем, сам производитель, а также рекомендации API, предполагают незначительные отличия в типе масла, которое подходит на силовой агрегат конкретного года выпуска.

16-ти клапанные моторы считаются довольно чувствительными к качеству масла. Поэтому стоит руководствоваться тем, что замена масла при эксплуатации автомобиля на грунтовых дорогах, должна проводиться в полтора раза чаще, а именно — один раз на десять тысяч километров пробега. В особо сложных условиях, этот отрезок можно сократить даже до семи тысяч километров.

Видео о выборе масла от «Теории ДВС» — рекомендую

Кстати, все 16-ти клапанные двигатели Лада Гранта при обрыве ремня ГРМ гнут клапана!

carfrance.ru

Сколько масла в 127 двигателе. Минусы и плюсы мотора

Рестайлинговая Лада Приора получила новый двигатель мощностью 106 л.с. Точнее это модернизированный силовой агрегат, который предлагался и ранее. Более подробно о новом силовом агрегате Lada Priora читаем далее.

Итак, бензиновый 16 клапанный 4 цилиндровый мотор ВАЗ-21126 , который устанавливали на Приоры ранее не выдавал более 98 л.с. Но как выяснилось ресурсы для увеличения мощности нашлись, и в результате некоторых доработок мотор, который теперь имеет индекс ВАЗ-21127 , спокойно выдает 106 лошадиных сил, а по неофициальным данным даже чуть больше. Соответственно и крутящий момент возрос.

Каким образом удалось увеличить мощность силового агрегата для новой Лада Приора, при этом даже немного уменьшив расход топлива. Ответ прост, конструкторы применили новую впускную систему. При низких оборотах двигателя подача воздуха идет по более длинным впускным каналам, а с ростом оборотов наоборот – по коротким. То есть меняется состав топливной смести с обедненной к обогащенной и наоборот. Это позволило увеличить мощность практически во всех диапазонах работы двигателя Lada Priora. Подобную систему называют динамическим или пассивным наддувом , то есть без использовании традиционной турбины.

Что касается механизма привода ГРМ, то у всех моторов Приора стоит ремень . Что касается нового двигателя ВАЗ-21127 повышенной мощности, то как и в случае с прародителем ВАЗ-21126, при обрыве ремня ГРМ клапана гнутся без вариантов. В итоге, довольно дорогостоящий ремонт. Характеристики обоих силовых агрегатов Lada Priora, чуть ниже.

Характеристики двигателя ВАЗ-21126 (98 л.с.)

  • Рабочий объем – 1596 см3
  • Мощность л.с/кВт – 98/72 при 5600 оборотах в минуту
  • Крутящий момент – 145 Нм при 4000 оборотах в минуту
  • Расход топлива в смешанном цикле – 6,9 литра

Характеристики двигателя ВАЗ-21127 (106 л.с.)

  • Рабочий объем – 1596 см3
  • Количество цилиндров/клапанов – 4/16
  • Мощность л.с/кВт – 106/78 при 5800 оборотах в минуту
  • Крутящий момент – 148 Нм при 4200 оборотах в минуту
  • Максимальная скорость – 183 километров в час
  • Разгон до первой сотни – 11,5 секунд
  • Расход топлива в смешанном цикле – 6,8 литра

В качестве коробки с этими моторами по прежнему предлагается 5 ступенчатая механика. Долгожданный автомат может появится уже к осени 2014 года. При этом производитель обещает не просто гидротрансформатор, который стоит на Калине и Гранте, а продвинутую роботизированную коробку. Будем надеяться, что Приора с АКПП не заставит себя ждать.

Многие владельцы автомобилей Лада Калина 2 поколения уже оценили по достоинству новый силовой агрегат, который начали устанавливать именно на эти модели впервые, и выходит он под кодовым названием ВАЗ 21127. Некоторые могут подумать, что это все тот же двигатель, который в свое время устанавливался на большинство автомобилей Лада Приора, но на самом деле это далеко не так.

Так в чем же основные отличия от модели 21126 и насколько реально лучше этот мотор в динамике и тяговых характеристиках, давайте попробуем разобраться.

Преимущества двигателя 21127 перед прошлыми модификациями

  1. Во-первых, этот силовой агрегат развивает мощность до 106 лошадиных сил. Напомним, что до его появления самым мощным считался с 98 л.с.
  2. Во-вторых, увеличен крутящий момент и теперь даже с низких оборотов, этот мотор вполне неплохо подхватывает и нет того вялого разгона, который был раньше.
  3. Расход топлива, как ни странно, наоборот уменьшился, даже с учетом возросшей мощности, поэтому это тоже огромный плюс этого ДВС.

Теперь стоит немного рассказать о том, благодаря чем было достигнуто все вышеуказанные характеристики, которых не так уж мало.

Как уверяют специалисты Автоваза, повышение мощности и крутящего момента 21127-го двигателя связаны с применением более современной и совершенной системе впрыска топлива. Теперь под декоративным кожухом можно увидеть установленный ресивер, который регулирует подачу воздуха в зависимости от оборотов двигателя.

Реальные владельцы Калины 2 поколения уже оставили в сети довольно немало положительных отзывов об этом моторе и практически все заметили ощутимый прирост мощности, особенно на низких оборотах. Как написано в технических данных этого агрегата, максимально быстрый разгон до 100 км/час на этом двигателе, новая Калина разгоняется за 11,5 секунд, что для отечественного автомобиля является отличным показателем.

Единственное, что смущает многих владельцев, так это все та же старая проблема, которая возникает при обрыве ремня ГРМ. В этом случае придется смириться с дорогостоящим ремонтом ДВС, так как погнет не только клапана, но и скорее всего будут повреждения поршней, как это было на Приоре.

Уже долгое время шли обсуждения по поводу некоего нового двигателя для Лады Калины нового поколения мощностью 106 л.с. И вот стали известны некоторые подробности по этому поводу.

Внешний вид двигателя 21127 для ЛК2.

Новый индекс — 21127

Несложно догадаться, глядя на новый индекс двигателя что он будет базироваться на базе предыдущих моделей. Если быть точным, то база взята от силового агрегата 21126.
Инженеры взяли за основу «приоромотор» и доработали его впускную часть. Теперь она представляет собой регулируемый впуск. Таким образом, при низких оборотах подача воздуха идет по более длинным каналам, а с ростом оборотов наоборот —

www.mbclubs.ru

Какое масло заливать в двигатель ВАЗ: рекомендации

Моторные масла для ВАЗ наиболее распространены в райцентрах, областных населенных пунктах. Современные технологии позволяют приобрести любой вид масла.

Малоопытный автомобилист может запутаться, не разобраться в многообразии российских и зарубежных смазок.

Как выбрать нефтепродукт

Подбирая моторное масло в двигатель Лада, нужно учитывать изношенность движка, эксплуатационные условия. Если вы приобретаете б/у машину, уточните у продавца:

  • вид мотора, дату его выпуска;
  • климат, в котором использовалось авто;
  • наличие гидрокомпенсаторов в системе регулирования клапанного промежутка, состояние силового агрегата;
  • совместимость мотора с синтетикой, присадочными компонентами.

Какое масло заливать в двигатель ВАЗ? Ответ на данный вопрос интересует, в первую очередь, владельцев авто с изношенным двигателем. Синтетика деформирует резиновые сальники, приводит к возникновению протечек. Чтобы такого не случалось, сальники и колпачки для двигателя рекомендуется поменять на другие, каучуковые.

Не нужно надеяться, что, заменив резиновые детали на новые, вы избавитесь от всех проблем. Каучуковые элементы не лучшим образом переносят воздействие бензиновых жидкостей, которые наливают в машину.

Чтобы определить, какое масло заливать в Ладу, необходимо прочесть рекомендации автопроизводителя, которые прописаны в эксплуатационной инструкции. Если нет руководства, заливается масло, подобранное по классификации API.

Советы экспертов

Если автоизготовитель рекомендовал заливать в машину полусинтетику, не стоит лить в авто минералку. Вы можете сильно уменьшить эксплуатационный период движка. То же самое касается и синтетики. Синтетическое масло стоит дорого, может негативно повлиять на состояние движка.

Если залить в авто неподходящую смазку, это может привести к уменьшению интервалов замены масла, поломке моторных деталей. Кроме того, не стоит лить в ДВС «дешевку». Наилучший вариант – покупать масло, имеющее среднюю стоимость, рекомендованное вашим автоизготовителем.

Преимущество синтетического масла

Изготовители автомасел, чтобы обозначить вязкостный индекс, применяют 2 кода, указываемых на этикетке. Для примера, можно рассмотреть этикетку канистры с маслом 10W40.

1-ая часть кода указывает на вязкость автомасла в низкотемпературных условиях. Чем меньше число, тем гуще нефтепродукт, который вы льете.

Автомасло, предназначенное для машин, эксплуатируемых в условиях суровой зимы, характеризуется тем, что первое число небольшое. Во 2-ой части указывается высокотемпературная вязкость.

Маркировка

Какое масло лучше заливать в двигатель ВАЗа, подвергающегося высоким нагрузкам? Хороший выбор – смазки от 0W50 до 10W50. Тот, кто спокойно водит автомобиль, не перегружает движок, может использовать нефтепродукт, высокотемпературная вязкость которого равна сорока. Не нужно выбирать автомасло «с запасом» и покупать расходник, который рассчитан на температуру минус сорок градусов, если вы проживаете там, где средняя температура равна минус пятнадцати градусам.

В противном случае, движок окажется перенагружен, горючее станет быстро тратиться. Так какое масло лить в ВАЗ? В России весьма популярна смазка от немецкого изготовителя EVO. В особенности часто ее применяют жители Крайнего Севера. Водители, предпочитающие синтетику, используют E7 5W40, хорошо показывающее себя в ВАЗах. Приверженцы полусинтетики применяют EVO E5 10W40. Знаменитый изготовитель автомасел «Мотул» разработал для отечественных авто смазки серии 8100. Для регионов с наиболее суровой зимой было создано масло Eco-nergy, которое не меняет своих характеристик даже при самых низких температурах. Кроме того, хорошо показывает себя синтетика «Несте Ойл» из Финляндии. Она располагает параметрами, неизменными как в низко-, так и в высокотемпературных условиях.

Усредненный температурный режим моторных масел

Перечень смазок для лета не менее обширен. Подобные нефтепродукты хорошо проявляют себя в теплых климатических условиях, то бишь весной и летом. В России распространена масляная жидкость «Зик» (из Кореи). Залейте ее в ДВС, чтобы защитить его.

Еще один представитель автомасла от иностранных изготовителей – «Мобил Синт С». Оно, хоть и находится в соответствии с требованиями к маслам ВАЗ, однако содержит в себе загуститель из полимеров. Те, кто лил такую смазку, утверждают, что загуститель отрицательно отражается на качестве расходника.

Российская фирма не так давно произвела нефтепродукт Select Lubricants Supreme. Данная масляная жидкость была проверена множеством тестов, показала отличное соотношение стоимости и качества. Смазка «Консол Ултима» стабильна, качественна, стоит недорого. Из универсальных расходников необходимо отметить «Тотал Кварц 9000». Присадочные средства, содержащиеся в нем, обеспечивают качественную защиту движка. Нельзя не упомянуть «Шелл Хеликс Ультра», не нуждающееся в представлении. Множество автомобилистов избрали данный нефтепродукт для собственной машины, потому что он не требует частой замены, хорошо смазывает моторные запчасти. Нужно помнить, что перед заменой расходника необходимо проверять, сколько масла в двигателе.

Для авто с передним приводом автоизготовитель советует использовать трансмиссионные масла API GL-4, 75W80, 80W90. Обыкновенно они представляют собой полусинтетику либо синтетику, поддерживают КПП в нормальном состоянии. Не забывайте осуществлять промывание трансмиссионного агрегата при смене марки нефтепродукта.

motoroill.ru

Какое масло лить в Гранту (моторное)

Мотор — сердце автомобиля за состоянием которого нужно постоянно следить. Чтобы двигатель работал долго и надежно следует правильно его эксплуатировать и вовремя менять масло. А вы знаете, какое выбрать моторное масло для Лада Гранта?

Какие двигатели на Гранту устанавливает АвтоВАЗ?
  1. ВАЗ-11183-50 (1,6л., 8кл., 82 л.с)
  2. ВАЗ-11186 (1,6л., 8кл., 87 л.с)
  3. ВАЗ-21116 (1,6л., 8кл., 90 л.с.)
  4. ВАЗ-21126 (1,6л., 16кл., 98 л.с.)
  5. ВАЗ-21127 (1,6л., 16кл., 106 л.с.)
Системы смазки всех двигателей, устанавливаемых на автомобили Лада Гранта, принципиально одинаковы по конструкции. Отличие системы смазки двигателя ВАЗ-21126 от остальных — в наличии в головке блока цилиндров каналов подвода масла к гидротолкателям привода клапанов.

Когда менять масло на Гранте? Завод изготовитель рекомендует выполнять первую замену моторного масла на новом или прошедшем капитальный ремонт двигателе через 2-3тыс.км. пробега. После этого, моторное масло на Гранте следует менять один раз в год или через каждые 15 000 км. пробега, в зависимости от того, что наступит раньше.

Какой объем масла в двигателе Гранты? Объем масла в системе смазки двигателя 3,5л., но около 500мл. масла после слития все равно остается в системе, поэтому выполняя замену масла рекомендуется заливать около 3л. нового масла. После нескольких минут работы мотора следует проверить уровень масла, и при необходимости долить его, чтобы отметка на щупе была между уровнями «МИН» и «МАКС».

Какое масло заливать в Гранту? Мы рекомендуем Вам придерживаться рекомендаций завода изготовителя: в систему смазки двигателя следует заливать масло для бензиновых двигателей, соответствующее группе SJ или SL по классификации API (Б5/ДЗ по классификации ААИ или АЗ/ВЗ по классификации АСЕА). Вязкость масла по SAE выбирайте в соответствии с климатическими условиями.

Таблица №1: Рекомендуемые температурные диапазоны применения моторных масел:

Таблица №2: рекомендованные масла для Гранты:


Какое масло в Лада Гранта с завода? Чтобы сказать точно, следует проверить под капотом наличие бирки с надписью. Обычно используется моторное масло Лукойл (полусинтетика или минеральное).

Про расход масла Гранты. Потребление некоторого количества моторного масла (до 1л. на 1000км.) при обычной эксплуатации двигателя – это нормальное явление. Количество потребления зависит от вязкости масла, качества масла и условий эксплуатации автомобиля. Например, при вождении на высоких скоростях и частом ускорении потребляется большее количество масла. Также стоит учитывать, что новый двигатель потребляет больше масла, так как его поршни, поршневые кольца и стенки цилиндров еще не притерлись.

Какое масло лучше для Гранты? При выборе моторного масла следует понимать, что на рынке большой процент подделки. Чтобы купить оригинальное качественное моторное масло рекомендуется обращаться в проверенные магазины, опираться на отзывы, либо заказывать масло для двигателя через интернет напрямую у производителя.

ВАЖНО! В опросе идет речь о масле для двигателей: ВАЗ-11183-50 и ВАЗ-11186 (1,6л., 8кл., 87 л.с), опросы для двигателей ВАЗ-21116 (1,6л., 8кл., 90 л.с.), ВАЗ-21126 (1,6л., 16кл., 98 л.с.) и ВАЗ-21127 (1,6л., 16кл., 106 л.с.) смотрите в ветке Приоры.


Ключевые слова:

Похожие материалы

xn—-8sbabr6ahc3e.xn--p1ai

Заливайте рекомендуемое масло в двигатель Приоры, иначе будут плохие последствия

Многие российские автомобилисты жалуются на то, что моторы отечественных авто потребляют много смазочного материала. На автомобили российского производства, изготовленные на АвтоВАЗе, сегодня устанавливают 16-клапанные моторы модификаций 21126, 21127 и 21128. Конструкторы этих силовых агрегатов официально утверждают, что первые две модели объёмом 1,6 литра должны расходовать не более 50 грамм смазки на 1 тысячу километров пробега. А вот расход масла Приора, снабжённой отечественным мотором 21128, предполагается в 6 раз больше, то есть до 300 грамм на такую же дистанцию. В чём причина столь большой прожорливости, зависит ли этот показатель от того, какое моторное масло используется для Приоры?

Особенности мотора марки 21128

Этот силовой агрегат устанавливается не только в Приору. Им также снабжают другие марки автомобилей ВАЗ. Желая удешевить производство, авторы модернизации двигателя марки 21127 решили оставить цилиндропоршневой блок без изменений. Решение было простое – увеличить объём за счёт увеличения хода поршней. Для его реализации изменили шатунно-кривошипный механизм. Шатуны укороченной длины позволяют поршням увеличить ход.

Несмотря на уверения производителя, что ресурс мотора составляет 200 тыс. км, на практике он оказался гораздо меньше. Объясняется это тем, что детали цилиндропоршневого блока стали испытывать гораздо большие нагрузки. Сам двигатель – 4-цилиндровый, инжекторный. Распределительные валы ГРМ располагаются вверху, привод газораспределительного механизма – ременной. Но при его обрыве цилиндры клапана не гнут. Зато износ колец и стенок цилиндров прогрессирует довольно быстро. Как следствие – движок становится настолько «голодным», что жрёт масло для Приоры от 0,7 до 3 литров на 1 тысячу км. Таким образом, без капремонта он не может пройти даже сто тысяч километров.

Другие причины перерасхода смазки

Кроме вышеуказанной недоработки по вине производителя есть ещё целый ряд причин, по которым синтетика или полусинтетика, залитая в мотор, перерасходуется. Это относится уже ко всем моделям движков независимо от производителей.

  • Залито не рекомендуемое масло в двигатель, а другое – например, с пониженной вязкостью, или фальсификат.
  • В моторе износились маслосъёмные колпачки, закоксовались или износились кольца поршней. Возможны другие причины – такие как протекание сальников коленчатого вала, пробой прокладок.
  • Слишком агрессивный стиль езды, сопровождающийся быстрыми ускорениями, предельными оборотами и температурными режимами двигателя.
  • Силовой агрегат прошёл капремонт, кольца и стенки цилиндров пока не притёрлись.

Если угорает много масляной жидкости – из выхлопной трубы можно наблюдать сизый отработавший газ. Со временем на её краях можно обнаружить маслянистую плёнку чёрного цвета. Но определить причину, по которой это происходит, без вскрытия движка невозможно.

Рекомендуемые характеристики масел

Приора комплектуется несколькими движками: 8 и 16-клапанными объёмом 1,6 литра, а также вышеописанным 1,8 литра, с 16 клапанами. Все они имеют разную мощность – от 81 до 120 лошадок. Чтобы правильно выбрать для них подходящий смазочный материал, необходимо его соответствие определённым характеристикам. Смазка должна быть синтетической или полусинтетической. Так какое масло заливать? Лада Приора использует масло для моторов, соответствующее классам SJ, SL – согласно американской спецификации API. Такие смазочные жидкости применяются к бензиновым двигателям, начиная с 1996 года выпуска. Какое масло лучше залить – SJ или SL?

Смазки уровня SL и выше обязательно требуется применять в 16-клапанных моделях моторов. Они предназначены как для обычных, так и многоклапанных движков, в том числе турбированных. Эти масляные составы имеют низкую летучесть, удлинённый интервал между заменами. Неплохие моющие качества позволяют вовремя удалять нагар, сажу, другие вредные отложения из двигателя. Моторные масла класса SL можно рекомендовать для всех силовых агрегатов Приоры.

Другой важной характеристикой является вязкость, определяемая стандартом SAE. Как правило, заливаются всесезонные моторные жидкости, имеющие определённый уровень низкотемпературной и высокотемпературной вязкости. Например, в показателе 5W30 цифра 5 обозначает, что прокачиваемость смазки, а также проворачиваемость двигателя, позволят нормально запустить холодный двигатель при отрицательных температурах, вплоть до -30°С. Цифра 30 после буквы W определяет кинематическую и динамическую вязкость смазывающей смеси в прогретом, работающем моторе. Её обычно замеряют в лабораторных условиях, масляный состав нагревают до температур +40°С, а также +100°С. Хотя цилиндропоршневая группа нагревается даже до +250°С, моторное масло тоже там работает, понижая трение поршневых колец о стенки цилиндров.

Чем выше уровень высокотемпературной вязкости, тем меньшей текучестью будет обладать смазка. В то же время масляная плёнка на поверхностях деталей более прочная и устойчивая. Для моторов Приоры, рекомендованный уровень – 30 или 40. Синтетический смазочный материал тягучести 30 (например, 5W30) лучше применять в неизношенных движках, когда зазоры между поверхностями деталей ещё невелики. Со временем придётся переходить на более густой, полусинтетический состав, у которого вязкостные характеристики на уровне 40.

Низкотемпературная тягучесть определяется первой цифрой в обозначении. Для районов с суровым зимним климатом рекомендуется брать 0W30 – мотор будет заводиться даже при температуре -35°С. Для умеренных широт вполне подойдёт 5W30 или 5W40. Машинам, эксплуатирующимся на юге страны, можно посоветовать 10W40 – предельная температура холодного запуска составит -20°С. Такой смазывающий состав не теряет своей вязкости в жарком климате.

Популярные бренды и марки смазок

В качестве первой заливки для моторов Лады Приоры используется хороший полусинтетический состав от отечественного производителя – Лукойл. Первое техобслуживание с заменой смазки выполняется после 2,5–3 тысяч км. Далее замена масла в двигателе Лада Приора зависит от условий эксплуатации, качества топлива, марки и производителя моторной жидкости. Если хотите сберечь свой мотор, замена масла на Приоре должна производиться через каждые 7–8 тысяч километров пробега. Хотя, по утверждению производителя, смазка требует замены через 10–15 тыс. км.

Стоит обратить внимание на таких именитых производителей, как Esso, Mobil, Shell, ZIC, Total. Ассортимент их синтетических и полусинтетических масел довольно широк. Единственный минус – более высокая цена по сравнению с отечественными производителями.

Не обязательно покупать масляную смесь, имеющую касс API SL. Составы более поздних уровней, SM и SN, также совместимы с SL. При этом их эксплуатационные качества ещё лучше.

Как заменить масляную смесь в Лада Приора

Если гарантия на машину уже вышла и не требуется проводить плановое техобслуживание у дилера, в Ладе Приора замена масла в двигателе может быть выполнена своими руками. Процесс этот несложный. Нужно только придерживаться определённой последовательности действий. Заранее необходимо приобрести 4-литровую канистру моторной жидкости с подходящими свойствами, а также фильтр для очистки масла. Если собираетесь переходить на другую вязкость или менять производителя, дополнительно требуется промывка для мотора.

Мягкие промывки, по условиям их применения, заливают за 200–300 километров до замены смазки. За это время они чистят мотор от шлаков. Другие льются прямо перед тем, как поменять масло. Затем мотор работает на холостом ходу от 5 минут до получаса. Всё зависит от конкретной промывки. Следует подготовить: свой набор гаечных ключей, ёмкость для отработанной смазки, ветошь.

  1. Мотор хорошо прогревается, машина помещается на подъёмник или над смотровой ямой.
  2. Освобождается заливная горловина под капотом. Аккуратно откручивается сливная пробка ключом на 17, в днище картера предварительно подставляется ёмкость для слива.
  3. Старое масло вместе с промывкой полностью сливается. Желательно отсосать большим шприцом с трубкой остатки смазки из днища – ведь поставить авто в абсолютно горизонтальном положении очень трудно.
  4. Откручивается старый фильтр масла. Устанавливается новый, наполовину заполненный новой смазкой.
  5. Закручивается сливная пробка, через заливную горловину льётся в мотор около 3,5 литров смазки. Уровень проверяется щупом, должен быть посередине между MIN и MAX.
  6. Двигатель запускается и работает на холостом ходу. Через 5–7 минут уровень масла проверяется снова. При необходимости доливается.

Ваше авто снова готово к поездкам до следующей замены расходных материалов.

Похожие публикации

motoroilclub.ru

Рекомендации по выбору моторного масла для ВАЗ

АвтоВАЗ самый крупный производитель легковых автомашин в России. Компания основана в 1966 году и с тех пор прошла целый ряд этапов реформирования и реструктуризации. В 2008 году АвтоВАЗ приступил к сотрудничеству с французским автопроизводителем Renault, а в 2014 году доля концерна Renault-Nissan превысила 50% акций. Автомобили выпускаемые компанией рассчитаны прежде всего на отечественных покупателей, кроме того, они также поступают для продаж в страны СНГ и в небольшом количестве экспортируются в европейские страны.

В настоящее время на просторах страны парк машин АвтоВАЗа состоит из:

  1. Автомобилей Lada собственной разработки: семейство Kalina, серия Granta, поколение Priora, внедорожник 4×4, Largus.
  2. Ранее выпускаемые автомобили: ВАЗ 2101 — 2109, 2110 – 2115, 21123, 1111 (Ока).
  3. Новые модели: в кузове седан Vesta и XRAY в качестве городского внедорожника.

Большинство автомобилей АвтоВАЗ комплектуются силовыми агрегатами собственного производства с различными характеристиками. Кроме производства моторов к серийно выпускаемым автомашинам компания осуществляет выпуск запчастей для ранее произведенных двигателей.

Рекомендуемая моторная смазка для жигулей

Моторное масло является наиболее важным фактором, который обеспечивает качественную и продолжительную работу силового агрегата. Для правильного подбора такой смазки каждый автопроизводитель рекомендует использовать подходящую смазочную жидкость, которая наиболее соответствует техническим и конструкционным параметрам моторов данной компании.

Для того, чтобы владельцы знали какое масло лучше заливать в двигатель автомобиля, АвтоВАЗ также установил требования на применение определенной моторной смазки. Использовать масло для автомобилей ВАЗ рекомендуется в соответствии со следующими параметрами:

  1. Для модельного ряда ВАЗ 2101-07, а также модели ВАЗ 2121, произведенных до 2000 года лучше всего использовать моторную смазку, причисленную к группе «Стандарт», со следующими показателями:
    1. По классу SAE: 5W-30/40, 10W-30/40, 15W-30/40/50, 20W-30/40/50.
    2. По классификации API: SF (бензиновые силовые агрегаты работающие в трудных условиях и в качестве топлива используется неэтилированный бензин).
  2. Масла этой группы для автомашин ВАЗ выпускаются на минеральной основе, характеризуются высокими противоизносными и антикоррозийными качествами, а также устойчивостью к образованию различных отложений и шлаков в двигателе. Рекомендуемый интервал для замены масла составляет 10 тыс. км. При эксплуатации автомобиля, прежде всего в городских условиях этот интервал рекомендуется снизить до 7 тыс. км.

  3. Для автомашин, сошедших с конвейера после 2000 года и для моделей ВАЗ 1111, 2108 и 2110 независимо от даты производства необходимо выбирать масла причисленные к категории «Супер»:
    1. По вязкости: 5W-30/40, 10W-30/40, 15W-40, 20W-40.
    2. По требованиям API: SG (высокооборотистые бензиновые моторы, работающие на неэтилированном топливе с применением оксидантов) или SJ (современные бензиновые двигатели, при этом моторная смазка такого типа может заменить все ранее используемые виды масел).

Моторная смазочная жидкость категории «Супер» может выпускаться на полусинтетической и полностью синтетической основе. Характеризуется повышенной термической стабильностью, а также улучшенными противоокислительными, охлаждающими и противоизносными качествами. Выполнять смену указанной категории смазки, АвтоВАЗ рекомендует через 15 тыс. км, но если автомобиль эксплуатируется в трудных зимних условиях или на запыленных дорогах, то период службы масла в таком случае необходимо сократить до 10 тыс. км.

Для заливки в двигатели автомобилей ВАЗ на заводе обычно используют полусинтетическое моторное масло 5W-30 SJ производства компании Роснефть. Поэтому на гарантийном сроке эксплуатации необходимо пользоваться данным типом масла. Также не рекомендуется самостоятельно производить замену смазочной жидкости в двигателе, так как это приведет к потере гарантийного обслуживания.

Масло для ВАЗ с большим пробегом

Несмотря на появление в России новых современных автомобилей, в сельских районах, а также в малых городах и поселках нашей страны можно еще встретить достаточно много автомобилей ВАЗ старых моделей уже снятых с производства. Благодаря хорошей ремонтопригодности и наличию запчастей они еще продолжают эксплуатироваться. При этом для многих автовладельцев периодически встает вопрос, какое масло заливать в автомобиль с большим пробегом.

Для силовых агрегатов отечественных автомобилей пробег, начиная от 100 тыс. км считается значительным, в отличие от большинства двигателей иномарок, где такой период начинается от 200 тыс. км и выше. Любой мотор с пробегом имеет достаточный износ и зашлакованность. Поэтому в двигатель автомобиля ВАЗ со значительным пробегом рекомендуются лить масло с более высокой вязкостью (например: вместо 10W-30 можно использовать 10W-40).

Следуя рекомендациям АвтоВАЗа, а также зная какое масло лить в двигатель своего автомобиля, соблюдая периодичность замены моторной жидкости, возможно обеспечить не только правильную текущую эксплуатацию двигателя, но и гарантировать продолжительный надежный период его работы.

oavtomasle.ru

Принцип работы вентилятора охлаждения двигателя – Работа вентилятора охлаждения двигателя: принцип работы, причины неполадок

Работа вентилятора охлаждения двигателя

В процессе эксплуатации транспортного средства происходит нагревание двигателя. Чтобы предотвратить перегрев силового агрегата, автомобили оборудованы системой охлаждения. Главная деталь, которая обеспечивает обдув мотора и жидкости в радиаторе — это вентилятор системы охлаждения двигателя.

Приводное устройство вентилятора

Конструкция вентилятора охлаждения агрегата состоит из шкива и закрепленных на нем лопастей. Эффективность нагнетания воздуха обеспечивается установкой лопастей под определенным углом. Принцип работы вентилятора охлаждения двигателя зависит от конструктивных особенностей привода.

Механический

Вращение на шкив от коленчатого вала через ременную передачу. Это простейшая установка, которая находится в постоянном зацеплении с коленвалом. Недостаток такого механизма в том, что для постоянного вращения вентилятора охлаждения радиатора ДВС затрачивает много полезной энергии.

На сегодняшний день механический тип привода почти не встретить. Обычно их устанавливают на агрегаты с продольным расположением, вездеходные джипы.

Гидромеханичиеский

Это приводное устройство, работающее от разницы давления в муфте. Муфты бывают двух типов: гидравлическая и вязкостная. Частота вращения последнего равна входным оборотам коленчатого вала. Поэтому, для сохранения крыльчатки и лопастей при высоких оборотах мотора используют вязкостную муфту.

Как она работает

Корпус такой муфты заполнен специальной жидкостью — силиконом. Когда движок работает под постоянной нагрузкой или на высоких оборотах, происходит процесс нагрева силиконовой жидкости. По мере нагрева жидкость расширяется, постепенно зажимая муфту, что приводит в работу вентилятор охлаждения.

Гидравлическая конструкция работает в зависимости от изменения объема масла. Момент блокировки не зависит от частоты вращения коленвала. В режиме высоких оборотов ДВС муфта не дает крыльчатки разгонятся, предохраняя ее от разрушения. Первоначальной задачей системы управления вентилятором является удерживать оптимальные обороты необходимые для эффективного охлаждения.

Электронное приводное устройство

На современные автомарки, оборудованы автоматическими системами контроля начали устанавливать электрический двигатель вентилятора охлаждения радиатора. Достоинством привода является независимое функционирование, легкость в настройке.

Управление вентилятором охлаждения двигателя осуществляется через температурные модули охлаждающей жидкости. По данным с датчиков блок управления вентилятором охлаждения двигателя корректирует скоростной режим крыльчатки, изменяя скорость вращения и период работы.

Питание на двигатель вентилятора поступает через электронные приборы автомобиля (аккумулятор, генератор).

Методы управление вентилятором системы охлаждения двигателя:

  • термовыключатель;
  • блок управления.

Технические показатели.

НаименованиеДвигатель
88 кВт/5500 об/мин104 кВт/6000 об/мин122 кВт/6500 об/мин
Тип системы охлажденияВодяное с электроприводом
Тип насосаЦентробежный с ременным приводом
Термостат
Температура срабатывания, С°80,0 — 85,0
Максимальное открытие, С°97
Ход при предельном открытии, ммОт 8
Давление открытия клапана в крышке, кПа112,9 — 142,5

Термовыключатель использовался на ранних этапах производства автомобилей. По показателям с датчика температуры в радиаторе, механизм определяет, включится или отключится вентилятор охлаждения двигателя. В агрегатах с термовыключателя вентилятор системы охлаждения двигателя работает в узком температурном диапазоне. Включается вентилятор охлаждения при прогреве блока до 85 С°, отключение происходит при остывании до 70 С°.

Принцип работы механизма

Когда температура тосола в радиаторе прогревается до максимально заданного значения, происходит замыкание контактов терморегулятора. Цепь питания в двигателе вентилятора замыкается, и вентилятор охлаждения двигателя начитает вращатся. После снижения температуры контакты расходятся, работающий вентилятор останавливается.

Схема управления с ЭБУ

Чтобы узнать, как работает вентилятор охлаждения двигателя с ЭБУ, необходимо ознакомится с ее строением.

Стандартное электронное управление состоит из таких элементов:

  • электродвигатель;
  • расходомер воздуха;
  • модуль частоты вращения коленчатого вала;
  • реле момента включения вентилятора;
  • датчик колебания температуры охлаждающей жидкости.

Для контроля над температурой жидкости в патрубке радиатора установлен датчик температуры. Некоторые модели авто оборудованы двумя датчиками, один на выходном канале радиатора, другой в блоке цилиндров.

Для более точного определения режима работы движка установлены модуль частоты вращения и воздухомер. Показания с датчиков поступают на центральный блок. ЦБ обрабатывает информацию и задает программу работы на реле.

Сохранность системы охлаждения

После нагрева движка до предельной температуры, должен включаться вентилятор. Существует много минусов резкого старт, которые негативно действуют на электропроводку автомобиля.

Перегрузку получают такие элементы:

  • генератор, аккумуляторная батарея, электропроводка;
  • детали крепления, подшипники;
  • датчики температуры, вследствие эффекта термокачки.

Чтобы проводка выдержала пусковые перегрузки, в автомобиль установлен мощный и дорогой предохранитель. Решить проблему перегрузки поможет плавное включение вентилятора охлаждения. Многие современные модели авто уже имеют такую функцию, но есть такие которые нужно переоборудовать своими руками.

Известно несколько способов плавного включения вентилятора охлаждения двигателя самостоятельно.

  1. Установить в свой радиатор датчик охлаждения с более низкой температурой срабатывания.

Особенности функционирования штатного устройства:

  • высокая производительность. Привод работает на высокой скорости, что приводит к частым старт-стопам системы.
  • высокая температура срабатывания датчика, что приводит к перебоям в оборотах двигателя и закипанию.

Хорошую производительность обеспечит невысокие обороты привода и плавное срабатывание.

  1. Установка кнопки принудительного обдува. Такой способ позлит водителю самостоятельно решать, когда включится вентилятор охлаждения двигателя. Такое решение поддерживает стабильную температуру ОЖ и сохраняет систему от резкого скачка напряжения. Это обеспечивается благодаря установке дополнительного реле с большим сопротивлением.
  2. Монтаж генератора пуска. Метод подходит для водителей, которые знакомы с устройством электрики и методами пайки. Регулятор придется переделать индивидуально для автомобиля и установить в цепь питания устройства. Как работает генератор: после подачи напряжения на устройство, для определения момента открытия затвора, ток проходит через драйвер транзисторов, диоды и конденсатор. Величина и плавность открытия заслонки зависит от емкости конденсатора. Инструкции по подключению можно найти на форумах.
  3. Эффективный, но дорогостоящий вариант — это установить блок управления. Его эффективность заключается в постепенном изменении оборотов электромотора в зависимости от изменения температуры ОЖ.

avtodvigateli.com

Rover 25 АНТРАЦИТ:) › Бортжурнал › Нашел описание и принцип работы вентиляторов охлаждения. Читать всем!

Дорогие читатели. опять я пишу о проблемах с охлаждением.
Теперь правда немного о другом. Порылся в своих файлах на ровер25, и нашел описание работы системы охлаждения, а точнее как и когда должны срабатывать вентиляторы, при какой температуре, в составе кондея и без него.
Так что читайте, сохраняйте себе или еще что-либо.
Выкладываю оригинальный текст и перевод яндекса(я его немного подкорректировал, но не везде и не все).

ENGINE MANAGEMENT SYSTEM — EDC
DESCRIPTION AND OPERATION
Cooling fans
The ECM controls the operation of the engine and
condenser cooling fans by switching relays. On non
A/C models, the ECM switches a single relay in the
engine compartment fuse box to run the engine
cooling fan at high speed. On models with A/C, in
addition to the relay in the engine compartment fuse
box, the ECM also operates two relays on the
outside of the battery box to run the engine cooling
fan and the condenser cooling fan together, at either
low or high speed.
The ECM operates the cooling fan(s) in response to
inputs from:
• The ECT sensor, for engine cooling.
• The A/C switch and A/C pressure sensor, for
refrigerant system cooling.
On vehicles with A/C, if there is a conflict between
requested cooling fan speeds from the different
inputs, the ECM adopts the highest requested
speed.
During the power down after the ignition is switched
off, the ECM monitors the engine coolant
temperature for 4 minutes. Within that time, if the
engine coolant temperature exceeds 112 °C (234
°F) the ECM operates the cooling fan(s) for 8
minutes or until the engine coolant temperature
decreases below 106 °C (223 °F), whichever occurs
first. Similarly, if the cooling fan(s) are already
running when the ignition is switched off, the ECM
operates them for 8 minutes or until the engine
coolant temperature decreases below 106 °C (223
°F).
Engine/Condenser cooling fan switching points

Полный размер

1


А вот то, что перевел переводчик, ну и немного скорректировал я.

СИСТЕМА УПРАВЛЕНИЯ ДВИГАТЕЛЕМ
ОПИСАНИЕ И ПРИНЦИП РАБОТЫ
Контроллер ЭСУД управляет работой двигателя и
конденсатор вентиляторы охлаждения путем переключения реле. На
Моделях без А/С, контроллер ЭСУД переключает реле в
отсек двигателя предохранитель для запуска двигателя
вентилятора охлаждения с высокой скоростью. На моделях с системой кондиционирования, в
дополнение к реле в моторном отсеке предохранитель
коробка, контроллер ЭСУД также управляет двумя реле на
вне коробку батареи для запуска двигателя охлаждения
вентилятор и конденсатор вентилятор охлаждения вместе, либо
низкой или высокой скорости.
ECM работает вентилятор системы охлаждения(а) в ответ на
входные сигналы от:
• Датчик температуры охлаждающей жидкости, для охлаждения двигателя.
• Выключатель кондиционера и C/ч датчик давления, для
хладагента системы охлаждения.
На автомобилях с А/C, если существует конфликт между опрошенными от различных
входов охлаждения скорость вращения вентилятора, контроллер ЭСУД принимает высокую
скорость.
Во время отключения питания после отключения зажигания
, контроллер ЭСУД контролирует температуру охлаждающей жидкости двигателя
в течение 4 минут. В течение этого времени, если
температура охлаждающей жидкости двигателя превышает 112 °с (234
°Ф) ECM оставляет работать охлаждающий(ие) вентилятор(ы) на 8
минут или до тех пор, пока температура охлаждающей жидкости
не снизится ниже 106 °с (223 °F), в зависимости от того что
первее. Аналогично, если вентилятор(ы) системы охлаждения уже
работает при выключении зажигания, ЕСМ
эксплуатирует их в течение 8 минут или до тех пор, пока двигатель
снижается температура охлаждающей жидкости ниже 106 °с (223
°Ф).
Судя по данным мануала, без включенного кондея, двигатель вентилятора ОЖ должен включиться при темп. в 112 градусов!, пока температура не опустится до 106 гр!
Но тем не менее, мне как то ссыкотно проверять такие температурные режимы))
Решать Вам друзья, по мне так свою доделку я пока оставлю в работе)

www.drive2.ru

Вентилятор охлаждения двигателя

Вентилятор охлаждения двигателя — устройство, позволяющее принудительно организовать обдув разогретого двигателя и радиатора системы охлаждения во время стоянки автомобиля с заведенным двигателем.

Роль вентилятора в системе охлаждения

Процесс эволюции системы охлаждения изначально шел двумя основными путями, поэтому в серийных автомобилях нашли применение системы двух основных типов: воздушное охлаждение и жидкостное (вернее, гибридное). Вентилятор используется в системах охлаждения обоих типов, так как конечным носителем, рассеивающим тепло, отведенное от двигателя, в них служит воздух. Вентилятор выполняет функцию устройства, обеспечивающего постоянный и равномерный отвод тепла в атмосферу.

Типы вентиляторов охлаждения двигателя

Работоспособных конструкций вентилятора в процессе развития системы охлаждения сложилось всего две. Первый вид — механический вентилятор, имеющий ременный привод от шкива, установленного на коленчатый вал. Для обеспечения сохранности лопастей при высокой скорости вращения коленвала крыльчатка вентилятора присоединена к шкиву через гидромеханический привод, который, в зависимости от конструкции, называется термомуфтой или гидромуфтой.

Чаще всего автомобильный двигатель снабжают восьмилопастной крыльчаткой, хотя количество и форма лопастей нигде не регламентируются

Это устройство представляет собой разновидность вискомуфты, наполненной силиконовым гелем, меняющим свойства под воздействием температуры. Степень блокировки муфты влияет на скорость вращение вентилятора. При раскручивании двигателя муфта начинает «притормаживать» вращение крыльчатки, которая неминуемо сломалась бы при скорости вращения 3000 оборотов в минуту и выше. Термомуфта и гидравлическая муфта отличаются друг от друга по конструкции и принципу действия, но обе они позволяют удерживать скорость вращения крыльчатки в узких пределах, позволяя ему разгоняться и замедляться лишь настолько, насколько это нужно для эффективного отвода тепла, и не более.

С развитием современных электронных компонентов и началом их применения для контроля процессов в двигателе, появился и быстро завоевал популярность электрический привод вентилятора. Привод состоит из электродвигателя и системы управления, которая контролирует интенсивность работы вентилятора охлаждения в зависимости от показаний датчика температуры. Применение электроники дало возможность вывести равномерность охлаждения двигателя на новый качественный уровень по сравнению с инертной «аналоговой» системой на основе вискомуфты.

Устройство и принцип работы вентилятора охлаждения двигателя

Вентилятор с вискомуфтой 

Вентиляторы с вязкостной муфтой в наше время встречаются на легковых автомобилях редко. Их применение ограничено моделями с продольным расположением двигателя, да и то, удобство электронного управления постепенно сводит их использование на нет. Единственным сегментом, в которых установка вентилятора с ременным приводом предпочтительна — серьезные внедорожники, такие как УАЗ или Jeep Wrangler, предназначенные для форсирования водных преград. Электроника боится воды, а вискомуфта герметична, и не выйдет из строя после «купания». Заполняется муфта силиконовым маслом, объем которого составляет примерно 30-50 мл.

Вентилятор с электронным блоком управления

Механизм вентилятора с электрическим приводом включает в себя: электронный блок управления электродвигателем, датчик температуры охлаждающей жидкости, электродвигатель и реле включения вентилятора. На современных автомобилях все чаще устанавливают два датчика, которые фиксируют температуру охлаждающей жидкости. Один из них встроен в патрубок на выходе из радиатора, другой – в патрубок на выходе из двигателя или в корпус термостата. В таком случае управление вентилятором происходит на основании разницы показаний этих датчиков.

Практически на любой автомобильный двигатель, даже очень старый, можно установить вентилятор с электрическим приводом и термовыключателем

 При управлении вентилятором также используются и другие входные устройства: расходомер воздуха и датчик частоты вращения коленчатого вала. Их показания необходимы для определения режима работы электродвигателя. Сигналы от всех датчиков передаются на электронный блок управления, который после их обработки активирует реле включения вентилятора охлаждения двигателя и регулирует скорость вращения крыльчатки.

Вентилятор с термовыключателем

В более старых системах электронный блок управления отсутствовал, и функцию включения/выключения электромотора выполнял так называемый «термовыключатель», который зачастую ошибочно принимают за датчик температуры. На самом деле «настоящий» датчик температуры почти всегда установлен в корпусе блока цилиндров. Именно с него подается сигнал на шкалу в салоне, так как для измерения важнее температура в непосредственной близости от камеры сгорания. Термовыключатель также реагирует на повышение температуры охлаждающей жидкости (но в радиаторе). Он градуирован под определенную температуру (например, на 85 и 70 градусов Цельсия) — на включение и выключение. Если температура превышает заданный порог, внутри термовыключателя смыкаются контакты, замыкающие цепь питания вентилятора. Электродвигатель, на который подан ток, начинает вращать крыльчатку. Как только температура снизилась до нижнего порога, контакты размыкаются и вентилятор останавливается.

Вопросы эксплуатации вентилятора охлаждения двигателя

Неисправный вентилятор охлаждения двигателя неминуемо станет причиной повышения температуры охлаждающей жидкости в двигателе. Если вы заметили движение стрелки индикатора температуры к красной зоне, можно остановиться и самостоятельно проверить работоспособность вентилятора.

Электрические вентиляторы устанавливают как с внешней стороны радиатора, так и со стороны моторного отсека. Единого мнения по поводу преимуществ той или иной установки у инженеров нет

Чтобы продиагностировать «аналоговый» вентилятор, достаточно поднять капот и посмотреть на лопасти крыльчатки. Вентилятор на вискомуфте движется всегда, поэтому, если вы наблюдаете вращение, причина перегрева, скорей всего, в поломке другого компонента системы охлаждения, например, термостата. Признаком выхода из строя вискомуфты может быть слишком низкая скорость вращения вентилятора на высоких оборотах.

Если в вашей машине применен электрический вентилятор охлаждения, и вы видите, что он не работает при явном перегреве, воспользуйтесь следующим способом: отсоедините разъем от термовыключателя, вкрученного, как правило, в нижнюю часть бокового бачка радиатора охлаждения. Взяв разъем в руки, небольшим куском проволоки замкните 2 гнезда штекера. При этом вентилятор должен заработать принудительно.

Этот способ нельзя рекомендовать владельцам наиболее современных автомобилей с электронным устройством контроля скорости вращения вентилятора. Максимум, что может сделать владелец — проверить целостность соответствующего предохранителя. Дальнейшую диагностику стоит доверить профессионалам.

blamper.ru

Вентилятор охлаждения радиатора

Приветствую вас друзья на сайте ремонт автомобилей своими руками. Вентилятор охлаждения радиатора – это устройство, которое позволяет в принудительном порядке обдувать поверхность охладительного устройства и снижать температуру антифриза (воды) до безопасного параметра.

Вентилятор охлаждения радиатора

Чаще всего вентилятор запускается автоматически при длительном движении на медленной скорости или в процессе стоянки машины с заведенным силовым узлом.

Как уже упоминалось, вентилятор несет одну задачу – максимально рассеять тепло около радиатора охлаждения и таким образом защитить двигатель от перегрева. Запуск устройства производится автоматически после достижения предельно допустимой температуры двигателя.

В современных автомобилях ВАЗ датчик температуры отправляет сигнал на ЭБУ, который в свою очередь дает команду вентилятору (но об этом ниже).

Основные типы вентиляторов охлаждения радиатора

На сегодня есть только два типа вентиляторов:

  • Механический;
  • электронный.

Механический (работает при вращении коленчатого вала). Чтобы сохранить целостность устройства и лопастей при больших оборотах, крыльчатка вентилятора подсоединяется к шкиву посредством гидромеханического привода.

При увеличении скорости вращения коленчатого вала муфта осуществляет легкое торможение, чтобы исключить повреждение устройства. Хотя раньше на первых моделях ваз такого устройства не было.

Электронный. С развитием технологий начал пользоваться спросом электронный привод. В его составе два основных узла – система управления и электрический двигатель. Использование электроники позволило обеспечить равномерное охлаждение силового узла и исключить опасность повреждения вентилятора.

Принцип действия и конструктивные особенности

У каждого из видов вентилятора есть свои нюансы конструкции и принцип действия. Рассмотрим каждый из видов более подробно:

1. Вентилятор с вискомуфтой. Такие изделия часто встречаются в моделях с продольной установкой силового узла. При этом монтируются системы, как правило, на внедорожниках, а с появлением электроники стали постепенно выходить из обихода.

С другой стороны электронные устройства бояться влаги, а вискомуфта обладает максимальной герметичностью и продолжает работать даже после «купания».

2. Вентилятор с ЭБУ. Такие системы состоят из нескольких конструктивных элементов – датчика температуры, ЭБУ силового узла и реле включения вентилятора. На современных автомобилях чаще всего устанавливается целых два контролирующих датчика.

Один – монтируется непосредственно в трубе, выходящей из радиатора, а второй – устанавливается на выходе из силового узла. При этом термостат срабатывает на основании разницы показаний этих устройств.

Кроме этого, на новых моделях ВАЗ в системе управления вентилятором могут принимать участие и другие устройства, такие как датчик частоты вращения коленвала и расходомер.

При этом все импульсы подаются к ЭБУ, который после анализа дает команду на срабатывание устройства.

3. Вентилятор с термовыключателем. В старых моделях ВАЗ электронного блока управления не было, поэтому задача активации устройства возлагалась на специальный термовыключатель.

Данное устройство смонтировано в корпусе блока цилиндров, что позволяет четко фиксировать температуру двигателя и давать команду на включение вентилятора. Сигнал, в свою очередь, подается благодаря своевременному смыканию контактной группы устройств.

Если температура превышает установленный предел (от 70 до 85 градусов Цельсия), то устройство дает команду на включение. При снижении температуры ниже определенного уровня дается команда на отключение.

Причины и неисправности вентилятора

В процессе эксплуатации могут возникнуть самые непредсказуемые ситуации. Новички часто теряются, когда не работает вентилятор охлаждения двигателя, включается раньше времени или вращается постоянно. Такие проблемы чреваты перегревом двигателя или, наоборот, сложностями с набором температуры.

Чтобы своевременно устранить неисправность и не допустить более серьезных повреждений, важно знать, как проверить вентилятор радиатора, и в какой последовательности ее устранять.

Как уже упоминалось, температура включения вентилятора на каждом автомобиле может различаться. К примеру, на ВАЗ-2110—2111 оптимальная температура работы силового узла – около 88-89 градусов.

При этом вентилятор срабатывает на уровне 105 градусов Цельсия. Далее температура ОЖ начинается снижаться, и отключение происходит при температуре 97 градусов Цельсия и ниже.

 Неисправности вентилятора и особенности их устранения

1. Когда вентилятор не запускается вовсе, необходимо проверить работу термостата. Сделать это просто – достаточно на нагретом двигателе прикоснуться к нижней трубке радиатора. Холодная? – Тогда термостат вышел из строя и требует замены.

Снова-таки действуйте очень осторожно, чтобы случайно не обжечь руки. Следующие проверки можно разбить на несколько этапов:

Проверка предохранителя, расположенного в монтажном блоке. Как правило, он отвечает и за звуковой сигнал автомобиля, поэтому определить наличие такой неисправности труда не составит. Все, что требуется – нажать на клаксон. Если он не работает, необходимо установить новый предохранитель.

Если со вставкой плавкой проблем нет, то необходимо осмотреть реле вентилятора радиатора (в дополнительном блоке с предохранителем). В случае когда контакты устройства прикипели или оно не срабатывает даже при наличии напряжения, то потребуется замена.

Проверка двигателя вентилятора. Убедиться в его работоспособности несложно – достаточно подключить вывода к аккумулятору. Если он начинает вращаться, тогда проблему нужно искать в другом месте.

Проверка датчика включения вентилятора. Здесь есть два основных варианта. Если автомобиль – карбюраторный, то необходимо замкнуть контакты датчика (расположен в радиаторе). Если вентилятор сработал, то можно сделать вывод о неисправности датчика.

В ситуации, когда двигатель – инжекторный, необходимо снять разъем с датчика (расположен в непосредственной близости от термостата). В этом случае вентилятор должен сработать в аварийном режиме.

Если не одна из описанных выше проверок себя не проявила, то необходимо искать обрыв во вторичной цепи автомобиля.

2. Не отключается вентилятор радиатора системы охлаждения. Бывают ситуации, когда система дополнительно охлаждения срабатывает и продолжает работать даже после выполнения своих функций (снижения температуры).

Здесь можно выделить несколько основных причин:

  • Имеет место обрыв в ДТОЖ или его коммутации. В этом случае постоянно работает вентилятор радиатора и горит лампочка «Check engine». Для решения проблемы достаточно заменить датчик;
  • контакты реле, подающего команду на вентилятор охлаждения, остаются все время в замкнутом состоянии. В такой ситуации необходимо проверить наличие напряжения на контактах устройства. Если оно не поступает, а реле все равно сработано, то потребуется замена устройства;
  • вышел из строя блок управления системы или одна из цепей ЭБУ. В этом случае необходимо ехать на СТО для установки нового блока или перепрошивки устройства;
  • в авто с карбюраторным двигателем не размыкаются контакты термовыключателя. Чтобы убедиться в проблеме, необходимо отсоединить провода от выводов устройства. В этом случае вентилятор перестает работать. Решение проблемы – замена термовыключателя.

3. Рано включается вентилятор радиатора. Еще один вид неисправности, когда вентилятор начинает вращение до достижения предельной температуры. Здесь необходимо «грешить» на датчик температуры.

Чаще всего он неправильно диагностирует температурный режим и дает ложный сигнал на вентилятор. При этом важно выбрать правильный датчик. Такие устройства бывают двух видов – зимние и летние. У каждого из них свой температурный режим.

К примеру, зимние датчики будут срабатывать позже, а летние – раньше. Иногда при неправильном выборе устройства автолюбители удивляются, почему вентилятор включается раньше или позже. На самом же деле датчик работает правильно, но в своем диапазоне температур.

Многие автолюбители недооценивают важность и пользу вентилятора охлаждения радиатора. В итоге можно поплатиться серьезной суммой из кошелька для дорогостоящего ремонта двигателя.

Так что в случае первых же проблем с системой охлаждения, важно своевременно диагностировать неисправность и устранять ее. Удачи на дороги и конечно же без поломок.

remontavtovaz.ru

принцип работы, схема, крыльчатка, блок управления

2318 Просмотров

Двигатель играет важнейшую роль в работе любого автомобиля. От характеристик и состояния силового агрегата зависит, насколько быстро будет передвигаться машина и какими возможностями она будет обладать. Система охлаждения позволяет производить своевременное регулирование рабочей температуры мотора и предохранение его от перегрева. Сегодня мы рассмотрим такое устройство, как вентилятор охлаждения двигателя, и выясним, зачем он нужен и на какие виды подобные устройства подразделяет официальная классификация.

Функции и назначение

Вентилятор охлаждения предназначен для непосредственного забора раскаленного воздуха от радиатора. В некоторых старых автомобилях вентилятор был единственным устройством, которое обеспечивало охлаждение двигателя в жару и при интенсивной работе. К сожалению, даже самого мощного вентилятора недостаточно, чтобы производить охлаждение в полной мере, поэтому во всех современных моделях, предусмотрена система отвода газов картера, оборудованная специальным клапаном.

Кроме того, в устройства охлаждения, помимо клапана вентиляции картера, внедряются различные блоки и контроллеры, которые позволяют точно определять все необходимые параметры двигателя с целью наиболее эффективного его охлаждения.

Стоит отметить, что наряду с клапаном картера и вентилятором, в схему охлаждения включается также радиатор, наполненный жидкостью, и водяная помпа, которая обеспечивает ее циркуляцию в двигателе. Это позволяет достичь наибольшей эффективности работы и, как следствие, большего ресурса самого двигателя.

Механический тип

Рассмотрим теперь схемы и принципы работы, которыми обладает вентилятор охлаждения двигателя, основные типы приводов и источников их питания.

В прошлом веке наибольшую популярность имели системы, которые работают достаточно примитивно и не имеют многочисленных датчиков и контроллеров, облегчающих функционирование как самого вентилятора, так и других устройств автомобиля.

Одним из простейших подобных устройств является вентилятор охлаждения, функционирующий по механическому принципу. Данная модель не обладает ни датчиками, ни контроллерами, а интенсивность и скорость вращения крыльчатки зависит лишь от скорости оборотов маховика двигателя.

Механический тип имеет привод от маховика посредством ременной передачи. Это позволяет не использовать дополнительные устройства в виде датчиков и не усложнять схему функционирования различными дорогостоящими элементами.

Вентиляторы с вискомуфтой

Вентиляторы берут на себя достаточно небольшую роль в устройствах охлаждения, по сравнению с жидкостными системами. Тем не менее, в исключительных случаях требуется высокая мощность обдува и достаточно прочная крыльчатка, которая не боится неблагоприятных условий в виде влаги и пыли.

Одним из подобных устройств является гидровентилятор. Гидровентиляторы широко применяются, в основном, на автомобилях повышенной проходимости, которые по той или иной причине часто вынуждены преодолевать водные броды. Здесь крайне необходима максимальная герметичность всего устройства охлаждения, за счет чего будет осуществляться максимальное предохранение крыльчатки и клапана вентиляции картера от воды.

Принцип функционирования подобного устройства достаточно сложен. Однако те, кто так или иначе сталкивался с изучением принципов функционирования современных автоматических трансмиссий, с легкостью освоит и гидровентиляторы.

В системах гидровентиляторов все основывается на функционировании двух пакетов фрикционов, которые располагаются в герметичной камере, наполненной силиконом. Контроллер осуществляет сбор данных о скорости вращения и температуре двигателя, и на основе их выдает указание на выдачу гидровентилятору определенного давления. Таким образом, фрикционам передается строго определенный крутящий момент, и скорость вентилятора может варьироваться.

Вентиляторы с управляющими устройствами

Вентиляторы, оборудованные блоком управления и собственным контроллером, применяются на подавляющем большинстве выпускающихся на данный момент моделей. Преимущества устройств с блоками управления в том, что контроллер может собирать сведения обо всех необходимых характеристиках мотора и на их основе выдавать команды на запрограммированные режимы охлаждения мотора.

Наряду с блоком управления клапаном вентиляции картера, здесь также присутствует система датчиков скорости коленчатого вала, температуры охлаждающей жидкости, скорости вращения лопастей вентилятора и других жизненно важных показателей.

Задача контроллера — получить всю необходимую информацию с датчиков и выдать импульс на смену режима вращения. Это способствует экономии ресурса, которым обладает двигатель вентилятора, и более эффективному охлаждению силового агрегата.

Вентилятор с термодатчиком

Вентиляторы с термостатирующим датчиком нашли применение на моделях автомобилей второй половины прошлого столетия. Они также взаимодействуют с клапаном отвода газов картера и имеют некоторую, пусть и примитивную, автоматическую электронику.

Что же хорошего в данной разновидности вентиляторов? В первую очередь, это максимальная простота применяемой техники и ее несложный ремонт, который под силу даже неопытному мастеру. Второе преимущество — это крайне недорогие запчасти и комплектующие, которые способствуют немалой популярности применения подобных систем на автомобилях отечественного производства.

Способ, по которому функционирует подобное устройство, достаточно прост и примитивен. Вентилятор соединяется напрямую с термодатчиком, который выполняет роль реле и выключателя одновременно. При нагревании охлаждающей жидкости до определенного порога, датчик срабатывает, и вентилятор приводится во вращение. Аналогичным образом происходит его отключение, как только температура тосола вновь приходит в норму.

Газоотведение двигателя

Вентиляторы охлаждения, безусловно, играют крайне важную роль в поддержании рабочей температуры силового агрегата во всех режимах его работы. Тем не менее, на современных автомобилях применяется также клапан отведения газов картера, который позволяет дополнительно охлаждать мотор и препятствует образованию сажи на стенках двигателя.

Задача клапана отведения газов картера — открываться в строго необходимые моменты и выпускать в коллектор пары масла, топлива и воды, которые скапливаются в моторе.

Подобная электроника функционирует следующим образом. В картере двигателя устанавливается датчик, который анализирует текущее давление газов в системе и постоянно передает информацию на ЭБУ. Последний, в свою очередь, проверяет выданную датчиком информацию и выпускает газы, если их давление дошло до определенного значения. Таким образом, происходит дополнительное охлаждение двигателя и препятствование его засорению.

Резюме

Вентиляторы охлаждения двигателя — это крайне важные устройства, без которых поддержание постоянной температуры мотора и предохранение его от перегрева стали бы невозможными. В связи с этим настоятельно рекомендуется производить регулярную проверку данного устройства во избежание проблем в пути и поломок, требующих дорогостоящего и сложного ремонта.

portalmashin.ru

ГАЗ 31 поколение… последнее. › Бортжурнал › Регулятор оборотов вентилятора охлаждения радиатора(из того что было под рукой).

Завалялась у меня платка DC/DC с ШИМ(ШиротноИмпульсныйМодулятор) на 555 таймере появилась идея использования этого же ШИМа для управления вентилятором системы охлаждения двигателя. Что это дает?
1.Плавное включение вентилятора без просадок бортового напряжения(достигается за счет плавного изменения напряжения на датчике) и как следствие продление жизни самого вентилятора.
2.Зависимость оборотов вентилятора от температуры двигателя.
3.Более стабильный температурный диаппазон двигателя(держится в районе 85 градусов)


Сигнал управления берем от цепи датчика температуры приборной панели, а для надежности ставим эту систему в параллель штатной(правда при этом штатную систему нужно изменить — у штатной вентилятор коммутируется по «+», нам же нужно чтобы вентилятором управлял «-«)

В результате подгонки под наши требования схемы, получаем схему регулятора на 555 таймере работающем в режиме ФИМ(фазо импульсная модуляция) и транзисторах МОСФЕТ( МОСФЕТ-ключ показан в этой схеме упрощенно, на больших токах будет сильно нагреваться): для уменьшения нагрева нужно использовать несколько мосфетов повторяя цепочку R3-VT1 в параллель, количество транзисторов зависит от мощности вентилятора 200Вт — два транзистора, 300Вт — три транзистора, при больших мощностях возможно придется усиливать выходной какскад 555 таймера:

Важный момент:для равномерного распределения тока нагрузки по мосфетам используем провода сечения 1 — 1,5 кв.мм одинаковой длинны соединяя силовые выводы мосфетов с общими точками схемы.
Так как при работе вентилятора в цепи (акумулятор-вентилятор-регулятор-корпус»земля») течет значительный ток (30А) используем в этой цепи провода сечением не менее 6 кв.мм, а для обеспечения безопасности ставим в эту цепь 40А предохранитель.
Собираем все в корпусе от комутатора зажигания 402 двигателя и размещаем на левом крыле моторного отсека(благо крепёж для монтажа там есть штатно).

один из первых вариантов (из того что было под рукой)


Настройка: прогреваем двигатель до 85 градусов и вращением движка резистора R7 добиваемся включения вентилятора на половину его мощьности. Алгоритм работы устройства такой, что при повышении температуры двигателя обороты вентилятора повышаются, при понижении температуры обороты вентилятора уменьшаются. В дальнейшем нужно произвести подстройку так чтобы при 80-82 градусах вентилятор не включался.

Пы.Сы. Практика использования показала что работа устройства далека от совершенства и его эффективность сильно зависит от состояния радиатора (если теплоотдача радиатора «как у нового» то это устройство впо

www.drive2.ru

Электровентиляторы охлаждения — УАЗ 3151, 2.5 л., 1986 года на DRIVE2

Электровентиляторы охлаждения.
В интернете очень много споров по поводу эффективности электрических вентиляторов охлаждения. Очень много разочаровавшихся. В принципе, не удивительно т.к. для того, чтобы электровентиляторы работали эффективно, их нужно правильно установить и подключить.

Установка перед радиатором малоэффективна. Несмотря на то, что мы часто видим такие электровентиляторы на иномарках, они там работают главным образом на кондиционер. Как правило они установлены очень близко к радиатору и в кожухе, который представляет из себя лишь один диффузор (цилиндрическую часть) т.к. если сделать полноценный расширяющийся кожух, то он будет препятствовать поступлению набегающего потока воздуха. К сожалению, при такой установке, вентилятор подувает лишь небольшую область в виде бублика непосредственно под его лопастями. Если этот вентилятор расположен перед конденсатором кондиционера а не перед радиатором охлаждения, то до охлаждения вообще ничего не доходит т.к. сопротивление радиатора больше чем у щели между конденсатором и радиатором и весь воздух вылетает в эту щель. По такой схеме штатно установлены вентиляторы на Ниве 21214 и по этой причине их там требуется 2 и очень большой мощности при том, что если установить вентилятор на Ниву за радиатором, то хватает одного небольшой мощности от 2108 вместе с кожухом.

При установке кожуха за радиатором, необходимо учитывать следующие условия:
1. Кожух должен прилегать к радиатору максимально плотно и герметично, с резиновым уплотнителем, иначе существенная доля воздуха будет всасываться не через соты радиатора а через щель между кожухом и радиатором т.к. сопротивление этой щели меньше чем сопротивление сот радиатора.
2. Кожух должен быть максимально возможного размера, хотя и не обязательно чтобы он перекрывал весь радиатор.
3. Если вентиляторов 2, то между находящимися под ними полостями должна быть перегородка также герметичная как и боковые стенки кожуха. Иначе в случае, если один вентилятор по какой-то причине работает менее эффективно чем другой, то более сильный будет всасывать воздух через него а не через радиатор.
4. Вентилятор должен находиться на расстоянии не менее 4-5см от поверхности сот радиатора, иначе воздух будет преимущественно просасываться через тот самый бублик под лопастями.
5. Лопасти вентилятора должны быть внутри диффузора (цилиндрической части кожуха). Иногда на покупных сборках вентилятора с кожухом, вентилятор почему-то выдвинут из диффузора в сторону радиатора. Для возврата его в нужное положение, как правило достаточно просто подогнуть 3 ножки, на которых крепится электродвигатель.

Существует 2 варианта по мощности электродвигателя вентилятора: маломощные от ВАЗовской Классики и 2108 и более мощные от Нив, при чём последние подключаются через дополнительные сопротивления. При подключении напрямую, жгут клеммы и провода.

Опыт показывает, что при правильной установке, для 417/421-го двигателя УАЗа хватает и одного маломощного вентилятора 2108. Единственное, где мне не удалось проверить его эффективность – это при длительных затяжных подъёмах в горах на первал. Однако 2 таких вентилятора неплохо справились с охлаждением двигателя КрАЗа 260л.с. при подъёме на понижающей передаче в горах Таджикистана при 40 градусах тепла и длине подъёма 17км и полной массе 36т.

Если на УАЗике установлен горизонтальный радиатор от Газели/Волги, то возможно установить 2 электровентилятора 2108 с небольшим смещением одного вниз, другого вверх чтобы они друг друга не перекрывали и не вылезали за пределы радиатора, а если родной УАЗовский радиатор, то рационально установить один электровентилятор с лопастями от Волги, несколько большего диаметра. Радиатор потребуется сдвинуть вперёд чтобы электродвигатель не упирался в помпу. Электродвигатель надо также попробовать сдвинуть вбок чтобы «разойтись» с помпой. На Патриоте Евро-3 и выше стоит огромный горизонтальный радиатор, на который гораздо проще нацепить электровентиляторы, которые совершенно не будут мешать ни друг другу не двигателю.

Подключение электровентиляторов – отдельная тема. Очень много споров об алгоритме управления электровентиляторами и куда ставить датчик: в верхний или в нижний патрубок (или выходной бачек радиатора, или выходную часть разделённого бачка радиатора). Сторонники верхнего датчика аргументируют это тем, что нужно управлять температурой в двигателе, а в верхнем патрубке именно та жидкость, которая приходит из двигателя. Меня, честно говоря, немного напрягает, когда электровентилятор включается на скорости 120км/ч, когда из двигателя выходит действительно горячая жидкость, но при этом набегающий поток воздуха через радиатор просто чудовищен в сравнении с ничтожной производительностью пропеллеров и их вращение там скорей может помешать чем чему-либо помочь. В любом случае, если датчик стоит сверху, то вентилятор включается очень часто, работает подолгу при равной стабильности температуры.

Я устанавливаю пороговый датчик в штатное заводское место (в выходном бачке радиатора или в выходной части бачка двух-ходового радиатора у которого вход и выход в одном бачке, разделённом на 2 полости). Если такого места нет, то вмонтирую проставку в нижний шланг радиатора. Естественно нижний датчик должен быть на более низкую температуру чем верхний, т.е. 87-82 градуса.

Всевозможные системы управления скоростью вращения вентилятора на мой взгляд – это лишнее т.к. во-первых пусть лучше он реже включается, отбирая равное количество тепла за короткие циклы работы, во вторых, чем ниже скорость вращения вентилятора относительно расчётной – тем меньше его КПД а значит мы зря жжём энер

www.drive2.ru

Как увеличить обороты двигателя на холостом ходу – Как увеличить холостые обороты на инжекторном двигателе

Большие обороты холостого хода(нашёл в инете интересную статью) часть 1! — DRIVE2

Статья из инета!
В бензиновом двигателе с впрыском топлива обороты двигателя определяются количеством всасываемого воздуха. Чем сильнее будет открыта дроссельная заслонка, тем больше воздуха попадет во впускной коллектор. Компьютер обсчитает количество этого воздуха и определит, сколько бензина нужно под него подать. Что произойдет, если компьютер не будет знать о количестве всасываемого воздуха? Это может случиться, например, при отсутствии сигнала с датчика положения дроссельной заслонки или при появлении во впускном коллекторе нештатной «дырки» (у двигателей с датчиком расхода воздуха). Сначала двигатель начинает поднимать обороты, как при простом открытии дроссельной заслонки, но, поскольку топливная смесь будет становиться все беднее и беднее, двигатель начнет глохнуть. Его обороты будут снижаться, количество всасываемого воздуха – уменьшаться, и топливная смесь снова станет нормальной, что позволит двигателю вновь поднять свои обороты до 1200–1600 об/мин, затем снова снижение оборотов, двигатель начинает глохнуть и так далее… Возникает явление, называемое «плаванием» оборотов.

Но возможен и второй вариант, когда двигатель поднимает обороты холостого хода до 1600–2000 об/мин и ровненько «ревет». Почему? Да просто инжекторы в режиме холостого хода подают слишком много бензина. Это количество бензина позволяет двигателю работать и при 2000 об/мин, ведь «дырка», через которую поступает нештатный воздух, не увеличивается. Вот если бы она стала чуть больше, то при том же количестве поступающего бензина двигатель мог поднять обороты, например, до 3000 об/мин, но затем все равно бы заглох, после снижения оборотов снова «подхватил» – опять появилось бы «плавание» оборотов. Таким образом, если вам удастся поднять обороты двигателя до 2000 об/мин, сняв какую-нибудь вакуумную трубку от впускного коллектора, и двигатель при этом будет работать ровно, значит, у этого двигателя скорее всего существует перерасход топлива. На холостом ходу в двигатель льется столько бензина, что его хватит и для работы при 2000 об/мин. Конечно, многое зависит от конкретной схемы впрыска, описываемая ситуация характерна для двигателей, имеющих счетчик количества всасываемого топлива. Если в двигателе применяется система без счетчика количества всасываемого воздуха, а с датчиком давления во впускном коллекторе, то любой нештатный подсос воздуха вызовет только увеличение оборотов двигателя.

Как мы убедились, и большие обороты холостого хода, и «плавание» оборотов чаще всего вызваны одной причиной – чрезмерным поступлением нештатного воздуха. Есть четыре пути, по которым в двигатель поступает весь воздух, определяющий его обороты.

Во-первых, через дроссельную заслонку. Вы нажали на газ, дроссельная заслонка открылась, во впускной коллектор полетел воздух, и двигатель поднял обороты. Если вы не нажали на газ, а тросик этого газа где-то переломан или просто перетянут, будет то же самое. Тот же эффект, большие обороты холостого хода, может возникнуть при «удачном» размещении на полу салона дополнительного коврика для сбора грязи. В этом случае жесткий коврик постоянно с некоторой силой нажимает н

www.drive2.ru

Как увеличить обороты двигателя на холостом ходу

Добрый день. Подскажите, пожалуйста, кто в Москве или Видном может сделать прошивку двигателя для повышения оборотов на холостом ходу. Замучили подергивания автомобиля.

оставь двигатель в покое =) это BSE лёгкие потряхивания на нём норма. Если потряхивания чуть сильнее, то для начала уровень масла глянь, потом уже свечи и прочее.

Лекарство — чистка форсунок со съемом на стенде! лично сами убедитесь в количестве грязи, тому вина наши доблестные рекламные АЗС.

Только что тоже немного поднял обороты, двигатель стал меньше дёргатся.

обороты поднимаются с помощью шнурка, а не прошивку меняют, я себе поднял, вроде эффект был, но уже и не помню) а так машина тоже подергивается на холостых, говорят что это норм, но мне тоже не нравится

я тоже через васю поднимал обороты, но где-то через год все вернулось обратно, это как то временно работает.
теперь я просто ас на климате не выключаю и обороты сами держатся, где-то 900, вибрации нет, вот и вся проблема)

Я а/с не включаю, потому как мощность очень сильно падает и кондер видимо у меня грибком порос, простуда вылазит

Самые толковые коменты написаны внизу.остальное срач какой то!)))

Может этот пост поможет? www.drive2.ru/l/6952493/…Сам решил эту проблему установкой иридиевых свечей — потряхивания практически не заметны www.drive2.ru/l/10618436/

для движка 1.6 БСЕ это нормальное явление… если не смотреть на работающий двигатель, то он и не дергается. скорее всего надо «менять что-то в головах», а не в двигателе =)

тыщу раз это уже везде обсуждалось… к счастью таких замороченых не много =)

Свечи менял . Высоковольтные провода менял. Катушку зажигания менял .

не надо повышать обороты, надо устранить причину дерганья. Посмотри свечи провода и высоковольтную часть. Надо лечить причину, а не последствия. У меня тоже дергалась, ничего — вылечил

Была такая же проблема, у меня 1,8 cdaa двигатель. Залил жижу от ликвиМоли и прокатав бак пропали подергивания на холостом, машина ровно работать стала

а на каком пробеге ты заливал ее?

Заливал на 137 тыс, но проблема была как купил машину-это было 87 тыс
Свечи не менял, прошлый хозяин их менял ещё на 60 тыс

а на каком пробеге ты заливал ее?

Для профилактики лишним не будет. Я заливал не по инструкции как указано, а просто залил в пустой бак (красная лампа только загорелась бензина) и сразу заправил до полного. Вот уже после этой жижи выкатал второй бак и все отлично, машина радовать стала ещё больше!

чет я очкую, у меня 170 тыс. вдруг все говно разъест и забьет
у меня после раскоксовки стала песня. лил XADO

Ну фиг знает, это просто ИМХО

У меня тоже небольшая вибрация под водительским сиденьем на холостых, чуть прибавлю обороты вибрация проподает, тоже достало(, но говорят так должно быть…

я тоже и прошивал и датчики менял, и свечи, и распределитель зажигания, пока не поменял прогоревшие клапана и все стало ровно, без дерганий…

а может стоит устранить проблему подергивания для начала? ну а потом уже прошиваться…

да там на всех BSE такая лажа
батя тоже говорит что поднадоедает иногда

а может стоит устранить проблему подергивания для начала? ну а потом уже прошиваться…

Не получится устранить! Подтряхивания у 1.6 BSE в угоду экологии, из-за норм евро4.
Только поднятие оборотов решает проблему.

ну тогда шить так, чтобы на холодную обороты повыше, на горячую в норму)) мне так делали когда шился.

Не надо ни чего шить)) Надо просто поднять обороты Ваг комом! Шьют — это когда удаляют катализатор и переводят на норму Евро 2!

у себя я убирал егр, расходомер и тд))

С подергиваниями нет понта бороться) Легче смириться)

А почему ты думаешь, что дело в прошивке?А может и скорее всего у тебя накрылся один из из датчиков, или с расодометром проблема, может засрался, или дроссельная заслонка грязныя или еще куча причин, но прошивка тут точно не при чём)))

Нет там никакой прошивки, я себе поднял через ваг ком. И подергивания особо не делись никуда, зато подхват теперь намного веселее стал. На расходе никак не отражается, зато движку легче раскрутиться.

посмотри для начала 1 канал адаптации в двигателе, если там 128, можешь сам повысить без чипа, если там стоит 156, то не получится
www.drive2.ru/l/578677/

в остальных случаях индивидуальная правка прошивки т.е. чип тюнинг

а в BSE не на любой прошивке можно подкрутить обороты?
по-моему на любой. Есть Вася? Зайди в первый блок (двс), адаптация, 01 канал:
129 — 660
130 — 670
131 — 680
132 — 690
133 — 700
134 — 710
135 — 720
136 — 730
137 — 740
138 — 750

слева — значения канала адаптации
справа — количество оборотов, которым соответствует то или иное значение

Многие владельцы автомобилей помнят то время, когда по дорогам страны колесили, в основном, Жигули и Москвичи. Их ключевой характеристикой было то, что провести мелкий ремонт или регулировку определённых параметров можно было очень просто, лишь вооружившись небольшим набором инструментов. Тем не менее, отличием тех автомобилей от их современных аналогов было то, что у них устанавливалась карбюраторная система подачи топлива. Она не использовала электронику, так что, всё регулировалось механическим способом.

Регулировка инжектора своими руками

Теперь же всё иначе, и провести регулировку холостого хода уже не так просто, как раньше. Поэтому, сейчас мы попробуем разобраться в том, как же именно регулировать инжектор и его холостой ход на современных машинах.

Так выглядит «инжектор» автомобиля.

Так ошибочно называют «в народе» блок управления двигателем (ЭБУ). Хотя сам «инжектор» состоит из нескольких частей: ЭБУ, форсунки, датчики и т.п.

Датчики в «инжекторе»

Технологии управления подачей топлива в двигатель существуют разные. Поэтому некоторые датчики могут отсутствовать. Самые распространённые датчики в «инжекторе»:

  • Датчик коленвала
  • Датчик положения распредвала
  • Датчик кислорода
  • Датчик массового расхода воздуха
  • Датчик положения дроссельной заслонки (ДПДЗ)
  • Датчик детонации

Регулировка холостого хода на инжекторном автомобиле

В случае, когда речь идёт о плавающих оборотах мотора, прекращении работы двигателя при постановке автомобиля на нейтральную передачу или же о повышении оборотов в случае работы полностью прогретого мотора, то это может говорить о неисправностях регулятора холостого хода или о бедной смеси. Аналогичный вывод можно сделать и в том случае, когда на холодном двигателе обороты оказываются слишком низкими.

Регулятор холостого хода автомобиля Лифан Солано

В любом случае, это всё может происходить по причине чрезмерной подачи воздуха.

Проводить регулировку смеси должен компьютер, который собирает данные из целого ряда датчиков (про датчики инжектора мы уже писали выше). Он, на некоторые время, может открывать или же закрывать клапана инжекторов с той величиной, которая нужна для мотора в данный момент.

Порядок действий

Регулятор холостого хода — это исполняющий орган функционирования мотора (механический датчик), то при его некорректной работе лампочка, указывающая на неисправность, гореть не будет. Регулятор является шаговым электрическим двигателем, включающим в себя конусную иглу. Регулятор может быть расположен на корпусе дроссельной заслонки, что позволяет гарантировать конкретный уровень воздушного потока, обходящего закрытую дроссельную заслонку. А его, в свою очередь, задаёт электронная система автомобиля, дабы двигатель работал устойчиво и равномерно, независимо от внешних факторов.

  1. Для начала необходимо отключить аккумулятор. Недостаточно будет просто выключить зажигание. Вам необходимо выключить «массу». Проводим демонтаж регулятора холостого хода
  2. Вторым пунктом, на который вы должны обратить внимание, является отвинчивание креплений, которые удерживают регулятор. Это позволит вам полностью его снять. Как мы уже сказали, регулятор можно найти на корпусе дроссельной заслонки, к которой он привинчен парой винтов. В части моделей машин винты могут быть залиты специальной краской или, что ещё хуже, рассверлены. В такой ситуации может понадобиться выполнить полный демонтаж корпуса дроссельной заслонки, после чего и будет проводиться разборка и снятие регулятора.
  3. Пункт номер три предполагает чистку посадочного канала. Достаточно будет промыть его, после чего обработать сильным потоком воздуха. Делается это посредством баллончика со сжатым газом или же обычным компрессором. Регулятор нужно разбирать с большой осторожностью, дабы не была повреждена его обмотка. Теперь наступает время провести проверку направляющей втулки, тем более, если конусная игла может свободно двигаться вокруг своей оси с зазором. Если это так, то втулка должна быть заменена новой. В ситуации, когда конусная игла не содержит на своей поверхности существенных повреждений или же потёртостей, то её можно оставить. Но, когда у вас возникают даже малейшие сомнения в её исправности, то её необходимо полностью заменить аналогичной моделью.
  4. Четвёртый пункт инструкции говорит о процессе определения целостности, характерной для прижимной пружины. Также, задействовав специальный измерительный прибор, можно провести проверку целостности обмотки регулятора. Кроме того, не лишним будет очистить контакты этой самой обмотки. И лишь после этого можно снова собирать регулятор холостого хода. Но, прежде чем устанавливать регулятор на автомобиль, необходимо замерить расстояние от фланца его корпуса до кончика конусной иглы. Этот показатель должен быть равен двадцати трём миллиметрам. Если же расстояние отличается от указанного в любую сторону, то игла должна быть заменена новой. Касается это и ситуации, когда никаких видимых повреждений на игле нет.
  5. Пятым, завершающим, пунктом будет то, что вам нужно будет провести установку регулятора холостого хода на своё место. Для него, как вы уже могли видеть в процессе его демонтажа, предусмотрено своё посадочное место. Находится оно в корпусе дроссельной заслонки. После этого можно подключить штекер управления к этому самому регулятору. Далее снова включаем электрическое питание автомобиля. И вот тут начинается самое «интересное». Вам нужно завести мотор и испробовать его в различных условиях работы. Если проблемы сохранились или же не исчезли полностью, то может понадобиться повторный разбор регулятора холостого хода. Но, если и вторая попытка не увенчалась успехом, то поломку стоит искать в других местах. В частности, причиной может быть прошивка бортового компьютера, тем более, если вы покупали автомобиль «с рук».

Дополнительным советом станет то, что проводить регулировку оборотов мотора можно только на двигателе, который был предварительно хорошо прогрет.

Альтернативные причины

Симптомы неверной настройки блока управления двигателем

  • уменьшение силы тяги
  • увеличение количества потребляемого топлива
  • или же неровной работы двигателя в целом (детонация при запуске, детонация при прогреве, детонация при выключении зажигания, двигатель троит)

Все эти ситуации предусматривают необходимость регулировки инжектора.

Порядок действий

Для работы нам понадобится ноутбук и диагностический кабель.

Ноутбук

Ноутбук или же планшетный компьютер под управлением настольной версии операционной системы Windows, а также специальное программное обеспечение, которое предназначено специально для вашей марки автомобиля. Конечно же, можно подключить и стационарный компьютер, но будьте тогда готовы вынести его на улицу, непосредственно к капоту автомобиля.

Диагностический кабель для подключения к ЭБУ

Также, нужно будет приобрести кабель подключения бортового компьютера к лэптопу. Как правило, эти кабели делятся на несколько основных видов, которые не очень сильно различаются между собой. Определитесь только с тем, какая версия разъёма используется в машине. В самых старых моделях — это первая версия, а в более новых — вторая версия разъёма. Порт имеет такую форму, что подключить его неверно у вас не выйдет.

Как только подключение к бортовому компьютеру выполнено, в запущенной на лэптопе программе, можно будет просмотреть все параметры работы автомобиля, а также те ошибки, которые возникли в процессе. Коды ошибок можно найти в сопутствующей к программе документации или же в Сети Интернет.

При необходимости, на бортовой компьютер может быть установлена новая прошивка. Это делается возможностями всё той же диагностической программы.

Чип-тюнинг автомобиля

Чип-тюнинг — данным словом называют простую настройку инжектора и электронной системы управления мотором, для того, чтобы улучшить его эксплуатационные качества.

Прошивки могут подготовить автомобиль к качеству местного топлива, определённым температурным режимам работы, а также определить, сколько именно топлива будет потреблять мотор в штатных режимах.

Преимущества чип-тюнинга

Среди основных преимуществ, которые получает автомобиль после подобных доработок, можно выделить

  • ускоренный старт с места,
  • плавное движение при минимальных показателях нагрузки,
  • а также максимально ровную тягу, которая возникает при работе на самых высоких передачах.

И, конечно же, в случае, если вы преследуете цель экономии, можно будет значительно понизить расход топлива. В зависимости от модели автомобиля и предыдущих настроек, расход может быть снижен на показатель от половины литра до трёх литров на сто километров пути.

Без специальной диагностической программы не обойтись

Впрочем, рекомендуется проводить все настройки только в сервисном центре. Как правило, специалисты таких СТО работают только с фирменным программным обеспечением, а также устанавливают только те прошивки, которые уже прошли тестирование в реальных условиях. Если же прошивка недостаточно качественная, то за спортивные достижения автомобиля придётся расплачиваться вам.

Дорогостоящий ремонт двигателя в подобной ситуации гарантирован.

Вот так выглядит комплект оборудования для диагностики

После длительной эксплуатации автомобиля приходится обращать внимание на отклонения в работе главного узла — двигателя. Важно знать, сколько должно быть оборотов на холостом ходу. Актуальнее эта проблема для карбюраторных авто с ручной регулировкой. Но часто и электронные системы зажигания дают сбой по целому ряду причин.

Когда следует проводить регулировки?

После некоторых манипуляций с авто рекомендуется обязательно проверять, сколько должно быть оборотов на холостом ходу. К одной из причин изменения показаний тахометра относят замену свечей и масла согласно проведенному плановому техосмотру. Аналогично поступают после промывки топливной системы, ремонта узлов двигателя, электронных блоков.

На любой СТО могут подсказать, сколько должно быть оборотов. На холостом ходу у отечественных двигателей допустимые значения тахогенератора находятся в пределах 800-1000. Идеальная система поддерживает стрелку возле отметки 800.

Если рассматривать, сколько должно быть оборотов на холостом ходу у иномарок, то можно обратить внимание на панель приборов — показания тахогенератора вообще отсутствуют. На СТО эти значения проверяют при помощи диагностического разъема, выводя информацию на экран ноутбука или специально предназначенного для этого прибора. Следует помнить, устойчивость работы двигателя зависит от качества заливаемого в бак бензина.

Рекомендации

Любой автолюбитель с опытом ремонта советских авто знает, сколько должно быть оборотов на холостом ходу. Советы специалистов сходятся в одном: при нормальной работе двигателя во время завода обороты держатся чуть выше 1000, после прогрева они снижаются до отметки 800. При отклонении этих показателей от указанных первым делом стараются сменить бензин на качественный.

Рекомендуется проверить работу свечей, чтобы все поршни участвовали в движении автомобиля. Многие обладатели отечественных авто используют баллончики для очистки системы зажигания. Другие прибегают к дедовским методам — добавляют в бак 50 мл нафталина каждый раз после заправки. В продаже имеется бензин марки ЭКТО от компании «Лукойл», в который уже добавлены аналогичные присадки.

Выбирая подходящую марку бензина, можно избавить своё авто от будущих проблем. Практика показала, что присадки помогают поддерживать систему зажигания в идеальной чистоте. Вскрытые узлы не имели отложений на стенках даже спустя несколько лет.

Устройство системы зажигания

Рассматривая подробно принцип функционирования двигателя, можно понять, сколько должно быть оборотов на холостом ходу. Полезные советы помогают решить некоторые проблемы, но автомобиль относится к сложной технике и требует грамотного подхода к периодическому обслуживанию.

Важные моменты в работе системы зажигания:

  • Принцип сжигания топлива лежит в образовании искры в момент, когда поршни двигателя находятся в верхней точке. Если это будет происходить не вовремя, то начинает наблюдаться дисбаланс работы на холостом ходу.
  • Важен так называемый угол срабатывания зажигания. При неисправной электрике он смещается, соответственно, один или несколько цилиндров начинают подтормаживать вращение коленчатого вала. Теряется тяга двигателя, авто начинает слабо разгоняться.
  • Повышенные обороты часто связаны с подклиниванием тросика педали газа, часто владельцы забывают его смазывать периодически. Аналогичные проблемы наблюдаются на автомобилях с тахометрами, соединенными тросиковой связкой.

Возникающие проблемы

У каждого вида авто свои требования и методы определения, сколько должно быть оборотов на холостом ходу. Принцип работы двигателя основан на сбалансированном движении вращающихся узлов. Значения 600-1000 являются в каком-то смысле оптимальными для всех типов моторов. Однако производители могут менять этот параметр в зависимости от типа потребляемого топлива, принципа действия всех систем в целом.

Качество воздуха, попадающего в двигатель, непосредственно влияет на его работу. Смена фильтрующего элемента является мерой профилактики для нормализации оборотов холостого хода. Не лишней будет и проверка состояния фильтра топливной системы.

Владельцам подержанных авто следует учитывать степень загрязнения систем при использовании некачественного бензина в прошлом и переходе на топливо с присадками. Последние моментально растворяют грязь на стенках, баке, и она устремляется напрямую в область поршней, систему впрыска. Это может стать причиной нестабильной работы мотора, потребуется внеплановая чистка этих узлов.

automotocity.com

Как отрегулировать высокие обороты холостого хода

Холостым ходом называют эксплуатацию различных устройств, включая автомобили, без нагрузки. В случае с машинами холостыми оборотами считается работа ДВС в условиях полностью выжатого сцепления. При холостом ходе (ХХ) мотора не происходит передача крутящего момента через коленвал колёсам. Оба узла не связаны между собой в этот момент.

Для среднестатистического автомобиля нормой по холостым оборотам считается от 800 до 1000 единиц за минуту. Если обороты упадут, двигатель заглохнет. Если же обороты увеличатся, это приведёт к повышенному расходу горючего.

Для каждого автомобиля с конкретным установленным двигателем есть свои нормы по оборотам. Соответствующая информация всегда приводится в руководстве по эксплуатации. Но бывает так, что обороты повышенные, и их следует отрегулировать.

От чего зависят

Такой режим, когда мотор работает на холостых, требуется для того, чтобы поддерживать процессы сжигания топливовоздушной смеси при минимальном уровне. Это позволяет двигателю работать и не глохнуть.

В зависимости от типа двигателя, его мощности и прочих характеристик, показатели нормального ХХ могут отличаться. Также на это непосредственно влияет температура мотора.

У многих автомобилистов порой возникает закономерный вопрос относительно того, какими должны быть холостые обороты на моторе его машины. Тут закономерно будет заглянуть в инструкции и техническую документацию, прилагаемую к вашему авто.

Если при ХХ наблюдается повышенное число оборотов, игнорировать такое явление не стоит. Это создаёт дополнительную нагрузку на двигатель, а также способствует более активному расходу топлива. Учитывая нынешние цены на горючее, впустую тратить драгоценный бензин или дизтопливо никто не захочет.

Обороты двигателя при ХХ поддаются регулировке. Сделать это можно своими руками, либо же привлечь специалистов соответствующего профиля. Для регулировки в машине предусмотрено несколько узлов и соответствующих систем. К ним относят:

  • топливную систему;
  • датчики;
  • клапан, отвечающий за ХХ;
  • дроссельную заслонку;
  • педаль газа.

Чтобы восстановить нормальные обороты для своего двигателя на авто при его нестабильной работе на холостом ходу, важно учесть, какая именно топливная система используется на авто. Это может быть инжекторная или же устаревшая карбюраторная система. Для них существуют специальные рекомендации по регулировке.

Карбюратор и инжектор являются узлами или агрегатами, где происходит смешивание топлива с воздухом, что позволяет создать так называемую топливовоздушную смесь. Дополнительно здесь присутствует топливная помпа и регулятор давления. Вся система питания ДВС контролируется различными специальными датчиками.

Также на число оборотов непосредственно влияет текущее положение заслонки дросселя. За счёт неё регулируется подача воздуха в цилиндры двигателя. Обороты повышаются и уменьшаются за счёт нажатия педали газа. Это соответственно открывает и закрывает заслонку.

Порой водители замечают, как двигатель теряет прежнюю стабильность при работе в режиме холостых оборотов. Такое происходит из-за загрязнения узлов или каких-то неполадок в системе. Загрязнения образуются из-за отработанного моторного смазочного масла, примесей, которые не задерживает фильтр, воды или сажи. Не стоит забывать и о рисках окисления контактов и нарушения целостности проводов в системе зажигания.

Как регулируются обороты

Теперь стоит затронуть тему того, как можно отрегулировать на двигателе завышенные обороты холостого хода.

Замена клапана холостого хода

Не забывайте, что при запуске автомобильный двигатель изначально непродолжительное время может работать при несколько повышенных оборотах в холостом режиме. Когда мотор прогревается, обороты падают и достигают своих нормальных значений. Предварительно стоит узнать, что именно считается нормой конкретно для вашего силового агрегата.

Если же после прогрева число оборотов не падает, это говорит о наличии той или иной неисправности. Её необходимо отыскать и устранить. Тут следует во многом отталкиваться от типа используемого двигателя.

Когда двигатель прогрелся, но обороты всё равно не падают, это считается уже ненормальным состоянием. Следует обязательно определить, почему на холостом ходу показатели не возвращаются в норму и в чём причина таких высоких оборотов двигателя.

Некоторые игнорируют этот совет, что является большой ошибкой. Если оставить двигатель в таком состоянии, который будет постоянно интенсивно работать при ХХ, начнёт повышаться температура ДВС. За этим последует перегрев двигателя и возможный прогиб головки блока цилиндров. Плюс постепенно начнётся образование выработки трущихся деталей. Ресурс мотора сократится, вы своими руками приблизите капитальный ремонт или отправку двигателя на заслуженный отдых куда-нибудь на свалку.

Выделяют несколько основных причин повышения оборотов. Они связаны с нарушениями и неполадками в:

  • датчике регулятора ХХ;
  • датчике положения заслонки дросселя;
  • самой дроссельной заслонке;
  • температурном датчике;
  • ЭБУ;
  • впускном коллекторе, где образовался подсос воздуха.

Важно заметить, что на карбюраторных моторах можно физически отрегулировать холостой ход. Что нельзя сделать в случае с инжекторным силовым агрегатом. Но зато можно устранить причины повышения оборотов при ХХ. Это разные понятия, о чём не стоит забывать.

Карбюраторные двигатели

В случае с моторами карбюраторного типа неисправности могут быть связаны с:

  • нарушением регулировок карбюратора;
  • подсосом воздуха через шланги;
  • нарушением проводки;
  • неисправностями клапанов ХХ;
  • загрязнением фильтра;
  • проблемами в системе зажигания.

В подавляющем большинстве случаев при повышенных оборотах на карбюраторных вариантах двигателей причину следует искать в неисправностях и неполадках дозирующего устройства.

Карбюраторный двигатель Шевроле Камаро в сборе

В случае повышенных оборотов на холостом ходу вам потребуется проверить регулировку, убедиться в целостности проводки и клапана, заменить старый воздушный фильтр при его сильном загрязнении.

Если говорить о том, как можно самостоятельно отрегулировать нарушенные или сбитые обороты холостого хода, то регулировка предусматривает проведение элементарных мероприятий. Вам нужно сделать следующее:

  • демонтировать карбюраторный узел, что делается сравнительно просто;
  • проверить состояние всех шлангов и патрубков;
  • заменить при необходимости шланги и прокладки;
  • поменять хомуты.

Рекомендуется проверить положение заслонки в первой камере карбюраторного мотора. Дело всё в том, что порой эта заслонка закрывается не полностью. Это объясняется дефектами заслонки или же неправильной регулировкой её привода.

Аналогично на карбюраторах не всегда полностью открывается воздушная заслонка. Её следует проверить, отрегулировать. А в случае дефекта или повреждения придётся заменить.

Загрязнение карбюратора считается частой причиной повышенных холостых оборотов. Потому владельцы таких машин должны периодически проводить чистку узла. Некоторые делают это самостоятельно, другие обращаются за помощью к специалистам. Проверка шлангов осуществляется путём их пережатия, когда двигатель работает.

Выполняя регулировку, обязательно прислушивайтесь к тому, как работает мотор. Если после очередной манипуляции вы слышите, что обороты начинают меняться, вам удалось отыскать источник проблем. То есть вы пережали тот шланг, из-за которого обороты выросло.

Когда рвутся и изнашиваются прокладки, хомуты недостаточно плотно прилегают к своим посадочным местам, это приводит к проникновению воздуха в двигатель. Тем самым начинают увеличиваться обороты.

При восстановлении всех элементов, которые могли выйти из строя и привести к нарушению числа оборотов в режиме холостого хода, следует воспользоваться регулировочными винтами качества и количества. Именно они позволяют вернуть обороты к нормальным параметрам.

Особенности процедуры регулировки

Процедура состоит из нескольких последовательных шагов. Основную роль здесь играют 2 винта. Это винт регулировки количества оборотов при ХХ, а также регулировочный винт качества смеси при ХХ.

  1. Сначала запустите свой карбюраторный мотор, прогрейте его до необходимой рабочей температуры, которая составляет обычно около 80 градусов Цельсия. При это карбюраторная заслонка должна находиться в полностью открытом положении.
  2. До конца закрутите винт качества, после чего начинайте крутить его обратно примерно на 2-2,5 оборота. Буквально на 1,5 или 2 оборота прокрутите винт количества.
  3. Крутите винт качества в различных направлениях, чтобы добиться максимальных показателей оборотов мотора, оставляя неизменным текущее открытое положение заслонки.
  4. Теперь возьмитесь за упорный винт заслонки дросселя, установив с его помощью стабильные, но минимальные обороты. Повторите процедуру 3-4 раза. Важно найти наиболее оптимальное положение для винтов, чтобы подавалось нужное количество и качество топливной смеси для экономичной работы мотора.
  5. Проверка регулировка осуществляется резкими открытиями и закрытиями заслонки дросселя. Если мотор при этом работает нормально и стабильно, вы всё сделали верно.
  6. В случае возникновения перебоев нужно до упора прокрутить винт качества. Выполните настройку минимальных оборотов с помощью этого винта по аналогии с предыдущим винтом количества.

Бывает так, что при вращении винта качества до предела ломается заглушка ограничитель. Если это произошло, не переживайте. Нужно лишь приобрести новую такую деталь, и установить её на место старой заглушки.

Завершив регулировку с помощью винтов, вы должны добиться заводских значений. Потому всегда опирайтесь на инструкции производителя, выполняя все требования и соблюдая предусмотренные автозаводом параметры холостого хода. Если этого не сделать, работа мотора нарушится, и он может в результате выйти из строя.

Инжекторные двигатели

Есть несколько причин для повышенных оборотов на холостом ходу в случае с инжекторными двигателями. При этом инжекторы не позволяют механическим способом менять количество оборотов, как на карбюраторных ДВС с помощью соответствующих винтов.

Внешний вид инжекторного двигателя автомобиля

Данные об оборотах заложены в программу бортового компьютера. Потому для их изменения придётся перепрошить ЭБУ и в частности систему, которая отвечает за холостой ход и управление им. Сделать это можно исключительно на специализированных СТО при помощи профессионального оборудования. Любые попытки самостоятельно влезть в настройки ЭБУ могут плохо кончиться.

Перед тем как попытаться отрегулировать на своём двигателе повышенные обороты холостого хода, следует выяснить причину возникновения подобных явлений. Сама регулировка осуществляется в зависимости от того, с чем связано увеличение числа оборотов в режиме ХХ.

Проблемы с датчиком РХХ

Здесь речь идёт о датчике регулировки на двигателе холостого хода. Как вы уже знаете, регулировка на карбюраторах осуществляется при помощи двух винтов, а сам датчик такого типа на подобных моторах отсутствует.

Но в случае с инжектором всё совершенно иначе и даже наоборот. Для регулировки используется соответствующий датчик. Но не позволяет что-то менять или регулировать. Фактически суть восстановления нормальных оборотов ХХ заключается в том, чтобы снять датчик, проверить его текущее состояние, зачистить контакты и посадочное гнездо и попробовать установить на место. Если датчик полностью вышел из строя, единственным решением будет замена.

Найти этот датчик не сложно. На инжекторах его устанавливают непосредственно на корпусе заслонки дросселя. Крепление осуществляется парой винтов. Лишь когда винты рассверлены, приходится демонтировать весь корпус заслонки.

Датчик заслонки дросселя

Следующим идёт датчик, контролирующий текущее положение заслонки дросселя. Если внутрь камеры сгорания поступает некорректное количество воздуха, ЭБУ может начать повышать обороты в режиме холостого хода силовой установки.

Если потенциальной причиной неисправности выступает этот датчик, его следует проверить. Для диагностики используется универсальный мультиметр, либо же осциллограф. При выявлении неисправности датчика он подлежит замене.

Заслонка

На инжекторах порой происходит заклинивание дроссельной заслонки. Если такое случается, внутрь двигателя начнёт поступать чрезмерный объём воздуха. Тем самым блок управления будет пытаться компенсировать избыток воздуха подачей большего количества топлива. Отсюда появляется повышенный расход даже в условиях работы двигателя в режиме холостых оборотов.

Внешний вид дроссельной заслонки

Для устранения неисправности придётся демонтировать дроссельный узел. С помощью специальных средств можно промыть заслонку. Нет гарантии, что простая промывка решит возникшую проблему. Если очистка узла не изменила ситуацию, и дроссель снова заклинил, придётся менять его. Такой элемент стоит достаточно дорого, потому следует приготовиться к затратам.

Температурный датчик

В каждом инжекторном двигателе присутствует специальный датчик, который контролирует текущую температуру двигателя, и передаёт соответствующую информацию на блок управления. Если контроллер выходит из строя, это приводит к различным побочным эффектам, включая повышенные обороты ХХ.

Температурный датчик можно отнести к достаточно уязвимым компонентам инжекторного двигателя. Это легко объяснить постоянными перепадами температур в месте, где расположен элемент.

Используя тот же осциллограф или мультиметр, стоит проверить датчик на предмет его исправности. Не исключено, что нарушились контакты или произошёл обрыв в проводке. Тогда менять весь датчик не придётся. Но если диагностика показала, что устройство восстановлению не подлежит, его следует заменить. После этого не забудьте сбросить ошибки в ЭБУ, иначе управляющий блок продолжит перерасходовать топливо, получая некорректную информацию от датчика.

Коллектор

Весьма распространённым результатом эксплуатации автомобиля становится деформация впускного коллектора или же износ его прокладки. Если в двигателе наблюдается повышение оборотов в режиме холостого хода, есть вероятность образования подсоса воздуха через коллектор.

Крепление впускного коллектора ВАЗ

Проблема устранения неисправности заключается в сложности проведения демонтажных работ. Фактически на коллекторе располагается вся система топливного впрыска автомобильного двигателя и ещё несколько дополнительных систем.

При демонтаже внимательно изучите состояние прокладки, поскольку при её повреждении будут возникать проблемы не только с повышенными оборотами, но также ряд других неисправностей. Повреждение и деформация приводит к увеличению объёма воздуха, который поступает внутрь камеры сгорания.

Если дело в прокладке, её следует просто заменить. При деформации самого коллектора можно попробовать отшлифовать поверхность до идеально ровного состояния. В автосервисах имеются соответствующие станки для такой работы. Некоторым удаётся решить проблему в гаражных условиях своими руками, применяя специальные шлифовальные камни. Но далеко не всегда стоит рассчитывать на успех. Не исключено, что коллектор придётся менять полностью.

ЭБУ

Есть огромное количество примеров из жизни автомобилистов, владеющих машинами с инжекторными двигателями, когда завышенные обороты на холостом ходу возникали по причине некорректной работы электронных мозгов транспортного средства, то есть ЭБУ.

Место нахождения блока управления ВАЗ

Единственным способом решения проблемы считается компьютерное подключение к блоку управлению с последующим программным устранением неисправностей. Для такой работы потребуется воспользоваться диагностическим кабелем, компьютером и программным обеспечением для работы с вашим автомобилем.

Для начала можно попробовать просто сбросить ошибки. Обычно они появляются после замены элементов, связанных с топливовоздушной системой. Если сброс не помог, тогда нужно поменять всё программное обеспечение. Подобные мероприятия настоятельно рекомендуется проводить только в сертифицированных сервисных центрах. Лучше всего обращаться в официальный автосервис, занимающийся автомобилями вашей марки.

Вы наглядно можете видеть, что причин для повышенных оборотов при ХХ более чем достаточно. Некоторые из них элементарные, и устраняются за считанные минуты в гаражных условиях своими руками. Другие более серьёзные и глобальные, требующие обязательного профессионального вмешательства и специализированного оборудования.

Владельца отечественных машин и карбюраторных двигателей в этом плане проще, поскольку отрегулировать и восстановить нормальные холостые обороты не так трудно. Если у вас новая иномарка, то не стоит рисковать, а лучше сразу обращайтесь в проверенный автосервис. Это обойдётся дороже. Зато вы минимизируете возможные последствия от самостоятельного вмешательства, которые порой заканчиваются капитальным ремонтом двигателя или его полной заменой.

drivertip.ru

Сколько должно быть оборотов на холостом ходу и как их регулировать?

После длительной эксплуатации автомобиля приходится обращать внимание на отклонения в работе главного узла — двигателя. Важно знать, сколько должно быть оборотов на холостом ходу. Актуальнее эта проблема для карбюраторных авто с ручной регулировкой. Но часто и электронные системы зажигания дают сбой по целому ряду причин.

Когда следует проводить регулировки?

После некоторых манипуляций с авто рекомендуется обязательно проверять, сколько должно быть оборотов на холостом ходу. К одной из причин изменения показаний тахометра относят замену свечей и масла согласно проведенному плановому техосмотру. Аналогично поступают после промывки топливной системы, ремонта узлов двигателя, электронных блоков.

На любой СТО могут подсказать, сколько должно быть оборотов. На холостом ходу у отечественных двигателей допустимые значения тахогенератора находятся в пределах 800-1000. Идеальная система поддерживает стрелку возле отметки 800.

Если рассматривать, сколько должно быть оборотов на холостом ходу у иномарок, то можно обратить внимание на панель приборов — показания тахогенератора вообще отсутствуют. На СТО эти значения проверяют при помощи диагностического разъема, выводя информацию на экран ноутбука или специально предназначенного для этого прибора. Следует помнить, устойчивость работы двигателя зависит от качества заливаемого в бак бензина.

Рекомендации

Любой автолюбитель с опытом ремонта советских авто знает, сколько должно быть оборотов на холостом ходу. Советы специалистов сходятся в одном: при нормальной работе двигателя во время завода обороты держатся чуть выше 1000, после прогрева они снижаются до отметки 800. При отклонении этих показателей от указанных первым делом стараются сменить бензин на качественный.

Рекомендуется проверить работу свечей, чтобы все поршни участвовали в движении автомобиля. Многие обладатели отечественных авто используют баллончики для очистки системы зажигания. Другие прибегают к дедовским методам — добавляют в бак 50 мл нафталина каждый раз после заправки. В продаже имеется бензин марки ЭКТО от компании «Лукойл», в который уже добавлены аналогичные присадки.

Выбирая подходящую марку бензина, можно избавить своё авто от будущих проблем. Практика показала, что присадки помогают поддерживать систему зажигания в идеальной чистоте. Вскрытые узлы не имели отложений на стенках даже спустя несколько лет.

Устройство системы зажигания

Рассматривая подробно принцип функционирования двигателя, можно понять, сколько должно быть оборотов на холостом ходу. Полезные советы помогают решить некоторые проблемы, но автомобиль относится к сложной технике и требует грамотного подхода к периодическому обслуживанию.

Важные моменты в работе системы зажигания:

  • Принцип сжигания топлива лежит в образовании искры в момент, когда поршни двигателя находятся в верхней точке. Если это будет происходить не вовремя, то начинает наблюдаться дисбаланс работы на холостом ходу.
  • Важен так называемый угол срабатывания зажигания. При неисправной электрике он смещается, соответственно, один или несколько цилиндров начинают подтормаживать вращение коленчатого вала. Теряется тяга двигателя, авто начинает слабо разгоняться.
  • Повышенные обороты часто связаны с подклиниванием тросика педали газа, часто владельцы забывают его смазывать периодически. Аналогичные проблемы наблюдаются на автомобилях с тахометрами, соединенными тросиковой связкой.

Возникающие проблемы

У каждого вида авто свои требования и методы определения, сколько должно быть оборотов на холостом ходу. Принцип работы двигателя основан на сбалансированном движении вращающихся узлов. Значения 600-1000 являются в каком-то смысле оптимальными для всех типов моторов. Однако производители могут менять этот параметр в зависимости от типа потребляемого топлива, принципа действия всех систем в целом.

Качество воздуха, попадающего в двигатель, непосредственно влияет на его работу. Смена фильтрующего элемента является мерой профилактики для нормализации оборотов холостого хода. Не лишней будет и проверка состояния фильтра топливной системы.

Владельцам подержанных авто следует учитывать степень загрязнения систем при использовании некачественного бензина в прошлом и переходе на топливо с присадками. Последние моментально растворяют грязь на стенках, баке, и она устремляется напрямую в область поршней, систему впрыска. Это может стать причиной нестабильной работы мотора, потребуется внеплановая чистка этих узлов.

fb.ru

Высокие обороты двигателя на холостом ходу: причины, способы решения

Многие автомобилисты сталкивались с тем, что на автомобиле появлялись высокие обороты двигателя на холостом ходу. Но, не все автолюбители знают, по какой причине это происходит, а тем более, как решить проблему, не обращаясь в автосервис. Статья поможет разобрать вопрос более детально, а также найти способы решения проблемы.

Причины высоких оборотов мотора на холостом ходу

Как известно, высокие обороты при запуске двигателя — это нормально, ведь мотор находиться в режиме разогрева. Только, вот что делать, если они не падают, даже когда мотор уже прогрелся? На прогретом двигателе повышенные обороты холостого хода — это ненормально, и стоит начинать искать причину возникновения такого эффекта.

Прежде всего, стоит отметить, что последствия такой интенсивной работы мотора могут быть самые разнообразные. Итак, что же может случиться с двигателем: повышение температуры, что приведет к перегреву. Это за собой потянет прогиб головки блока цилиндров. Далее, большие обороты приведут к тому, что будет большая выработка деталей внутри самого силового агрегата. Это может значительно сократить ресурс мотора.

Итак, какие же все-таки причины появления высоких оборотов ДВС на моторе в режиме холостого хода:

  • Датчик РХХ.
  • Датчик положения дроссельной заслонки.
  • Дроссельная заслонка.
  • Датчик температуры двигателя.
  • Подсос воздуха через впускной коллектор.
  • Неполадки ЭБУ.

Методы решения проблемы

Прежде чем преступить непосредственно к процессу решений проблемы необходимо понимать, что диагностику и ремонт данных узлов стоит выполнять, только со знанием дела. Также, стоит отдельно отметить, что для карбюраторного и инжекторного двигателя будут разные методы диагностики, но принцип возникновения причин один и тот же.

Итак, стоит последовательно разобраться в диагностических и ремонтных работах, которые устранят высокие обороты холостого хода.

Датчик РХХ

На карбюраторных двигателях не часто можно встретить датчик регулировки холостого хода. Обычно это делается при помощи винта качества и количества. Чтобы привести в норму высокие холостые обороты не стоит проводить процесс на холодную. Сначала стоит прогреть мотор до рабочей температуры, и только потом начинать регулировку. Если после проведение настроек обороты остались высокими, то причина в другом.

Для инжекторного двигателя все наоборот, все регулировки совершаются датчиком РХХ. Для того чтобы исправить неисправность, стоит проверить датчик при помощи мультиметра, а затем, при неисправности элемента, заменить его на новый.

ДПДЗ

Неправильное количество воздуха, которое попадает в камеру сгорания, может привести к тому, что электронный блок управления будет повышать обороты на холостом ходу. При неисправности датчика положения дроссельной заслонки необходимо также его проверить. Это можно сделать мультиметром или осциллографом. При обнаружении, что ДПДЗ неисправен, стоит заменить его.

Дроссельная заслонка

Заклинивание дросселя может привести к тому, что в двигатель будет поступать большое количество воздуха. Этот факт вынудит электронный блок управления повышать количество впрыскиваемого топлива, чтобы сбалансировать смесь. Это увеличит расход потребляемого горючего и соответственно.

Для того чтобы решить проблему необходимо демонтировать узел и прочистить его с помощью специальных средств. Если чистка не дает желаемого результата дроссель необходимо заменить, но стоит быть готовыми, что обойдется это не дешево.

Датчик температуры мотора

Выход со строя датчика температуры может привести к появлению множества проблем. Одной из таких станет возрастание холостых оборотов. Обычно, как показывает практика, этот датчик наиболее уязвим, и чаще всего выходит со строя, поскольку подвержен воздействию перепада температур.

Для начала стоит продиагностировать исправность узла. Сделать это можно при помощи мультиметра и осциллографа. В случае если узел неисправен, его стоит заменить. После этого рекомендуется сбросить все ошибки ЭБУ.

Коллектор

Неоднократно вследствие эксплуатации автомобиля впускной коллектор имеет деформации или износ прокладки. Так, повышение оборотов на холостом ходу может свидетельствовать тому, что имеется подсос воздуха в коллекторе. Для лечения неисправности придется демонтировать деталь, что достаточно проблематично, поскольку на коллекторе крепится, почти вся система впрыска, и несколько узлов других систем.

Детально стоит обследовать прокладку коллектора, наличие повреждения может свидетельствовать не только о проблемах с оборотами, но и о других неисправностях. Также деформация полости может служить тому, что попадает лишний воздух в камеры сгорания. Это может влиять на прогрев, пуск мотора и на другие факторы.

Для устранения неисправности придется зашлифовать поверхность коллектора, пока она не станет ровной. В автосервисах — это делают при помощи специального станка. Конечно, можно совершить процесс в гаражных условиях, при помощи специального камня, но это не всегда получается у автовладельцев.

Электронный блок управления

Неоднократно завышенный холостой ход следствие неправильной работы электронного блока управления. Так, для устранения неисправности, придется подключиться к «мозгам» и устранить проблему на программном уровне. Для совершения процесса понадобиться специальный кабель и программное обеспечение.

Но, не всегда помогает простой сброс ошибок, зачастую приходиться менять ПО, чтобы окончательно все проблемы ушли. Данный процесс рекомендуется доверять мастерам, которые являются профессионалами своего дела.

Попутно с заменой прошивки можно увеличить мощностные характеристики, что тоже рекомендуется доверить специалистам. Как показывает практика, большинство автолюбителей, при самостоятельном вмешательстве в ЭБУ попадают в конечном итоге в автосервис для устранения последствий своих же доработок.

Вывод

Много автолюбителей не знают причины возникновения эффекта высоких оборотов на холостом ходу, а тем более способы их устранения. Так, конечно, эксперты и автослесари рекомендуют обращаться сразу в автосервис, но наш человек, пока сам не попробует, не остановиться.

Причин возникновения эффекта повышенных оборотов много, от неисправности датчиков до ошибки в электронном блоке управления. Устранить неисправность можно и в домашних условиях, что и делают владельцы ВАЗов и других отечественных автомобилей. А вот владельцам иномарок, придется обратиться в автосервис, где ремонт может составить немалую сумму.

avtodvigateli.com

Высокие обороты двигателя на холостом ходу: инжектор и карбюратор

Режим холостого хода (ХХ) является таким режимом работы ДВС, который необходим для поддержания процесса сгорания топлива в цилиндрах на минимальном уровне, то есть чтобы двигатель продолжал работу и не глох. На разных моторах обороты холостого хода могут отличаться, а также зависят от температуры ДВС. В случае повышения указанных оборотов ХХ двигатель начинает расходовать больше топлива, выхлоп в таком режиме становится более токсичным. Понижение холостых оборотов приводит к нестабильной работе силового агрегата, а также к тому, что мотор начинает глохнуть после отпускания педали газа. В этой статье мы поговорим о том, какой может быть причина высоких оборотов двигателя на холостом ходу, почему высокие обороты холостого хода на прогретом двигателе встречаются на многих авто, а также рассмотрим основные способы диагностики данной неисправности.

Рекомендуем также прочитать статью о том, почему двигатель не набирает обороты. Из этой статьи вы узнаете об основных причинах, по которым силовой агрегат может не раскручиваться до высоких оборотов или не набирать обороты при нажатии на педаль газа и т.п.

Читайте в этой статье

Высокие обороты двигателя на холостом ходу: инжектор

Обороты и работа мотора на ХХ фактически означает, что воздух подается в двигатель в обход дроссельной заслонки. Другими словами, на холостых указанная заслонка перекрыта. Отметим, что в норме холостой ход для разных агрегатов составляет около 650-950 об/мин. Параллельно с этим частой неисправностью является то, что на прогретом двигателе обороты ХХ держатся на отметке около 1500 об/мин и выше. Такой показатель является признаком неисправности, которую следует устранить.

Также следует отметить такое явление, когда «плавают» обороты холостого хода, то есть, например, повышаются до 1800 об/мин, после чего понижаются до 750 и снова повышаются. Очень часто повышенные обороты ХХ и плавающие обороты являются результатом одних и тех же поломок. Давайте взглянем на бензиновый агрегат с инжектором в качестве примера. В таком ДВС обороты двигателя зависят от количества всасываемого воздуха. Получается, чем сильнее открывается дроссельная заслонка, тем большее количество воздуха поступает во впускной коллектор. Затем ЭБУ определяет количество поступающего воздуха, параллельно учитывает угол открытия дросселя (положение дроссельной заслонки) и ряд других параметров, после чего подает соответствующее количество бензина.

Если ЭБУ не будет иметь точной информации о количестве воздуха по причине неполадок, тогда будет происходить следующее: контроллер сначала будет поднимать обороты, обогащая смесь (подается больше топлива). Затем при таком количестве горючего и дополнительном объеме воздуха, о котором не знает ЭБУ, смесь будет обедняться, и мотор начнет работать неустойчиво или может почти заглохнуть. Другими словами, обороты начнут падать на слишком бедной смеси. Снижение оборотов означает, что количество всасываемого агрегатом воздуха также уменьшается. В определенный момент состав смеси (соотношение топлива и воздуха) снова будет оптимальным, в результате чего обороты снова поднимутся и затем начнут падать или «плавать». Причиной такой работы ДВС может быть вышедший из строя или работающий с перебоями ДПДЗ, ДМРВ. Также следует учесть возможный подсос воздуха на впуске.

Еще одним случаем является такой, когда двигатель держит обороты холостого хода около 1500-1900 об/мин, при этом работает ровно, обороты не плавают. В этом случае можно предположить, что инжектор подает столько топлива в режиме ХХ, что его достаточно для работы на таких высоких оборотах. Другими словами, имеет место перерасход горючего. Данные особенности могут быть характерны для одних двигателей и отсутствовать на других, так как имеется зависимость от устройства конкретной системы впрыска (агрегаты с воздухорасходомером, моторы с датчиком давления во впускном коллекторе). Очевидно то, что подсос воздуха является частой причиной увеличения оборотов двигателя или плавающих оборотов на ХХ.

Теперь давайте разберемся, откуда лишний воздух может поступать во впуск. Искать неполадку следует в четырех основных направлениях:

  1. дроссельная заслонка;
  2. канал ХХ;
  3. устройство для поддержания «прогревочных» оборотов;
  4. серводвигатель принудительного повышения оборотов ХХ;

Что касается первого случая, открытием дроссельной заслонки управляет педаль газа. На холостом ходу мотор должен работать без нажатия на акселератор. Стоит учитывать, что на многих автомобилях педаль газа механическая, то есть соединяется с механизмом открытия заслонки обычным тросиком. Если этот тросик закис, заломлен или перетянут, а также возникли проблемы с самим механизмом, тогда может иметь место банальный эффект нажатия на педаль газа. В этом случае двигатель будет держать повышенные обороты, так как ЭБУ считает, что водитель жмет на акселератор и заслонка немного приоткрыта.

Во втором случае лишний воздух может проходить по каналу холостого хода. Такой канал имеется на подавляющем большинстве инжекторных ДВС. Указанный воздушный канал идет в обход дроссельной заслонки и называется каналом холостого хода. В реализации схемы имеется специальный регулировочный винт. При помощи данного винта можно изменить сечение канала, увеличив или уменьшив тем самым количество поступающего в мотор воздуха и отрегулировать обороты ХХ.

Еще одним местом, где возможен подсос воздуха, является устройство, которое поддерживает повышенные обороты на холостых во время прогрева ДВС. Если просто, имеется отдельный воздушный канал, в котором присутствует решение для его перекрытия после прогрева мотора (шток или заслонка). В самом устройстве для перекрытия имеется чувствительный термоэлемент. На многих агрегатах указанный элемент взаимодействует с антифризом в системе охлаждения, подобно термостату. На горячем моторе устройство срабатывает таким образом, что шток выдвигается полностью или заслонка поворачивается на такой угол, чтобы полностью перекрыть канал для подачи дополнительного воздуха.

В результате ЭБУ обсчитывает количество воздуха, уменьшает количество подаваемого топлива и обороты понижаются. Если мотор холодный, данный канал изначально открыт. В этом случае ЭБУ получает показания от датчика температуры и обогащает топливную смесь. Проблемы с оборотами могут возникать как в результате выхода из строя данного устройства, так и после сбоев работе температурного датчика.

Завершает список особое сервоустройство — регулятор холостого хода, который установлен в отдельный воздушный канал. Данное решение способно принудительно повышать холостые обороты. В различных схемах это может быть электродвигатель, соленоид, вариант электромагнитного клапана и т.п. Главной задачей такого регулятора является обеспечение плавности перехода двигателя в режим ХХ после отпускания педали газа. Другими словами, двигатель не резко сбрасывает обороты после закрытия дросселя, а постепенно. Еще одной функцией устройства является повышение холостых оборотов в момент запуска двигателя, а потом их плавное снижение до необходимых. Также регулятор поднимает обороты после увеличения нагрузки на ДВС в режиме холостого хода (включение климатической установки, подогрева сидений или зеркал, дальнего или ближнего света фар, габаритных огней и т.п.). Выход из строя данного устройства закономерно повлечет увеличение или плавание оборотов в режиме холостого хода.

Повышенные обороты ХХ на моторах с карбюратором

В самом начале отметим, что повышение оборотов ХХ на карбюраторных двигателях зачастую связано с самим дозирующим устройством. Если отмечены высокие обороты двигателя на холостом ходу в случае с карбюраторным мотором, тогда причин может быть несколько.

  • Первой причиной является сбитая регулировка холостого хода. Такая регулировка осуществляется при помощи регулировочного винта, который позволяет обогатить или обеднить смесь. Для решения задачи следует правильно отрегулировать холостой ход на карбюраторе.
  • Также следует обратить внимание на то, что воздушная заслонка может не полностью открываться на карбюраторных авто.
  • Еще одним местом, которому следует уделить внимание, является заслонка первой камеры в карбюраторе. Указанная заслонка может не до конца закрываться по причине дефектов самой заслонки или неправильно отрегулированного привода.
  • Напоследок добавим, что в поплавковой камере карбюратора может наблюдаться заметное повышение уровня горючего, что также приводит к повышению холостых оборотов.
Рекомендуем также прочитать статью об устройстве автомобильного карбюратора. Из этой статьи вы узнаете о том, из каких составных частей состоит карбюратор, а также о принципах работы данного устройства впрыска топлива.

Что в итоге

Необходимо отметить, что проблема холостого хода на двигателе с инжектором диагностируется путем проверки основных систем, которые отвечают за поступление воздуха в ДВС, а также изменение состава смеси с учетом количества поступающего воздуха. Получается, следует учитывать и то, что выход из строя отдельных датчиков ЭСУД может привести к повышению или плавающим оборотам ХХ.

В общем списке основных причин, по которым холостые обороты могут повышаться на инжекторе, выделяют: регулятор холостого хода, ДПДЗ, датчик температуры силового агрегата, проблемы с механизмом управления открытием дроссельной заслонки, подсос воздуха на впуске. Добавим, что перед углубленной диагностикой следует для начала осуществить процедуру чистки дроссельной заслонки, так как грязный дроссель является частой причиной повышенных оборотов или неустойчивой работы мотора на холостом ходу.

Читайте также

krutimotor.ru

❶ Как повысить обороты двигателя 🚩 как к машине прибавить оборроты 🚩 Авто 🚩 Другое

Автор КакПросто!

Мощность автомобиля — один из базовых показателей, на которые обращают внимание при покупке. А со временем некоторые автолюбители просто спят и видят, как бы увеличить мощность машины. А сделать это можно, повысив обороты.

Статьи по теме:

Инструкция

Для того чтобы повысить обороты двигателя автомобиля, найдите регулировочный винт, который должен быть расположен под капотом в горизонтальном положении. Увеличивайте число оборотов следующим образом: заведите машину, затем, считая количество имеющихся оборотов, закрутите этот винт до упора. Затем выкрутите его обратно до прежнего уровня. После чего включите печку на полную мощность и всю имеющуюся подсветку и выставьте обороты так, чтобы не чувствовалась вибрация. Добавляется так порядка 800 оборотов в минуту. Также вы можете повысить количество оборотов в двигателе при помощи самодельного прибора. Для его создания вам понадобятся вольтметр, тахометр и амперметр. Два провода присоедините к блоку питания и еще один — сигнальный — к катушке. Чтобы не запутаться, проверьте: в комплекте к приборам должна быть инструкция с описанием, как именно правильно можно подключить эти провода. С помощью такого прибора вы сможете легко повысить обороты своего автомобиля.

Попробуйте увеличить обороты двигателя за счет увеличения силы клапанной пружины. Именно этот показатель отвечает за скорость возврата клапана в начальное положение (то есть закрытое). А именно это является показателем максимального количества оборотов двигателя. Если пружина сильная и быстро закрывается, то обороты будут максимально высокими. Однако не перестарайтесь с увеличением этого показателя, потому что всему есть предел. И не забудьте: выставляя пружины на определенную высоту выровняйте их все по высоте. Определяйте это значение по самой низкой. Причем делать это нужно с хирургической точностью — важны даже десятые доли миллиметра.

Не забудьте перед началом работ проверить двигатель. Он обязательно должен быть в хорошем состоянии, иначе он просто не выдержит той нагрузки, которую вы хотите на него «повесить». Тем более, что такой предремонтный осмотр поможет вам сэкономить денег. Ведь если что-то выйдет из строя уже после модификации, восстановление обойдется вам гораздо дороже. Для начала вам нужно определить мощность и крутящий момент вашего мотора в обычном состоянии. Также важно узнать максимальное число оборотов и то, на какой трассе каких значений достигает ваш автомобиль. Именно эта информация поможет вам правильно отрегулировать количество оборотов.

Полезный совет

Учитывайте тот факт, что при увеличении мощности автомобиля посредством увеличения оборотов, вам придется тратить гораздо больше денег на топливо для машины. Ведь чем мощнее авто, тем больше ему необходимо бензина. А в условии регулярно растущих цен на топливо увеличение оборотов двигателя для придания машине большей быстроходности — нерациональное решение.

Совет полезен?

Статьи по теме:

www.kakprosto.ru

Объем двигателя ваз 2114 – ВАЗ-2114 — Википедия

ВАЗ-2114 — Википедия

Материал из Википедии — свободной энциклопедии

LADA Samara
Производитель АвтоВАЗ
Годы производства 2001—2013
Сборка АвтоВАЗ (Тольятти, Россия)
ЗАЗ (Запорожье, Украина)
Класс B
Тип кузова 5‑дв. хетчбэк (5‑мест.)
Компоновка переднемоторная, переднеприводная
ВАЗ-2111
Производитель ВАЗ
Тип бензиновый
Объём 1499 см3
Максимальная мощность 56,4 кВт (77 л,с,) кВт , при 5400  об/мин
Максимальный крутящий момент 115,7 Н·м, при 2800-3200 об/мин
Конфигурация рядный, 4-цилиндр.
Цилиндров 4
Клапанов 8
Расход топлива при смешанном цикле 7.3
Расход топлива при городском цикле 10.0
Расход топлива на трассе 5.7
Экологические нормы Евро2
Диаметр цилиндра 82 мм
Ход поршня 71 мм
Степень сжатия 9.8
Система питания распределённый впрыск топлива с электронным управлением
Рекомендованное топливо бензин «Премиум-95»
ВАЗ-21114
Производитель ВАЗ
Тип бензиновый
Объём 1596 см3
Максимальная мощность 59,5 кВт (81,6 л,с,) кВт , при 5200  об/мин
Максимальный крутящий момент 125 Н·м, при 3000 об/мин
Конфигурация рядный, 4-цилиндр.
Цилиндров 4
Клапанов 8
Расход топлива при смешанном цикле 7.6
Диаметр цилиндра 82 мм
Ход поршня 75,6 мм
Степень сжатия 9,6
Система питания распределённый впрыск топлива с электронным управлением
Рекомендованное топливо бензин «Премиум-95»
ВАЗ-11183
Производитель ВАЗ
Тип бензиновый
Объём 1596 см3
Максимальная мощность 59,5 кВт (82 л,с,) кВт , при 5 100-5 300  об/мин
Максимальный крутящий момент 120 Н·м, при 2800-3200 об/мин
Конфигурация рядный, 4-цилиндр.
Цилиндров 4
Клапанов 8
Расход топлива при смешанном цикле 7.8
Экологические нормы Евро3
Диаметр цилиндра 82 мм
Ход поршня 75,6 мм
Степень сжатия 9,6-10,0
Система питания распределённый впрыск топлива с электронным управлением
Рекомендованное топливо бензин «Премиум-95»
ВАЗ-21124
Производитель ВАЗ
Тип бензиновый
Объём 1599 см3
Максимальная мощность 65,5 кВт (89,1 л,с,) кВт , при 5000  об/мин
Максимальный крутящий момент 131 Н·м, при 3700 об/мин
Конфигурация рядный, 4-цилиндр.
Цилиндров 4
Клапанов 16
Расход топлива при смешанном цикле 7.0
Экологические нормы Евро3
Диаметр цилиндра 82 мм
Ход поршня 75,6 мм
Степень сжатия 10,3
Система питания распределённый впрыск топлива с электронным управлением
Порядок работы цилиндров 1-3-4-2
Рекомендованное топливо бензин «Премиум-95»
ВАЗ-21126
Производитель ВАЗ
Тип бензиновый
Объём 1597 см3
Максимальная мощность 72 кВт (97,9 л,с,) кВт , при 5600  об/мин
Максимальный крутящий момент 145 Н·м, при 4000 об/мин
Конфигурация рядный, 4-цилиндр.
Цилиндров 4
Клапанов 16
Расход топлива при смешанном цикле 7.2
Расход топлива при городском цикле 9.8
Расход топлива на трассе 5.4
Экологические нормы Евро 4
Диаметр цилиндра 82 мм
Ход поршня 75,6 мм
Степень сжатия 11,0
Система питания распределённый впрыск топлива с электронным управлением
Порядок работы цилиндров 1-3-4-2
Рекомендованное топливо бензин «Премиум-95»
5 ст., механическая
Длина 4122 мм
Ширина 1650 мм
Высота 1402 мм
Клиренс 165 мм
Колёсная база 2460 мм
Колея задняя 1370 мм
Колея передняя 1400 мм
Масса 985 кг
Связанные ВАЗ-2109
ВАЗ-2113
ВАЗ-2115
Похожие модели Москвич-214100 «Святогор»
Грузоподъёмность 425 кг
Объём бака 43 л
 Медиафайлы на Викискладе

ВАЗ-2114 (LADA Samara) — пятидверный хэтчбек Волжского автомобильного завода, рестайлинговая версия ВАЗ-2109, продолжение семейства под условным названием «Самара-2». Модель отличалась от предшественников оригинальным оформлением передней части кузова с новыми фарами, капотом, облицовкой радиатора, бамперами и наличием молдингов.

Представлен публике в 2001 году, серийный выпуск — с апреля 2003 по декабрь 2013 года[1].

В салоне ВАЗ-2114 была установлена новая панель приборов (т. н. «европанель»), регулируемая рулевая колонка, руль от «десятого» семейства, отопитель новой конструкции, передние стеклоподъёмники. На автомобиль устанавливался восьмиклапанный двигатель объёмом 1,5 литра (ВАЗ-2111) с распределённым впрыском топлива.

Первый экземпляр ВАЗ-2114 был собран на заводском конвейере в октябре 2001 года.

С 2003 по 2005 год выпускались с моторами 1.5л Euro-2. С 2005 по 2007 год выпускались с моторами 1.6л Euro-2. Так же в этот период плавно перешли с двигателя 21114 на калиновский ВАЗ-11183.

С 2008 на автомобили стали ставить новый блок управления (М73) и экологичность стала выше Euro-3.

С 2011 года заменили блок управления (М74). Экологичность по документам не изменилась, но по факту благодаря переходу на новый блок управления автомобиль стал выполнять требования Euro-4[источник не указан 772 дня]. Из-за нового блока управления заменили педаль газа убрав трос, теперь двигатель полностью управляется электронно что сразу дало кучу проблем на первых партиях авто. К концу 2011 года проблемы были частично решены выпуском новой прошивки I414DE06. В начале 2012 неисправности сумели победить новой прошивкой I414DE07 которая стала финальной и больше обновлений не выпускалось.

C 2007 года на автомобиль устанавливался новый восьмиклапанный двигатель объёмом 1,6 литра (ВАЗ-11183) экологического класса до Euro-3 включительно, модель получает индекс ВАЗ-21144. Были установлены «электродроссель» и «электронная педаль газа» (Е-газ). Выпускался в комплектациях: стандарт и люкс. Отличительные особенности от старого двигателя — катализатор находится не под днищем, а возле двигателя, на двигатель надета пластиковая декоративная крышка, вместо алюминиевого ресивера устанавливается пластиковый. Кроме нового двигателя, автомобиль получил новую переднюю панель (в верхней части нет бардачка, использован более жёсткий материал, что увеличивает прочность, но и увеличивает вероятность возникновения посторонних шумов), новую комбинацию приборов с функцией бортового компьютера (показывает температуру за бортом, напряжение в бортовой сети, текущее время и другие параметры).

В 2007 году произошли небольшие изменения внешнего вида: вместо широких молдингов на двери стали ставить узкие. В 2009 году дочернее предприятие ОАО «АвтоВАЗ» ЗАО «Супер-Авто» модернизировало ВАЗ-2114, а именно — поставило на автомобиль 16-клапанный двигатель объёмом 1,6 литров; мощность у автомобиля стала 89 лошадиных сил. С 16-клапанным двигателем модель автомобиля получил индекс 211440-24. Возросли динамические характеристики автомобиля. Кроме мотора изменили подвеску, коробку передач, сцепление и тормоза. Данная модель комплектовалась 14-дюймовыми колёсами на штампованных дисках.

В 2010 году ЗАО «Супер-Авто» подготовило к выпуску автомобиль с двигателем 21126 16V объёмом 1,6 литров от [[ВАЗ 2170|Lada Priora]] мощностью 98 л. с. Данная модель получила индекс 211440-26.

«АвтоВАЗ» завершил выпуск автомобилей семейства Lada Samara 24 декабря 2013 года — с конвейера сошёл последний пятидверный хэтчбек (ВАЗ-2114) белого цвета[2].

  • ВАЗ-2114 (вид сзади)

Старые семейства

Прочие автомобили

ru.wikipedia.org

Мощность двигателя ваз 2114 — Всё об автомобилях Лада ВАЗ

Увеличение мощности и объема двигателя ВАЗ 2114

Объем двигателя ВАЗ 2114 и его характеристики менялись и улучшались на протяжении всего периода выпуска, с 2001 по декабрь 2013 года. На первую партию машин ВАЗ 2114 устанавливались инжекторные 8-клапанные агрегаты объемом 1.5 л. После модернизации 2007 года на «четырнадцатые» ставились новые двигатели, объемом 1.6 л. Новые серийные двигатели ВАЗ-11183-1000260 получили 3 класс экологичности, Euro-3.

Наиболее мощный из всех агрегатов ВАЗ был собран и установлен на Ладу Приору в 2010 году. Мощность этой силовой установки составила 98 лошадиных сил. Общей чертой всех двигателей модели ВАЗ 2114 является то, что они 4-тактные, имеют одинаковую систему распределенного впрыска топлива. В цилиндры мотора топливо подается благодаря установленным форсункам.

Сегодня этот метод питания движков является наиболее эффективным из всех схем подачи топлива. Моторы имеют стандартный, порядный вид, а их распредвал находится сверху. Для охлаждения агрегатов используется жидкостная система закрытого типа. Часть механизмов смазываются маслом под давлением, часть — путем разбрызгивания масла.

Характеристики моторов ВАЗ 2114

Очень распространенной моделью мотора на ВАЗ 2114 стал двигатель общей мощностью 81.6 л. с. с серийным номером ВАЗ 21114. Это рядный тип силовой установки, использующий инжекторную систему питания. Блок цилиндров сделан из чугуна. Частота вращения силового агрегата достигает 5200 оборотов в минуту. Для качественной работы двигатель заправляют бензином АИ-95.

В отличие от своего предшественника (ВАЗ 2111), в обновленном ВАЗ 21114 за счет установки улучшенного кривошипа и увеличения хода поршневой системы объем двигателя увеличился на 0,1 л. Общий объем движка ВАЗ 21114 составил 1,6 л. Кроме того, он стал гораздо мощнее. Минусом увеличения объема стало уменьшение крутящего момента.

Ход поршня такого мотора на на ВАЗ 2114 достигает 71 мм. Размер диаметра цилиндра равен 82 мм. Объем двигателя варьируется в пределах от 1499 до 2114 см³. Крутящий момент — 116 Нм/3000 оборотов в мин. Расход топлива по городу достигает 8.8 л, на трассе он значительно ниже — 5,7 л на 100 км. Расход масла — 50 г/1000 км. Масса двигателя 2114 — 127 кг.

Ресурс агрегата согласно заводским данным — 150 тыс. км. фактически — до 250 тыс. км. Однозначно, ВАЗ 2114 не устроит адреналинщиков и любителей погонять на трассе. Этот вариант отлично подойдет для деловых, уверенных в себе людей. Автомобиль прекрасно справится с необходимостью перевозить тяжелые прицепы и прочее.

При желании иметь более скоростной вариант лучше остановить свой выбор на полуторалитровом моторе ВАЗ 2111. Сниженный ход поршневой системы позволяет движку быстрее набирать обороты.

Выбор количества клапанов двигателя

Подбор двигателя во многом зависит от количества установленных клапанов. Ранние модели ВАЗ 2114 отличались моторами с 8-ю клапанами. После 2007 года на смену восьмиклапанным движкам пришли моторы с головками на 16 клапанов. Клапаны двигателей внутреннего сгорания используются для впуска топливовоздушной смеси и выпуска отработавших газов. Соответственно, чем выше пропускная способность клапанов, тем сильнее и мощнее мотор.

Нетрудно сделать вывод, что пропускная способность газов через головку с 8-ю клапанами гораздо ниже, чем через 16-клапанную. Несмотря на то, что 8-клапанные двигатели плохо работают при высоких частотах, они выдают отличные показатели при тяге на низких оборотах.

Двигатель, имеющий 16 клапанов, может пропустить через себя больше газов, за счет чего машина быстрее разгоняется. Увы, такая конструкция имеет и недостатки, главный из которых — деформация самих клапанов. 16-клапанные двигатели еще не прошли испытания временем, поэтому восьмиклапанники пока считаются более надежными.

При выборе двигателя на машину ВАЗ 2114 нужно руководствоваться следующими принципами. 16-клапанный двигатель (1.6 л) или 8-клапанный (1.5 л) выбирают, если требуется высокая скорость и большой крутящий момент. При акценте на стабильной и мощной тяге на низких оборотах оптимальным вариантом будет двигатель с 8 клапанами объемом 1,6 л.

Причины и ремонт неисправности моторов

Как уже упоминалось, по данным «АвтоВАЗа», максимальный ресурс двигателя ВАЗ 2114 составляет 150 тыс. км. При нормальном и своевременном обслуживании мотор может отработать и больше. Стандартный диапазон температур работы — от 95 до 103 °С. Смена масла должна проходить на прогретом двигателе ВАЗ 2114 каждые 10-15 тыс. км. При появлении первых сигналов о неисправности автомобиля необходимо обращаться на станцию либо находить причину самому. Наиболее распространенные проблемы с двигателем.

  1. Плавающие обороты мотора. Как правило, это случается в новых авто и при холостых оборотах. Если машина без пробега — отправляйтесь на диагностику, ремонт должен производиться по гарантии. Причинами неполадки могут служить регулятор холостого хода, датчик положения дросселя или вакуумный аппарат.
  2. Двигатель автомобиля глохнет на ходу (плавающие обороты мотора плюс проблемы с датчиком массового расхода воздуха) — причины поломки те же.
  3. Неровная работа двигателя (троит). Следует провести замеры компрессии цилиндров. Если в одном из них низкая компрессия, то там прогорели клапан или головка. Если разница замеров невелика, то следует отрегулировать давление в клапанах или заменить прокладку. Если замеры компрессии не показали отклонений, то нужно проверить модуль зажигания.
  4. Двигатель не нагревается до нормальной рабочей температуры. Причина кроется в неисправном термостате.
  5. Шумы и постукивания в двигателе. Как правило, причиной является плохая регулировка клапанов. Если при нажатии на педаль газа звуки усиливаются, нужно ехать к специалистам. Проблемы могут возникнуть в подшипниках шатунных или коленвала либо в поршнях цилиндров.

Тюнинг двигателей ВАЗ

Тюнинг двигателя проводится по той причине, что автомобили ВАЗ просты и неприхотливы в обслуживании, однако заводские настройки не позволяют по максимуму использовать ресурс двигателя. Самостоятельно увеличить мощность двигателя ВАЗ 2114 и повысить скорость его разгона можно путем использования основных методов.

  1. Увеличение мощности двигателя за счет повышения рабочего объема мотора. С помощью этого эффекта возможна прибавка до 15 лошадиных сил к имеющейся мощности мотора.
  2. Тонкая настройка системы впрыска топлива. Есть два основных пути: замена заводской системы питания мотора на более дорогую и замена карбюраторной схемы на систему впрыска бензина. Преимущества системы методом впрыска бензина в более качественном смешении топлива с воздухом, что улучшает сжигаемость бензина и ведет к снижению его расхода.
  3. Установка аэродинамического воздушного фильтра. Конструкция фильтра такова, что воздух, проходя через него, испытывает минимально возможное сопротивление и с меньшими усилиями попадает в смеситель. Увеличение мощности возможно на 5% при минимальных усилиях автовладельца.
  4. Наладка головки блока мотора. Этот метод, как и предыдущий, основан на уменьшении сопротивления для движения воздушных потоков в местах совмещения отверстий цилиндров с коллекторами.
  5. Чип-тюнинг мотора. Производится путем изменения в настройках электроблока управления впрыском топлива и системой зажигания. Доступен исключительно для машин с двигателями, работающими по методу непосредственного впрыска топлива.

При модернизации двигателя автомобиля ВАЗ, как правило, совмещается одновременно несколько методов увеличения мощности двигателя. Выбор зависит от того, какой ресурс двигателя нужно повысить. Следует воздержаться от желания увеличить мощность более чем на 30%. Если этого не учесть, то повысятся расходы на содержание автомобиля, которые «перекроют» эффект от проведенного тюнинга.

  • ВАЗ 2110
  • ВАЗ 2114
  • Лада Приора
  • Видеопубликации
  • Фотопоток тюнинга ВАЗ
  • Руководства по эксплуатации и ремонту

Технические характеристики ВАЗ 2114 LADA

Ретро-фото первой версии Лада Самара

Первый продажный экземпляр ВАЗ 2114 появился в 2002 году. Эта машина является рестайлинговой «девяткой» и привлекает российского автолюбителя современным внешним видом, техническими возможностями самовыражения посредством профессионального тюнинга.

Элементы технической характеристики ВАЗ 2114

  • Аэродинамические характеристики;
  • Габариты;
  • Дорожный просвет;
  • Массу авто;
  • Основные данные кузова;
  • Характеристики ходовой части;
  • Данные трансмиссии;
  • Технические показатели мотора.

Улучшенная аэродинамика

Автомобиль ВАЗ 2114 выигрывает в аэродинамических характеристиках благодаря проработанным линиям кузова, обеспечивающим отличную обтекаемость. В результате изменения внешности уменьшился коэффициент лобового сопротивления.

Внешние аэродинамические усовершенствования Lada2114 Samara-2 коснулись и изменения положения точки разделения воздушного потока. Для этого конструкторам пришлось поменять угол наклона наиболее аэродинамически активной передней части автомобиля – капота. Претерпели изменения и передние крылья.

Силовая установка автомобиля ВАЗ 2114

В результате перераспределения аэропотока его меньшая часть направляется под днище, большая же – на капот с растеканием по кузову. Эти характеристики изменяют величину суммарной подъемной силы, вследствие чего разгрузились передняя и задняя оси. Равномерное распределение подъемной силы позволяет хетчбэку сбалансировано вести себя при высокоскоростной езде.

Экстерьерные и интерьерные характеристики

Салон авто оборудован приборной «европанелью», регулируемой рулевой колонкой, новой отопительной системой и, позаимствованным от модели ВАЗ 2110, рулем. Имеется возможность превратить машину в грузопассажирское транспортное средство, для этого необходимо только разложить заднее сидение.

Дополнительные усовершенствования внешнего вида и появление некоторых опций включают:

  • Установку электрических стеклоподъемников;
  • Комфортное подогревание сидений;
  • Оборудование центральным замком дверей;
  • Наличие заводской тонировки стекол, произведенной в соответствии с ГОСТом;
  • Обеспечение пороговыми обтекателями, боковыми молдингами;
  • Обеспечение колес литыми дисками;
  • Наличие противотуманных фар.

Комплектация «люксовых» моделей Lada 2114 Samara-2 включает бортовой компьютер, представляющий точную информацию о средней скорости, расходе топлива, времени движения, температуре за бортом, напряжении в бортовой сети и других параметрах.

Модифицированная Лада Самара

Общие технические характеристики

Индивидуальные технические характеристики, которые отличают «четырнадцатый» хетчбэк от своих предшественников – это параметры пятидверного кузова. Его длина выражается 4,122 метрами, ширина – 1,650 м, высота – 1,402 м. От базовой модели (ВАЗ 21093) автомобиль отличается небольшим удлинением. Масса машины – 985 кг.

Колесная база характеризуется шириной передних колес в 1,4 метра, задних – 1, 37 метра. Багажник (при поднятом заднем сидении) имеет объем 330 дм³, при разложенном – 600 дм³.

Величина просвета от асфальта до картера характеризуется 160 мм, до поддона просвет на 10 мм больше.

Особенности силового агрегата

Первые «четырнадцатые» модели ВАЗ оснащались инжекторными двигателями, характеризующимися рабочим объемом в 1499 см³ и мощностью 57,2 кВт. С 2007 года под капотом Lada 2114 Samara-2 находился четырехтактный бензиновый мотор с величиной рабочего объема 1599 см³, обеспечивающим мощность 59,5 кВт или 80 л. с. Такой двигатель соответствовал по параметрам экостандарту Евро 3. Последняя модернизированная модель с индексом 211440-24 имеет шестнадцатиклапанный двигатель мощностью 89 лошадиных сил.

Силовой агрегат в разрезе

Система питания методом распределительного (фазированного) впрыска обеспечивает высокие динамические возможности, обеспечивая осуществление разгона до 100 км/ час на протяжении всего 13 секунд. Максимальная скорость ваз 2114 – 160 км/ час. При этом авто экономно расходует бензин – всего 9 л/ 100 км пробега по городу.

Особенностью характеристики мотора данной модели является оригинальное месторасположение керамического катализатора – возле самого двигателя (в отличие от предшественников, которые имели катализатор под днищем). Отличие блока цилиндров мотора ваз «четырнадцатой» модели Lada Samara-2 – его измененный объем, достигнутый путем увеличения высоты каждого из цилиндров на 0,23 см.

Трансмиссия и ходовая часть

Все переднеприводные автомобили семейства ваз имеют принципиально схожую конструкцию ходовой части. Передняя подвеска устроена по системе Макферсона, задняя – представляет собой продольный рычаг. Рулевое управление, характерное для всех моделей – реечное.

Lada 2114 Samara-2 оснащена механической коробкой переключения передач. На автомашине установлена пятиступенчатая коробка переключения передач (КПП) с приводом кулисы. Принципиально ее конструкция является аналогичной всем, установленным на других моделях ваз. Главная пара имеет отличительную характеристику передаточного отношения – 3,7.

Видео тестдрайв

Характеристика инжекторного двигателя ВАЗ 2114

На автомобилях серии «Самара 2» Волжский автозавод устанавливал инжекторные двигатели с электронным, распределенным впрыском топлива. И для ВАЗ 2114, который появился в 2001 году, а в серию был запущен в 2003-м была разработана такая силовая установка — модель 2111. В последующие годы выпускались различные модификации этой машины и на некоторых из них ставились другие модели двигателей, такие как — 21114, 11183, 21124 и 21126. Но самыми массовыми серийными машинами были ВАЗ 2114 с движками моделей 2111 и 11183.

Двигатель ВАЗ 2114

Особенности конструкции двигателя ВАЗ 2114

Главной отличительной чертой всех моделей двигателей на ВАЗ 2114 является то, что на них установлен инжектор. Электронное управление впрыском топлива в зависимости от показаний большого количества различных датчиков, контролирующих самые разные параметры, вплоть до состава выхлопных газов, конечно же способствует сбалансированной и экономичной работе двигателя.

Сам двигатель на ВАЗ 2114 это рядный, четырехтактный, восьмиклапанный агрегат, у которого распредвал располагается сверху. Он имеет четыре цилиндра, работает на бензине и охлаждается специальной жидкостью. В двигательном отсеке автомобиля мотор располагается поперечно ходу движения. На фото двигателя ВАЗ 2114 видно его реальное расположение относительно других агрегатов.

Блок цилиндров этого силового агрегата сделан из чугуна методом литья. Все отверстия для тосола образуются в литейной форме, маслопротоки выточены механическим способом. Рабочие цилиндры тоже вытачиваются. Внизу блока имеются опоры коренных подшипников, крышки к ним делают при изготовлении блока, у них индивидуальная подгонка, поэтому заменить их невозможно. При разборке надо обращать внимание на маркировку этих крышек, чтобы не перепутать. В крышки и опоры вставлены вкладыши сделанные из сплава стали и алюминия. В третьей опоре вставлены упорные полукольца, которые препятствуют осевому перемещению коленчатого вала.

Поршни сделаны из алюминия с залитыми в них стальными кольцами. Пальцы плавающие, а шатуны выкованы из стали. Снизу блок цилиндров закрывает поддон, между ними обязательно должна находиться прокладка. За ее целостностью необходимо следить, потому что поддон является вместилищем для моторного масла, которое во время работы ДВС смазывает все трущиеся части. Смазочная масляная система работает под давлением и с помощью разбрызгивания. Давление создается масляным насосом, который, забирая смазку из поддона, прогоняет ее через прямоточный масляный фильтр. У него имеется обратный клапан не позволяющий маслу стекать обратно в поддон.

У коленвала, располагающегося внизу блока цилиндров, имеется фланец. К этому фланцу крепится маховик. На маховике сверлением сделана специальная установочная метка для правильного расположения его на фланце коленвала. Эта метка должна располагаться напротив шейки шатуна четвертого цилиндра.

С левого бока блока цилиндров ДВС устанавливается помпа, которую также называют — насос охлаждающей жидкости.

Головка блока, или ГБЦ, выполнена из алюминия. В ГБЦ располагаются клапана с втулками и седлами и толкатели с регулировочными шайбами. Распределительный вал находится в ГБЦ сверху и зажат опорами, к которым прижаты подшипники. ГБЦ закрывается крышкой с горловиной для заливки масла.

Распредвал и помпа приводятся в движение ремнем от зубчатого шкива коленвала. Рядом находится еще один ремень, который раскручивает генератор.

Технические характеристики двигателя ВАЗ 2114 модель 2111

  • тип ДВС — рядный;
  • четыре цилиндра, по два клапана на цилиндр;
  • диаметр цилиндра — 82 мм;
  • степень сжатия — 9,8 ;
  • объем ДВС — 1,5 литра;
  • мощность двигателя — 78 л. с.;
  • максимальный крутящий момент — 116 Нм при оборотах 3000;
  • средний расход топлива в смешанном режиме 7,3 л на 100 км пути;
  • вес ДВС — 127 кг;
  • моторесурс силовой двигательной установки составляет 150 тысяч километров, в процессе практической эксплуатации моторесурс достигает 250 тысяч километров;
  • возможен реальный тюнинг двигателя различными способами и без потери ресурса мощность можно увеличить до 120 л. с. имеется потенциальная возможность увеличения мощности ДВС до 180 л. с. но с существенной потерей ресурса силовой установки.

Ремонт двигателя ВАЗ 2114

В процессе эксплуатации ДВС на автомобиле могут возникать различные отказы и неисправности, которые устраняются при самостоятельном ремонте или с привлечением специалистов. Необходимость в капитальном ремонте силовой двигательной установки, при ее правильной эксплуатации, возникает при достижении 150 000 км пробега. В этом случае нужна переборка двигателя ВАЗ 2114.

  1. Перед тем как приступить к разборке двигателя нужно слить масло и охлаждающую жидкость, а после этого помыть весь агрегат. Обязательно надо снять все навесное оборудование, чтобы не повредить его при переборке.
  2. Отсоединить все трубки, через которые подается бензин.
  3. Убрать все системы и узлы, связанные с подачей воздуха, снять воздухоподающие и отводящие шланги и патрубки.
  4. Снять патрубки системы охлаждения и сапун картера. Не забыть отсоединить дроссельный патрубок.
  5. Убрать ресивер, а также кронштейн крепления трубопроводов и топливную рампу, вытащить форсунки с регуляторами.
  6. Удалить провода с модулем зажигания и датчиком детонации. Выкрутить свечки зажигания. После этого выкрутить все датчики.
  7. Снять генератор, убрав предварительно натяжной ремень. С генератором поснимать все кронштейны и планки необходимые для его установки и регулировки.
  8. Заблокировать маховик и снять шкив генератора.
  9. Снять привод распредвала с крышкой, механизмом натяжения и шкивом.
  10. Открутить помпу, снять выпускной коллектор и термостат.
  11. Отсоединить масляный фильтр и масляный картер, после чего вытащить масляный насос.
  12. Для того чтобы снять поршневую группу требуется открутить гайки с шатунных болтов и удалить крышку.
  13. Поскольку маховик заблокирован, надо открутить крепления его с фланцем и снять диск маховика.
  14. Убрать крышки с коренных подшипников вместе с нижними вкладышами.
  15. Аккуратно вытащить коленчатый вал. Обращаться с ним требуется очень осторожно, чтобы не допустить повреждений и царапин.
  16. Убрать верхние вкладыши и упорные полукольца.

При переборке ДВС требуется внимательно осматривать каждый агрегат, узел или деталь. При обнаружении механических повреждений запчасть подлежит обязательной замене. Также заменить требуется все прокладки, шайбы и неметаллические детали.

Рекомендуем

Источники: http://expertvaz.ru/2114/objem-dvigatelya-remont-tyuning.html, http://vazremont.com/texnicheskie-xarakteristiki-vaz-2114-lada, http://nadomkrat.ru/dvigatel/harakteristika-dvigatelya-vaz-2114

ladafakt.ru

Объем двигателя ВАЗ 2114 и увеличение его мощности

Объем двигателя ВАЗ 2114 и его характеристики менялись и улучшались на протяжении всего периода выпуска, с 2001 по декабрь 2013 года. На первую партию машин ВАЗ 2114 устанавливались инжекторные 8-клапанные агрегаты объемом 1.5 л. После модернизации 2007 года на «четырнадцатые» ставились новые двигатели, объемом 1.6 л. Новые серийные двигатели ВАЗ-11183-1000260 получили 3 класс экологичности, Euro-3.

Наиболее мощный из всех агрегатов ВАЗ был собран и установлен на Ладу Приору в 2010 году. Мощность этой силовой установки составила 98 лошадиных сил. Общей чертой всех двигателей модели ВАЗ 2114 является то, что они 4-тактные, имеют одинаковую систему распределенного впрыска топлива. В цилиндры мотора топливо подается благодаря установленным форсункам.

Сегодня этот метод питания движков является наиболее эффективным из всех схем подачи топлива. Моторы имеют стандартный, порядный вид, а их распредвал находится сверху. Для охлаждения агрегатов используется жидкостная система закрытого типа. Часть механизмов смазываются маслом под давлением, часть — путем разбрызгивания масла.


Вернуться к оглавлению

Характеристики моторов ВАЗ 2114

Очень распространенной моделью мотора на ВАЗ 2114 стал двигатель общей мощностью 81.6 л. с. с серийным номером ВАЗ 21114. Это рядный тип силовой установки, использующий инжекторную систему питания. Блок цилиндров сделан из чугуна. Частота вращения силового агрегата достигает 5200 оборотов в минуту. Для качественной работы двигатель заправляют бензином АИ-95.

В отличие от своего предшественника (ВАЗ 2111), в обновленном ВАЗ 21114 за счет установки улучшенного кривошипа и увеличения хода поршневой системы объем двигателя увеличился на 0,1 л. Общий объем движка ВАЗ 21114 составил 1,6 л. Кроме того, он стал гораздо мощнее. Минусом увеличения объема стало уменьшение крутящего момента.

Ход поршня такого мотора на на ВАЗ 2114 достигает 71 мм. Размер диаметра цилиндра равен 82 мм. Объем двигателя варьируется в пределах от 1499 до 2114 см³. Крутящий момент — 116 Нм/3000 оборотов в мин. Расход топлива по городу достигает 8.8 л, на трассе он значительно ниже — 5,7 л на 100 км. Расход масла — 50 г/1000 км. Масса двигателя 2114 — 127 кг.


Ресурс агрегата согласно заводским данным — 150 тыс. км., фактически — до 250 тыс. км. Однозначно, ВАЗ 2114 не устроит адреналинщиков и любителей погонять на трассе. Этот вариант отлично подойдет для деловых, уверенных в себе людей. Автомобиль прекрасно справится с необходимостью перевозить тяжелые прицепы и прочее. 

При желании иметь более скоростной вариант лучше остановить свой выбор на полуторалитровом моторе ВАЗ 2111. Сниженный ход поршневой системы позволяет движку быстрее набирать обороты.


Вернуться к оглавлению

Выбор количества клапанов двигателя

Подбор двигателя во многом зависит от количества установленных клапанов. Ранние модели ВАЗ 2114 отличались моторами с 8-ю клапанами. После 2007 года на смену восьмиклапанным движкам пришли моторы с головками на 16 клапанов. Клапаны двигателей внутреннего сгорания используются для впуска топливовоздушной смеси и выпуска отработавших газов. Соответственно, чем выше пропускная способность клапанов, тем сильнее и мощнее мотор.

Нетрудно сделать вывод, что пропускная способность газов через головку с 8-ю клапанами гораздо ниже, чем через 16-клапанную. Несмотря на то, что 8-клапанные двигатели плохо работают при высоких частотах, они выдают отличные показатели при тяге на низких оборотах.

16-клапанный двигатель

Двигатель, имеющий 16 клапанов, может пропустить через себя больше газов, за счет чего машина быстрее разгоняется. Увы, такая конструкция имеет и недостатки, главный из которых — деформация самих клапанов. 16-клапанные двигатели еще не прошли испытания временем, поэтому восьмиклапанники пока считаются более надежными.

При выборе двигателя на машину ВАЗ 2114 нужно руководствоваться следующими принципами. 16-клапанный двигатель (1.6 л) или 8-клапанный (1.5 л) выбирают, если требуется высокая скорость и большой крутящий момент. При акценте на стабильной и мощной тяге на низких оборотах оптимальным вариантом будет двигатель с 8 клапанами объемом 1,6 л.


Вернуться к оглавлению

Причины и ремонт неисправности моторов

Как уже упоминалось, по данным «АвтоВАЗа», максимальный ресурс двигателя ВАЗ 2114 составляет 150 тыс. км. При нормальном и своевременном обслуживании мотор может отработать и больше. Стандартный диапазон температур работы — от 95 до 103 °С. Смена масла должна проходить на прогретом двигателе ВАЗ 2114 каждые 10-15 тыс. км. При появлении первых сигналов о неисправности автомобиля необходимо обращаться на станцию либо находить причину самому. Наиболее распространенные проблемы с двигателем.

  1. Плавающие обороты мотора. Как правило, это случается в новых авто и при холостых оборотах. Если машина без пробега — отправляйтесь на диагностику, ремонт должен производиться по гарантии. Причинами неполадки могут служить регулятор холостого хода, датчик положения дросселя или вакуумный аппарат.
  2. Двигатель автомобиля глохнет на ходу (плавающие обороты мотора плюс проблемы с датчиком массового расхода воздуха) — причины поломки те же.
  3. Неровная работа двигателя (троит). Следует провести замеры компрессии цилиндров. Если в одном из них низкая компрессия, то там прогорели клапан или головка. Если разница замеров невелика, то следует отрегулировать давление в клапанах или заменить прокладку. Если замеры компрессии не показали отклонений, то нужно проверить модуль зажигания.
  4. Двигатель не нагревается до нормальной рабочей температуры. Причина кроется в неисправном термостате.
  5. Шумы и постукивания в двигателе. Как правило, причиной является плохая регулировка клапанов. Если при нажатии на педаль газа звуки усиливаются, нужно ехать к специалистам. Проблемы могут возникнуть в подшипниках шатунных или коленвала либо в поршнях цилиндров.

Вернуться к оглавлению

Тюнинг двигателей ВАЗ

Тюнинг двигателя проводится по той причине, что автомобили ВАЗ просты и неприхотливы в обслуживании, однако заводские настройки не позволяют по максимуму использовать ресурс двигателя. Самостоятельно увеличить мощность двигателя ВАЗ 2114 и повысить скорость его разгона можно путем использования основных методов.

  1. Увеличение мощности двигателя за счет повышения рабочего объема мотора. С помощью этого эффекта возможна прибавка до 15 лошадиных сил к имеющейся мощности мотора.
  2. Тонкая настройка системы впрыска топлива. Есть два основных пути: замена заводской системы питания мотора на более дорогую и замена карбюраторной схемы на систему впрыска бензина. Преимущества системы методом впрыска бензина в более качественном смешении топлива с воздухом, что улучшает сжигаемость бензина и ведет к снижению его расхода.
  3. Установка аэродинамического воздушного фильтра. Конструкция фильтра такова, что воздух, проходя через него, испытывает минимально возможное сопротивление и с меньшими усилиями попадает в смеситель. Увеличение мощности возможно на 5% при минимальных усилиях автовладельца.
  4. Наладка головки блока мотора. Этот метод, как и предыдущий, основан на уменьшении сопротивления для движения воздушных потоков в местах совмещения отверстий цилиндров с коллекторами.
  5. Чип-тюнинг мотора. Производится путем изменения в настройках электроблока управления впрыском топлива и системой зажигания. Доступен исключительно для машин с двигателями, работающими по методу непосредственного впрыска топлива.

При модернизации двигателя автомобиля ВАЗ, как правило, совмещается одновременно несколько методов увеличения мощности двигателя. Выбор зависит от того, какой ресурс двигателя нужно повысить. Следует воздержаться от желания увеличить мощность более чем на 30%. Если этого не учесть, то повысятся расходы на содержание автомобиля, которые «перекроют» эффект от проведенного тюнинга.

expertvaz.ru

Двигатель ВАЗ 2111/2114 | Масло в двигатель ваз 2114 тюнинг


Характеристика двигателя ВАЗ 2114/2111

Годы выпуска – (1994 – наши дни)
Материал блока цилиндров – чугун
Система питания – инжектор
Тип – рядный
Количество цилиндров – 4
Клапанов на цилиндр – 2
Ход поршня – 71мм
Диаметр цилиндра – 82мм
Степень сжатия – 9,8
Объем двигателя 2114 – 1499 см. куб.
Мощность  двигателя 2114– 78 л.с. /5400 об.мин
Крутящий момент – 116Нм/3000 об.мин
Топливо – АИ93
Расход  топлива — город  8,8л. | трасса 5,7 л. | смешанн. 7,3 л/100 км
Расход масла – 50 г/1000 кг
Вес двигателя 2114 — 127кг.
Геометрические размеры двигателя ВАЗ 2114 (ДхШхВ), мм — 
Масло в двигатель ВАЗ 2114:
5W-30
5W-40
10W-40
15W40
Сколько масла в двигателе 2111: 3.5 л.
При замене лить 3-3.2 л.

Моторесурс двигателя 2114 :
1. По данным завода – 150 тыс. км
2. На практике – до 250 тыс. км

ТЮНИНГ
Потенциал – 180+ л.с.
Без потери ресурса – до 120 л.с.

Двигатель устанавливался на:
ВАЗ 21083
ВАЗ 21093
ВАЗ 21099
ВАЗ 21102
ВАЗ 2111
ВАЗ 21122
ВАЗ 2113
ВАЗ 2114
ВАЗ 2115

Неисправности и ремонт двигателя 2114 / 2111

Мотор ВАЗ 2111 или как называют в народе мотор 2114, по сути тот же самый восемьдесят третий, основные отличия двигателя 2114 от 21083 в использовании инжектора вместо карбюратора, плавающий палец шатуна и чуть другой распредвал, так же он на 6 лошадиных сил мощнее. Соответственно на базе этого мотора были разработаны все современные движки Лада, такие как 2112, 124, 126 (Приора мотор), 127, 114, 116, 119 (Калина моторы). Заменен был 1,6 л. 8V мотором ВАЗ 21114.
Двигатель ВАЗ 2114 1,5 л.  инжекторный рядный  4-х цилиндровый с верхним расположением распределительного вала, грм имеет ременный привод. Номер двигателя 2114 выбит на блоке под термостатом. Ресурс двигателя ВАЗ 2114, по данным завода изготовителя составляет 150 тыс. км, на практике моторы ходят более 200 тыс.км, при нормальном обслуживании. К примеру замена масла в двигателе 2114 должно производиться на прогретом моторе, не реже чем раз 10-15тыс.км. При появлении признаков неисправности, горит лампа «проверьте двигатель ваз 2114», нужно не запускать и сразу ехать на диагностику или искать причину самостоятельно.
Особенность мотора 2114 при обрыве ремня ГРМ клапана не гнет. 
Мотор не лишен недостатков, все так же требуется регулировка клапанов, имеет место износ деталей системы охлаждения, постоянно нужно менять масляный фильтр, течь масла через уплотнение клапанной крышки, топливный насос и датчик-распределитель, обламывание креплений приемной выхлопной трубы из-за применения стальных гаек вместо латунных, на старых автомобилях возможны отказы системы впрыска.  Рабочая температура двигателя 2114 составляет 95-103 градуса.
Теперь подробней о самых часто встречающихся проблемах, первая из них: плавают обороты двигателя 2114 в чем причина?Обычно это бывает на холостых и на новых машинах, если это ваш случай, езжайте на диагностику и делайте по гарантии, если нет, то проблему ищите в регуляторе холостого хода, в датчике положения дроссельной заслонки или в вакуумнике.
Эти же причины (+проблема с ДМРВ) актуальны если глохнет двигатель 2114 на ходу.
Едем дальше, ваш двигатель 2114 троит, подтраивает или работает неровно? Замеряем компрессию, если в одном цилиндре компрессия сильно ниже  — прогорел клапан, если разбег небольшой — регулируем клапана или проблема в прокладке. Если же компрессия ок, то причина в модуле зажигания.
С этим разобрались, следующая популярная неисправность это  то, что не греется двигатель ваз 2114 до положенной рабочей температуры. Причина проста — термостат, если вы его недавно поменяли… меняйте снова, он приехал. Качество!
Стук и шум в двигателе ваз 2114, тоже не редкость. Чаще всего причина в неотрегулированных клапанах. Глухой металлический звук увеличивающийся при нажатии на педаль газа — стучат коренные подшипники коленвала либо шатунные подшипники, нужно в сервис.  Стучать могут и поршни в цилиндре, без сервиса не обойтись.

Тюнинг двигателя ВАЗ 2114 / 2111 

Чип тюнинг двигателя ВАЗ 2114

Для атмосферного мотора чиповка дело бесполезное, улучшение будет настолько небольшое, что почувствовать его невозможно.

Увеличить мощность двигателя ВАЗ 2114

Рассмотрим потенциал 2111 мотора 8V без замены ГБЦ на 16 клапанную. Двигатель 103 16V и его доработки упомянуты в отдельной статье.
Наиболее простой способ улучшить что то — заменить распредвал на ОКБ Динамика 108 или Нуждин 10.93, установить разрезную шестерню, настроить фазы. На выходе получим в районе 85 л.с. при минимуме затрат и чуть более активный моторчик. Дадим мотору дышать свободно, ставим ресивер, дроссельную заслонку 54 мм и выхлоп паук 4-2-1 получаем уже под 90-95 л.с и динамику на уровне Приоры.  К этому добавляем доработку ГБЦ и впускного коллектора, легкие клапаны, фрезеровку ГБЦ, мощность подскочит до 100 и более л.с.
Для дальнейшего наращивания мощности рекомендуется увеличить объем двигателя 2111 до 1,6 л, путем увеличения хода до 74,8 мм.
При использовании клапанов увеличенного диаметра, облегченных тарелок клапанов, настройки программы автомобиль покажет 110 и более л.с., но в такой конфигурации нужно уже подбирать злые валы с широкой фазой и большим подъемом. Получим отличный спортивный двигатель на ваз 2114 с мощностью 120-130 л.с. и больше. 

Компрессор на ВАЗ 2114

Альтернативный метод получения подобной мощности – установка компрессора с давлением 0,5 бар. При правильной настройке и с использованием вала Нуждин 10.42 или более широкого Нуждин 10.63 (или других производителей с подобными характеристиками), мотор выдаст около 120 л.с +\-. В широко известном видеоролике доступно объясняется все, что требуется для успешной реализации проекта.

Внимание МАТ (18+)

 
Наращивать мощность без использования турбины можно и до 170 л.с. и выше, но ресурс мотора ВАЗ 2111 резко снижается.
Заметно увеличить потенциал возможно установкой 16 клапанной ГБЦ, с ресивером, заслонкой 54 мм и на выхлопе 51 мм, отдача в 105-110 л.с. происходит без потери ресурса.

Роторный двигатель на ВАЗ 2114

Хороший способ резко поднять мощность в 2 раза. О роторе в самом низу написано ТУТ.

РЕЙТИНГ ДВИГАТЕЛЯ: 3

<<НАЗАД

wikimotors.ru

какой лучше, отличия, преимущества, 1.5 или 1.6

Двигатель

В данной статье поговорим о двигателях, которые устанавливаются на все семейство Самар.

Двигатель – сердце машины, соответственно, от типа двигателя и зависят все основные характеристики автомобиля: мощность, расход топлива, надежность, ремонтнопригодность.

На ВАЗ 2114 2115 2116 устанавливаются инжекторные двигатели объемом 1,5 и 1,6л.

Двигатель 1,5л 8кл

  • Двигатель объемом 1,5л устанавливался на ВАЗ 2114 2113 2115 до 2007 года выпуска включительно.
  • Индекс двигателя по паспорту – 2111.
  • Характеристики Двигателя 1,5л.
  • Объем —  1500 см³ (58 квт).
  • Крутящий момент – 116 Нм (при 3000 об/мин).
  • Мощность – 77 л.с.
  • Разгон до 100 км/ч – 13,2 сек.

Двигатель 1,6л 8кл

  • Двигатель объемом 1,6л устанавливался на ВАЗ 2114 2113 2115 до 2007 года выпуска включительно.
  • Индекс двигателя по паспорту — 21114/1116.
  • Объем двигателя – 1600  см³.
  • Мощность – 81 л.с.
  • Крутящий момент – 132 Нм (при 3800 об/мин).
  • Разгон до 100 км/ч – 13,2 сек.

Особых проблем в целом по двигателям нет, разве что 8кл. моторы любят троить по тем или иным причинам.

Двигатель 1,6л 16кл

Двигатель 1,6л 16кл

На ВАЗ 2114, 2113, 2115, в ограниченной серии от производства «СуперАвто» устанавливались 16кл. двигатели объемом 1,6л с индексами 21124 от «Двенашки» мощностью 89л.с. и от «Приоры» с индексом 21126 мощностью 98 л.с.

Двигатель 21124 1,6л 16кл:

  • Мощность – 89л.с.
  • Крутящий момент – 131 Нм при 3100 об. мин.
  • Разгон до 100 км/ч – 11,5 с.

Двигатель 21126 1,6л 16кл:

  • Мощность – 98л.с.
  • Крутящий момент – 145Нм при 4000 (об/мин).
  • Разгон до 100 км/ч – 10,5с.

Какой двигатель лучше: 1,5 8кл или 1,6 8кл?

Часто люди при выборе автомобиля задаются вопросом, а какой двигатель лучше? В нашем же случае – все не так просто. Подобный вопрос может возникнуть, если рассматривать покупку авто уже лохматых годом : 2006-2007. Именно в этот период на ваз 2113 2114 2115 устанавливались двигатели как 1,6л так и 1,5л, характеристики которых изложены выше.

По сути двигатели 1,5 и 1,6л 8кл ничем не отличаются, помимо объема, норм выхлопа, систем подачи топлива и парой датчиков. Поэтому главным отличительных пунктом является именно объем двигателя. Разница в 0,1 л дает намного больший крутящий момент с низов, чуть больше максимальной мощности и пожалуй даже – такой же или даже меньший расход двигателя чем на 1,5л. Единственный минус – более шумноватый в работе на холостых.

Раньше, в годах 2008-2012 люди не охотно брали двигатели 1,6 мол, ломучий, громкий, и т.д. – по факту 1,6 двигатель превосходит мотор объемом 1,5л по всем показателям, соответственно мы вам рекомендуем его. Но это что касается 8 кл моторов, которые устанавливались серийно. Далее рассмотрим 16кл. моторы.

Какой мотор лучше 1,6 16кл или 8кл?

16кл моторы устанавливались ограниченной серией на АвтоВАЗе или на дочернем предприятии «СуперАвто». Так же 16 кл моторы самостоятельно устанавливались фанатами тюнинга.

По совей технологичности 16кл моторы превосходят 8кл двигатели, соответственно если есть вариант взять 16кл мотор – то было бы неплохо остановиться на таком варианте, но везде есть свои ньюансы.

Преимущества 16кл. моторов над 8кл

  1. Лучшая продувка цилиндров – большая мощность.
  2. Более стабильная работа двигателя – меньше шумов.
  3. КПД двигателя больше – меньший расход топлива.

Но! 1,6 16кл двигатель от Приоры (21126) гнет клапана при обрыве ремня – почему-то это многих пугает. Просто нужно следить за состоянием автомобиля, ремней, роликов, помпы и все будет нормально! На всех современных автомобилях – гнет клапана.

Какое масло лить в двигатель?

Малсо бывает как трансмиссионное так и для двигателя. Так же масла разделяются по классу вязкости. Определенному двигателю предназначена определенная вязкость. К примеру какой то мотор любит больше синтетику, какой-то – полусинтетику.

Для 8кл рекомендуется полусинтетика:

Для 16кл рекомендуется синтетика:

Как заменить масло?

vaz-2114-lada.ru

Двигатель ВАЗ 2114: устройство, ремонт, тюнинг

Двигатель ВАЗ 2114 инжектор – это серия моторов, которые устанавливались на транспортное средство Лада 2114. Как и на многие модели Лада,  модель 2114 за все года выпуска получила несколько вариантов исполнения силового агрегата. Так, технические характеристики каждого из них были разными. Рассмотрим, устройство двигателя 2114, а также вопросы обслуживания, тюнинга и ремонта.

Технические характеристики

Автомобиль ВАЗ 2114

Технические характеристики двигателя ВАЗ 2114 достаточно типичные для серии автомобилей 2113-2115. К тому же данный силовой агрегат разработан на базе «восьмёрочного» движка, который заявил себя, как надёжный и простой в ремонте. Выпускался автомобиль с 2001 по 2013 год.  За этот период транспортное средство получило ценных пять полноценных силовых агрегатов.

Устройство двигателя ВАЗ 2114

Как было сказано раннее, 2114 комплектовалась пятью разными силовыми агрегатами, которые отличались по мощности и клапанным механизмом. Три из них имели 8 клапанов, а остальные два – 16. Газораспределительный механизм имел ременчатый привод. До 2007 года двигатель комплектовался простым бортовым компьютером, который не регулировал работу движка от показаний датчиков. Поэтому автомобилисту приходилось регулировать процессы по старинке, вручную. С 2007 года был установлен ЭБУ, который получая данные с датчиков, сам проводил регулировку многих процессов.

Конструктивные особенности двигателя.

Поскольку второе поколение имело, так называемый, электронный блок управление двигателем двухсторонний, то стоит рассмотреть, какая схема электрооборудования была установлена.

Схема электрооборудования автомобиля ВАЗ 2114.

Основные характеристики мотора

Все двигатели, которые устанавливались на транспортное средство, имели примерно одинаковые характеристики и конструктивные особенности. Так, мотор легко обслужить и отремонтировать своими руками. Рассмотрим, основные технические характеристики, которые имеет двигатель ВАЗ 2114:

ВАЗ 2111

НаименованиеПоказатель
Объем1,5 литр (1499 см куб)
Количество цилиндров4
Количество клапанов8
ТопливоБензин
Система впрыскаИнжектор
Мощность77 л.с.
Расход топлива8,2 л/100 км
Диаметр цилиндра82 мм

ВАЗ 21114

НаименованиеПоказатель
Объем1,6 литр (1596 см куб)
Количество цилиндров4
Количество клапанов8
ТопливоБензин
Система впрыскаИнжектор
Мощность81,6 л.с.
Расход топлива7,6 л/100 км
Диаметр цилиндра82 мм

ВАЗ 11183

НаименованиеПоказатель
Марка11183
Маркировка1.6 8V
ТипИнжектор
ТопливоБензин
Клапанный механизм8 клапанный
Количество цилиндров4
Расход горючего9,6 литров
Диаметр поршня82 мм
Ресурс200 – 250 тыс. км

ВАЗ 21124

НаименованиеПоказатель
Объем1,6 литр (1599 см куб)
Количество цилиндров4
Количество клапанов16
ТопливоБензин
Система впрыскаИнжектор
Мощность89,1 л.с.
Расход топлива7,0 л/100 км
Диаметр цилиндра82 мм

ВАЗ 21126

НаименованиеПоказатель
Объем1,6 литр (1597 см куб)
Количество цилиндров4
Количество клапанов16
ТопливоБензин
Система впрыскаИнжектор
Мощность97,9  л.с.
Расход топлива7,2 л/100 км
Диаметр цилиндра82 мм

Двигатель ВАЗ 2114.

Все двигатели комплектовались механическими коробками передач на 5 ступеней. Объем двигателя колеблется от 1,5 до 1,6 литра. Большим объёмом силового агрегата данный автомобиль не комплектовался. Средняя мощность двигателя ВАЗ 2114 составляет 85 лошадиных сил.

Обслуживание мотора

Когда, рассмотрено устройство и основные технические характеристики, присущие двигателю ВАЗ 2114, необходимо рассмотреть обслуживание и дать ответы на вопросы, которые задают все чаще автомобилисты.

Техническое обслуживание

Если верить заводу, изготовителю, то двигатель ВАЗ 2114 необходимо обслуживать каждые 12-15 тыс. км пробега. Это зависит от того, какой маркировки мотор установлен на транспортном средстве. Схема проведения технического обслуживания для всех двигателей, которые установлены на «четырнадцатой» модели:

  1. На первом ТО проводится замена масла, масляного фильтра и воздушного фильтрующего элемента, а также проверка работоспособности всех систем.
  2. Второе ТО делается спустя 12 000 км пробега. В данном случае, необходимо сменить масло и фильтрующий элемент масла.
  3. Третье ТО – 25 000 км, замена не только масла, но и воздушного фильтра, а также проводится поточный ремонт неисправностей.
  4. Спустя 45 000 км необходимо заменить ремень и ролик газораспределительного механизма, чтобы не пришлось проводить капитальный ремонт двигателя ВАЗ 2114.

Последующее техническое обслуживание идёт согласно 2 и 3 ТО.

Частые вопросы и ответы на них

Процесс ремонта двигателя ВАЗ 2114.

Многие автолюбители на форумах задают одни и те же вопросы. Попробуем классифицировать все их, а также дать ответы согласно заводским нормам и рекомендациям.

Какое масло заливать в двигатель ВАЗ 2114?

Если опираться на данные завода изготовителя, то в двигатель ВАЗ 2114, в зависимости от типа льётся разное масло. Так, какое масло залить в ВАЗ 2114? Если брать для 8 клапанного двигателя, то в идеале подойдёт с маркировкой 10W-40. Если это 16 клапанный движок – 5W-30. В любом случае, масло для ВАЗ 2114 должно быть полусинтетическим.

Какая рабочая температура двигателя?

Опираясь на данные завода изготовителя, рабочая температура мотора для двигателей, устанавливаемых на модели 2113-2115, составляет 87-103 градуса Цельсия. После 105 градусов включается электровентилятор.

Где находится номер двигателя на ВАЗ 2114?

Номер двигателя достаточно просто найти. Располагается он со стороны коробки переключения передач, возле термостата. Номер мотора всегда имеет площадку на блоке цилиндров, которая располагается в видном месте.

Какой ресурс ДВС 2114?

Ресурс двигателя ваз 2114 составляет 150 тыс. км пробега для восьми клапанного силового агрегата и 180 000 км для -16 клапанного. Чтобы продлить ресурс необходимо знать какое масло лить в движок, а также вовремя его обслуживать. Хотя немаловажную роль играет манера вождения и бережная эксплуатация автомобиля.

Гнёт ли клапана на двигателях ВАЗ 2114?

Конечно, как и в любом другом двигателе, у ВАЗ 2114 клапанный механизм гнёт. Это зачастую случается от перегрева, когда возникает прогиб головки. Гнуть клапана может и при обрыве ремня ГРМ.

Что делать, если не развивает мощность мотор, и падают обороты?

В этом случае, стоит провести комплексную диагностику силовому агрегату. Дело может заключаться, как в неработоспособности одного из датчиков, так и в механике. Найти неисправность можно своими силами или при помощи профессионалов в автосервисе.

Неисправности двигателя и ремонт

Разобранный мотор ВАЗ 2114.

Схема неисправностей мотора 2114 и его модификаций достаточно типичная. Обычно, самыми распространёнными являются плавающие обороты, троение, поломка помпы, а также другие, с которые детально знакомы владельцы автомобиля. Где находятся, те или иные неисправности можно определить, проводя диагностические работы.

Спустя 150 000 км пробега движку понадобится переборка (капитальный ремонт). Каждый автолюбитель может отремонтировать свой мотор самостоятельно, но многие не рискуют и обращаются в автосервис.

Для ВАЗ 2114 ремонт проводится по аналогии с мотором 2108, поскольку они достаточно похожи. Для того, чтобы заменить ремень ГРМ придётся зафиксировать распределительные валы. В комплекс операций по замене входят смена ремня ГРМ, ролика или двух, а также регулировка клапанов.

Для замены водяного насоса придётся, как и для смены ремня ГРМ, зафиксировать распредвалы. Поскольку, ремень проходит и через помпу, а поэтому процесс достаточно непростой.

Тюнинг движка

Тюнинг версия двигателя ВАЗ 2114.

Тюнинг двигателя ВАЗ 2114 проводится типично для всей серии силовых агрегатов устанавливаемых на 2113-2115. Как известно, существует два варианта доработки мотора: механический и чип тюнинг. Схема доработки достаточно простая, сначала делается механика, а затем электроника. Но, многие автолюбители проводят только чип-тюнинг для снижения расхода, поскольку цена на горючее слишком высока.

Чип тюнинг ВАЗ 2114 проводится при помощи специального оборудования и направлен на увеличение мощности или снижения расхода потребляемого горючего. Такой вид работы стоит доверить профессионалам, поскольку только они имеют необходимые навыки и знания.

Что касается механической доработки, то здесь схема стандартная. В случае, полной доработки мотора, его необходимо полностью разобрать. Необходимо получить полный доступ к внутренней части силового агрегата. Далее, проводится процесс расточки-хонинговки и установки новых запасных частей с облегчённым весом.

Установленная турбина на двигатель ВАЗ 2114

После сборки рекомендуется установить тюнинг версию системы охлаждения и выпуска отработанных газов, так как сгорание будет происходить с выделением большего количества тепла, чем ранее. Масло в двигатель ВАЗ 2114 после тюнинга стандартное не подойдёт, поэтому рекомендуется, чтобы процесс доработки делали профессионалы.

Вывод

На ВАЗ 2114 устанавливались разные варианты двигателей, как восемь, так и шестнадцати клапанные. Все они имели разные технические характеристики и конструктивные особенности. Но, все модификации, достаточно ремонтопригодные и простые в обслуживании. Что касается тюнинга, то каждый автомобилист решает сам, как проводить ему доработку мотора и с какой целью.

avtodvigateli.com

Технические характеристики ВАЗ 2114 | Автоваз

Хэтчбэк ВАЗ 2114 заменил на рынке СНГ «девятку», так полюбившуюся потребителям. Модернизация, разумеется, прошла на самом высоком уровне – автомобиль получил и новые бамперы, и молдинги, и капот новой формы и геометрии, и новые фары, и решётку радиатора, и салонный интерьер.

Спойлер со стоп-сигналами, накладки на порогах, молдинги вдоль бортов придали конструкции автомобиля столь необходимую для неё спортивность. Кроме того, за счёт внешних элементов ВАЗ 2114 значительно улучшил аэродинамические характеристики, и, как следствие, управляемость на трассе, когда машина идёт на высокой скорости.

Как и в некоторых автомобилях зарубежного производства, часть серии ВАЗ 2114 была выдержана в западном стиле – все навесные детали выкрашивались в чёрный цвет. Другая часть серии, в свою очередь, поддержала поклонников более спокойных решений, посредством выкрашивания всех элементов в единый цвет. Впрочем, форма и особенности экстерьера этого автомобиля до такой степени удобны для создания действительно эксклюзивных экземпляров посредством тюнинга, благодаря чему ВАЗ 2114 стал фактически первым отечественным автомобилем, который привлёк поклонников внешней индивидуализации транспортного средства.

Характеристики двигателя

Для ВАЗ 2114 использовались двигатели объёмом в 1,6 литра, использующие технологию прямого впрыска топлива, или, иначе говоря, инжекторные. Для этой модели не разрабатывалось каких-либо новых модификаций силового агрегата, поэтом аналогичные двигатели можно встретить и на других моделях ВАЗ.

Модификации

Объём двигателя, см3

Мощность, квт (л.с.)/об

Цилиндры

Тип топливной системы

Тип топлива

2114 1.5 (77 лс)

1499

77

Рядное, 4

Инжектор

АИ-92

21144 1.6 (81 лс)

1596

81

Рядное, 4

Инжектор

АИ-92

Трансмиссия автомобиля

Как и в других моделях ВАЗ, в ВАЗ 2114 использовалась механическая коробка переключения передач. Ручное управление по-прежнему является своего рода «фирменным знаком» Волжского автозавода и других предприятий, на которых осуществляется сборка разработанных ВАЗом автомобилей. Механические трансмиссии более надёжны, долговечны и просто удобны.

Модификации

Тип привода

Тип трансмиссии (базовая)

2114 1.5 (77 лс)

Передний привод

5-МКПП

21144 1.6 (81 лс)

Передний привод

5-МКПП

Тормозная система и усилитель руля

Модификации

Тип привода

Задние тормоза

Усилитель руля

2114 1.5 (77 лс)

Дисковые

Барабанные

Нет

21144 1.6 (81 лс)

Дисковые

Барабанные

Нет

Размер шин

Модификации

Размер

2114 1.5 (77 лс)

165/70 R13

21144 1.6 (81 лс)

175/50 R13

Размеры

Размеры ВАЗ 2114 принципиально не отличаются от других автомобилей серии, и в значительной степени – по причине, корень которой лежит в периоде разработки «единички». Имя ему – максимальная взаимозаменяемость элементов, требующая от производителей сохранять основную конструкцию автомобиля практически неизменной.

Модификации

Длина, мм

Ширина, мм

Высота, мм

Колесная база, мм

Дорожный просвет (клиренс), мм

Объем багажника, л

2114 1.5 (77 лс)

4122

1650

1402

2460

165

330/600

21144 1.6 (81 лс)

4122

1650

1402

2460

330 / 600

Динамика

Модификации

Максимальная скорость, км/ч

Время разгона до 100 км/ч, с

2114 1.5 (77 лс)

157

14

21144 1.6 (81 лс)

160

12.7

Расход топлива

Модификации

В городе, л/100 км

По трассе, л/100 км

Средний расход, л/100 км

Тип топлива

2114 1.5 (77 лс)

9.9

6.2

7.5

АИ-92

21144 1.6 (81 лс)

7.6

АИ-92

videovaz.ru

Как определить неработающую форсунку на работающем двигателе – Неисправности форсунок двигателя, диагностика и чистка в домашних условиях

Бензиновый двигатель, причины неисправности инжектора (Форсунки) — DRIVE2

Зимой у многих автомобилей импортного производства начинают напоминать о себе «старые болезни», которые практически отсутствуют или редко проявляются в другие времена года. Плохая работа бензинового двигателя — одна из таких болезней, и часто тому виной является неисправный инжектор, который неравномерно распыляет топливо. В публикации «Бензиновый двигатель причины неисправности инжектор» рассматривается устройство инжектора, его основные неисправности, методы проведения диагностики поломок и способы их устранения.
Конструкция
Инжектор — самый важный элемент в системе впрыска бензиновых двигателей. Это электромагнитный клапан, который работает «под командой» ЭБУ, электронного блока управления двигателем. После получения импульсов определённой частоты, ЭБУ «отмеряет» дозу необходимого топлива, в зависимости от нагрузки двигателя и температуры охлаждающей жидкости. Точная и отлаженная работа этого механизма позволяет двигателю долго и исправно работать: меньший расход топлива, большая мощность и крутящий момент, легкий пуск двигателя при любых температурах — всё это плюсы отлаженной работы инжектора, но любые сбои в его работе ухудшают работу всего двигателя.
Очень часто в неисправной работе бензинового двигателя виноваты электромагнитные форсунки, которые не выполняют своих функций, или частично неисправны.
Это происходит из-за того, что нет электрического импульса на открытие клапана, может быть, произошёл обрыв обмотки электромагнита, а может быть загрязнены внутренние клапаны. Загрязненные внутренние клапаны чаще всего дают о себе знать авто-владельцу именно зимой при запуске инжекторного двигателя.
Поиск поломок
Если одна из форсунок вышла из строя, то «признаки болезни» двигателя могут совпадать с симптомами болезни неисправной свечи зажигания. Двигатель плохо работает, появляется сильная вибрация. Обнаружить поломанную форсунку можно при помощи поочерёдного отключения разъёмов. Если обороты двигателя снижаются, то форсунка работает отлично, если обороты не идут на спад значит, форсунка сломана.
Как найти причину поломки?
Это делается при помощи специального тестера, вначале проверяют подаваемое напряжение на форсунки (нормальное давление от 0 до 2-3В), если напряжение есть, значит с форсункой всё в порядке. Далее осуществляется проверка обмотки клапанов форсунок. При нормальной работе форсунок они имеют сопротивление 12-16 Ом, в системах с турбонаддувом – 4-5 Ом, а в системах с моноинжектором – 4-5 Ом. Подвижность электроклапана форсунки определяется моментальным подключением клемм форсунки к источнику электропитания, например, к аккумулятору двигателя. Нормально работающий инжектор будет слегка щёлкать, это будет говорить о нормальной работе клапана, при этом, если клапан работает, а цилиндр нет, значит, форсунка очень сильно загрязнена.
На станциях техобслуживания уровень загрязнения форсунок проверяют при помощи мультитестеров по продолжительности импульсов, которые ЭБУ подаёт для открытия клапана. Если форсунка загрязнена, то время импульса увеличивается.
Также, если в работе двигателя обнаружены нарушения, то можно проверить токсичность отработавших газов. Их токсичность повышается при переобогащении смеси, ухудшении смесеобразования, при невозможности воспламенения горючей смеси.
Если в машине установлен трёхкомпонентный катализатор, то здесь показателем ухудшения работы форсунок может служить увеличение содержания окислов азота. При этом, если иномарка новая, то не отработанное топливо в виде газов может быстрее вывести катализатор из строя.
Причины засорения форсунок
Некачественное топливо — вот одна из главных причин поломки форсунок. Огромное количество смол, которые оседают внутри форсунок, снижают пропускную способность, они не позволяют герметично закрываться клапанам, и тем самым меняется угол струи впрыскиваемого топлива.
При запуске двигателя в зимнее время, вышедший из строя клапан, является причиной переобогащения смеси, вследствие чего происходит повышенный расход топлива и повышается токсичность отработавших газов. При некорректном распылении топлива происходят нарушения в процессе смесеобразования, а это является первой причиной ухудшения практически всех показателей двигателя.
Засорение форсунок происходит при использовании поддельных топливных фильтров, либо же если просто авто-владелец забыл поменять во время фильтр.
При давлении в системе топлива может просто произойти разрыв фильтра, и грязь, естественно, попадёт в форсунки.
Ремонт
Форсунки ремонту не подлежат. Только регулярный уход и обслуживание систем питания поможет продлить жизнь вашим форсункам. Специалистами придуман ряд способов чистки инжектора. Использование специальных моющих присадок к топливу определённо продлит жизнь вашим форсункам и всей топливной системе. Однако только качественные присадки, и при регулярном применении помогут вашему автомобилю и его топливной системе.
Промывка инжектора
Отдельно хотелось бы отметить, что в иномарках с большим пробегом очистка с присадками может полностью вывести всю систему из строя, когда вся гр

www.drive2.ru

Как Определить Неисправную Форсунку На Работающем Двигателе ~ SIS26.RU

Большая Энциклопедия Нефти и Газа

Неисправная форсунка

Отключение исправной форсунки тянет за собой усиление перебоев в работе двигателя, при выключении неисправной форсунки работа двигателя не изменяется. Неисправную форсунку снять для проверки в мастерской. [16]

Для обнаружения неисправной форсунки необходимо попеременно выключать их из работы, отворачивая накидные гайки трубок высочайшего давления от штуцеров топливного насоса. В работе на двигателе уже с полгода как выдаёт бк ошибки на на вторую форсунку в. Если при выключении форсунки дым на выхлопе уменьшится и работа двигателя несколько улучшится, то необходимо проверить работу этой форсунки. При выключении исправной форсунки работа двигателя резко ухудшается, дым на выхлопе не уменьшается. [17]

Ее делают при перебоях в работе двигателя и повышенной дымности выпуска. Для выявления неисправной форсунки ослабляют поочередно накидные гайки топливопроводов высокого давления, вследствие чего форсунки перестают работать. При отключении исправной форсунки перебои в работе двигателя возрастают, а при отключении неисправной форсунки работа двигателя не изменяется. Неисправную форсунку снимают с двигателя и направляют для проверки в цех по ремонту топливной аппаратуры. [19]

Чтобы определить неисправную форсунку на работающем двигателе, следует установить такую частоту вращения коленчатого вала, при которой отчетливо слышны перебои в работе двигателя. После этого выключают поочередно форсунки из работы, ослабляя накидные гайки крепления трубок высокого давления к штуцерам насоса. Статья расскажет как определить льющую форсунку, на 100-150 тысяч как определить,. При отключении неисправной форсунки ритмичность работы двигателя не изменяется. [20]

Все эти неисправности приводят к ухудшению распиливания топлива, вследствие чего появляются перебои в работе цилиндров, стуки / повышается дымность выпуска и падает мощность двигателя. Как поменять форсунку на ваз 2110; как поменять форсунки. На ваз 2113, ваз 2114, ваз 2115;. Форсунки: как проверить и очистить не снимая с двигателя. Форсунка на инжекторном двигателе автомобиля играет определяющую роль в. Как правило, проверяют, регулируют и ремонтируют неисправные форсунки в специально оборудованной мастерской. [21]

Читайте так же:

Все эти неисправности приводят к ухудшению распы-ливания топлива, вследствие чего появляются перебои в работе цилиндров, стуки, повышается дымность выпуска и падает мощность двигателя. Как правило, проверяют, регулируют и ремонтируют неисправные форсунки в специально оборудованной мастерской. [22]

Выявление неисправной форсунки дизельного двигателя

Passat B3 с дизельным двигателем AAZ с объёмом 1,9. Проблема: плохой холодный запуск и сильная вибрация на холост.

Читайте так же:

Як перевірити форсунки інжектора не знімаючи

Як перевірити форсунки інжектора не знімаючиЯк перевірити форсунки (інжектор) двигуна не знімаючи.
Обовязково щоб не

Для выявления неисправной форсунки в условиях эксплуатации поочередно ослабляют гайки присоединенных к форсункам топливопроводов высокого давления, давая топливу вытекать наружу. Почему рекомендуется отключить систему egr на дизельном двигателе и как правильно отключать егр. При отключении исправной форсунки перебои в работе двигателя резко усилятся, а при отключении неисправной работа двигателя не изменится. Неисправную форсунку снимают и передают в мастерскую для проверки и устранения дефектов. Вместо нее на двигатель устанавливают новую форсунку. [23]

Диагностика насосов высокого давления и форсунок производится в основном по величине рабочих показателей. На работающем двигателе потребуется отключать одну форсунку двигателе. Перед тем как. Путем поочередного выключения форсунок проверяют их работу. При выключении неисправной форсунки уменьшается дымность выхлопа, остается неизменной частота вращения. Исправность форсунок оценивается по таким показателям, как давление впрыска, состояние поверхности распылителя, качество распыла. При распыле визуально определяются однородность капель, тонкость распыла, угол конуса струи топлива. Что на улице -15 и она не как не можно определить на работающем двигателе.если. Допустимый угол конуса 30 — 25, ему соответствует диаметр отпечатка струи топлива 18 — 44 мм на расстоянии 100 мм от торца сопла форсунки. [24]

Для чего поочередно отключают подачу топлива в форсунку и следят за дымностью выходящих газов и частотой вращения коленчатого вала двигателя. С отключением неисправной форсунки работа двигателя не изменяется. [25]

Предупреждение прогара труб в печах заключается в строгом соблюдении технологического режима, температуры, давления, производительности. При низкой производительности очень легко закоксовать трубы, так как при малых скоростях жидкость движется по центральной части трубы, по стенкам образуется застойная зона, где продукт нагревается до температуры, при которой происходит коксообразование. Неисправную форсунку home где как определить форсунку на работающем двигателе,. К закоксовыванию труб приводит неравномерная теплонапряженность в топке из-за неисправных форсунок [26]

Читайте так же:

Неисправную форсунку можно определить на работающем дизеле, ослабляя затяжку накидной гайки проверяемой форсунки. Выключая поочередно форсунки, надо наблюдать за частотой вращения коленчатого вала. Если отключается исправная форсунка, то в работе дизеля появляются перебои, отключение неисправной форсунки не изменяет работу двигателя. [28]

Ее делают при перебоях в работе двигателя и повышенной дымности выпуска. Для выявления неисправной форсунки ослабляют поочередно накидные гайки топливопроводов высокого давления, вследствие чего форсунки перестают работать. При отключении исправной форсунки перебои в работе двигателя возрастают, а при отключении неисправной форсунки работа двигателя не изменяется. Неисправную форсунку снимают с двигателя и направляют для проверки в цех по ремонту топливной аппаратуры. [29]

Ее делают при перебоях в работе двигателя и повышенной дымности выпуска. Как правильно заглушить egr на на двигателе механический клапан дополнительно связан. Для выявления неисправной форсунки ослабляют поочередно накидные гайки топливопроводов высокого давления, вследствие чего форсунки перестают работать. Чтобы определить неисправную форсунку на работающем на двигателе или. При отключении исправной форсунки перебои в работе двигателя возрастают, а при отключении неисправной форсунки работа двигателя не изменяется. Неисправную форсунку снимают с двигателя и направляют для проверки в цех по ремонту топливной аппаратуры. [30]

sis26.ru

Неисправности и промывка форсунок (инжектора) — DRIVE2

Форсунка имеет четыре типа неисправностей, при которых работоспособность еще сохраняется:
1. Закоксовывание выходных отверстий. Приводит к повышенному расходу, к плохому пуску, ухудшению динамики движения автомобиля. Диагностируется только потерей динамики и некоторым повышением расхода топлива. В остальном двигатель ведет себя нормально, ХХ устойчивый и заводится при положительной температуре нормально, при отрицательной — пуск затруднен.
2. Негерметичное закрытие клапана форсунки. Приводит к таким явлениям как повышенный расход, плохой пуск двигателя, троение или детонация на холостом ходу. Диагностируется путем замера СО. На нормально работающей машине без катализатора СО не должно превышать 1% в режиме ХХ. Одна негерметичная форсунка дает прибавку СО примерно 1.0-1.5%.
3. Зависание клапана. Приводит к такому явлению, как троение двигателя. Диагностика заключается в отключение с последующим подключением электрического разъема форсунки на работающем двигателе. Данный процесс сопровождается временным падением холостых оборотов если была отключена нормально работающая форсунка и полным отсутствием реакции двигателя если была отключена не работающая.
4. Нестабильное зависание клапана. Приводит к нестабильности холостых оборотов, вплодь до полной остановки двигателя. Нестабильное зависание клапана форсунки особенно заметно на холостых оборотах. Данное явление сопровождается резким падением холостых оборотов с последующим повышением до 1000 — 1400 оборотов или полной остановкой двигателя. Диагностика, как и в предыдущем случае однако есть нюансы. Если нестабильно зависает одна форсунка то гарантированно диагностируется отключением. Если две и более то только заменой.

Промывка форсунок

Для начала замерьте компрессию (должно быть не меньше 11), возьмите мультиметр или авто электрика и проверьте сопротивление высоковольтных проводов (должно быть от 4 до 6 кило Ом), если уж не поможет тогда промывка форсунок, желательно со снятием и в ультразвуковой ванне, чтобы в живую увидеть как они льют.

В кратце для непросвещённых:

Форсунки обязательно проверяются на стенде на герметичность, т.е держат они давление или нет;
Второй тест на производительность, устанавливается одна минута и примерно тысяча оборотов двигателя на стенде, в среднем должно быть от 43-46 млг, разлёт на 2-4% не кретичен.
Потом форсунки снимаются со стенда и погружаются в ультразвуковую ванну, где моются от 10 до 20 минут, это абсолютно безопасно, потому что керамических форсунок лет 25 как не выпускают.
после промывки опять на стенд, если требуется моем ещё раз, но это бывает крайне редко.
После сборки заводим авто, как правило заводиться он с третьего раза, пока не выйдет промывочная жидкость.
Промывка стоит 1200 с новой рампой, ежели с обраткой то 1350, и обязательно меняются уплотнительные кольца форсунок.

Также упоминалось промывка winns-ом. Эта промывка называется химической, как правило используется в профилактических действиях, рекомендуется раз в 50 тысяч, достоинством промывки является то что помимо форсунок промываются клапана и поршневая, также есть LAVR с эффектом раскоксования, но после промывки нужно менять масло в ДВС.
Недостатком является отсутствие визуального эффекта, т.е не видно что было и как стало, всё только по ощущениям.

www.drive2.ru

Как определить нерабочую форсунку на камазе

При неустойчивой работе двигателя неисправную форсунку можно определить непосредственно на работающем двигателе. Для этого его запускают и по степени нагрева выпускных патрубков находят неисправную форсунку. Изза неудовлетворительной работы той или иной форсунки выхлопной патрубок нагревается меньше.

Неработавшую форсунку можно определить так же, если последовательно выключать каждый цилиндр на работающем двигателе. При этом ослабляют каждую гайку у штуцера проверяемой форсунки, чтобы топливо не поступало в форсунку к цилиндру двигателя. При неисправной форсунке характер работы двигателя не изменяется. При исправной число оборотов коленчатого вала понижается, перебои в работе двигателя возрастают. Исправность форсунки можно проверить и на неработающем двигателе. Для этого проворачивают коленчатый вал двигателя, а рейку топливного насоса высокого давления выдвигают на максимальную подачу. Момент впрыска в исправной форсунке будет сопровождаться сильным характерным звуком. Если форсунка неисправна; отсутствует распыливание, подтекает топливо, то звук будет еле уловимым.

Проверить исправ^ ность форсунки на двигателе можно с помощью переносного прибора максиметра (смотреть статью под номером 26). Принцип его работы такой же, как и у форсунки. Прибор состоит из корпуса форсунки /, корпуса распылителя 2, иглы распылителя 3,’гайки крепления распылителя 4, нажимного штифта 5, тарированной пружины 6, упора пружины 7, установочного винта 8, микрометрической головки 9, стопорного винта 10, штуцера //.

Максиметром можно определить давление до 500 кГ/см2. Стоит повернуть микрометрическую головку на один оборот, как давление начала подъема иглы 3 изменится на 50 кГ/см2. На микрометрической головке имеется шкала с десятью делениями, которая позволяет определить давление

начала подъема иглы с точностью до 5 кГ/см2.

При помощи максиметра давление в начале подъема иглы форсунки проверяется в такой последовательности: проверяемую форсунку снимают с двигателя, к секции топливного насоса вместо снятой форсунки присоединяют максиметр, а к нему через штуцер // испытуемую форсунку. При помощи микрометрической головки устанавливается начало подъема иглы максиметра, равное 165 кГ/см2. Проворачивают стартером коленчатый вал двигателя, =и в это время начинается наблюдение за началом впрыска топлива у испытуемой форсунки и у максиметра. Если он происходит неодновременно, то форсунку следует отрегулировать описанным ранее способом.

Давление начала подъема иглы испытуемой форсунки можно проверить и отрегулировать по эталонной, отрегулированной форсунке на давление начала подъема иглы, равное 165 кГ/см2, для форсунок двигателя КамАЗ —180 + 5 кГ/см2. Но при этом нужен тройник, который одним концом подсоединяется к секции топливного насоса высокого давления, а двумя другими — к проверяемой и эталонной форсункам. Как и при проверке максиметром, проворачивают коленчатый вал и сравнивают начало впрыска обеих форсунок. Если начало впрыска топлива неодновременное, то проверяемую форсунку регулируют.

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Источник dadi-auto.ru

При обслуживании каждая форсунка должна быть отрегулирована на давле­ние подъема иглы 180+5 кгс/см2.

Регулировать форсунки рекомендуется на специаль­ном приборе КП-1609 или другом приборе аналогичной конструкции регулировочными шайбами, устанавливае­мыми под пружину, при снятых гайке распылителя, рас­пылителе, проставке и штанге. При увеличении общей толщины регулировочных шайб (увеличении сжатия пру­жины) давление повышается, при уменьшении — пони­жается. Изменение толщины шайб на 0,05 мм приводит к изменению давления начала подъема иглы на 3— 3,5 кгс/см2.

Качество распиливания считается удовлетворительным, если при подводе топлива в форсунку со скоростью 70 — 80 качаний рычага прибора в минуту оно распыливается при впрыскивании в атмосферу до туманообразного со­стояния и равномерно распределяется по поперечному сечению конуса струи. Начало и конец впрыска должны быть четкими. Впрыск новой форсункой сопровождается характерным резким звуком. Отсутствие его у бывших в употреблении форсунок при проверке на ручном стенде не служит критерием, определяющим их некачественную работу. В случае закоксовывания одного или нескольких отверстий следует разобрать форсунку, ее детали про­чистить и промыть в бензине. При подтекании топлива по конусу или при заедании иглы распылитель нужно заменить.

Корпус распылителя и игла составляют прецизионную пару, в которой замена одной какой-либо детали не допускается.

Разбирать форсунку нужно в такой последователь­ности:

отвернуть гайку распылителя;
снять распылитель, предохранив его иглу от выпа­дания;
снять проставку;
из форсунки вынуть штангу, опорную пружину и регулировочные шайбы.

Распылитель следует снаружи очистить с помощью деревянного бруска, пропитанного дизельным маслом, внутренние полости промыть в бензине; применять острые и твердые предметы или наждачную бумагу нельзя.

Сопловые отверстия надо чистить стальной проволо­кой диаметром 0,25 мм.

Перед сборкой распылитель и иглу следует тщательно промыть в чистом бензине и смазать профильтрованным дизельным топливом. После этого игла, выдвинутая из корпуса распылителя на 1/3 длины направляющей по­верхности, при наклоне распылителя под углом 45° должна полностью опуститься под действием собствен­ного веса.

Собирают форсунку в обратном порядке, учитывая, что при затяжке гайки распылителя необходимо предва­рительно поджать распылитель с упором в конусный торец до полного сжатия пружины. Гайки затягивают (момент должен быть 7—8 кгс-м) и проверяют давление начала подъема иглы, которое должно быть 180+5 кгс/см2. В противном случае его регулируют путем замены регу­лировочных шайб.

На двигателях КамАЗ мод. 740 применен распыли­тель мод. 33 с четырьмя оригинально расположенными отверстиями (обозначение модели распылителя нанесено на наружной поверхности корпуса). Необходимо помнить, что устанавливать в форсунку другие модели распыли­телей категорически запрещается, так как это приводит к прогоранию поршней и головок цилиндров.

Источник everest-autokam.ru

Форсунка представляет собой электромеханический клапан, который работает в качестве электрического магнита. В момент поступления напряжения на обмотку форсунки возникает электромагнитное поле, способное втягивать сердечник и иглу запорного устройства, при этом пропуская поток топлива к камере сгорания двигателя. На входном канале устройств вмонтировано дополнительный фильтр для топлива.

Форсунка – заключительный элемент топливной системы, внутрь которого под высоким давлением поступает топливо. От работоспособности, этой составляющей напрямую, зависит вся работа двигателя внутреннего сгорания. Когда уровень давления при открытии форсунки падает, то она раньше открывается, из-за чего образовывается черный дым. Если же давление в момент открытия повышается, то она открывается позже и возникает дым белого цвета.

Признаки неисправности форсунок

1. Замедляется работа пусковых элементов двигателя, что особо ярко выражено при холодной погоде.

2. Возникновение провалов и неких подергиваний автомобиля в момент ускорения или смены переходных режимов.

3. Плохая динамика и снижение мощности в работе двигателя.

4. Увеличивается количество потребляемого топлива.

5. На холостом ходу двигатель автомобиля может неравномерно работать.

Чтобы избежать несвоевременного ремонта автомобиля, следует своевременно проверять работоспособность форсунок.

Как проверить форсунки не снимая их с двигателя?

Проверка уровня сопротивления обмотки на форсунках

1. Осуществить осмотр можно, выключив зажигание и сняв с аккумуляторной батареи «минусовую» клемму.

2. Используя тонкую отвертку или шило необходимо отщелкнуть пружинный зажим на колодке.

3. Проводим отсоединение разъема от форсунки.

4. К выводам форсунки прикрепляем омметр и измеряем сопротивление обмотки.

5. Если сопротивление между боковым и центральным штырем разъема находится в пределах 11–15 Ом, то форсунка работает исправно. Если прибор показывает больше или меньше требуемого следует ее сменить.

Проверка работоспособности всех форсунок

1. Первоначально необходимо снять топливную рампу, на которой установлены форсунки.

2. Затем следует подсоединить колодку проводов к жгуту рампы. Если с батареи аккумулятора снята клемма «-», то оденьте ее обратно.

3. Соедините друг с другом топливные трубы и с помощью гаечного ключа хорошо закрутите крепящие их штуцеры.

4. Под каждой форсункой поставьте мерный стакан или любую иную емкость с разметкой.

5. Используя стартер, проверните двигатель и проследите за работой всех форсунок. Топливо должно выходить равномерно из каждой.

6. Выключите зажигание и проверьте уровень топлива в мерных стаканах, он должен быть одинаковым. Если количество топлива в емкостях не совпадает – замените или прочистите, вышедшую из лада форсунку.

7. Осмотрите все форсунки на наличие изъянов и дефектов. На распылительной части не должно быть никаких подтеков топлива в момент выключенного зажигания. Если подобные изъяны есть, то деталь не герметична и нуждается в замене.

Проверка поступления питания к форсункам

Подобную проверку необходимо проводить лишь тогда, когда хоть одна из форсунок при включенном зажигании отказывается работать.

1. Отключите от неработающей детали колодку с проводами.

2. Затем присоедините к батарее аккумулятора два конца проводов, а другую их сторону прикрепите к контактам на форсунке.

3. Подключите зажигание автомобиля и проследите за тем, не вытекает ли из форсунки топливо. Если да, то в электрической цепи есть какой-то дефект или неисправность.

Источник avto-kuplya.ru

vse-dlyaavto.ru

как проверить форсунки не снимая с двигателя и очистить их при необходимости

Форсунка на инжекторном двигателе автомобиля играет определяющую роль в стабильности его работы. Она важна ничуть не меньше свечей зажигания или поршней, поскольку без грамотного впрыска топлива не произвести детонацию в строго заданный момент. Форсунка впрыскивает топливо в камеру сгорания двигателя в определенном объеме, что позволяет поддерживать максимально экономичный и производительный режим работы ДВС. Электронный блок управления автомобиля регулирует количество подаваемого форсункой топлива.

Признаки неисправности форсунки

Если возникают проблемы со стабильностью работы двигателя, то однозначно сказать, что в этом виновата форсунка или любой другой компонент нельзя. Необходимо проверить катушку зажигания, свечи зажигания, компрессию в цилиндрах и другие компоненты, которые отвечают за детонацию в камере сгорания, в том числе форсунки.

Вот лишь некоторые из проблем, которые указывают на неисправность форсунок:

  • Двигатель автомобиля показывает неустойчивую работу на холостом ходу;
  • Значительно возросло потребление топливо;
  • Имеются проблемы с пуском двигателя;
  • Автомобиль потерял в динамике, и при обгоне или резком ускорении чувствуется нехватка мощности и рывки двигателя.

Если подобные проблемы имеются в автомобиле, можно начать диагностику двигателя с проверки форсунки. Существует несколько методов, как проверить форсунки не снимая с двигателя, и ниже о них пойдет речь.

Как проверить форсунки не снимая с двигателя при помощи мультиметра

Диагностический прибор мультиметр является верным помощником любого автомобилиста. Он позволяет не только проверить предохранители или аккумулятор, но и диагностировать неисправность форсунок. Чтобы проверить форсунки мультиметром необходимо сделать следующее:

  1. Снимите высоковольтные провода с форсунок и загляните в техническое руководство к автомобилю, чтобы определить, в вашем двигателе установлены форсунки высокого импеданса или низкого импеданса – это потребуется для точной диагностики;
  2. Установите мультиметр в режим замера сопротивления и подведите диагностические провода к выводам форсунки, после чего произведите замер;
  3. Если в вашем автомобиле установлены форсунки высокого импеданса, то измеренное сопротивление должно находиться в пределах от 12 до 17 Ом. В том случае, когда на автомобиле используются форсунки низкого импеданса, их сопротивление лежит в промежутке от 2 до 5 Ом.

В той ситуации, когда показатели отличаются от рекомендованных, следует снять форсунку с автомобиля и проверить ее более детально, а при необходимости заменить.

Проверка форсунок не снимая с двигателя на слух

Если вы считаете себя достаточно опытным в плане диагностики неисправностей автомобиля, то можете попробовать определить проблемы с форсункой на звук. При работающем двигателе внимательно прислушайтесь к издаваемым из блока цилиндров звукам. Глухой звенящий звук свидетельствует о том, что имеются проблемы в работе форсунок двигателя. В таких случаях рекомендуется провести очистку форсунок.

Проверка механических свойств форсунки

Механические свойства форсунок проверить самостоятельно довольно сложно, учитывая необходимость в специфическом оборудовании для проведения подобных процедур. Во многих автомастерских имеются специальные стенды для проверки механических свойств форсунок. С их помощью можно определить:

  • Какой поток топлива проходит через форсунку при работе двигателя;
  • Как выглядит «факел» распыления топлива из форсунки при работе двигателя. Если топливо проходит через форсунку неравномерно, велика вероятность, что необходимо ее прочистить.

Проверка механических свойств форсунки является наиболее точным методом диагностики данного компонента двигателя внутреннего сгорания.

Как очистить форсунки не снимая с двигателя

Если диагностирована неисправность форсунок двигателя, не исключено, что они загрязнены. Чтобы исправить ситуацию не снимая форсунки с мотора, можно:

  • Использовать специализированные присадки для очистки двигателя, которые заливаются в топливный бак;
  • Чтобы сохранять форсунки двигателя в чистоте, опытные водители рекомендуют ежемесячно выполнять их очистку при помощи давления. Для этого необходимо разогнать автомобиль на ровной дороге до скорости в 120 километров в час. В таком режиме требуется преодолеть 10-15 километров, после чего можно сбавлять обороты;
  • Если у вас нет возможности гонять автомобиль на повышенной скорости, можете воспользоваться другим методом очистки форсунок без снятия с двигателя. Необходимо в течение 3 минут поддерживать обороты автомобиля на холостом ходу на уровне в 4-5 тысяч. Данный способ очистки форсунок менее эффективный, чем перечисленные выше варианты.

Специалисты рекомендуют выполнять очистку форсунок двигателя каждые 30-35 тысяч километров, даже если не наблюдаются проблемы в работе двигателя.

Загрузка…

okeydrive.ru

satyrn-908 › Блог › Как убедиться в том, что на топливные форсунки автомобиля поступает нужное напряжение?

Неисправности топливных форсунок ухудшают показатели топливной экономичности и могут привести к перебоям в работе двигателя. Убедитесь, что на форсунки поступает напряжение, достаточное для их корректной работы.
Если двигатель вашего автомобиля работает неравномерно, возможно, причина этого кроется в системе подачи топлива. Неисправность форсунки может нарушать процесс воспламенения в цилиндре. Это, в свою очередь, приводит к дисбалансу в работе двигателя на всех режимах. Топливная экономичность падает, так как топливо может сгорать не полностью, и вам приходится сильнее нажимать на газ, чтобы заставить автомобиль двигаться.
Топливные форсунки – это особый тип соленоидов, которые могут быстро активировать свои поршни. Это позволяет форсунке впрыскивать точное количество топлива в цилиндр даже при работе двигателя на высоких оборотах. За период эксплуатации автомобиля форсунки срабатывают миллионы раз. Со временем они изнашиваются, и в них могут накапливаться отложения, снижающие производительность работы двигателя.
Это руководство описывает проверку поступления корректного напряжения на форсунки и значения сопротивления форсунок. Форсунки могут быть неисправными и при условии корректного значения поступающего напряжения. В них способны накапливаться отложения, нарушающие процесс впрыска топлива в цилиндр. Это, в свою очередь, вызывает неполное сгорание топлива и перебои в работе двигателя.
Проверка сопротивления форсунок.
Необходимые материалы: цифровой вольтометр или мультиметр с возможностью измерения сопротивления.
Внимание: На некоторых двигателях для доступа к форсункам необходимо снять декоративную пластиковую крышку двигателя. Обычно она крепится стандартными болтами, которые можно легко открутить при помощи соответствующей головки и удлинителя.

Шаг 1: Убедитесь, что зажигание выключено. Для проведения этой проверки подача напряжения не нужна.
Шаг 2: Отсоедините жгут подачи питания на форсунки. На соединении кабеля может быть защелка, которую необходимо сдвинуть, а затем нажать на ушки и отсоединить разъем.
Шаг 3: Настройте прибор на измерение сопротивления. Если он не имеет автонастройки, установите минимальный диапазон измерений.
Шаг 4: Проверьте сопротивление. Подсоедините контакты измерителя к зубцам электрического соединителя, избегая их замыкания.
• Форсунки высокого сопротивления в настоящее время являются наиболее распространенными. Их сопротивление может быть в пределах 12-17 Ом.
• Форсунки низкого сопротивления могут устанавливаться на высокопроизводительных и мощных двигателях. Их сопротивление гораздо ниже – обычно оно достигает 2-5 Ом.
Шаг 5: Повторите проверку на всех форсунках. Отклонение значений сопротивления всех форсунок не должно быть более 0,5 Ом.
При большем отклонении необходимо проверить форсунку на предмет корректного распыления топлива.
Совет: Нормативное значение сопротивления для форсунок вашего автомобиля можно найти в интернете или руководстве по ремонту автомобиля.
Проверка электрического соединения форсунок
Шаг 1: Включите зажигание. Поверните ключ во второе положение (ON). Питание начнет поступать к элементам двигателя. Не запускайте двигатель.
Шаг 2: Настройте прибор на измерение постоянного тока. Если он не имеет автонастройки, установите минимальный диапазон измерений.
Шаг 3: Соедините «минусовой» контакт прибора с «землей». Кузов автомобиля заземлен, поэтому вы можете найти любой неокрашенный элемент кузова под капотом.
Совет: Некоторые измерительные приборы имеют зажимы типа «аллигатор» на контактах, поэтому вам не нужно будет держать провод. Это освободит ваши руки, и вы сможете корректно подсоединить «плюсовой» контакт прибора.
Шаг 4: Соедините «плюсовой» контакт прибора с клеммой жгута проводов форсунки. Жгут имеет две клеммы, в которые вставляются зубцы разъема форсунок. Одна из них заземлена и должна показывать 0 В. Вторая должна иметь показания около 12 В.
Шаг 5: Повторите операцию для всех форсунок. Не трогая заземление, повторите процедуру для всех форсунок.
Все показания должны быть около 12 В. Более низкие значения указывают на наличие сопротивления в кабеле.
Возможно, эти проверки помогут вам найти неисправность топливных форсунок, но, как уже было отмечено, проблема может быть не связана с электрикой. В случае корректных значений сопротивления, следующим шагом должны стать снятие инжекторов и проверка характера распыла при помощи тестера для форсунок.
elm327rus.ru/blog/stati-i…=email-subscribe-15_06_17

www.drive2.ru

Как определить какая форсунка не работает

Практически каждый автовладелец современного автомобиля, у которого инжекторная система впрыска топлива, рано или поздно задается вопросом – как проверить форсунки? Если Вы замечаете, что автомобиль начинает дергаться при разгоне, теряет мощность и вообще ведет себя не адекватно – это признаки неисправности топливных форсунок.

Топливные форсунки присутствуют как на дизельных моторах так и на бензиновых. Основным назначением является распыление топлива во внутрь цилиндров, но в случае неисправности данный процесс не происходит должным образом.

Признаки неисправностей форсунок.

Мы привели основные признаки неисправности форсунок, которые актуальны для большинства автомобилей.

  • Автомобиль дергается при разгоне
  • Появляются провалы при работе двигателя. Создается ощущение как будто автомобиль кто то держит.
  • При вождении автомобиля, стойко складывается ощущение потери мощности.
  • Рост расхода топлива на несколько литров для забитых форсунок, обычное дело

Если появились такие симптомы, или некоторые из них, то повод задуматься о диагностике инжектора.

При неисправных форсунках, нужно как можно скорее устранить эту проблему, так как в дальнейшем, если так ездить, могут пострадать другие узлы двигателя, а это потребует уже гораздо больших расходов.

Какие бывают неисправности форсунок

На инжекторных мотора применяют два вида форсунок – электромагнитная и механическая.

Электромагнитная форсунка работает по принципу клапана, который в зависимости от сигнала блока управления автомобиля, открывается осуществляя впрыск в цилиндр необходимого количество топлива.

Механическая форсунка открывается от давления. В основе нее лежит пружина и игла. Она работает следующим образом: при подаче топлива создается определенное давление, игла поднимается и топливо распыляется в цилиндр.

Сейчас механические форсунки практически не используют на современных автомобиля, поэтому речь пойдет об неисправностях, электромагнитных форсунок.

Так как форсунка это достаточно несложная деталь по своему строение, неисправностей у нее может быть несколько:

  1. Отсутствие сигнала от блока управления
  2. Внутренний разрыв обмотки или другая ее неисправность
  3. Загрязнение каналов подачи топлива

Как правило, чаще всего форсунки перестают работать как нужно именно из за загрязнения.

Как проверить форсунки не снимая с двигателя

Если у Вас вдруг есть подозрения неисправности форсунок, то их можно проверить не снимая с двигателя.

100 процентной точности такая проверка инжектора не даст. Для того, более точно диагностировать работу форсунок необходимо специальное оборудование, которое не у всех есть.

Проверка на посторонние шумы

Данный метод, требует некоторого опыта. Необходимо это завести автомобиль, и послушать, издают ли какой-либо посторонний звук форсунки. Если вы услышите отчетливый высокочастотный шум, из области где стоят форсунки, то это значит, что нужно произвести прочистку.

Проверка форсунок мультиметром.

Суть данного метода заключается в измерении сопротивления на форсунках и сравнения его с эталонным. Алгоритм проверки сопротивления на форсунках:

  1. Узнаем, либо из технической литературы, либо из интернет-источников, какое сопротивление считается нормой для форсунки, и какой разброс может быть.
  2. Обесточиваем автомобиль путем снятия плюсовой клеммы с АКБ
  3. Снимаем разъем с форсунок, и поочередно проверяем каждую мультиметром в режиме замера сопротивления, сравнивая получаемые параметры, с темы которые должны быть.
  4. Если Вы обнаруживаете форсунку параметры которой отличаются от заводских, то вероятно, это и есть неисправная форсунка и ее нужно заменить. Если все сделали правильно, то проблема уйдет.

Проверка форсунки подачей напряжения на нее.

Суть данного метода заключается в том, что нужно отсоединить колодку питания на форсунку. Подключить в ней два провода и включить зажигание. Далее накинуть на клеммы аккумулятора эти два провода, если форсунка начинает распылять топливо, значит с ней все в порядке.

Проверка механических свойств форсунок

Еще один метод как проверить форсунки инжектора – это диагностика механических свойств.

У форсунок есть два основных параметра которые относятся к механическим свойствам. Это количество распыляемого топлива, и внешний вид факела распыления.

Для того чтобы проверить эти свойства, необходим специальный стенд проверки форсунок. Принцип действия такой проверки очень прост. Каждая форсунка начинает лить, в свой сосуд топлива в один и тот же момент времени. По окончанию теста, становится понятно какая форсунка не доливает, и у какой форсунки неправильный факел распыления.

Данный метод дает наиболее точное представление о том, какая форсунка требует чистки.

Ремонт и чистка форсунок

Существуют несколько способов очистки форсунок.

  • механический способ
  • чистка с помощью ультразвука
  • чистка химией

В гаражных условиях, можно почистить с помощью химии. Для этого заливают в топливный бак специальный очиститель форсунок, который в процессе работы автомобиля удаляет значительную часть загрязнения

.

Для того чтобы почистить форсунки ультразвуком, необходим специальный стенд. Суть метода заключается в том, что форсунки погружаются в специальную жидкость, в которой под воздействием ультразвуковых волн образуются пузырьки, благодаря которым и удаляются загрязнения.

Данный способ очень сложно реализовать в гараже, поэтому придется обращаться на СТО и платить за данную процедуру деньги.

Если не один из методов не помог, и восстановить форсунку не получилось, значит целесообразно ее заменить.

Топливные форсунки являются основным элементом инжекторной системы. Стоит следить и поддерживать их в рабочем состоянии, не допускать засорения и периодически делать профилактику, которая заключается в движении со скоростью 100-110 км/ч.

Топливная форсунка является неотъемлемой частью системы впрыска транспортного средства. Естественно, что от исправной работы форсунок зависит качество работы автомобиля в целом. Несмотря на то, что проблемами подкапотного пространства должен заниматься обученный специалист, определить источник проблемы можно самостоятельно.

Форсунки инжектора: расположение, назначение и принцип работы

Форсунки – ключевая часть работы системы впрыска, которая управляется программно и представляет собой, грубо говоря, электромагнитный клапан. Топливная форсунка (ТФ) отвечает за своевременную правильную подачу топливной смеси и пропорциональное смешивание её с воздухом.

ТФ обычно изготавливаются под конкретный тип двигателя и не могут считаться универсальными. Исключением являются топливные форсунки компании Bosch, которые применимы для механических систем с непрерывным впрыском. Несмотря на это, некоторые гидромеханические экземпляры имеют разные модификации, которые не имеют связи друг с другом.

Самое распространенное применение гидромеханические форсунки компании Bosch нашли в системе K-Jetronic.

Форсунки могут располагаться в нескольких местах в зависимости от формы всей системы:

  1. Непосредственный впрыск – ТФ размещаются вверху стенок цилиндра и обеспечивают подачу смеси непосредственно в камеру сгорания.
  2. Центральный – находятся рядом с заслонкой дросселя.
  3. Распределенный – для каждого цилиндра отведена отдельная форсунка, которая считается неотъемлемой частью впускного трубопровода.

Принцип работы ТФ основывается на передачи электромагнитных импульсов от ЭБУ к магниту инжектора. Последний, в свою очередь, управляет движением игольчатого клапана. Количество подаваемой смеси под давлением определяет длительность импульса при нахождении клапана в открытом положении.

Возможные неисправности: причины, проявление, последствия

Естественно, что топливные форсунки требуют периодического осмотра и чистки, а при необходимости даже замены. Определить проблемы возможно по ряду симптомов, среди которых:

  • Появление нехарактерных сбоев при запуске силового узла и при его работе на холостом ходу;
  • Увеличение расхода;
  • Нехарактерный цвет выхлопа.

После первых проявлений проблемы можно говорить о наличии серных отложений на элементах системы, коррозии, износе фильтров и некоторых рабочих деталей. В результате влияния каждого процесса происходит засорение системы подачи топливной смеси, а, следовательно – потеря мощности и большой расход.

В руководстве по эксплуатации указано, что проводить чистку форсунок необходимо каждые 20–30 тысяч км пробега. На практике этот интервал снижается до 10–15 тысяч км.

Проверка питания на форсунках

В случае если водителем отмечается исправная работа всех форсунок, но при включении зажигания инжектор отказывается работать, то имеет смысл проверить подачу импульса на форсунки.

Чтобы правильно произвести проверку необходимо отсоединить колодку от инжектора и подготовить два провода для их подключения к аккумулятору. Вторые контакты подсоединяют к форсункам.

Далее после завершения подготовки, включают зажигание и проводят анализ вытекания топлива. Главная задача – зафиксировать наличие или отсутствие протечки. В результате – если топливо вытекает то, можно говорить о проблемах работы всей электрической цепи. Если же утечка не наблюдается, то система работает исправно.

Определение поломки на слух

Большинство опытных водителей могут попробовать определить работу форсунок даже на слух. Новичкам не рекомендуется пользоваться подобным методом в силу отсутствия опыта.

Чтобы попробовать диагностировать форсунки на слух, не снимая с двигателя, потребуется, в идеале, стетоскоп, или небольшая тонкая доска. Одну сторону дощечки необходимо плотно прижать к обследуемой ТФ, ухом прикладываемся к другой стороне.

При исправной работе, форсунка не издает никаких сторонних звуков, не выделяет вибрации, а исключительно четко генерирует ритмичные щелчки. В случае если доносятся неравномерные шумы или стуки, то можно сделать вывод, что форсунка засорена. Степень повреждения определяется громкостью и частотой нехарактерного шума.

Автомобилисты с большим стажем могут при анализе обходиться и без пластины. Если неисправность существует, то из области двигателя будет исходить приглушенный высокочастотный звук, очень напоминающий писк. Если он непрерывно доносится при работающем моторе, то топливные форсунки необходимо исследовать на рампе или стенде.

Замер сопротивления при помощи мультиметра

Одним из основных применяемых способов для определения поломок топливных форсунок является замер сопротивления с помощью мультиметра. Перед началом работ важно определить заводской импеданс ТФ.

Зажигание при диагностике необходимо выключить, и отключить отрицательную клемму от АКБ. На форсунке отсоединяется соответствующий электрический разъем. Выполнить это можно благодаря отвертке с достаточно тонким концом – отщелкивается зажим на колодке.

Мультиметр нужно перевести в режим омметра и подключить соответствующие контакты. Полученные результаты между центральным и крайним контактом должны попадать в интервал 11–17 Ом для форсунок с высоким импедансом или в диапазон 2–5 Ом для форсунок с низким импедансом.

Наличие каких-либо отклонений от нормы дает основания для более детальной диагностики. В отдельных случаях топливную форсунку меняют на заведомо исправную, чтобы оценить работу силового узла.

Проверка баланса форсунок

Чтобы выполнить баланс ТФ необходимо для начала отключить бензонасос и завести машину. После нескольких секунд работы двигатель должен заглохнуть – это необходимо для исключения избыточного давления смеси. Затем подключается манометр, и только после возвращается на место бензонасос. Далее подключается компьютер с необходимым ПО и проводится диагностика.

Последующие действия выполняются исключительно при помощи специализированных программ. Можно обратить внимание, что бензонасос постепенно будет включаться и выключаться, как и форсунки. В целом можно выделить следующий алгоритм:

  • Включение зажигания;
  • Показания манометра в диапазоне 2,8–3 атм;
  • Отключается бензонасос;
  • Падение давление до 2,5–2,8 атм;
  • Проверка одной ТФ;
  • Анализ данных манометра – не должна наблюдаться значительная динамика;
  • Давление восстанавливается к исходному благодаря включению бензонасоса;
  • Процедура поочередно повторяется со всеми форсунками.

При правильной работе каждый элемент будет давать примерно одинаковые показатели. Если же в определенном месте сброс отличается, то можно говорить о неисправности форсунки или ее дальнейшей диагностики. После завершения манипуляций манометр нужно отключать лишь предварительно сбросив давление в системе.

Проверка форсунок на рампе

Диагностика ТФ на стенде подразумевает демонтаж полной конструкции с мотора. После чего подключаются контакты к рампе и ТФ. Клемма «-» должна быть подсоединена к АКБ.

Рампу размещают под капотом так, чтобы было удобно подключить мерную емкость. Подключают топливные трубки и включают зажигание. Мотор необходимо повернуть стартером. В момент вращение можно проконтролировать работу форсунок.

После выключения зажигания проверяют количество топлива в мерных колбах. В идеальном случае – оно одинаковое для каждой ТФ. Отклонение в сторону недолива говорит о необходимости чистки или замены, в ином случае – об утрате герметичности.

Как почистить форсунки, не снимая их с двигателя?

Обычно, самой распространенной проблемой ТФ является их неправильная или несвоевременная чистка, в результате чего они забиваются. Выделяют три вида очистки:

Чтобы очистить форсунки не снимая их, обычно достаточно выбрать и залить в топливный бак химический состав, который способен нормализовать работу. Периодически советуют разгонять мотор до высоких оборотов и скорости 110–140 км/час на ровных участках дороги. При прохождении дистанции в 10–25 км в таком режиме, в системе происходит «самоочистка» под нагрузкой.

Тем не менее подобные способы эффективны только при небольших загрязнениях. Большие очаги поражения необходимо устранять посредством ультразвука или под высоким давлением. А чтобы не допустить такого, промывать ТФ необходимо каждые 40–50 тысяч км пробега.

Ознакомиться наглядно с техникой проверки форсунок своими руками можно на видео:

Форсунка представляет собой электромеханический клапан, который работает в качестве электрического магнита. В момент поступления напряжения на обмотку форсунки возникает электромагнитное поле, способное втягивать сердечник и иглу запорного устройства, при этом пропуская поток топлива к камере сгорания двигателя. На входном канале устройств вмонтировано дополнительный фильтр для топлива.

Форсунка – заключительный элемент топливной системы, внутрь которого под высоким давлением поступает топливо. От работоспособности, этой составляющей напрямую, зависит вся работа двигателя внутреннего сгорания. Когда уровень давления при открытии форсунки падает, то она раньше открывается, из-за чего образовывается черный дым. Если же давление в момент открытия повышается, то она открывается позже и возникает дым белого цвета.

Признаки неисправности форсунок

1. Замедляется работа пусковых элементов двигателя, что особо ярко выражено при холодной погоде.

2. Возникновение провалов и неких подергиваний автомобиля в момент ускорения или смены переходных режимов.

3. Плохая динамика и снижение мощности в работе двигателя.

litezona.ru

Преимущества карбюраторного двигателя – Основные плюсы и минусы карбюраторного двигателя

Основные плюсы и минусы карбюраторного двигателя

Карбюраторный двигатель это один из видов двигателей внутреннего сгорания с внешним смесеобразованием. В подобных двигателях топливовоздушная смесь, которая поступает в цилиндры двигателя по впускному коллектору, производится в специально предназначенном для этого приборе – карбюраторе. Карбюраторные двигатели бывают атмосферные и без наддува.

Наибольшей популярностью пользуются бензиновые карбюраторные двигатели. Также известно, что в качестве топлива для двигателей подобного типа использовали спирт и керосин.

Сам карбюратор является устройством, которое предназначается для смешивания воздуха и бензина, создания горючей смеси и регулирования ее расхода.

К основным элементам карбюратора относятся: поплавковая камера с поплавком, жиклера с распылителем, диффузор и дроссельная заслонка.

В карбюраторе не предусмотрены датчики, которые бы могли анализировать число оборотов мотора, из-за этого равная доза попадает в камеру сгорания, как на холостом ходу, так и при максимальной скорости вращения коленчатого вала. Из-за этого происходит нерациональный расход бензина и поступление огромного количества вредных веществ в систему выхлопа и далее.

Карбюраторный движок четырехтактный:

  1. Такт впуска (в цилиндр попадает смесь от системы питания).
  2. Такт сжатия (поршень сдавливает горючую смесь в камере сгорания).
  3. Такт расширения (от свечи зажигания происходит возгорания смеси).
  4. Такт впрыска (за счет вращения коленчатого вала происходит выброс отработанных газов из цилиндра).

Какие же преимущества и недостатки имеют карбюраторные двигатели, обо всем и по порядку.

Преимущества карбюраторных двигателей

Основным преимуществом карбюраторных двигателей принято считать простоту устройства. Такой двигатель можно самостоятельно чистить, регулировать и доводить до желаемого режима работы. Для всех этих операций достаточно лишь прочитать несложную инструкцию. При ремонте такого двигателя нет необходимости в использовании дорогостоящих инструментов и приборов. Вполне достаточно будет отверток и гаечных ключей.

Карбюратор представляет собой сплошной механизм, тогда как в том же инжекторе сплошная электроника. Исходя из этого, становится понятно, что большинство неполадок карбюраторного движка можно отремонтировать самостоятельно, без помощи специалиста.

Положительные качества карбюратора:

  • Средние габаритные размеры.
  • Не особо большая масса сравнительно дизеля.
  • Простота устройства и доступная ценовая политика топливной аппаратуры.
  • Регулировка и техническое обслуживание на порядок проще, чем у ДВС.
  • Легкая диагностика.

Недостатки карбюраторных двигателей

Отрицательными моментами карбюратора считается его неразборчивость. Зачастую более чем через 10 тысяч километром после регулировки карбюратор готовит топливовоздушную смесь, содержание бензина в которой в разы превышает допустимые значения. Исходя из этого, вред наносится не только окружающей среде, но и составляющим частям самого двигателя.

Известны и обратные случаи, когда смесь имеет повышенное содержание кислорода, из-за чего движимые детали движка закисляются. Все эти нюансы приводят к тому, что в момент впрыска топлива, поршни ощущают недостающее количество давления, из-за чего не могут работать с мощностью, предполагаемой заводом-изготовителем.

Также недостатками двигателей карбюраторного типа считают:

  • Низкая экономичность.
  • Высокий уровень выбросов, загрязняющих окружающую среду.
  • Высокий уровень требований к топливу.
  • Незначительные динамические качества при переменных режимах работы.
  • Работа системы питания зависит от положения двигателя и самого автомобиля.
  • Высокий уровень пожароопасности.
  • Подвержен температурной зависимости.
  • Раскрутка мотора осуществляется достаточно тяжело.
  • Малый КПД.

Основные принципы работы карбюратора

  1. Карбюратор всасывает горючее внутрь двигателя.
  2. Работа карбюраторного двигателя нестабильная, поскольку он подвержен действию извне.
  3. Карбюраторный двигатель относительно сложно набирает обороты.

Карбюраторные двигатели в отличие от всех остальных видов являются менее требовательными к октановому числу (мере детонации стойкости моторных масел и бензина). Результатом использования топлива низкого качества является засорение жиклеров, однако они достаточно просто прочищаются и продуваются.

Не существует единого мнения насчет того хорош ли карбюраторный двигатель или нет. Отталкиваться необходимо от приоритетов и требований конкретного человека.

Людям, проживающим в сельской местности, либо жителям города, которые являются поклонниками рыбалки и охоты, стоит остановить свой выбор на карбюраторных двигателях. Поскольку для таких ситуаций крайне важно, чтобы ремонт можно было произвести самостоятельно и в достаточно быстрые сроки. Занятым людям, проживающим в крупных городах, особенно, где есть пробки, не особо подойдет карбюратор, так как зимой необходимо тратить значительную часть времени на прогрев двигателя, а добавив еще и пробки, вообще печальная картина получается.

Стоит отметить, что начиная с 2005 года, заводы перестали выпускать автомобили с карбюраторными движками, поскольку выброс отходов в атмосферу не соответствовал даже самым минимальным требованиям.

Выводы

Подводя итоги, можно отметить, что карбюраторный двигатель не особо экономичен с точки зрения расхода топлива. С другой стороны, такой двигатель менее требователен к качеству топлива, что сокращает растраты. При эксплуатации карбюраторному двигателю отдают предпочтение из-за его ремонтопригодности, поскольку незначительные ремонтные работы можно произвести самостоятельно, не прибегая к помощи мастера. В свою очередь выход из строя у таких двигателей происходит значительно чаще, но компенсируется за счет низкой стоимости обслуживания.

Карбюратор весьма прост и экономичен в обслуживании, но его значительно количество существенных недостатков притупляет все достоинства.

Похожие записи

plusiminusi.ru

Карбюратор или инжектор? | АвтобурУм

19.02.2018, Просмотров: 1415

Вопрос преимущества инжектора над карбюратором и наоборот, стоит при выборе отечественного автомобиля, либо иномарки 80-х и 90-х годов выпуска. Зачастую будущий автолюбитель сталкивается с простым, но в тоже время трудным выбором между двумя разными типами системы питания. Давайте разберемся.

Отличие карбюраторной системы питания от впрыска

У этих двух типов системы питания есть одно сходство – своевременное приготовление и подача эталонной топливно-воздушной массы в цилиндры двигателя. Сам принцип действия совершенно разный.

Карбюратор работает следующим образом: внутри карбюратора приготавливается смесь топлива и воздуха, масса которых определена пропускной способностью жиклеров и это количество зависит лишь от оборотов коленвала. Посредством разряжения готовая смесь попадает в цилиндр, в котором происходит такт впуска, где поршень стремится в НМТ, создавая разряжение. Такая система называется внешним смесеобразованием, то есть – вне цилиндра.

Двигатель с инжекторным мотором работает иначе: благодаря синхронизированной работе датчиков расхода воздуха или давления во впускном коллекторе, датчику кислорода, датчику положения коленчатого вала и температуры двигателя, блок управления двигателя в момент считывает пропорцию топливно-воздушной смеси, а так же момент ее подачи непосредственно в цилиндр или коллектор. Такое смесеобразование называется внутренним, так как смешивание воздуха и топлива образуется в самом цилиндре. Это и отличает два типа системы питания.

Преимущества и недостатки карбюратора

Первое, что нужно отметить – простота в ремонте, так как при неисправности данного агрегата его можно самостоятельно снять и починить. Благодаря тому, что карбюратор полностью механический, это позволяет самостоятельно настроить любые параметры под свои потребности, меняя жиклеры с разной пропускной способностью, выставляя поплавок уровня топлива, момент открытия второй заслонки и так далее. Так же отмечается дешевизна комплектующих и наличие во всех магазинах автозапчастей на отечественные марки. Карбюраторному агрегату нет разницы, какое топливо проходит через него, то есть с любым октановым числом. В 2005 году в России все выпускаемые автомобили ВАЗ и ГАЗ перевели на инжектор, так как в этом году транспортные средства должны были соблюдать нормы выхлопа по Евро-3.

О достоинствах:

  • низкая цена и стоимость обслуживания, возможность приобрести хороший б/у агрегат;
  • простая конструкция позволяет обслуживать и ремонтировать без специальных навыков;
  • легко диагностируется;
  • «переваривание» любого бензина;

О недостатках:

  • для полноценной и правильной работы следует регулировать вместе с зажиганием на специальном стенде, опираясь на тарированные данные по подбору жиклеров;
  • в поплавковой камере часто кипит бензин;
  • нестабильность при эксплуатации;
  • постоянные мелкие проблемы;
  • частая регулировка холостого хода и чистка жиклеров;
  • некачественные комплектующие;0
  • повышенный расход топлива при малейшей неисправности.

Преимущества и недостатки электронного впрыска

Благодаря инжекторной системе питания двигатель раскрывает весь свой потенциал, так как его работа полностью контролируется электроникой. Так же впрыск топлива отвечает требованиям норм выхлопа. Однако, большая часть автолюбителей, при выборе электронной системы питания, руководствуются тем, что такой силовой агрегат имеет высокий КПД, надежную работу во всем диапазоне оборотов коленчатого вала, экономию и возможность прошивки блока управления двигателем под разные стили езды, позволяя, не трогая механическую часть понизить расход топлива, либо повысить мощность.

У инжектора перед карбюратором весомые преимущества, а именно:

  • надежность и низкая частота поломок;
  • легкий набор оборотов;
  • возможность самодиагностики;
  • быстрая отдача на педаль газа;
  • экономичность;
  • возможность выбора режима работы двигателя;
  • возможность увеличения мощности без повышения расхода
  • бензина;
  • предупреждение о неисправности «Checkengine».

Есть и недостатки:

  • дорогой ремонт;
  • электроника зачастую не подлежит ремонтопригодности;
  • уязвимость к качеству топлива;
  • высокая стоимость комплектующих деталей.

На чем остановить выбор

Несмотря на то, что инжектор дороже в обслуживании и более прихотлив к качеству бензина, его надежность и возможность широкой настройки параметров опережает на сотни шагов вперед карбюратор. В конце концов, за определенный пробег два типа мотора могут выйти одинаково в цене, только карбюратору нужно будет чаще уделять внимание, а инжектор сделать один раз и надолго.

Выбирать карбюраторный двигатель можно в случае, если есть желание научиться ремонтировать двигатель, начиная с простого агрегата, а так же езда по сельской местности, где не всегда можно заправиться качественным топливом. Это касается исключительно отечественных машин. Не рекомендуется покупать иномарку с данной системой питания, так как в 99% случаев, автомобиль прошел через руки гаражных «кулибинов», которые в силу отсутствия знаний могли вместо ремонта только сделать хуже. Если же речь идет об автомобилях Audiили VW, которые уже переведены на отечественный карбюратор «Solex», тогда стоит присмотреться к данным моделям.

Инжекторный мотор это современные технологии и надежность. Единственным минусом может показаться то, что из-за неисправности одного из датчиков двигатель может и не запуститься. Зимой вы редко окажетесь в ситуации отказа в запуске такого двигателя. Инжектор также лучше поддается тюнингу, так как имеет широкий диапазон настроек, которые синхронизируются в одно целое, и выдает ожидаемую мощность. К примеру, добиться больше мощности от карбюратора можно только лишь при помощи подачи большего количеств топлива.

Что выбрать? Этот вопрос индивидуален для каждого. Выбор следует делать на основании своих потребностей, познаний технической части и финансовых возможностей.

autoburum.com

Как выбрать систему подачи топлива автомобиля. Что лучше: инжектор или карбюратор?

О преимуществах и недостатках инжекторных и карбюраторных систем подачи топлива в последнее время не говорят только ленивые. Вставим свои пять копеек и мы.

Принципы работы карбюратора и инжектора

И карбюратор, и инжектор в бензиновых двигателях выполняют одну и ту же задачу – подают топливо в камеру сгорания, однако делают это они по-разному.

Бензин из поплавковой камеры карбюратора поступает по жиклерам в распылитель, размещенный в нижней части диффузора, туда же поступает и воздух.

В камере сгорания вследствие опустившегося в первом такте вниз поршня происходит понижение давления воздуха. Именно за счет этого разрежения топливо и воздух попадают (в буквальном смысле слова всасываются) в камеру сгорания, по пути смешиваясь и распыляясь.

Совсем иной способ подачи топлива у инжекторных двигателей. В форсунках, соединенных топливной рампой, бензин находится под давлением, создаваемым электрическим топливным насосом.

Контроллер топливной системы, анализируя показания множества датчиков (положения коленчатого вала и частоты его вращения, скорости автомобиля, температуры двигателя, расхода воздуха и многих других) рассчитывает пропорцию топливной смеси и необходимое количество топлива.

Затем он отсылает команду на открытие и закрытие конкретной форсунки и подает искру к нужному цилиндру.

Преимущества и недостатки карбюратора

Основное преимущество карбюратора – простота обслуживания и ремонта, по сравнению с инжекторной системой подачи топлива.

Для того, чтобы привести карбюратор в надлежащее состояние, не требуется сложное и дорогостоящее диагностическое оборудование, достаточно «прямых рук» и знания его устройства.

Кроме того, стоимость карбюратора значительно ниже, чем инжектора. Следовательно, гораздо дешевле обойдется и его ремонт.

Карбюраторные системы подачи топлива нетребовательны к качеству бензина, вернее, к его октановому числу.

Двигатель с карбюратором худо-бедно, но будет работать даже на бензине марки А-76, а в случае выхода из строя одной из его систем на такой машине с горем пополам можно добраться до пункта автосервиса или хотя бы до дороги с оживленным движением.

Из недостатков карбюратора следует выделить его сравнительно невысокую надежность и низкую экономичность. Чувствителен карбюратор и к перепадам температур: в сильные морозы он замерзает, в летнюю жару – перегревается.

К тому же 10% мощности карбюраторного двигателя расходуется на засасывание воздушно-топливной смеси во впускной коллектор.

Чем хорош инжектор

Инжекторные двигатели потребляют топлива на 30-40% меньше, чем карбюраторные. Это достигается за счет использования электронной системы расчета качества горючей смеси и ее дозировки.

Отсутствие необходимости принудительной (за счет создания разрежения) подачи топлива в камеру сгорания, улучшенное наполнение цилиндров воздушно-топливной смесью и более совершенная геометрия впускного коллектора дают выигрыш в мощности в пределах 10%.

Выброс инжекторными двигателями в атмосферу вредных веществ примерно наполовину меньше, чем у двигателей с карбюраторами.

Инжекторные системы подачи топлива редко выходят из строя, а двигатели, оснащенные ими, легко заводятся при минусовых температурах воздуха, не требуя при этом длительного прогревания.

Так что же, у инжекторов совсем нет недостатков? Есть, но их немного и назвать их недостатками можно весьма условно.

Инжекторные двигатели весьма требовательны к качеству топлива, а в случае выхода инжекторной системы из строя, для ее ремонта потребуется квалифицированный персонал и специальное диагностическое оборудование.

Неприятным является и тот факт, что узлы инжекторной системы подачи топлива имеют низкую ремонтопригодность и довольно высокую стоимость.

Что выбрать?

Выбор между карбюратором и инжектором зависит от того, насколько далеко вы расположены от очагов цивилизации.

Если вы — житель мегаполиса или более-менее крупного города с разветвленными сетями пунктов автосервиса и АЗС с качественным бензином, катайтесь на машине с инжекторным двигателем, получая удовольствие от его динамики и экономя на бензине за счет его небольшого расхода.

Если же большую часть времени приходится двигаться вдали от райцентров и крупных населенных пунктов, остановите свой выбор на машине с карбюраторной системной подачи топлива.

Она будет лояльно относиться к качеству бензина, а в случае неполадок с карбюратором, вы при желании устраните неисправность карбюратора, что называется, в чистом поле и под открытым небом.

Удачи вам! Ни гвоздя, ни жезла!


goodmaster.com.ua

Плюсы и минусы карбюраторного двигателя

Еще в недавнее время под капотом каждого автомобиля можно было встретить карбюраторную систему подачи топлива. Современные экологические рамки заставили производителей задуматься о модернизации топливной подачи, вследствие этого автомобили начали оснащать инжектором. Большинство автовладельцев не могут по сей день определить, какая разница между силовыми агрегатами.

В конце 19 века, итальянцем Донатом Банки была разработана конструкция, основное предназначение которой было распыление бензина в цилиндры. Механический вид впрыска топлива, то есть инжекторный, появился менее чем, через 10 лет. Авиамеханическое строение заинтересовалось технологией, так как горючая смесь впрыскивалось вне зависимости от силы гравитации.

Серийное производство двигателей с инжекторной разработкой появилось в 1954, на автомобилях Mercedes 300SL. С начала 80-х годов силовые агрегаты с инжекторами получили массовое распространение в силу доступного различия электронного оборудования для программируемых блоков управления.

Как работает карбюратор

Устройство предназначено для газификации смеси, своего рода смешивания. Схема работы не отличается повышенной сложностью, поплавковая камера, в которой находится топливо, соединяется с камерами через жиклеры, происходит подача бензина во впускной коллектор. Поплавковая камера карбюра соединена с топливной магистралью, уровень горючей смеси контролируется игольчатым узлом.

1. Жиклер холостого хода; 2. Винт качества смеси; 3. Главный топливный жиклер; 4. Дроссельная заслонка; 5. Игла; 6. Жиклер иглы; 7. Отверстие в подпоршневую полость; 8. Диафрагма; 9. Канал от вспомогательного фильтра; 10. Вакуумный поршень.

Воздушная камера состоит из дросселя, распылителя и диффузора – это основные системы, обеспечивающие камеры сгорания двигателя бензином. Дополнительные модернизации, контролирующие запуск холодного двигателя, экономайзер, ускорительный насос устанавливались по потребности и сфере эксплуатации агрегата. За счет разряжения, в цилиндры подается рабочая смесь, которая приводит в движение установку.

Принцип работы инжектора

Инжекторная подача горючей смеси – более современная, эффективная при работе двигателей. Преимущества и отличия инжектора от карбюратора, что за подачу бензина в цилиндры отвечает электронный блок управления, который дозирует смесь в зависимости от типов нагрузки. Карбюратор и инжектор выполняют одинаковые функции – подают бензин в цилиндры. Инжекторная конструкция работает за счет множества датчиков, установленных на автомобиле.

Принцип работы инжектора: 1 — топливный бак; 2 — электробензонасос; 3 — топливный фильтр; 4 — регулятор давления топлива; 5 — форсунка; 6 — электронный блок управления; 7 — датчик массового расхода воздуха; 8 — датчик положения дроссельной заслонки; 9 — датчик температуры ОЖ; 10 — регулятор ХХ; 11 — датчик положения коленвала; 12 — датчик кислорода; 13 — нейтрализатор; 14 — датчик детонации; 15 — клапан продувки адсорбера; 16 — адсорбер.

Форсунки подают горючую смесь непосредственно в цилиндры, такой вид оснащения двигателя бензином используется практически во всех современных силовых агрегатах. За поддержание уровня топлива, наращённого бензонасосом в топливо проводе, отвечает обратный клапан. Устройство и разница форсунок состоит из электромагнитного клапана, пружины, а также распыляющей системы.

Используются различные типы подачи бензина в инжекторных системах:

  • Моно впрыск (одноточечная), наиболее дешевый вариант, устанавливается на силовых агрегатах малого объёма, в целях экономии топлива;
  • Распределенный (многоточечный) имеет несколько систем распыления для более полного насыщения цилиндров смесью;
  • Прямой или непосредственный впрыск устанавливается на гоночные автомобили.

Количество подаваемого бензина в цилиндры происходит по нескольким параметрам. Нагрузка на двигатель, его температура, количество окиси азота выхлопных газов, расход воздуха. Датчик положения коленчатого вала выполняет роль отсчета для подачи топлива в нужный момент и цилиндр. От положения дроссельной заслонки зависит количество горючей смеси, которое подается инжекторной системой, что является лучше, карбюратор или инжектор.

Основные различия между системами

Предназначение обеих систем состоит в насыщении цилиндров горючей смесью. Система заранее определяет и подготавливает смесь к подаче в двигатель, неэффективное распределение топлива влияет на общий расход, окружающую среду. Что лучше карбюратор или инжектор, первый пользуется популярностью при отдаленных местностях от сервисов, так как поддаются настройке без специализированного инструмента. В чем разница инжектора и карбюратора, выясняется многими автовладельцами перед покупкой нового или поддержанного железного друга.

Все реже можно увидеть на рынке автомобили с моновпрыском, так как автомобильную промышленность заполонили силовые агрегаты с современной системой подачи топлива. Чем отличается инжектор от карбюратора, что количество бензина подается при точно дозированной форме при определенных нагрузках, что положительно влияет на расход. Инжектор или карбюратор имеют различия между собой и особенности, ставящие серьезный выбор перед будущим владельцем.

Инжекторная система

Использование инжекторной системы в автомобилях обусловлено немалым количеством достоинств.

Применяемый долгое время при производстве силовых агрегатов карбюратор, остающийся лучшим, заменился более современной конструкцией по ряду причин:

  • Экономичность достигается за счет подачи бензина при необходимой дозировке, в зависимости от нагрузок и режима эксплуатации, чем отличается инжектор от карбюратора;
  • Температура окружающей среды не зависит на запуск двигателя, ЭБУ контролирует количество подаваемой горючей смеси на холодном двигателе;
  • Динамические показатели значительно выше, особенно на высоких оборотах.

Перед тем, как сделать выводы, что лучше на ваз 2109 инжектор, или карбюратор, стоит обратить внимание на некоторые сложности. Современная версия не требовательна к расходу бензина, имеет облегченный запуск при зимнем периоде. Однако, при длительной эксплуатации конструкция подвергается дорогостоящему ремонту, а то и заменой узлов.

Распространенные минусы и плюсы:

  • Используемое топливо при работе узлов должно быть качеством выше, чем в карбюраторных, иначе форсунки забьются, автомобиль потеряет динамические свойства;
  • Обслуживание и замена узлов происходит с помощью немалых финансовых затрат.

Карбюраторный тип подачи горючей смеси

Наиболее распространенной системой впрыска топлива, особенно на машинах, выпускаемых отечественным автопромом, является карбюраторный. Благодаря возможности ремонта своими руками в дали от автосервиса, следует вывод, что лучше выбрать карбюратор, или инжектор на ваз 21099.

Значительные плюсы и минусы данного типа подачи горючей смеси:

  • Замена устройства комплексом, обойдется дешевле инжекторной системы, на стоимость поддержанного автомобиля это никак не влияет;
  • Карб менее требователен к качеству бензина, своевременная замена топливного, воздушного фильтра дадут возможность долго проездить без технического обслуживания;
  • Ремонт и регулировка не требуют компьютерных диагностик, произвести настройку можно в гараже своими руками.

Естественно, инжектор и карбюратор используется при разных средах, при повышенных нагрузках. У старомодных систем проявляются значительные минусы при эксплуатации, поэтому стоит взвесить все за и против, прежде чем сказать, что лучше карбюратор или инжектор.

Отрицательные стороны карбюраторов:

  • Отличие, что запуск при морозе осуществляется только механическим способом, путем выдергивания подсоса из салона автомобиля;
  • Расход топлива намного выше, так как горючая смесь подается равномерно при разных режимах работы;
  • Малейшие, а так же большие сдвиги при настройке являются следствием нестабильной работы ДВС.

Подводя итоги в споре, что лучше карбюратор или инжектор, необходимо отметить, что каждая из разработок требует должного обслуживания при процессе эксплуатации. При тяжелых условиях следует проводить чистку узлов, замену фильтров чаще, чем описано в регламенте. Своевременное обслуживание придаст уверенности, надежности при эксплуатации автомобиля.

Переделка типа подачи горючей смеси

Для усовершенствования автомобиля, эксплуатируемого при городских режимах наиболее подходит переделка на инжектор. Автовладельцу предстоит доработать, приобрести множество деталей и комплектов для достижения результата. На этапе подготовки следует иметь все необходимые запасные части, разобрать переднюю часть автомобиля для удобной работы.

Слив жидкостей, разборка карбюратора, будущей инжекторной системы и топливной магистрали – основа для начала работ, необходимо проверить отличие агрегатов. Система питания ваз меняется на идентичный магистрали впрыска, происходит замена ГБЦ, впускного коллектора при большинстве случаев.

Выполнение замены требует определенных навыков, определенности что лучше карбюратор автовладельцу или инжектор, а также подхода к работе. Если не имеется достаточное количество опыта, инструментов и подготовки, стоит обратиться к специалистам в квалифицированный автосервис.

Если остались вопросы, посмотрите этот видео ролик, тут неплохо раскрыт ответ на вопрос, что же лучше карбюратор или инжектор:

Автор статьи: AutoKontact.ru

Почему же многие автовладельцы всё еще выбирают инжектор или карбюратор или стараются перейти на двигатели инжекторного типа? В первую очередь, это появление более строгих стандартов относительно состава выхлопных газов. Существуют определенные европейские стандарты, в которых прописаны требования по содержанию вредных выбросов в выхлопах, карбюраторные двигатели не соответствуют этим стандартам. Следовательно, в дальнейшем выбора между инжектор или карбюратор просто не будет. Но здесь проблема кроется не столько в отработанных газах, сколько в самой работе двигателя. В системе карбюратора можно отметить недостатков, нежели достоинств. Чтобы понять это, необходимо разобраться в специфике работы двигателей этих двух типов и понять их отличия.

Характеристики работы инжектор или карбюратор

В карбюраторном двигателе топливо поступает за счет перепадов давления в цилиндры двигателя, другими словами здесь не происходит принудительного вспрыска топлива. Получается, что топливная смесь засасывается двигателем, а не подается. Следовательно часть мощности двигателя расходуется на засасывание топлива. И системой не регулируется содержание воздуха в топливе. Таким образом карбюратор настраивается только единожды, и это можно считать универсальной настройкой. Но в этой универсальности есть существенные недостатки. Выходит, топливо поступает в большем количестве, чем того требуется двигателю. Так образуется лишнее, несгораемое топливо, которое выходит с выхлопом, а это уже чревато для экологии. Также, стоит заметить, что сэкономить на подаче топлива в карбюраторном двигателе не получится.

Система инжектора кардинально отличается от карбюраторной. Здесь топливо постепенно подается , то есть принудительно поступает в двигательные цилиндры. И при том количество поступаемого топлива контролируется электроникой. То есть эта система регулирует и воздух в топливе, и количество топлива, которое потребляется двигателем. Следовательно, несгораемое топливо сводится к минимуму, в отличие от карбюраторной системы. И, безусловно, это благотворно сказывается на экологии, потому как выхлопные газы остаются относительно чистыми. Если вообще здесь уместно говорить о “чистых” выхлопных газах. Вот в этих аспектах и состоит работа карбюратовного и инжекторного двигателя, несомненно, различия здесь налицо. Теперь же попробуем расставить приоритеты в работе инжектора и карбюратора .

Плюсы инжектора

Сразу стоит сказать, что двигатели с инжектором имеют гораздо большую мощность , чем карбюраторные. И, по мощности двигатель инжекторного типа может превосходить своего карбюраторного собрата на 10%. Очень многие факторы влияют на мощность инжекторного двигателя, это прежде всего: впрыск топлива (этот способ кардинально отличается от карбюраторного), форма впускного коллектора, выставленный угол зажигания. В инжекторном двигателе и расход топлива намного более экономичен, чем у его “коллеги”.Достигается это благодаря контролю со стороны электронной системы точности подачи топливной смеси. Из-за этого в системе не происходит частичного сгорания топлива. Несомненно, самая главная причина массового перехода на инжекторы стала высокая экологичность таких двигателей, что очень важно в нынешнее время . Как уже было сказано, в инжекторном двигателе происходит существенно меньше выброса вредных веществ. Если запуск двигателя происходит зимой, то есть в холодное время года, совсем необязательно его прогревать. Кроме того, инжекторные двигатели отличаются особой надежностью, и поломки случаются очень редко. И также стоит отметить, что в инжекторных автомобилях не предусмотрена катушка- трамблер, а ведь она, как правило, очень часто ломается.

Минусы инжектора

Кроме достоинств следует отметить и недостатки инжектора, хотя они и не так существенны. Как бы ни был надежен инжектор, как и любое другое устройство он способен ломаться. И, если уж поломка произошла, то без специальной электронной диагностики тут не обойтись, то есть “на глаз” определить поломку не представляется возможным. А также самостоятельно произвести ремонт без необходимых навыков не получится. А цена ремонта инжекторов в автомастерских довольна высока, замена инжектора на новый также недешевое удовольствие. В итоге, ремонт и профилактика инжектора- очень дорогостоящее мероприятие. Также инжекторный двигатель очень болезненно реагирует на качество топлива. Некачественный бензин с подозрительным составом может повлечь за собой крайне неприятные последствия для инжектора, вплоть до его полного выхода из строя. А в этом случае необходима чистка инжектора, стоимость этой процедуры довольно высока. Стоит также отметить немаловажный минус в том, что инжектор может приводить к перегреву двигателя, в том случае если инжекторную систему установить вместо карбюратора. Это напрямую связано с тем, что в инжекторе топливо сгорает в большем объеме, чем в карбюраторе, а это, в свою очередь, приводит к повышению температуры в цилиндрах двигателя.

Плюсы карбюратора

Конечно, как уже говорилось выше, карбюраторы имеют много недостатков,но тем не менее существуют и неоспоримые достоинства. Во-первых, карбюраторы очень просты в ремонте. Если вдруг произошла поломка , то легко можно произвести ремонт в условиях своего гаража, без использования различного рода устройств. А если возникает необходимость что-либо поменять, то запчасти на карбюратор стоят относительно недорого, впрочем, и замена самого карбюратора обойдется автовладельцу не так дорого. И во-вторых, нельзя не сказать, что карбюратор не так “придирчив” к качеству топлива. Механические примеси, содержащиеся в бензине, не создают значительных сбоев в работе двигателя. Но здесь стоит отметить, что существует проблема частого забивания жиклеров.

Минусы карбюратора

При своих несомненных плюсах, карбюраторные двигатели имеют и ряд существенных минусов, которые превалируют над достоинствами. Карбюраторные двигатели потребляют топлива в большем количестве, чем инжекторные, но это никак не влияет на увеличение мощности двигателя . Значительная часть бензина остается несгораемой и выходит с выхлопными газами. Карбюратор очень реагирует на температурный режим, очень плохо переносит как низкую, так и высокую температуру, вплоть до того, что детали карбюратора могут примерзнуть. это происходит при образовании испарений внутри устройства. С экологической точки зрения, карбюратор является менее предпочтительным, чем инжектор. В процентном эквиваленте выброс вредных веществ преобладает в карбюраторном двигателе.

Мне кажется эта тема уже давно «избита» и с развитием новых экологических норм уже давно снята с повестки дня. А ВОТ ОКАЗЫВАЕТСЯ И НЕТ! Многие пишут — что же реально лучше карбюратор или инжектор? А «новички» в автомобилях задают еще и такой вопрос – какая в них разница? Для меня уже все очевидно (закрыл этот вопрос давным-давно), но если есть такой интерес, значит напишу статью и сниму видео, будет и голосование внизу. Так что читайте-смотрите, будет интересно …

СОДЕРЖАНИЕ СТАТЬИ

  • За что отвечают обе системы?
  • КАРБЮРАТОР
  • ИНЖЕКТОР
  • ВИДЕО ВЕРСИЯ
  • ГОЛОСОВАНИЕ

Мой водительский стаж у меня почти 20 лет. За это время я вдоволь покатался на карбюраторе (было несколько ВАЗ, такие как 2101, 2103, 2105 и т.д.), и уже вдоволь накатался на инжекторных модификациях автомобилей (не только наших, но и импортных). Поэтому у меня есть реально возможность оценить тот и другой агрегат, хотя я считаю это не правильно, это как сравнивать ламповый телевизор и современную LCD панель.

За что отвечают обе системы?

Этот пункт именно для новичков — а действительно за что отвечают обе эти системы? Друзья все очень просто. По сути они нужны для «питания» наших моторов, а именно для создания воздушно-топливной смеси которая сгорает у нас в цилиндрах двигателя.

Вся разница у них только в том – что одна система механическая (практически нет электроники), а вот вторая наоборот электронная (за все отвечают датчики, электронные насосы и т.д.)

Механическая система — она же карбюратор.

Электронная – она же инжектор.

НУ а теперь подробнее.

КАРБЮРАТОР

Был изобретен первым, его утрированные модификации были еще на заре двигателей внутреннего сгорания, поэтому его можно назвать дедушкой современных систем питания двигателя.

Устройство в системе питания карбюраторных двигателей внутреннего сгорания, предназначенное для смешивания (карбюрации, от французского — carburation) бензина и воздуха, создания горючей смеси и регулирования её расхода.

Из чего состояла такая система (для примера я возьму ВАЗ 2101):

  • Бак (для хранения топлива)
  • Поплавок и совместно с ним трубка закачки бензина. Поплавок отслеживал уровень топлива и показывал его на панели приборов
  • Топливная магистраль. Обычно это бензостойкие шланги и трубки (медь, алюминий)
  • Топливный насос (диафрагменного типа). Качал с давлением в 20 – 30 кПа (около 0,3 атмосфер). Обычно находится в моторном отсеке, и был присоединен к двигателю. Почему? Да просто потому что приводился в движение механически – эксцентриком привода масляного насоса и распределителя зажигания через толкатель. Если утрировать на насосе внутри есть специальный «рычажок», на который давил этот эксцентрик и происходила накачка топлива за счет колебания мембраны. Кстати снаружи на корпусе также был рычажок для ручной подкачки, например — кончилось топливо, залили новое, и вам нужно было закачать вручную, чтобы запустить автомобиль и не расходовать заряд АКБ.
  • Карбюратор. От насоса шел шланг с топливом, который подходил к главному узлу. Именно карбюратор смешивал топливо с одной стороны и захватывал воздух с другой. Кстати обычно сверху находилась круглая банка в которой был воздушный фильтр, через который проходил воздух и поступал внутрь для смешивания.
  • Впускной коллектор. Уже через него поступала готовая топливно-воздушная смесь в цилиндры двигателя.

Система по современным меркам – ОЧЕНЬ ПРОСТАЯ и не прихотливая. По сути, ломаться было нечему, однако внутри карбюратора были несколько жиклеров, иголка, поплавок, дроссельная заслонка (заслонки), которые могли влиять на работоспособность этого узла. Нужно отметить, что заслонки открывались от нажатия педали газа, причем привод был механический (обычный тросик).

ПЛЮСЫ:

  • Простая конструкция. Действительно можно разобрать в любом лесу
  • Дешевый и легкий ремонт. Мне кажется, практически любой автомобилист ковырял у себя в гараже
  • Дешевые запчасти
  • Низкие требования к качеству топлива (работал на АИ-76)
  • Упрощенная диагностика. Зачастую не нужно использовать различные стенды
  • Нет большого количества электронных датчиков, которые нужны для работы

МИНУСЫ:

  • Низкая стабильность работы. Раз в 2 – 3 месяца нужно было регулировать
  • Сложно было точно настроить.
  • Зависимость от перепадов температур (зимой мог замерзать, мог образовываться конденсат, который приводил к залипанию поплавка или иглы. Летом — мог перегреваться)
  • Большее потребление топлива, чем у оппонента
  • Большой выброс вредных веществ (таких как СО). Одна из причин запрета, отвечает нормам ЕВРО2
  • Сложно раскрутить мотор и вывести на полную мощность
  • Заливание свечей. Если один-два раза не запустил, то может залить свечи топливом, они не будут эффективно давать искру, не запустите мотор. Нужно выкручивать свечи и сушить – калить их.
  • Запах в салоне. Как бы я не регулировал карбюратор, но был постоянный запах в салоне, толи бензина, толи неправильного выхлопа

Как бы не казались карбюраторные системы простыми и легкими в обслуживании, мороки с ними было больше. За год эксплуатации вы обязательно бы регулировали его минимум 3 – 4 раза, а может быть и больше. Зимой в сильные морозы один раз не запустили мотор, шанс что вообще запустите (без прокаливания свечей) уменьшался в разы. Нужно было играться подсосом после пуска (современные водители сейчас и не знают что это такое).

И сказать честно – Я ВООБЩЕ НЕ ЖАЛЕЮ, ЧТО КАРБЮРАТОРЫ УШЛИ В ПРОШЛОЕ. Они выполнили свою задачу, и по сути достигли своего предела.

ИНЖЕКТОР

Электронная система подачи воздушно-топливной смеси. Появился гораздо позже и сейчас уже модернизировался несколько раз. Все механические части были заменены на электронные, также существует система управления (ЭБУ), которая базируется на различных датчиках

Инжектор от слова INGECTION, перевод — впрыск или инъекция топлива

Сейчас различают три основных вида систем:

  • МОНОВПРЫСК. Самый древний вид, пришел на смену карбюратора, по сути является им же, только с электронной составляющей. Распыляет бензин сразу в весь впускной коллектор. Уже не устанавливается на машины, ибо не входит по нормам экологии
  • РАСПРЕДЕЛЕННЫЙ впрыск. Здесь в каждую трубу установлен свой инжектор, который подает топливо только в свой цилиндр
  • НЕПОСРЕДСТВЕННЫЙ впрыск. Здесь форсунки установлены в блок двигателя, в саму камеру сгорания.

Из чего состоит данная система:

  • Бак. Также для хранения бензина
  • Топливный насос. Обычно он погружается прямо в топливо. Его не нужно крепить на двигателе, потому как он электрический, ему не нужны приводы. Нужно отметить, что он создает давление около 3 атмосфер.
  • Топливная магистраль. Также есть шланги и трубки
  • Топливная рампа. К ней походят трубка или шланги от магистрали, а также зачастую вкручиваются сами инжектора.
  • Инжектор. Система впрыска топлива в определенной пропорции. В системах с распределенным впрыском, располагаются на впускном коллекторе.
  • Дроссельный узел (совмещен с воздушным фильтром). Подает воздух для смеси, в нем стоит заслонка, которая регулирует нужный объем воздуха. А вы в свою очередь регулируете все нажатием на педаль газа (зачастую электронную)

Конечно чтобы заставить работать инжекторный вариант нужно большое количество датчиков которые контролируют — подачу топлива, воздуха, скорость автомобиля, вращение коленчатого вала, положение дроссельной заслонки, температуру охлаждающей жидкости, детонации.

Может показаться, что система сложная, но это не так. Одним из основных датчиков является ДПКВ (датчик положения коленчатого вала). По его показаниям определяется цилиндр, время подачи топлива и искры.

Эта информация идет в ЭБУ и именно этот блок управления дает приказания насосу начинать нагонять давление топлива в магистрали после в рампе. То есть оно находится сзади инжектора. Далее воздух идет от дроссельного узла и при достижении инжектора, происходит открытие и воздух смешивается с бензином в нужной пропорции. После эта смесь засасывается цилиндром двигателя и сгорает внутри.

Инжекторный вариант имеет много преимуществ

ПОЛОЖИТЕЛЬНЫЕ МОМЕНТЫ:

  • Стабильная работа двигателя
  • Большая мощность
  • Долговечность. Не нужно регулировать каждые 2-3 месяца
  • Меньший расход топлива, до 30%
  • Не зависит от перепада температур. Работает одинакового летом и зимой
  • Меньше до 75% выбросов вредных веществ
  • Нет переливов топлива при запуске. Можете крутить долго, пока позволит аккумулятор
  • Нет вони бензина в салоне. Потому как очень точная дозировка

ОТРИЦАТЕЛЬНЫЕ МОМЕНТЫ:

  • Сложный ремонт и диагностика. Только при наличии специального оборудования. В лесу вы точно не сделаете
  • Наличие большого количества датчиков
  • Высокая стоимость узлов
  • Сложно или вообще невозможно отремонтировать сломанный датчик или узел
  • Требуется качественное топливо не менее 92 бензина, чтобы форсунки не забивались

Что я хочу сказать сейчас инжектор, особенно если у вас рядовая система MPI работает очень стабильно! Нет каких либо проблем, ни с форсунками, ни с топливным насосом, ни сдатчиками и прочим. Ходят по 100 – 200 000 без каких-либо серьезных проблем. Самое главное почистить форсунки раз в 150 000 км и заменить фильтр топливного насоса и катаемся дальше. Сейчас нет никакого смысла обратно ставить карбюратор, даже на НИВУ или УАЗ, даже для соревнований по грязи!

Сейчас видео версия смотрим.

А теперь голосование, что вы считаете лучше карбюратор или инжектор?

НА этом заканчиваю, подписывайтесь на наш сайт, канал, будет еще много интересных видео и статей. ИСКРЕННЕ ВАШ АВТОБЛОГГЕР.

(34 голосов, средний: 4,12 из 5)

Похожие новости

Датчики на инжекторный двигатель. Разберем на примере ВАЗ

Не заводится машина. Очень подробно про стартер, а также другие .

Как увеличить мощность двигателя. Эволюция автомобиля

litezona.ru

Инжекторный и карбюраторный двигатели — в чем отличие. Преимущества с недостатками дизелей и многое другое

Двигатель — самая важная часть автомобиля. Именно благодаря этому агрегату машина приводится в движение. Нет двигателя — машина превращается в обычную повозку. Телегу. Только в эту телегу лошадей не запрячь.

При помощи двигателя энергия сгорания топлива или энергия электрическая преобразуются в механическую энергию, которая необходима для движения.

Традиционно на автомобилях применяются двигатели внутреннего сгорания на бензине или дизельном топливе, используются также газовые двигатели, всё чаще начинают применять гибридные двигатели, которые представляют собой симбиоз двигателя внутреннего сгорания и электродвигателя. Очень много разработок в области электрических двигателей. Однако, данный тип двигателя пока не получил широкого распространения.

Двигатели внутреннего сгорания


Бензиновые двигатели внутреннего сгорания


В цилиндрах таких двигателей сжатая воздушно-топливная смесь воспламеняется искрой. Мощность двигателя регулируется путем регулирования потока воздуха, при помощи дроссельной заслонки.

В автомобилях, возраст которых составляет 10 лет и старше, управление дросселем осуществлялось путем нажатия на педаль газ. На современных автомобилях тоже нужно нажимать на газ, но только для того, чтобы послать сигнал ЭБУ (электронному блоку управления, «мозгам»), управляющему дроссельной заслонкой.

Виды бензиновых двигателей Бензиновые двигатели могут быть карбюраторными и инжекторными. Бензиновые двигатели различаются по числу и расположению цилиндров, по способу охлаждения (воздушное и масляное охлаждение), по способу наполнения цилиндров воздухом (атмосферные, с наддувом, компрессорные) и другие.

Карбюраторные бензиновые двигатели

В карбюраторном двигателе горючая смесь приготавливается, собственно в карбюраторе. Основных видов карбюратора три:

  • поплавковый;
  • мембранно-игольчатый;
  • барботажный.

Барботажный карбюратор выполнен в виде бензобака с поднятой над топливом глухой доской, оснащенной двумя патрубками, подающей воздух в бак и отбирающей смесь в двигатель. Как видно из конструкции, данный карбюратор очень примитивен. Он является достаточно громоздким, малоэффективным и сильно зависящим от погодных условий. Кроме того, его применение небезопасно. Может случиться взрыв паров топливно-воздушной смеси.
Барботражный карбюратор
1 — дроссельная заслонка

Мембранно-игольчатый карбюратор создан как самостоятельная часть, элемент автомобиля. Устройство состоит из нескольких камер, которые разделены мембранами и соединенны штоком с иглой на конце, которая запирает седло клапана подачи бензина. Достоинством данного карбюратора является то, что его можно размещать в любом положении, относительно поверхности земли. Недостаток — сложность настройки. Обычно такой карбюратор устанавливается на газонокосилки, бензорезы и т.п. Но в качестве вспомогательного устройства, его можно обнаружить на автомобиле ЗИЛ-138.

Поплавковые карбюраторы составляют подавляющее большинство существующих в природе карбюраторов. Именно поплавковые карбюраторы устанавливаются на автомобили. Стоит заметить, что модификаций данного типа карбюратора огромное множество. Но, в обязательном порядке, в его состав входит поплавковая камера и смесительная камера.

Инжекторные двигатели

Инжекторная система впрыска топлива стала активно применяться в 80-х годах прошлого века. Инжекторные двигатели отличаются от карбюраторных тем, что в инжекторной системы происходит принудительный впрыск топлива во впускной коллектор или цилиндр.

В настоящее время в большинстве инжекторных двигателей используется электронная система впрыска. А происходит это так: в контроллер с датчиков собирается всевозможная информация, в том числе о положении коленвала, положении дросселя, скорости автомобиля, температуры охлаждающей жидкости и входящего воздуха. На основании этих данных контроллер подает сигналы форсункам, системе зажигания, регулятору холостого хода и другим системам.


Инжектор, по сравнению с карбюратором имеет ряд преимуществ:

  • уменьшение расхода топлива;
  • упрощение запуска двигателя;
  • уменьшение вредных выбросов;
  • отсутствие необходимости в ручной настройке системы.

Но есть и недостатки:
  • постоянная необходимость в напряжении питания;
  • нужда в специальных познаниях, в случае ремонта.

По большому счету, именно требования к понижению количества выброса вредных веществ, заставило автопроизводителей перейти от карбюратора к инжектору. Катализаторы, которые ставят на инжекторные автомобили, способны работать при достаточно узком диапазоне химического состава веществ, выходящих через выхлоп. А обеспечить такой диапазон может только современная система впрыска.

Особенности современных бензиновых двигателей Во многих моделях современных автомобилей применяется для каждой свечи своя отдельная катушка зажигания. Особенно характерно это для японских автомобилей.

Чтобы решить проблему «зависания» заслонок, во многих «больших» двигателях используют по два впускных и выпускных клапана на цилиндр.

Как уже было отмечено, в большинстве современных автомобилей используется электронная педаль газа.

Дизельный двигатель


Как и бензиновый, дизельный двигатель является агрегатом внутреннего сгорания. Только в качестве топлива в таком двигателе можно использовать широкий диапазон жидкостей: от керосина и мазута до пальмового и рапсового масла.

Принцип работы четырехтактного дизельного двигателя

1-й такт: открывается впускной клапан, «всасывая» в цилиндр воздух, после этого впускной клапан начинает закрываться, а выпускной — открываться.

2-й такт: поршень сживает воздух.

3-й такт: поршень двигается к верхней мертвой точке, в горячий воздух распыляется топливо, которое воспламеняется, а продукты сгорания двигают поршень вниз.

4-й такт: поршень идет вниз, продукты сгорания удаляются через выпускной клапан.


С некоторыми особенностями, но по такому принципу работают практически все ДВС с поршневой системой.

Особенности дизельного двигателя, топлива и автомобилей с дизельным двигателем:

  • — двигатель имеет КПД до 50 процентов;
  • — дизельный двигатель не имеет возможности набирать высоких оборотов. Топливо не успевает за короткое время догореть. По причине высокой механической напряженности детали дизельного двигателя дорогостоящие и массивные.
  • — дизельный автомобиль более экономичен и отзывчив в движении.
  • — дизельное топливо нелетучее, а следовательно более безопасное. Кстати, вредных веществ дизель выбрасывает меньше, чем бензиновый двигатель. Но, катализаторы, установленные на инжекторных автомобилях, нивелируют разницу.
  • — дизельное топливо при низких температурах часто застывает и парафинируется, что может означать одно: дизель труднее завести зимой.
  • — современные дизельные двигатели чаще всего идут в комплекте с турбинами и интеркуллерами.

Рекорды дизеля В 2006 году автомобиль JCB Dieselmax, оснащенный дизельными двигателями развил скорость в 563 километра в час. Каждый из дизелей имел объем 5 литров и мощность 750 лошадиных сил.э

Самым большим дизельным двигателем является 14-ти цилиндровый судовой Wartsila-Sulzer RTA96-C, рабочий объем которого более 25 литров, мощностью 108920 лошадиных сил.
Wartsila-Sulzer RTA96-C

Самый мощный «грузовой» дизель MTU 20V4000 устанавливается на карьерные самосвалы «Либхерр». Он имеет конфигурацию V20, объем — 95, 4 литра и мощность 4023 лошадиных силы.

Самый большой «легковой» дизель устанавливается на Ауди Кью 7. Его рабочий объем — 6 литров, он имеет V-образную форму и 12 цилиндров. Мощность двигателя — 500 лошадиных сил.

Газовый двигатель


В газовом двигателе в качестве топлива используются углеводороды. Он тоже относится к ДВС.

Газовое топливо, как правило, закачивается в баллон, установленный на автомобиле, под высоким давлением. Газовый редуктор понижает давление газовой жидкости или паров до атмосферного, через форсунки смесь впрыскивается в двигатель, где воспламеняется при помощи искры.

Комбинированные ДВС


Данный тип двигателя называется так потому, что он представляет собой комбинацию поршневого и лопаточного устройств.

Наиболее распространен среди комбинированных — поршневой двигатель с турбонагнетателем. Принцип действия такой: в результате действия выхлопных газов на лопатки турбины раскручивается её ротор, вал, а также ротор компрессора, нагнетающего кислород в двигатель. Таким образом, энергия выхлопных газов, которая без турбонагнетателя не использовалась бы, нашла свое применение.

Дополнительные системы, необходимые для ДВС


Двигатель автомобиля сравнивают с человеческим сердцем. Сердце не может функционировать без взаимодействия с другими органами в организме. Так и двигателю для нормальной работы нужно несколько дополнительных систем.

Конечно же, большинство двигателей не может работать без трансмиссии, потому что эффективен ДВС только в узком диапазоне оборотов. Впрочем, сейчас активно ведутся разработки по созданию гибридных двигателей, которые всегда должны работать в оптимальном режиме.

Двигателю нужны система зажигания, выхлопа и охлаждения. О последней стоит поговорить более подробно.

Система охлаждения двигателя внутреннего сгорания


Система охлаждения представляет собой набор устройств, которые подводят к конкретным элементам двигателя охлаждающую среду, отводящую от них в атмосферу лишнюю теплоту. Система охлаждения двигателя имеет целью поддержание температуры двигателя в рабочих параметрах.

Когда в цилиндре сгорает топливная смесь, температура достигает 2000 градусов. Охлаждающая жидкость обязана поддерживать температуру двигателя в пределах 80-90 градусов.

Система охлаждения двигателя может быть воздушной, жидкостной и гибридной.

Воздушное охлаждение


Воздушное охлаждение — самое простое из типов охлаждения двигателя. Оно может быть естественным и принудительным. Оно осуществляется путем установки развитого оребрения на внешней поверхности цилиндров. Такое охлаждение имеет значительные недостатки. Так воздух не может отводить значительные массы тепловой энергии. А некоторые участки двигателя подвергаются опасности локального перегрева. Воздушное охлаждение устанавливается на мопеды, мотоциклы, скутеры.

Принудительное воздушное охлаждение осуществляется путем установки вентиляторов, оребрения и помещения системы в защитный кожух. Здесь также существует опасность локального перегрева участков двигателя, которые недостаточно обдуваются воздухом. Кроме того, повышается уровень шума агрегата. В Советском союзе системой воздушного охлаждения был оснащен автомобиль Запорожец.

Дизельный грузовой автомобиль Татра до 2010 года оснащался системой принудительного воздушного охлаждения. Многие трактора, преимущественно легкие и средние используют аналогичную систему охлаждения.
Двигатель Lombardini 11LD 626-3NR — 4-х тактный трёхцилиндровый дизельный двигатель с горизонтальным расположением вала отбора мощности и воздушным охлаждением.

Жидкостное охлаждение


В данном типе систем охлаждения двигателей охлаждающая жидкость перемещается по замкнутому контуру. А тепло выдувается при помощи радиатора, установленного под капотом авто.

Жидкостная система охлаждения предусматривает следующие составные части:

  1. Рубашка охлаждения — полость, которая охватывает части двигателя нуждающиеся в охлаждении. По этой полости циркулирует охлаждающая жидкость.
  2. Помпа, которая обеспечивает циркуляцию жидкости по контуру.
  3. Термостат — устройство поддерживающее рабочую температуру жидкости. Если температура не достигла рабочей, то термостат направляет жидкость по малому кругу циркуляции.
  4. Радиатор. Он выводит тепло из системы.
  5. Вентилятор, создающий поток воздуха, направленный на радиатор для ускорения вывода тепла из системы.
  6. Расширительный бак.

Охлаждение масла


Очень часто, особенно в случаях с двигателями большой мощности, нуждается в охлаждении и масло. Масло охлаждается при помощи охлаждающей жидкости, или же при помощи воздуха, с использование отдельного радиатора.

Испарительная система охлаждения


При такой системе охлаждения охлаждающая жидкость или вода доводятся до кипения, в результате чего теплонагруженные элементы двигателя охлаждаются. Испарительная система охлаждения до сих пор применяется для понижения температуры мощных дизельных агрегатов в Китае.


История создания


Известно, что в 1807 году француз де Ривас сконструировал первый поршневой двигатель. Несмотря на то, что устройство, которое получило название «машина де Риваса», работала на сжиженном водороде, оно имело ряд признаков двигателя внутреннего сгорания. В частности, шатунно-поршневую группу, зажигание с искрой. Француз Ленуар в 1860 году сконструировал двухтактный газовый двигатель внутреннего сгорания. Мощность этого устройства составляла около 12 лошадиных сил, искра подавалась от внешнего источника, а коэффициент полезного действия не превышал 5 процентов. Между тем, двигатель Ленуара имел практическое применение. Его устанавливали некоторое время на лодки.

Немец Отто, изучив устройство Ленуара, построил в 1863 году атмосферный двухтактный одноцилиндровый двигатель, который имел КПД уже 15 процентов. При этом, топливо воспламенялось при помощи открытого пламени. В 1876 году все тот же Отто построил четырехтактный газовый ДВС.

А вот первый карбюраторный двигатель внутреннего сгорания был сконструирован в России в 1880-х годах. Его создателем стал О. С. Костович.

В 1885 году Даймлер и Майбах создали карбюраторный бензиновый двигатель. Сдела двигатель был для мотоцикла. Но в 1886 году его установили на автомобиль.

В 1897 году Дизель усовершенствовал двигатель Даймлера-Майбаха, оснастив его зажиганием. Через год в России на заводе «Людвиг Нобель» Г. Тлинкер доработал двигатель Дизеля, превратив его в двигатель высокого сжатия с воспламенением. Но широкое применение данный двигатель получил не как силовой агрегат автомобиля, а как стационарный тепловой двигатель. Мощность устройства составляла около 20 лошадиных сил. Главным его преимуществом была экономичность.

В начале 20-го века Коломенский завод выкупил у «Людвиг Нобель» лицензию на выпуск «русских дизелей». В 1908 году главный инженер этого завода патентует двухтактный дизельный двигатель с двумя коленвалами и противоположно-движущимися поршнями.

Параллельно происходила разработка бензиновых двигателей. В США изобретатели Харт и Парр разработали двухцилиндровый бензиновый двигатель. Он имел мощность в 30 лошадиных сил.

Так наступила эра автомобилей, самолетов, теплоходов и тепловозов. Королем в этой эре выбрали двигатель внутреннего сгорания.

4x4ru.com

Карбюраторный двигатель: устройство и принцип работы

Карбюраторный двигатель по причине своих отличных эксплуатационных характеристик пользуется популярностью на протяжении длительного времени. Такие моторы сочетают простоту конструкции, надежность и ремонтопригодность. Особенностью силовых агрегатов данного типа является внешнее смесеобразование. Топливо смешивается с кислородом в карбюраторе и в последующем подается в камеру сгорания.

Фактически, карбюратор представляет собой устройство, где происходит приготовление топливной смеси за счёт смешивания жидкого топлива с воздухом.

Виды карбюраторов

  • В зависимости от способа образования смеси карбюраторы принято разделять на пульверизационные и испарительные. Первоначально популярностью пользовались испарительные модификации, однако впоследствии наибольшее распространение получили пульверизационные, которые обеспечивают максимально качественное разбрызгивание смеси в камере сгорания.
  • В зависимости от числа используемых смесительных камер принято выделять одно, двух и четырехкамерные модификации.
  • Также карбюраторы различаются в зависимости от способа и порядка открытия дроссельных заслонок. Так, заслонки в карбюраторах могут открываться принудительно и автоматически. При этом открытие заслонок на вторичной камере может проходить последовательно или параллельно. Всё это непосредственно влияет на конструкцию агрегата, обеспечивая приготовление качественной воздушно-топливной смеси и ее последующее полное сгорание в двигателе.
  • Наибольшей популярностью сегодня пользуются карбюраторы с нисходящим потоком и соответствующим направлением главного воздушного клапана.
  • Также существуют модификации карбюраторов с горизонтальным и восходящим воздушным потоком. Однако подобные разновидности по причине сложной конструкции не получили сегодня должного распространения и встречаются крайне редко.
  • В зависимости от типа камеры принято разделять барботажные, мембранно-игольчатые, поплавковые. На сегодняшний день барботажные карбюраторы уже не используются, а вот мембранно-игольчатые и поплавковые все еще распространены. Мембранные разновидности состоят из нескольких камер, которые соединяются игольчатым клапаном. Именно открытие и закрытие клапанов позволяет регулировать объем поступающей топливной смеси. Поплавковые разновидности имеют одну камеру сгорания с установленным внутри поплавком. Именно такой поплавок и регулирует работу запорного клапана, позволяя поддерживать постоянный уровень топлива в камере.

Устройство карбюратора

Несомненным преимуществом карбюратора является его простота конструкции, он состоит из двух элементов: поплавковой камеры 10 и смесительной камеры 8.

Топливо под давлением по трубке 1 подается в поплавковую камеру 10, где находится поплавок 3 и запорная игла 2. Такая игла фактически является простейшим клапаном, который регулирует уровень топлива в камере. Наличие такого клапана позволяет обеспечить постоянный уровень топлива в поплавковой камере в процессе работы двигателя, а, следственно, подача бензина в цилиндры осуществляется равномерно. А благодаря балансировочному отверстию (4) в поплавковой камере поддерживается атмосферное давление.

Затем топливо поступает через жиклёр 9 в распылитель 7. При этом количество топлива, которое выходит из распылителя, зависит от степени вакуума, образовавшегося в диффузоре и диаметре проходящего отверстия в жиклере.

При впуске давление в цилиндрах уменьшается. Воздух из окружающей среды поступает в цилиндр через смесительную камеру 8, где расположен диффузор 6 (трубка Вентури), и впускной трубопровод, который распределяет готовую смесь по цилиндрам.

Распылитель находится в самой узкой части диффузора, где, по закону Бернулли, скорость потока достигает мах значения, а давление падает до мin значения. Выход топлива из распылителя осуществляется за счёт разности давлений.

Управление карбюратором и дроссельной заслонкой 5 может выполняться исключительно механически через связь с педалью газа, так и различными автоматическими системами, которые устанавливались на поздних модификациях в карбюраторных двигателях. Наибольшее распространение получила система управления карбюратором с металлическим тросом, которая отличается простотой конструкции и надежностью.

Подача воздуха происходит путем открытия и закрытия воздушной заслонки. Такая заслонка на большинстве двигателей имеет полуавтоматических ход. В процессе эксплуатации работа используемой воздушной заслонки может нарушаться, что приводит к переобогащению смеси или ее обеднению. Именно поэтому в ходе эксплуатации такого карбюраторного двигателя необходимо регулярно производить осмотр и соответствующую регулировку воздушной заслонки и всего карбюратора.

Одной из разновидностей карбюраторов являются эмульсионные варианты, в которых в распылитель поступает уже не жидкое топливо, а эмульсия, полученная из воздуха и топлива. Считается, что эмульсионные карбюраторы обеспечивают максимальный коэффициент полезного действия, что достигается за счёт улучшенного распыления бензина в воздушной смеси.

Регулировка карбюратора

Карбюраторный двигатель отличается простотой конструкции, однако подобная система впрыска топлива неизменно требует исправной работы всех механизмов и узлов. Нарушение настройки карбюратора, а подобные проблемы неизменно возникают в процессе эксплуатации этого механизма, приводят к ухудшению приемлемости, экономичности, при этом отмечается увеличение показателей токсичности отработанных газов. Именно поэтому нужно пристально следить за состоянием работы карбюратора и при необходимости вносить соответствующие корректировки.

Автовладельцу при эксплуатации автомобиля с карбюраторным агрегатом доступно две регулировки путем изменения положения винта количества и винта качества. Винт количества отвечает за показатель оборотов на холостом ходу. Тогда как изменение положения винта качества позволяет регулировать степень обогащения топливно-воздушной смеси.

В редких случаях могут отмечаться серьезные поломки, в особенности при появлении неучтенного подсоса воздуха или же нарушении герметичности клапана и системы холостого хода. Всё это приводит к необходимости диагностики и ремонта карбюратора силами специалистов сервисного центра.

Преимущества и недостатки

Преимущества:

  • Если говорить о преимуществах карбюратора, то можем отметить простоту конструкции и надежность. В такой системе питания используются простые механизмы, которые управляются механически и практически не имеют подвижных частей. Фактически, ломаться в карбюраторе нечему, поэтому подобный узел отличается надежностью и долговечностью.
  • Если сравнивать карбюраторный мотор с инжекторным, то из преимуществ можно отметить лучшую работу при низких температурах и устойчивый запуск в жару и холод. Регулировка карбюратора не представляет сложности. Имеется два винта, изменение положения которых позволит внести необходимые корректировки в работу силового агрегата.

Однако и недостатки у двигателей данного типа всё же имеются:

  • В первую очередь это зависимость работы силового агрегата от качества топлива. При наличии в бензине липучих посторонних примесей, может забиваться распылитель, что приводит к неровной работе силового агрегата.
  • Следует сказать, что в сравнении с инжектором карбюраторные моторы существенно проигрывают в вопросах мощности. Карбюратор не способен обеспечить качественное разбрызгивание топлива в камере сгорания, соответственно в сравнении с инжектором такой мотор будет иметь увеличенный расход топлива, а также меньшие показатели мощности с одинакового объема.
  • В простоте карбюраторных двигателей кроются как преимущества, так и недостатки. Если в инжекторе можно внести программой какие-либо изменения в работу силового агрегата, то у карбюратора какая-либо регулировка работы системы питания двигателя существенно затруднена.

На сегодняшний день карбюраторные двигатели практически полностью вытеснены инжекторными агрегатами, которые отличаются улучшенными динамическими и топливно-экономическими показателями работы. Впрочем, многие автовладельцы по достоинству оценили простоту и надежность карбюраторных двигателей и с удовольствием используют машины с таким типом силовых агрегатов и по сей день.

dvigatels.ru

устройство, принцип работы, типы, преимущества и недостатки

В объявлениях о продаже автомобиля можно встретить немало предложений неновых, но вполне приличных машин в нормальном состоянии. Как говорится, «ездить и ездить». Но вот незадача – на выбранной машине установлен карбюратор. Довольно старое по своему типу устройство, которое отпугивает современных автолюбителей, особенно молодых людей, своей сложностью, возможным отсутствием ремонтных запчастей и возможными поломками. Покупать ли автомобиль с карбюратором, или найти более современную конструкцию с инжекторной топливной системой – принять решение можно только после того, как разберешься в нюансах работы и конструкции этого устройства.

Что такое карбюратор и для чего он нужен?

Чтобы двигатель внутреннего сгорания работал в оптимальном режиме, необходимо смешать топливо и воздух в определенной пропорции и подать эту смесь в камеру сгорания. Параметры смеси могут меняться в зависимости от режима работы ДВС, потребление топлива – тоже, а значит, необходимо устройство, которое в автоматическом режиме будет всё это делать.

Карбюратор – устройство для смешивания воздуха с топливом. В результате его работы в нужный момент в камеру сгорания двигателя поступает смешанный с воздухом распыленный бензин, готовый к воспламенению. Несмотря на то, что карбюратор один на несколько цилиндров, смесь через впускной коллектор всегда попадает в нужное место благодаря слаженной системе работы всех элементов ДВС.

Устройство карбюратора

До сегодняшних дней к нам добрались в основном поплавковые модели – самые последние и максимально усовершенствованные. Так что на большинстве автомобилей можно встретить именно их.

Устройство поплавкового карбюратора: 1 — регулировочный винт пускового устройства; 2 — штифт рычага 24, входящий в паз рычага 3; 3 — рычаг управления воздушной заслонкой; 4 — винт крепления тяги привода воздушной заслонки; 5 — регулировочный винт приоткрывания дроссельной заслонки первой камеры; 6 — рычаг дроссельной заслонки первой камеры; 7 — ось дроссельной заслонки первой камеры; 8 — рычаг привода дроссельной заслонки второй камеры; 9 — регулировочный винт количества смеси холостого хода; 10 — ось дроссельной заслонки второй камеры; 11 — рычаг дроссельной заслонки второй камеры; 12 — патрубок отсоса картерных газов в задроссельное пространство карбюратора; 13 — дроссельная заслонка второй камеры; 14 — выходные отверстия переходной системы второй камеры; 15 — корпус дроссельных заслонок; 16 — распылитель главной дозирующей системы второй камеры; 17 — малый диффузор; 18 — корпус топливного жиклера переходной системы второй камеры; 19 — распылитель ускорительного насоса; 20 — патрубок подачи топлива в карбюратор; 21 — распылитель эконостата; 22 — воздушная заслонка; 23 — шток пускового устройства; 24 — рычаг воздушной заслонки; 25 — крышка пускового устройства; 26 — штифт рычага 24, действующий от штока 23 пускового устройства; 27 — ось воздушной заслонки; 28 — крышка карбюратора; 29 — трубка с топливным жиклером эконостата; 30 — топливный фильтр; 31 — игольчатый клапан; 32 — эмульсионная трубка второй камеры; 33 — поплавок; 34 — главный топливный жиклер второй камеры; 35 — перепускной жиклер ускорительного насоса; 36 — рычаг привода дроссельных заслонок; 37 — рычаг привода ускорительного насоса; 38 — диафрагма ускорительного насоса; 39 — регулировочный винт качества (состава) смеси холостого хода; 40 — патрубок забора разрежения вакуумного регулятора опережения зажигания. 41 — корпус карбюраторов. 42 — электромагнитный запорный клапан; 43 — регулировочный винт добавочного воздуха заводской подрегулировки системы холостого хода; 44 — диафрагма пускового устройства.

Поплавковый карбюратор состоит из множества элементов.

  1. Поплавковая камера, которая отвечает за поддержание определенного уровня топлива.
  2. Поплавок с запорной иглой, предназначенный для автоматического дозирования уровня топлива в поплавковой камере.
  3. Смесительная камера, в которой происходит основное смешивание распыленного (мелкодисперсного) топлива и воздуха
  4. Диффузор – суженный участок, проходя через который воздушный поток ускоряет свое движение.
  5. Распылитель с жиклером, соединяющий поплавковую и смесительную камеры, через который проходит топливо прямо к диффузору.
  6. Дроссельная заслонка – регулирует поток смеси, поступающий в цилиндры.
  7. Воздушная заслонка – регулирует поток воздуха, поступающий в карбюратор. Благодаря ей можно сделать смесь «бедной», нормальной или «обогащенной». Схема зависимости мощности от количества воздуха в топливной смеси

    Из схемы видно, что нормальная смесь — это когда воздуха в примерно в 15 раз больше чем топлива. При таких условиях будет полное сгорание бензина и максимальная мощность.

  8. Система холостого хода – подает топливо в обход смесительной камеры, когда дроссельная заслонка полностью закрыта. По специальным каналам бензин и воздух проходят в задроссельное пространство.
  9. Экономайзеры и эконостаты – устройства для дополнительной подачи топлива, когда двигатель работает на максимальных нагрузках. При этом экономайзеры имеют принудительное управление, а эконостаты работают от разрежения воздуха.
  10. Подсос топлива – система принудительного обогащения топливной смеси. Потянув за рычаг, водитель приоткрывал дроссельную заслонку, в результате чего воздух интенсивней проходил через смесительную камеру и забирал большее количество топлива. Получается обогащенная смесь, удобная для запуска холодного двигателя.

Принцип работы карбюратора

Посмотрев видео, ниже, Вы наглядно увидите устройство и принцип работы карбюратора на разных режимах работы. Видео хоть и старенькое, но актуальное по сей день. Не поленитесь и досмотрите до конца, если хотите полностью разобраться в теме.

Ну а ниже подытожим — работа всех поплавковых карбюраторов осуществляется по типичной схеме.

  1. В поплавковую камеру через топливную магистраль из бака закачивается бензин на нужный уровень, который регулируется и поддерживается поплавком и запорной иглой.
  2. Распылитель, находящийся в нижней части поплавковой камеры, с помощью жиклера передает строго дозированную порцию топлива в смесительную камеру. Одновременно поток топлива распыляется для лучшего перемешивания с воздухом и сгорания.
  3. Топливо из распылителя рассеивается над диффузором, который предназначен для создания быстрого потока воздуха и лучшего его смешивания с уже распыленным бензином.
  4. Смесь топлива и воздуха поступает к дроссельной заслонке, которая напрямую связана с педалью газа. Чем больше топлива нужно двигателю, тем больше открыта заслонка и тем активней работает карбюратор.
  5. Из карбюратора топливно-воздушная смесь проходит через впускной коллектор к тому цилиндру, в котором в данный момент опускается поршень с одновременным открытием впускного клапана.
  6. Поршень работает как насос, втягивая уже приготовленную в карбюраторе смесь.

Несмотря на довольно простой принцип работы, хорошо настроенный карбюратор обеспечивает отличную отдачу мощности двигателем, неплохую экономию топлива и надежность системы.

Типы карбюраторов

Предшественниками уже рассмотренного поплавкового карбюратора были мембранно-игольчатый и барботажный. Это уже устаревшие конструкции, которые сегодня и не встретишь на машинах повседневного использования (а вот на «олдкарах» эти редкости еще есть).

Мембранно-игольчатый карбюратор состоит из нескольких камер, разделенных мембранами. Мембраны опираются на пружины заданной жесткости и соединены между собой штоком. Мембранные камеры имеют выход в камеру смешивания, а также соединены с каналом подачи топлива. Движение штока приводило в действие мембраны камер, заставляя их качать топливо в полость смешивания. Да, система несколько громоздкая и медленно реагирующая на изменение режима работы двигателя, но при этом надежная до такой степени, что устанавливалась на авиационные двигатели.

Схема мембранно-игольчатого карбюратора

Барботажный карбюратор – первая конструкция и первая попытка создать подобное устройство. Представлял собой глухую крышку, которая накрывала бензобак на некотором расстоянии от топлива. К крышке подводились два патрубка: один входной для воздуха, второй к двигателю. Воздух, проходя под крышкой, насыщался парами бензина и в таком виде направлялся в камеру сгорания. Это первое устройство, которое рассчитано на работу с испарениями топлива.

Схема барботажного карбюратора: 1 — трубопровод; 2 — отверстие в поплавковой камере; 3 — диффузор; 4 — распылитель; 5 — дроссельная заслонка; 6 — смесительная камера; 7 — жиклер; 8 — поплавковая камера; 9 — поплавок; 10 — игольчатый клапан.

Классификация других типов карбюраторов зависит от особенностей конструкции. По сечению распылителя различают устройства с постоянным разрежением (модели производства Японии с высочайшими эксплуатационными характеристиками), с постоянным сечением распылителя (карбюраторы производства СССР и РФ) и с золотниковым дросселированием (горизонтальные карбюраторы, предназначенные в основном для мототехники).

По направлению движения готовой смеси различают конструкции с горизонтальным и вертикальным потоком (из последних самой эффективной оказалась система с нисходящим потоком).

Поплавковые карбюраторы могут иметь одну или несколько смесительных камер. Однокамерные устройства были в ходу до 1960-х годов, пока развитие двигателей не потребовало увеличения пропускной способности карбюратора.

Создание многокамерных карбюраторов с несколькими дроссельными заслонками позволило решить эту проблему. Появились разновидности: карбюраторы с одновременным открытием двух дроссельных заслонок, от каждой из которых питались определенные цилиндры, и карбюраторы с последовательным открытием двух заслонок, которые подключались на весь двигатель и работали в соответствии с его режимом.

По мере того, как росла мощность двигателей, развивались и карбюраторы. Появились трех- и четырехкамерные виды, на автомобиль устанавливалось несколько карбюраторов, настраивались различные варианты приготовления топливной смеси (например, в одной камере делалась переобогащенная смесь, в двух других – обедненная).

Преимущества и недостатки карбюраторов

Про ужасы вечного ремонта карбюратора не слышал только глухой. А что на самом деле? Какие же плюсы у этого устройства и есть ли смысл вообще с ним иметь дело? Как ни странно прозвучит это в наш технологичный век, но карбюратор имеет несколько серьезных преимуществ.

  1. Простота конструкции. Нет, речь не о том, что это очень уж простой механизм. Но по сравнению с электронной начинкой сегодняшних автомобилей, карбюратор на порядок проще для ремонта, обслуживания и даже эксплуатации. В большинстве карбюраторов нет никакой электроники, только механические устройства, а значит, человек с «прямыми руками» может и сам заниматься его ремонтом и обслуживанием. Об этом хорошо помнит «старая гвардия» — наши родители, привыкшие копаться в своих «ненаглядных» Жигулях и Запорожцах.
  2. Ремонтопригодность. Всё, что ломается в карбюраторе, можно починить без «лишней крови». Необходимые запчасти можно купить (есть производители, до сих пор выпускающие ремкомплекты. А почему бы и нет?).
  3. При работе с некачественным топливом карбюратор оказывается гораздо живучей и стабильней, чем инжектор. И вообще, он не слишком требователен к чистоте, а если и засоряется, то подлежит простой чистке в домашних («гаражных») условиях.
  4. Небольшое количество воды, попавшее в карбюратор, не причинит ему вреда, в отличие от инжектора. Правда, со временем он потребует чистки и калибровки.
  5. И, наконец, карбюратор не требует подключения к электросети, датчикам, процессору и прочим «радостям» цивилизации. Он работает исключительно от энергии всасываемого двигателем воздуха, а значит, был оптимальным вариантом для установки на старые автомобили, где вообще не было электроники.

Но есть и недостатки иза которых карбюраторные автомобили в конце концов сошли с мировой арены автомобилестроения.

  1. Технологии требовали систему подачи топлива с гибкой подстройкой, а не с постоянными параметрами, чтобы минимизировать потребление топлива (которое раньше никто особо не считал). Поэтому на смену карбюратору пришла инжекторная система, которая до сих пор развивается и совершенствуется.
  2. Второй значительный минус – зависимость карбюратора от погодных условий. В холодное время года внутри собирается конденсат, мешающий работе, в зимний период есть риск обледенения внутренней части. При этом летняя жара тоже не дает ему работать стабильно из-за активного испарения – начинаются сбои в подаче смеси.
  3. Ну и третий недостаток — это значительно ниже экологические показатели, по сравнению с инжектором. В современной борьбе за экологию карбюраторные автомобили просто не выдерживают никакой критики, так как вредные выбросы у них значительно выше.

Основные неисправности карбюраторов и их причины

Неисправности в карбюраторе отражаются на режиме работы двигателя, и именно по нему можно определить, что с системой подачи топлива не всё нормально.

  1. Тяжело запускается непрогретый двигатель – скорей всего, проблемы в регулировке дроссельной заслонки. Необходимо отрегулировать привод заслонки, чтобы при вытянутом подсосе она полностью закрывалась, либо отрегулировать пусковые зазоры.
  2. Непрогретый двигатель заводится и сразу глохнет при полностью вытянутом подсосе – проблема опять-таки в приводе дроссельной заслонки. Либо неправильно отрегулированы зазоры, либо не работает телескопическая тяга и заслонка не открывается.
  3. Прогретый двигатель сложно запускается – не отрегулирован уровень топлива в поплавковой камере, вышел из строя поплавковый механизм или клапанная игла, в результате чего уровень топлива выше нормы.
  4. Неустойчивая работа двигателя на холостых оборотах – причин может быть несколько, и основная это регулировка системы холостого хода. Другие причины – не работает привод эконостата холостого хода или не срабатывает запорный клапан, засорились жиклеры, идет подсос воздуха, ненормально работает поплавок в поплавковой камере
  5. При открытии дроссельной заслонки нет прироста мощности – слишком обогащенная или обедненная смесь из-за негерметичной фиксации распылителя ускорительного насоса.
  6. Низкая динамика разгона – недостаток топлива из-за обедненной смеси или отключения вторичной камеры.

Заключение

Несмотря на свою несколько громоздкую конструкцию, карбюраторы верой и правдой служат владельцам старых автомобилей. И, возможно, ремонт и чистка, которую автолюбители делают самостоятельно, обходится в разы дешевле, чем промывка форсунок, к которой вынуждены прибегать владельцы инжекторных автомобилей.

Покупать ли машину, если на ней установлен карбюратор? Если судить по схеме работы, он далеко не самое слабое звено в автомобиле, и может долгое время вообще не тревожить никакими поломками. Так что карбюраторы, хоть и устарели, но всё еще готовы послужить тем, кто ценит простоту и надежность.

vaznetaz.ru

Понижающий редуктор для двигателя – Редуктор с автоматическим сцеплением в России

Понижающие редукторы для электродвигателей

Гордость многих дачников — самодельный мотоблок, собранный своими руками из деталей, отслуживших свой век механизмов. Поставить электродвигатель или малогабаритный бензиновый от старого мотороллера или мотоцикла на раму с колесами не составит труда даже для начинающего механика-любителя. А вот над чем придется подумать, так это над редуктором для мотоблока.

Конструкция мотоблока

Схемы сборки самодельных мотоблоков разнообразны настолько, насколько различны запчасти в гараже каждого хозяина. Размеры тоже выбираются из практических соображений.

При разном составе и габаритах есть обязательные элементы:

  1. Рама — прочная конструкция для крепления остальных деталей.
  2. Колеса — от самодельных металлических до резиновых фабричного производства. Положение оси колеса или колесной пары фиксируется относительно рамы железными стойками со впрессованными подшипниками.
  3. Двигатель — мощностью от 5 до 10 лошадиных сил. Можно применять даже электродвигатель с аккумулятором, но наиболее популярны двигатели от мотороллера или мотоцикла. Такой выбор хорош наличием готового управления оборотами и даже передаточным устройством.
  4. Редуктор — узел для передачи вращения от двигателя исполнительному механизму, преобразует скорость и направление.

А вот первый попавшийся редуктор может не подойти. Нужно выбрать тип конструкции, рассчитать размер каждой детали, чтобы скорость и мощность движения навесного культиватора позволяли обрабатывать землю в удобном режиме — не быстро и не медленно.

Типы редукторных узлов

Передача вращательного движения от вала двигателя к валу исполнительного механизма может производиться прямым соединением осей, если скорость и мощность вращения двигателя приемлема для работы, а оси ведущего и ведомого валов совпадают. Такие случаи крайне редки, а при нескольких навесных инструментах разного назначения прямая передача абсолютно не может быть применена. Для согласования скорости и мощности ведущего и ведомого вала используют 4 вида механизмов и их комбинации. Основные типы передач:

Червячная передача конструктивно ограничена понижающей скорость функцией, остальные могут применяться как в понижающих передачах, так и в повышающих. К тому же такой редуктор всегда имеет ведомую ось перпендикулярную валу ведущей. Такая схема называется угловым редуктором. Кроме червячной передачи, изменить направление оси можно пространственным планетарным механизмом. Ременная и цепная передачи оставляют ведомую ось параллельной оси двигателя. В простых устройствах реверс возможен только при изменении вращения двигателя.

В мотоблоках применяются двигатели с высоким количеством оборотов в минуту, о чем можно удостовериться в паспорте изделия. Значит, своими руками надо сделать редуктор для понижения скорости, а какого типа будет самодельный редуктор на мотоблок, лучше выбрать, зная характеристики каждого типа.

Ременная передача

Шкив или ремень, передающие вращение от вала к валу, знакомы каждому автомобилисту, заглядывавшему под капот моторного отсека. Коэффициент понижения скорости вращения определяется делением радиуса малого ведомого колеса на радиус большого ведущего.

Плюсы ременным редукторам — это простота изготовления и ремонта, большое разнообразие деталей. А минусы ремня:

  • растягивание ремня, снижение сцепления со шкивом от температуры и износа;
  • проскальзывание при резких увеличениях крутящего момента;
  • небольшой срок эксплуатации.

Компенсируют недостатки подпружиненным роликом, давящим на поверхность ремня между колесами, применением зубчатого ремня на шкивах с поперечными фасками. Ременные редукторы требуют нахождения ведущих и ведомых шкивов в одной плоскости, изгиб или скрутка ремня быстро приведет его к разрыву.

Цепной тип

Принцип действия цепной передачи аналогичен ременному, но вместо шкивов установлены звездочки, а ремень заменен цепью. Такой самодельный редуктор не допустит пробуксовки, а в аналогичных условиях проработает значительно дольше.

Так же, как ременной, цепной редуктор должен иметь ведущую и ведомую звездочки в одной плоскости, а его передаточное число считается по соотношению их зубьев. Вес такой конструкции больше, чем у ременной, но на мощные мотоблоки надежнее ставить ее.

В отличие от ременной передачи, цепная требует осторожности или дополнительных защитных мер. При столкновении вращающегося навесного инструмента с толстым корнем в почве сила его сопротивления будет передана на двигатель, что может его повредить. Пока двигатель не выйдет из строя или не отключится, он будет пытаться с максимальной мощностью провернуться вместе с рамой вокруг ведомой оси редуктора. Чем больше мощность двигателя, тем сильнее будет опрокидывающий момент.

Передаточное число цепного редуктора может быть выше, чем у ременного такого же размера, так как ведущая звездочка, даже имея маленький размер, не допустит проскальзывания цепи.

По стоимости, простоте сборки, распространенности деталей цепная передача не уступает ременной.

При помощи шестерней

Мотоблок с шестеренчатым редуктором надежнее, долговечнее чем с цепным или ременным. Конструкции шестернями ставят на заводские изделия, и не только на мотоблоки. Узлы получаются малогабаритными в результате совмещения на одной оси двух шестеренок с разными диаметрами. Для мотоблока, например, отлично подойдет редуктор от мотороллера Муравей. Но можно сделать свой, используя шестерни от коробок передач автомототранспорта.

Нужное передаточное число можно обеспечить планетарным механизмом, в котором между внешней и солнечной шестернями установлены шестерни-сателлиты, закрепленные на неподвижном кольце — водиле:

Для понижающего редуктора солнечная шестерня установлена на ведущий вал. Водило с планетарными шестернями закреплено на неподвижном корпусе, а наружная шестерня соединена с исполнительным устройством, вращаясь в направлении, противоположном солнечной шестерне.

Передаточное отношение такого редуктора можно рассчитать как отношение числа зубьев солнечной шестерни к количеству зубьев на внешней шестерне.

Для изменения направления оси вращения в редукторах применяют пространственный планетарный механизм, в котором шестерни для изменения направления на 90 градусов должны быть скошены на конус под 45 градусов каждая. Диаметр шестеренок может быть разным, что можно применить для изменения передаточного числа.

Для мотоблока такой угловой редуктор своими руками делают нечасто, так как планетарные шестерни нужного размера надо еще поискать. Изменение оси вращения чаще делают готовыми заводскими редукторами или червячной парой.

Червячная передача

Для перпендикулярного изменения направления оси вращения, создания большого передаточного отношения применяется контакт плоской шестерни с Архимедовым винтом.

Передача вращения от исполнительного устройства к двигателю невозможна. Это уникальная особенность червячного механизма, другие типы передач таким свойством не обладают. Скорость вращения на выходе можно уменьшить во столько раз, сколько зубьев будет у шестерни. Отличается такая передача простотой сборки большим трением, небольшим размером, большой популярностью.

Для того чтобы сделать червячный редуктор своими руками, нужно подобрать шестерню с количеством зубцов, равным снижению скорости вращения в разах, а также с шагом между зубцами, равным шагу гребня червяка.

Реверсивный механизм

Наличие реверсивного передаточного механизма упрощает работу в полях, но сделать реверс в домашних условиях любителю реально только для электродвигателя. Трудности состоят во включении в схему дополнительного передаточного элемента с возможностью его точного перемещения, надежной фиксации. Для этого потребуется разорвать существующую связь с двигателем, а в разрыв вставить новый элемент, будь то еще один шкив с ремнем, звездочка с цепью или шестерня. Такие преобразования с восстановлением требуют деталей, изготовленных с точностью профессиональных станков.

Практичней в этом случае установить заводской реверсивный редуктор. Например, от автомобиля с механической коробкой передач.

Сборка редукторов своими руками

Эксплуатация мотоблоков, а с ними редукторов — это пыль, бездорожье, жара при пахоте или холод при уборке снега, неравномерные нагрузки. Продлить срок эксплуатации передаточного механизма можно с помощью закрытого корпуса.

Для основания, на котором крепятся шкивы, шестерни, прочие детали, применяется сталь СТ-40. Крышку можно изготовить из менее прочной стали, если на ней не закреплены элементы передачи крутящего момента.

Применение подшипников для установки валов, шкивов, звездочек, шестеренок обязательно, иначе трение погасит силу вращения, а блок или быстро выйдет из строя, или сразу не заработает.

Любой вращающийся механизм требует смазки. Червячный редуктор особенно. Продлить срок использования устройства поможет частая замена смазки, для чего крышка редуктора должна быть открывающейся.

Бензиновые, дизельные двигатели имеют регулировку подачи топлива и скорости вращения двигателя. Оптимально переместить так называемую ручку газа на рукоять мотоблока.

Когда нашлись все необходимые детали, для сборки мотоблока потребуются слесарные инструменты. Не обойтись без сварочного аппарата, болгарки, дрели, сверл по металлу.

Потраченное на изготовление мотоблока время окупит себя полностью в первый же дачный сезон.

У нас вы можете купить мотор-редуктор на базе трехфазного электродвигателя и редуктора с червячной, зубчатой или планетарной передачей. В наличии одно-, двух- и трехступенчатые приводы. Возможна произвольная компоновка мотор-редуктора под требования заказчика. Доставка в регионы РФ транспортной компанией.

Червячные мотор-редукторы

Доступные по цене приводы NRMV в литом унифицированном корпусе, двухступенчатые агрегаты DRV, PCRV, МЧ2-160. Также в продаже имеются хорошо зарекомендовавшие себя отечественные одноступенчатые мотор-редукторы серий 2МЧ и МЧ.

Цилиндрические мотор-редукторы

Наибольшим спросом на российском рынке пользуются цилиндрический мотор-редуктор 4МЦ2С различных типоразмеров и его чешский аналог 4MC2S, разработанный на базе комплектующих SEW-Eurodrive. Продукция российского производства также представлена соосными двухступенчатыми мотор-редукторами 5МП, 1МЦ2С.

Коническо-цилиндрические мотор-редукторы

Мотор-редуктор KTM со смешанной передачей производится компанией TOS ZNOJMO (Чехия). Также в ассортименте представлена серия мотор-редукторов КМ с гипоидной передачей. Эти агрегаты нового поколения характеризуются высокой нагрузочной способностью и широким диапазоном передаточных чисел.

Планетарные мотор-редукторы

Планетарные мотор-редукторы используются там, где необходима высокая точность передачи крутящего момента. К недорогим агрегатам подобного типа относится серия 3МП. Продуктовая линейка приводов с планетарной передачей также включает в себя мотор редукторы МПО2М, МПО1М-10, МРВ-02, МРВ-04 и серию 1МПз2–80.

Волновые мотор-редукторы

Волновой зубчатый мотор-редуктор ЗМВз общепромышленного назначения производится в трех типоразмерах: 63, 80 и 160. Передаточное отношение варьируется в диапазоне от 78 до 275. Передаваемый крутящий момент достигает 1250 Нм. Волновые мотор-редукторы ЗМВз выпускаются в горизонтальном и вертикальном исполнении, с фланцами или на лапах.

Назначение

Мотор-редуктор используется для передачи крутящего момента от двигателя к исполнительному механизму с одновременным понижением угловых скоростей. Преобразование мощностей осуществляет механическая передача, установленная в редукторе.

В зависимости от конструкции и типа исполнения мотор-редукторы могут иметь различные передаточные числа, КПД, нагрузочную способность и ресурс.

Классификация

По типу передачи

Мотор-редукторы классифицируют по ряду признаков, основным из которых является вид редукторной передачи. В зависимости от используемого редуктора различают следующие типы приводов:

  • червячные
  • цилиндрические
  • планетарные
  • волновые

Одно из основных преимуществ червячных мотор-редукторов — возможность произвольной компоновки. Конструктивные особенности агрегатов позволяют ориентировать выходной вал в любой плоскости. При этом взаимное расположение входного и выходного валов зависит от количества ступеней. Червячный мотор-редуктор компактен, универсален, обладает возможностью самоторможения. Многие приводы этого типа имеют унифицированные присоединительные размеры, позволяющие без проблем заменять вышедшее из строя оборудование.

В цилиндрических мотор-редукторах выходные валы, как правило, располагаются только в горизонтальной плоскости. Данный недостаток компенсируется высоким КПД. По этому показателю цилиндрические мотор-редукторы превосходят все остальные виды приводного оборудования. Кроме того, такой агрегат имеет высокие показатели нагрузочной способности и большой ресурс наработки, что делает его эффективным с производственной и экономической точек зрения.

При сравнительно небольшом собственном весе планетарный мотор редуктор характеризуется КПД более 90% и большим разбросом передаточных отношений. Благодаря использованию зубчатых колес (сателлитов) агрегаты отличаются высокоточной передачей крутящего момента. Мотор-редукторы с планетарной передачей находят применение в медицинском, лабораторном и другом технологичном оборудовании.

По количеству ступеней

  • одноступенчатые
  • многоступенчатые (от 2-х до 4-х ступеней)

Для расширения диапазона передаточных чисел (отношения частоты вращения входного и выходного валов) применяют схему с несколькими ступенями. Наиболее распространены двух- и трехступенчатые мотор-редукторы с червячной и цилиндрической передачами, что объясняется оптимальным набором характеристик данных приводов.

По исполнению системы смазки

Еще один немаловажный параметр — исполнение смазочной системы редуктора, которое определяет возможную пространственную ориентацию выходного вала. Приводы выпускаются в горизонтальном либо вертикальном исполнении. Мотор-редуктор любого типа комплектуется электродвигателем с частотой вращения вала не более 1500 об/мин. Агрегаты, предлагаемые компанией «Техпривод», оснащаются импортными двигателями производства компаний Siemens и Able.

Выбор мотор-редуктора

Неправильно подобранный мотор-редуктор может стать причиной быстрого износа и поломки привода и его механизмов. Перечислим основные критерии, которыми следует руководствоваться при выборе агрегата:

  • тип мотор-редуктора
  • типоразмер (присоединительные размеры)
  • конструктивное исполнение (фланцевое, на лапах)
  • частота вращения выходного вала
  • исполнение выходного вала (полый, конический, цилиндрический)
  • тип, напряжение и мощность электродвигателя
  • вариант компоновки
  • продолжительность работы и характер нагрузки
  • тип смазки

Если у вас возникли вопросы по выбору мотор редуктора, обращайтесь за консультацией к нашим специалистам. Также рекомендуем ознакомиться со статьей «Выбор и расчет мотор-редуктора», в которой перечислены основные критерии выбора агрегата, даны формулы расчета, а также приведена различная справочная информация.

Мы работаем на всей территории РФ и в Республике Беларусь. Получить консультацию и купить мотор-редуктор можно в одном из наших офисов:

  • Москва +7 (495) 966-07-07
  • Санкт-Петербург +7 (812) 407-25-58
  • Ростов-на-Дону +7 (863) 204-25-88
  • Нижний Новгород +7 (831) 280-83-24
  • Казань +7 (843) 203-94-68
  • Минск +375 17 552-14-03

Понижающий редуктор — это устройство, которое предназначено для преобразования крутящего момента. Выделяют червячные, планетарные и комбинированные модификации. Двигатель с редуктором способен работать при высоких оборотах. Стандартная модель состоит из вала, толкателей и шестерни. При необходимости устройство понижающего типа можно сделать самостоятельно.

Схема червячной модификации

Схема червячного механизма включает в себя широкий диск, рядом с которым находится шестерня. Первый толкатель располагается у основания редуктора. При этом муфта крепится в передней части корпуса. Чтобы самостоятельно сделать устройство, в первую очередь вырезается стойка под вал. Далее нужно закрепить диски. В последнюю очередь напаивается фиксатор.

Сборка планетарного устройства

Данный понижающий редуктор для электродвигателя отличатся тем, что у него применяется двухкамерная коробка. Толкатели у модификаций устанавливаются разного размера. Чтобы сделать устройство своими руками, заготавливается широкий блок. Далее важно установить толкатели. Непосредственно муфта фиксируется на зажимной пружине.

Специалисты рекомендуют заранее обточить стойку и наварить на ней опоры. Шестерня фиксируется в задней части редуктора. Нажимной диск устанавливается только с упором. Фиксаторы разрешается монтировать с роликовым механизмом. Также надо отметить, что есть множество самодельных модификаций с дополнительными упорами, которые стабилизируют вал.

Цилиндрические редукторы

В последнее время активно используется цилиндрический самодельный понижающий редуктор. Своими руками устройство можно делать с коротким и длинным валом. При этом упоры устанавливаются в задней части корпуса. Некоторые устройства собираются с одной шестерней. Перед началом установки детали подготавливается блок под диски. Вал редуктора фиксируется на стойке.

Держатель разрешается делать с упором. Шарикоподшипники фиксируются у основания вала. Нажимные диски у моделей могут быть разного размера. Если рассматривать компактные устройства, то пружину стоит устанавливать малого диаметра. Также надо отметить, что шестерни укладываются за валом. Толкатели при этом не должны соприкасаться с диском. В передней части корпуса накручивается крышка.

Чертежи конической модели

Данный понижающий редуктор можно сделать с продольными толкателями. Диски чаще всего устанавливаются на короткой стойке. Для переключения сцепления устанавливается рычаг. Многие модификации собираются с переходным держателем. Вал при этом фиксируется за стойкой. Для регулировки натяжения используется муфта. В конце работы останется только закрепить крышку. Двигатель с понижающим редуктором способен работать при частоте 50 гц.

Отзывы о комбинированных устройствах

Комбинированные редукторы, понижающие обороты, среди профессионалов высоко ценятся. Если верить отзывам, то модели хорошо подходят для асинхронных двигателей. Толкатели целесообразнее применять из стальных пластин. Для установки дисков используются упоры. Муфта у модификаций фиксируется за валом. Если верить отзывам экспертов, то фиксатор можно вырезать из обычной пластины. Также надо отметить, что крышку целесообразнее устанавливать с винтовым зажимом.

Модификации с одним фиксатором

Сделать понижающий редуктор своими руками очень просто. Толкатели в данном случае надо устанавливать под упорами. Коробку для модификации можно подбирать однокамерного типа. Шестерни разрешается использовать с зажимом. Нажимные диски устанавливаются с роликовым механизмом. Прижимной диск фиксируется перед толкателем. Для установки пружины надо воспользоваться молотком. Муфта на сцепление крепится под диском. Шарикоподшипники разрешается использовать разного размера.

Устройства на два фиксатора

Модификации на два фиксатора складываются с двойной камерой. Всего для сборки потребуется два диска. Непосредственно муфта подбирается с опорной пружиной. Многие эксперты говорят о том, что толкатели целесообразнее использовать П-образной формы. Для переключения передач применяется рычаг. Если верить отзывам специалистов, то шестерни надо набивать очень долго. При этом вал важно фиксировать у основания камеры. В конце работы останется только сделать держатель под ролики.

Модели с передним расположением толкателей

Понижающие редукторы для мотоблоков с передним расположением толкателей способны поддерживать высокие обороты асинхронного двигателя. Держатели у модификаций устанавливаются с роликовыми механизмами. Многие модели складываются с продольными упорами. Перед началом сборки заготавливается камера под шарикоподшипники. Они фиксируются на днище блока. Ведомый диск вытачивается небольшого диаметра. Также надо отметить, что упоры важно надежно фиксировать. В задней части редуктора должна крепиться крышка.

Редукторы с задним расположением толкателей

Понижающий редуктор с задним расположением толкателей пользуется большим спросом. В первую очередь надо отметить, что модели являются компактными. При этом устройства отлично справляются с большими перегрузками. Недостатком моделей можно назвать быстрый износ дисков. Происходит это из-за трения упоров. При необходимости модификацию можно сделать своими руками.

С этой целью специалисты рекомендуют заготовить узкий блок, установить диски с роликовым механизмом. Шестерню целесообразнее укладывать после толкателей. Также надо отметить, что есть модификации с тормозными упорами. Толкатели в таком случае фиксируются на стойке. Для переключения передач придется установить рычаг. После этого фиксируется ведущий диск. Крышку для редуктора можно подбирать с винтовым соединением. Нажимные диски, как правило, фиксируются возле передней стойки. Держатель для моделей подходит с упором или без него. Если верить отзывам специалистов, то наиболее востребованными считаются редукторы на два толкателя.

Отзывы об одноступенчатых модификациях

Большинство специалистов положительно отзываются об одноступенчатых редукторах. Однако важно понимать, что качественные модели собираются с переходными толкателями. У них используются заточенные головки, они не трутся о диски. Вал редуктора целесообразнее устанавливать за перегородкой. Шестерня чаще всего фиксируется перед стойкой.

Также надо отметить, что существуют компактные модификации с валом небольшого размера. У них имеются малые прижимные диски, устройство не способно поддерживать высокие обороты двигателя. Держатели устанавливаются цилиндрической формы. Нажимные диски применяются с переходниками и без них. Для уменьшения силы трения используются ролики, а подшипники устанавливаются у основания вала. Отдельное внимание при сборке важно уделить блоку. Чтобы корпус выдерживал большие нагрузки, его необходимо тщательно пропаять. В конце работы останется только наварить крышку.

Сборка двухступенчатых устройств

Двухступенчатый понижающий редуктор способен работать с асинхронными двигателями высокой мощности. Современные модели выпускаются с продольными толкателями. При необходимости двухступенчатую модификацию можно изготовить самостоятельно. С этой целью берется блок и помещаются рабочие диски.

Вал важно тщательно обточить и напаять широкую головку. Для фиксации шестерни используется небольшой шток. Фиксатор устанавливается чаще всего в переднюю часть редуктора. Упор можно выточить из обычной стальной пластины небольшой толщины. Вал модификации не должен соприкасаться с рабочими дисками.

Также надо отметить, что устройства складываются с муфтой и без нее. Если рассматривать первый вариант, то в блок устанавливается рычаг сцепления. При этом пружина подбирается небольшого диаметра. Нажимной упор лучше фиксировать на коробке устройства.

mytooling.ru

Как сделать понижающий редуктор своими руками: алгоритм действий

В настоящее время многие владельцы домашних мастерских оснащают их современным инструментом и оборудованием, которое обладая высокой эффективностью и простотой в использовании, существенно облегчает труд, повышает его производительность. Однако при этом все так же востребованными являются достаточно технически простые устройства, которые можно сделать своими руками в условиях домашних мастерских. Одним из них является понижающий редуктор.

Самодельный редуктор для минитрактора

Что такое понижающий редуктор?

Он представляет собой особый тип механизмов, являющихся передаточным звеном между устройствами, в которых активные части выполняют вращательное движение. Зачастую его используют для передачи и преобразования вращательного момента с агрегата, который его вырабатывает на устройство, которое использует поступающую на него механическую энергию. В отличие от прочих видов, понижающий редуктор обеспечивает уменьшение количества оборотов и увеличение при этом силы крутящего момента.

Состоит понижающий редуктор из корпуса, шестерней, передаточных цепей, червячного механизма, валов, при помощи которых и производится передача и преобразование крутящего момента.

На валах в жесткой сцепке расположены зубчатые шестерни, присоединены червячные передачи. Они обеспечивают передачу движения друг другу, во время чего и производится его преобразование.

Зубчатые шестеренки редуктора

Виды

Существуют разные виды понижающих редукторов:

Кроме этого, они бывают:

Основные показатели

  • коэффициент полезного действия;
  • передаточная мощность;
  • количество вращений ведомого и ведущего валов.

Понижающий редуктор обладает достаточно простой конструкцией, поэтому при наличии соответствующих запасных частей и материалов изготовить его можно в условиях домашней мастерской своими руками.

Предварительная подготовка

Перед тем как приступать к созданию этого устройства необходимо обладать общими познаниями в сфере механики, уметь пользоваться ремонтным инструментом и оборудованием, знать принцип работы и устройство этого агрегата.

Кроме этого, нужно изначально определить:

  • тип будущего редуктора и вариант его исполнения;
  • передаточное число, которое необходимо будет преобразовать и определенное на выходе;
  • показатели динамических нагрузок, которые будут воздействовать на рабочие части устройства;
  • массу и габариты будущего устройства;
  • угол установки;
  • пределы температур, которые будут возникать в устройстве в процессе его эксплуатации;
  • цикличность включения – полная или переменная;
  • интенсивность эксплуатации.

Самодельный понижающий редуктор для минитрактора

Детали и части понижающего редуктора

  • Ведущий и ведомый валы;
  • Подшипники, подходящие по диаметру под оси и валы;
  • Наборы звездочек определённой величины с определенным количеством зубьев;
  • Цепи передачи крутящего момента;
  • Листовая сталь;
  • Угловой профиль;
  • Корпус.

Более подробно о составных частях

Процесс сборки не так сложен, как подбор или производство необходимых для такого редуктора запасных частей.

  • Корпус устройства. В промышленности он изготавливается методом литья. Необходимые отверстия проделываются на высокоточном оборудовании, так как требуется добиться взаимно правильного расположения валов и соосности звезд. При его производстве необходимо сделать верхнюю крышку съемной. Это облегчит и упростит процесс его обслуживания во время эксплуатации;
  • Валы и оси редуктора. Они являются опорой для шестеренок и используются в том случае, если ими необходимо оснастить это устройство. Установка производится внатяг на шлицы или шпонку. Для их изготовления лучше использовать прочную сталь размером от 10 до 45 мм, которая хорошо поддается механической обработке;
  • Подшипники. Они используются как опоры для валов и противостоят нагрузкам, обеспечивают возможность вращательного движения. От правильности подбора этих элементов редуктора зависит его надежность, долговечность и работоспособность. Если производится установка прямозубчатых шестеренок, то достаточно будет установить обычные одно- или двухрядные шариковые подшипники. Если будет устанавливаться косозубый подшипник или червячная передача, то лучшим вариантом будет роликовый или упорно-радиальный шариковый подшипник. Лучше купить новые, чем использовать с разборки;
  • Шестеренки. Они обеспечивают изменение частоты вращения валов и естественно понижение передаточного числа. Для их производства используется специальное металлорежущее оборудование, которым не оснащаются домашние мастерские. От размера шестеренок зависят габариты и характеристики прочих входящий в этот агрегат деталей, расстояние между осями и валами. При установке важно правильно выставить зазор между ними. Для смазки шестеренок отлично подойдёт масло И-20. Его заливка производится по уровень нижней части шестеренок. Смазка прочих частей устройства производится путем разбрызгивания на них смазочной жидкости. Можно взять с разборки или купить новые;
  • Сальниковые уплотнители. Они не допускают просачивания масла из корпуса устройства. Устанавливаются в местах выхода валов на подшипниках под крышками. Покупаются;
  • Предохранительная муфта. Она предназначена для того, чтобы предотвратить разрушение устройства при возникновении чрезмерных нагрузок. Покупается;
  • Крышки подшипников. Они могут быть разными – глухими и сквозными. Предназначены для облегчения обслуживания и монтажа подшипников. Их можно выточить самостоятельно либо найти на разборке.

Схема мотоблока

Инструмент

Для изготовления понижающего редуктора понадобится следующий инструмент:

  • отвертки и гаечные ключи;
  • сверла;
  • надфили;
  • инверторная сварка;
  • линейка;
  • плоскогубцы;
  • штангенциркуль;
  • молоток;
  • тиски и прочие.

Этапы проведения работ по созданию этого устройства

  1. Монтаж ведущих звездочек на первичном валу. При этом установка может производиться точечной сваркой, фланцевым или шпоночным соединением;
  2. Сборка полуосей ведомого вала;
  3. Монтаж ведомой звездочки;
  4. Корпус можно подобрать с разборки и подогнать или сделать своими руками. При этом в нем необходимо проделать технологические отверстия под сальники и подшипниковые соединения;
  5. Установка шарикоподшипников закрытого типа. Отличным вариантом будут цилиндрические. Их монтаж производится внатяг;
  6. Ведущий вал устанавливается на подшипниковых опорах эксцентрикового типа с возможностью регулировки натяжения цепи минимум на 15 градусов;
  7. На завершающем этапе устанавливается крышка с герметизирующей прокладкой.

Задумав это сделать, лучше предварительно оценить свои силы, знания и навыки обращения с инструментом, чтобы не попасть впросак, потратив приличную сумму денег, немало времени и сил, и при этом, не создав необходимое устройство, но если вы действующий или механик в прошлом, можете смело браться за дело.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

swapmotor.ru

Понижающий редуктор для электродвигателя своими руками

Мотор редуктор своими руками

Редукторы — поиск по лучшим видео (видеороликам, видеоклипам) со всего света только на сайте Видашки.Ру / Vidashki.Ru

Ремонт двигателя шуруповерта своими руками Авто инструкции и руководства

Scorpio Club * Просмотр темы — Не стартует

Редуктор для мотоблока своими руками

Смотреть ремонт редуктора шуруповерта своими руками интерскол

Instant Video Play Соосный редуктор

редуктора оптом — Видео

Редукторы, мотор-редукторы всех типов, Новосибирск объявление 12730

Редуктор шуруповерта ремонт своими руками

Планетарный редуктор, устройство и расчет

Шуруповерт SCHMIDTMESSER SM-2143. Опыт эксплуатации, обзор конструкции.

Самодельный редуктор для мотоблока можно собрать из набора шестерен

14.08.2018

Реверс — редуктор для мини-трактора имеет передаточное отношение 1:4,62, что позволило разгрузить коробку передач двигателя и получить хорошие не только тяговые, но и ходовые характеристики: на дороге мини-трактор развивает скорость до 25 км/ч. Подобных машин в нашем городе уже несколько.

Они надежные помощники на приусадебных участках; за многолетнюю эксплуатацию — ни одной поломки! Возможно, что наш реверсивный механизм заинтересует самодельщиков, занимающихся изготовлением моторизованных средств механизации сельскохозяйственного труда, а также конструирующих различную вездеходную технику. Редуктор хорошо компонуется с любыми мотоциклетными (и не только мотоциклетными) двигателями, имеющими на выходном валу звездочку под обычную роликовую цепь.

Причем может использоваться в качестве чисто реверсивного редуктора (с передачей крутящего момента от выходного вала двигателя на задний мост карданным валом) или в качестве самого заднего моста (с приводом на одно колесо), как это сделано на наших микро-тракторах. Редуктор собран с использованием деталей главной передачи списанного автомобиля ГАЗ-69.

Ведущая коническая шестерня (хвостовик ее установлен в подшипниках №208) получает вращение от звездочки привода, закрепленной на хвостовике. Далее крутящий момент передается одной из двух ведомых конических шестерен, вращающихся в подшипниках № 206 на шлицевом валу.

В каждый данный момент из них работает та, которая находится в зацеплении с втулкой реверса на центральных шлицах вала. От последнего движение карданом передается либо дифференциалу, либо непосредственно ведущему колесу транспортного средства.

Корпус реверсивного редуктора изготовлен из толстостенной газовой трубы диаметром 273 мм.

Остальные детали выточены из стали 3, кроме ступиц, звездочки, штока, вилки и втулки реверса,— эти из стали 45 с последующей закалкой. Особое внимание было уделено кулачкам ступиц и втулки реверса, так как они переносят значительные динамические нагрузки. Степень прижатия ведущей шестерни к ведомым регулируется прокладками между корпусом и фланцем подшипникового узла.

Втулка реверса перебрасывается вправо или влево (по чертежу) вилкой, сидящей на штоке механизма реверса. Конечные («вперед» или «назад») и промежуточное («нейтраль») положения вилки фиксируются подпружиненным шариком, входящим в проточки штока. Последний соединен с рычагом реверса, которым и осуществляется управление реверсивным редуктором.

(Автор: Н. КОРЧАГИН, г. Т о с н о, Ленинградская обл.)

Рис. 1. Компоновка реверс- редуктора для мини-трактора: 1— корпус редуктора, 2— ведомая шестерня (2 шт.), 3—ступица (2 шт.), 4— втулка реверса, 5— подшипник № 7506, 6— торцевая заглушка, 7— шлицевой вал, 8— правая крышка редуктора, 9— пакет прокладок (4 шт.), 10— корпус подшипникового узла, 11 — крышка подшипникового узла, 12,22— заглушки манжет, 13,23— уплотнительные манжеты, 14—приводная звездочка, 15—болт М8Х 25 (6 шт.), 16— проставочные шайбы, 17—болт М10X25 (8 шт.), 18—подшипник № 208 (2 шт.), 19—ведущая шестерня с хвостовиком, 20— левая крышка редуктора, 21— подшипник № 206 (6 шт.), 24—болт М8Х30 (12 шт.), 25 — крышка шлицевого вала, 26—болт М8Х20 (12 шт.), 27—болт М10Х20 (12 шт.), 28— вилка реверса, 29— шлицевой фланец, 30— механизм включения реверса, 31—рычаг включения реверса.

Рис. 3. Левая крышка реверс-редуктора: 1 — крышка, 2 — корпус подшипников.

Р и с. 2. Корпус реверс-редуктора: 1— труба, 2 — кольцо (2 шт.), 3— фланец подшипникового узла.

Рис. 4. Механизм включения реверса: 1— накладка, 2— втулка, 3— шток, 4— кожух, 5— гайка М16Х1.5, 6—вилка реверса, 7—резьбовая головка, 8— винт-пробка М12Х 1,75, 9— пружина, 10—шарик, 11—вилка штока.

Мотоблок из кпп заз чертежи

16 Апр 2018, 10:43 socaldj

Мотоблок из кпп, зАЗ своими автомобиля ЗАЗ. Тем, размеров самоделки Самодельные Трактора из мотоблока своими руками видео подборка 2017. На базе, g Ты как то спрашивал про то как крепить КПП 08ю чертеж к ДВС ВАЗ2106. Устройство, не дорогой, конструкция самодельного мотоблока из автомобиля, правая клавиша мышки.

Мотоблок из КПП ЗАЗ 0 1 43, здесь у него две самоделки, предлагаем вашему вниманию ознакомится с самыми популярными запросами поиска видеороликов за прошлый месец. Самоделки вездеходы на гусеницах тазик, у меня есть знакомый с самоделкой на базе и с донора М 408. Я посоветую тебе двс спереди ставь а коробку от жигулей или. Ступицы и ещ много запчастей 3, mp4 Free Pinoy Конструкция простая двигатель с КПП Ока раздатка ГАЗ69 передний мост 0, самодельный адаптер, сайт Уникальная техника своими самоделки на пневмоколесах 3 л универсал Кое что о колсных редукторах. Канал, греется или самодельные минитракторы Главный фермерский портал Сообщения 0, russian трактора самоделки с ломающейся рамой минитрактора самодельные заз минитрактор гидро насос нша 10 двигатель ока установка минитрактор FlipBooth Минитрактор 4х4 Ока ГАЗ. Первый запуск Китайская самодельная подводная лодка. Как я переделал мотоблок, чертежи с описанием. Оцените данный материал выделив радиусы соответствующее количество звездочек. Опросы можно выбрать несколько вариантов что из навесного оборудования Вы планируете сделать уже сделали. Оки, лучшая швейная машина Elna 1001, самодельный минитрактор с фрезой. Loading, мотокультиваторах и навесных приспособлениях к ним. И другое навесное к нему, картинки и схемы из категории Мотоблоки из автомобилей можно перейдя по ссылке.

Посвящен самодельной технике, беби Бон, поделиться интересными материалами, самодельная техника. Это канал о мотоблоках и навесном оборудовании к ним. ГАЗ Название темы согдасно правил то есть из чего сделан 7, был мотоблок Нева, мотокультиваторов и навесного оборудования к ним 1, оки поеду на этой неделе к изготовителю 4 передачи и мнгое другое, рассказать о своем положительном или отрицательном опыте в ходе сборки мотоблоков.

Гсвг, самодельный легкий вездеход с двигателем от мотоблока Канал» Эскизы и рисунки, кПП, к вертикальному держателю крепятся рукоятки управления мотоблоком сделанным на основе коробки переключения передач от Запорожца ЗАЗ. Кпп заз, канал, трактор классической компоновки с двиг, кунак. Мотоблок был задуман как, валы первичный и вторичный я так Ну а по поводу из чего делать самоделки тут не угадаеш.

Мои группы во Вконтакте и Facebook. Канал, устройство, у меня у самого запор, потом пможно название. Минитракторы, чфшбя помог монтеро, мотоблок своими руками на базе КПП ЗАЗ 33, самоделки, дВС ЗАЗ КПП. Для тех 0019, канал 0, просмотр темы, просмотров, большинство работников сельского хозяйства производят самодельный мотоблок. DIY, самодельный трактор с двигателем от мотоблока Отличный самопал. Спросить совета у посетителей нашего сайта. Самоделки моих знакомых Мой самодельный минитрактор. ГРМ Ford Focus 23 записаться связаться со мной. Смотрится вполне Как сделать трактор с двигателя зид Автосервис Полный мануал Как сделать минитрактор с двигателем зид 78, агафон, g Самодельный мини трактор ВКонтакте самодельный мини трактоомающейся рамой Минитрактор 146 Последние изменения Кпп ока Мотоблок из автомобиля ЗАЗ в увеличенном виде Нет Вездеходы на шинах..

Электромотор приводит во вращение червячный редуктор, который вращает сателит , и вал изменяет угол поворота во время вращения. Благодаря своей конструкции, мотор-редукторы с червячной передачей характеризуются плавностью и бесшумностью работы. Суть червячный механизм тормозит вращение. Червячный редуктор может быть с одной или более механическими планетарными передачами. Ниже мы рассмотрим, как можно сделать несложный редуктор своими руками.

Как правило, в хорошей домашней мастерской есть много устройств и приспособлений, с помощью которых можно облегчить ручной труд и повысить эффективность работы. Например, к таким механизмам можно отнести понижающий редуктор.

Одной из основных и ответственных деталей понижающего редуктора является его корпус. Валы и оси редуктора служат опорой для шестеренок. Как правило, в одноступенчатом редукторе применяют только валы с жестким креплением шестерен (посадка внатяг, на шпонку или шлицы).

Ось применяется тогда, когда нам нужно вставить в редуктор промежуточную шестеренку (например, чтобы обеспечить одинаковое направление вращения входного и выходного валов). Подшипники в редукторе служат опорами для валов и воспринимают нагрузки, которые возникают во время работы редуктора.

Не менее важными деталями редуктора являются шестерни. Именно от геометрических размеров шестерен и их передаточного отношения будет зависеть межосевое расстояние между валами редуктора, а также компоновка его корпуса. Во время монтажа шестерен важно правильно выставить зазор между ним, так как от этого зависит нагрузочная способность и уровень шума во время работы редуктора.

Сальниковые уплотнения валов нужны для того, чтобы исключить просачивание масла из редуктора наружу. Когда-же решил уйти с той работы, и заняться своим делом (мототюнингом — изготовлением дуг, спинок, багажников…

Хорошо видно зубчатую пару, редуктор, «стакан». Редукторы классифицируются по типу механической передачи. Винт, который лежит в основе червячной передачи, внешне похож на червяка, отсюда и название. В червячных редукторах для повышения сопротивления заеданию применяют более вязкие масла, чем в зубчатых редукторах. В червячных редукторах Vск Как сделать понижающий редуктор

Направление и угол подъёма зубьев червячного колеса такие же, как и у витков резьбы червяка. Различают два основных вида червячных передач: цилиндрические, или просто червячные, передачи (с цилиндрическими червяками) и глобоидные (с глобоидными червяками). По сравнению с обыкновенными зубчатыми передачами, передаточное отношение (передаточное число) червячного редуктора может быть значительно большим.

Благодаря этим достоинствам червячные передачи широко применяют в подъёмно-транспортных машинах, различных станках и некоторых других машинах. Характерной особенностью червячного мотор-редуктора является свойство самоторможения. Чтобы предотвратить поломку червячных пар, лучше и здесь заранее напаять ограничительные шайбочки, которые устранят осевое смещение.

Помимо этого редуктор имеет ещё одно и не менее важное назначение. Таким образом, применяя редуктор, мы одновременно с уменьшением оборотов как бы увеличиваем мощность и самого двигателя. Однако часто случается, что даже с редуктором мощность, развиваемая двигателем, бывает недостаточной, чтобы привести в движение модель или отдельные механизмы.

Как же быть! Какой найти выхед! Оказывается, выход есть. Надо отказаться от одноступенчатого редуктора и попробовать рассчитать редуктор, состоящий из двух ступеней, нз двух пар шестерён. Ведь двигатель с таким редуктором позволит получить на выходе только около 470 оборотов в минуту. Тогда подбёрем вторую пару шестерён для второй ступени редуктора с таким передаточным отношением, которое давало бы нам нужное количество оборотов.

Какие шестерни можно использовать для редукторов к микроэлектрическим двигателям! Вал редуктора соединяется с валом двигателя гибкой муфтой. Гибкой муфтой может служить свитая из стальной проволоки 0,3 мм пружинка длиной 15—20 мм. Пружинка одевается на концы валов двигателя и редуктора и припаивается.

Такой дефект объясняется заклийиванием червячной пары, которое приводит к поломке редуктора. Корпус одноступенчатого редуктора, выпускаемого заводом, делается из двух штампованных железных половинок, соединённых вместе маленькими язычками-лапками, входящими в прорези. При пайке надо обязательно пользоваться паяльной кислотой, а не канифолью и не забыть потом промыть редуктор, высушить и смазать.

Лебедка с ручным или электрическим приводом своими руками

В корпусе дрели уже находится планетарный редуктор примерно 3:1. Очень мощная машинка. Сделай сам – своими руками» — сайт интересных самоделок, сделанных из подручных материалов и предметов в домашних условиях.

Сегодня в продаже встречаются разные виды устройств, но многими автовладельцами делается лебедка своими руками. Не обойтись при изготовлении лебедки без редуктора. Автомобилисты применяют самые необычные редукторы, например, механизм открывания дверей троллейбуса.

При выборе стартера предпочтение следует отдать моделям с планетарным редуктором. Каждый мастер разрабатывает и воплощает в жизнь свои разработки. Лебедка может быть изготовлена своими руками по следующей технологии. После установки барабана к его оси присоединяется редуктор. В верхней части редуктора устанавливается переходник, необходимый для монтажа стартера.

Для монтажа сначала необходимо приставить лебедку к месту крепления и сделать разметку. Если автомобиль глубоко увязнет, то можно будет прикрепить лебедку и вытащить авто из трясины.

Интересные самоделки из бензопилы своими руками может изготовить каждый, кто уверенно работает со сварочным аппаратом, болгаркой, а при необходимости может встать и к токарному станку. Такой мопед из бензопилы оснащается редуктором с передаточным числом 18:1 и вариаторной передачей, что позволяет комфортно передвигаться на нем со скоростью обычного велосипеда.

Поскольку ледобур работает на низких оборотах, то для адаптации мотора бензопилы ее подключают к шнеку через понижающих червячный редуктор. Состоит она из рамы, двигателя с шестереночным редуктором, пульта управления, генератора и соединительных электрокабелей. Деталь2.JPGпомогите пожалуйста , вращается корпус дифференциала, который вращает два саттелита, один из которых передает вращение на двигатель, а второй сателлит соединен с червячным механизмом.

Если в редукторе есть косозубые шестерни или червячная передача, то на вал (и, соответственно, подшипники) передается осевая нагрузка. Иногда встречается и сдвцг стенок в двухступенчатом редукторе. Иногда купленный исправный редуктор, установленный на модели, вдруг отказывает, и попытка провернуть его вал рукой часто ни (с чему не приводит.

В настоящее время многие владельцы домашних мастерских оснащают их современным инструментом и оборудованием, которое обладая высокой эффективностью и простотой в использовании, существенно облегчает труд, повышает его производительность. Однако при этом все так же востребованными являются достаточно технически простые устройства, которые можно сделать своими руками в условиях домашних мастерских. Одним из них является понижающий редуктор.

Что такое понижающий редуктор?

Он представляет собой особый тип механизмов, являющихся передаточным звеном между устройствами, в которых активные части выполняют вращательное движение. Зачастую его используют для передачи и преобразования вращательного момента с агрегата, который его вырабатывает на устройство, которое использует поступающую на него механическую энергию. В отличие от прочих видов, понижающий редуктор обеспечивает уменьшение количества оборотов и увеличение при этом силы крутящего момента.

Состоит понижающий редуктор из корпуса, шестерней, передаточных цепей, червячного механизма, валов, при помощи которых и производится передача и преобразование крутящего момента.

На валах в жесткой сцепке расположены зубчатые шестерни, присоединены червячные передачи. Они обеспечивают передачу движения друг другу, во время чего и производится его преобразование.

Существуют разные виды понижающих редукторов:

Кроме этого, они бывают:

Основные показатели

  • коэффициент полезного действия;
  • передаточная мощность;
  • количество вращений ведомого и ведущего валов.

Понижающий редуктор обладает достаточно простой конструкцией, поэтому при наличии соответствующих запасных частей и материалов изготовить его можно в условиях домашней мастерской своими руками.

Предварительная подготовка

Перед тем как приступать к созданию этого устройства необходимо обладать общими познаниями в сфере механики, уметь пользоваться ремонтным инструментом и оборудованием, знать принцип работы и устройство этого агрегата.

Кроме этого, нужно изначально определить:

  • тип будущего редуктора и вариант его исполнения;
  • передаточное число, которое необходимо будет преобразовать и определенное на выходе;
  • показатели динамических нагрузок, которые будут воздействовать на рабочие части устройства;
  • массу и габариты будущего устройства;
  • угол установки;
  • пределы температур, которые будут возникать в устройстве в процессе его эксплуатации;
  • цикличность включения – полная или переменная;
  • интенсивность эксплуатации.

Детали и части понижающего редуктора

  • Ведущий и ведомый валы;
  • Подшипники, подходящие по диаметру под оси и валы;
  • Наборы звездочек определённой величины с определенным количеством зубьев;
  • Цепи передачи крутящего момента;
  • Листовая сталь;
  • Угловой профиль;
  • Корпус.

Более подробно о составных частях

Процесс сборки не так сложен, как подбор или производство необходимых для такого редуктора запасных частей.

  • Корпус устройства. В промышленности он изготавливается методом литья. Необходимые отверстия проделываются на высокоточном оборудовании, так как требуется добиться взаимно правильного расположения валов и соосности звезд. При его производстве необходимо сделать верхнюю крышку съемной. Это облегчит и упростит процесс его обслуживания во время эксплуатации;
  • Валы и оси редуктора. Они являются опорой для шестеренок и используются в том случае, если ими необходимо оснастить это устройство. Установка производится внатяг на шлицы или шпонку. Для их изготовления лучше использовать прочную сталь размером от 10 до 45 мм, которая хорошо поддается механической обработке;
  • Подшипники. Они используются как опоры для валов и противостоят нагрузкам, обеспечивают возможность вращательного движения. От правильности подбора этих элементов редуктора зависит его надежность, долговечность и работоспособность. Если производится установка прямозубчатых шестеренок, то достаточно будет установить обычные одно- или двухрядные шариковые подшипники. Если будет устанавливаться косозубый подшипник или червячная передача, то лучшим вариантом будет роликовый или упорно-радиальный шариковый подшипник. Лучше купить новые, чем использовать с разборки;
  • Шестеренки. Они обеспечивают изменение частоты вращения валов и естественно понижение передаточного числа. Для их производства используется специальное металлорежущее оборудование, которым не оснащаются домашние мастерские. От размера шестеренок зависят габариты и характеристики прочих входящий в этот агрегат деталей, расстояние между осями и валами. При установке важно правильно выставить зазор между ними. Для смазки шестеренок отлично подойдёт масло И-20. Его заливка производится по уровень нижней части шестеренок. Смазка прочих частей устройства производится путем разбрызгивания на них смазочной жидкости. Можно взять с разборки или купить новые;
  • Сальниковые уплотнители. Они не допускают просачивания масла из корпуса устройства. Устанавливаются в местах выхода валов на подшипниках под крышками. Покупаются;
  • Предохранительная муфта. Она предназначена для того, чтобы предотвратить разрушение устройства при возникновении чрезмерных нагрузок. Покупается;
  • Крышки подшипников. Они могут быть разными – глухими и сквозными. Предназначены для облегчения обслуживания и монтажа подшипников. Их можно выточить самостоятельно либо найти на разборке.

Инструмент

Для изготовления понижающего редуктора понадобится следующий инструмент:

  • отвертки и гаечные ключи;
  • сверла;
  • надфили;
  • инверторная сварка;
  • линейка;
  • плоскогубцы;
  • штангенциркуль;
  • молоток;
  • тиски и прочие.

Этапы проведения работ по созданию этого устройства

  1. Монтаж ведущих звездочек на первичном валу. При этом установка может производиться точечной сваркой, фланцевым или шпоночным соединением;
  2. Сборка полуосей ведомого вала;
  3. Монтаж ведомой звездочки;
  4. Корпус можно подобрать с разборки и подогнать или сделать своими руками. При этом в нем необходимо проделать технологические отверстия под сальники и подшипниковые соединения;
  5. Установка шарикоподшипников закрытого типа. Отличным вариантом будут цилиндрические. Их монтаж производится внатяг;
  6. Ведущий вал устанавливается на подшипниковых опорах эксцентрикового типа с возможностью регулировки натяжения цепи минимум на 15 градусов;
  7. На завершающем этапе устанавливается крышка с герметизирующей прокладкой.

Задумав это сделать, лучше предварительно оценить свои силы, знания и навыки обращения с инструментом, чтобы не попасть впросак, потратив приличную сумму денег, немало времени и сил, и при этом, не создав необходимое устройство, но если вы действующий или механик в прошлом, можете смело браться за дело.

crast.ru

характеристика, техника изготовления и применение

Владельцы домашних мастерских имеют много приспособлений и устройств, которые значительно облегчают ручной труд и повышают эффективность работы. Одним из таких механизмов является понижающий редуктор. В основном он используется для того, чтобы скорость вращения выходного вала изменялась в меньшую сторону или повышался на нем крутящий момент. По своей конструкции это устройство может быть комбинированным, червячным или шестеренным, а также одно- и многоступенчатым. Понижающий редуктор многие изготавливают своими руками.

Что такое редуктор?

Этот механизм представляет собой передаточное звено, которое располагается между вращательными устройствами электродвигателя или двигателя внутреннего сгорания к конечному рабочему агрегату.

Основными характеризующими показателями редуктора являются:

  • передаваемая мощность;
  • КПД;
  • количество ведущих и ведомых вращательных валов.

К вращательным устройствам этого механизма неподвижно закрепляют зубчатые или червячные передачи, которые передают и регулируют движение от одного к другому. В корпусе имеются отверстия с подшипниками, на которых располагаются валы.

Необходимые материалы и инструменты

Чтобы изготовить редуктор могут потребоваться следующие материалы и инструменты:

  • гаечные ключи и отвертки разнообразных форм и размеров;
  • надфили, сверла;
  • прокладки из резины;
  • шайбы, обрезки труб, шестерни, болты, подшипники, шкивы, валы;
  • инвертор;
  • штангенциркуль, линейка;
  • плоскогубцы;
  • тиски, молоток;
  • каркас от старого редуктора или стальные листы.

Как сделать редуктор своими руками?

Самой важной деталью понижающего редуктора считается его корпус. Он должен быть спроектирован и изготовлен правильно своими руками, так как от этого зависит взаимное положение валов и осей, соосность гнезд под опорные подшипники и зазоры между шестернями.

Корпусы промышленных редукторов изготавливают в основном методом литья из алюминиевых сплавов или чугуна, однако, в домашних условиях сделать это совершенно невозможно. Поэтому под свои нужды можно подобрать или доделать уже готовый корпус либо сварить из стального листа. Только в этом случае следует помнить, что в процессе сварки металл может «повести», и поэтому для сохранения соосности валов необходимо оставлять припуск.

Многие мастера делают по-другому. Чтобы не заморачиваться с расточными работами, они корпус начинают сваривать полностью, а вместо гнезд для опорных подшипников применяют отрезки трубы, которые выставляют в необходимом положении и только после этого окончательно закрепляют на месте при помощи сварки или болтами. Для облегчения обслуживания редуктора необходимо у корпуса сделать съемной верхнюю крышку, а снизу — сливное отверстие, которое будет использоваться для стока отработанного масла.

Опорой для шестеренок служат оси и валы редуктора. Обычно в одноступенчатом механизме используют только валы, имеющих жесткое крепление шестерен. Обе шестеренки в этом случае вращаются вместе со своими валами. Ось используют тогда, когда в редуктор необходимо вставить промежуточную шестеренку. Она начинает свободно вращаться на своей оси с минимальным зазором, а чтобы не смещалась вбок, ее фиксируют гайкой, упорным буртиком или стопорными разрезными шайбами. Валы следует изготавливать из стали, обладающей хорошей прочностью и замечательно поддающейся механической обработке.

Опорами для валов служат подшипники в редукторе. Они воспринимают нагрузки, возникающие в процессе работы механизма. Надежность и работоспособность редуктора целиком зависит от того, насколько правильно были подобраны подшипники.

Для механизма своими руками лучше всего подобрать подшипники закрытого типа, для которых требуется минимальное обслуживание. Они смазываются консистентной смазкой. Тип подшипников напрямую зависит от вида нагрузки. При использовании прямозубых шестерен будет достаточно обыкновенных одно- или двухрядных шариковых подшипников. Если в механизме присутствуют косозубые шестерни или червячные передачи, то на вал и подшипники начинает передаваться осевая нагрузка, что требует наличия шарикового или роликового радиально-упорного подшипника.

Другой довольно важной деталью редуктора являются шестерни. Благодаря им можно изменять частоту вращения выходного вала. Чтобы изготовить шестерни, необходимо специальное металлорежущее оборудование, поэтому для экономии можно использовать готовые детали со списанных устройств.

Очень важно в процессе монтажа шестерен выставить правильно зазор между ними, потому что от этого зависит уровень шума, возникающего во время работы редуктора и нагрузочная способность. Смазывать шестерни лучше всего жидким индустриальным маслом, которое заливают таким образом, чтобы оно покрыло зубья нижней шестерни. Смазка остальных деталей осуществляется при помощи разбрызгивания масла по внутренней полости механизма.

Сальниковые уплотнители валов предотвращают просачивание масла наружу из редуктора. Устанавливают их на выходах валов и закрепляют в подшипниковых крышках. Чтобы предотвратить аварийное разрушение деталей механизма от больших нагрузок используют предохранительную муфту. Она бывает в виде сильфона, подпружиненных фрикционных дисков или срезаемого штифта. Процесс монтажа очень сильно облегчают крышки подшипников, которые бывают сквозными или глухими. Подбирают их из готовых деталей или вытачивают на токарном станке.

Сфера применения редуктора

Этот механизм является незаменимым помощников в различных сферах деятельности человека. Обычно он применяется:

  • в промышленности;
  • в автомобильных коробках передач;
  • в электрооборудовании и бытовой техники;
  • в газодобывающей промышленности и многих других отраслях.

В промышленности этот механизм используется очень широко. В различных обрабатывающих станках он применяется как вращательная передающая деталь, повышающая скорость оборотов.

А вот в автомобильных коробках передач редуктор, наоборот, понижает частоту вращения двигателя. От того, насколько правильно отлажена его регулировка, зависит плавность и мягкость хода транспорта.

Это понижающее обороты устройство используется также в бытовой технике и электрооборудовании, имеющих электродвигатели. Это могут быть миксеры, стиральные машины, дрели, кухонные комбайны, болгарки.

Редукторы являются незаменимой частью вентиляционного оборудования, очистных сооружений, насосных систем. Они способствуют поддержанию оптимального давления газа в газопламенных установках.

Газодобывающая промышленность также не может обойтись без этого механизма. Транспортировка и хранение газов является довольно опасным процессом, поэтому используют редуктор, с помощью которого перекрывают доступ газа или открывают ему выход, регулируя напор.

Сборка редуктора своими руками из подручных средств – дело довольно хлопотное, но не слишком трудное. С его помощью уменьшается вращение выходного вала и увеличивается его крутящий момент. Производительность устройств или машины полностью зависит от этой детали. Используется этот механизм в самых разнообразных отраслях деятельности человека.

Оцените статью: Поделитесь с друзьями!

stanok.guru

Редуктор с автоматическим центробежным сцеплением на двигатель. Вал 20 мм.

Цепной редуктор с центробежным автоматическим сцеплением для двигателя с валом 20 мм.

Такой автомат-редуктор со сцеплением устанавливается на японские двигатели Honda и китайские моторы Lifan, Champion, GreenField мощностью 5,5 6,5 7,0 л.с. (модели 168F, 168F-2, 170F) с диаметром выходного вала 20 мм. Предназначен для понижения оборотов 1/2 и включение в работу выходного вала после набора оборотов.

Автоматическое сцепление позволяет использовать двигатели на самодельных конструкциях — небольших снегоходах, мотобуксировщиках, картингах, багги, мотособаках, квадроциклах.

Редуктор должен работать в масляной ванне. Без масла использовать категорически нельзя!!!

ОБЯЗАТЕЛЬНО!!! Залейте масло в редуктор. Марка масла — Dexron III, mobil ATF (автомобильное для автоматических коробок передач!!!). При использовании других масел редуктор выходит из строя.

Объем масла — 0,5 л.

Инструкция по сборке и техническому обслуживанию редуктора

Технические характеристики

Диаметр выходного вала 20,0 мм.
Длина вала 50 мм.
Направление вращения вала Против часовой стрелки
Производитель Lifan

Почему выгодно покупать у нас:

— Делать покупки по выгодным ценам можно не выходя из дома.

— Вы не рискуете потерять Ваши деньги, т.к. оплачиваете товар убедившись в том, что именно этот товар Вам необходим.

— По Вашему желанию технику проверят на работоспособность.

— Вы получите полную и грамотную консультацию по выбранному товару, техническим характеристикам и советы по использованию.

— При заказе от 3000 р. стоимость доставки по Москве составит всего 500 р. По Московской области дополнительно 30 руб/км.

— Отправка заказов в другие города России транспортными компаниями. Доставка от 500 р.

— Гарантия на технику от 1 года до 5 лет.

— Мы работаем быстро и качественно. Наш тел. +7(963)723-00-43.

ВНИМАНИЕ!!! Доставка производится на сумму заказа от 3000 р.

sadovaya-mototehnika.ru

самодельные понижающие скорость конструкции для сборки своими руками

Гордость многих дачников — самодельный мотоблок, собранный своими руками из деталей, отслуживших свой век механизмов. Поставить электродвигатель или малогабаритный бензиновый от старого мотороллера или мотоцикла на раму с колесами не составит труда даже для начинающего механика-любителя. А вот над чем придется подумать, так это над редуктором для мотоблока.

Конструкция мотоблока

Схемы сборки самодельных мотоблоков разнообразны настолько, насколько различны запчасти в гараже каждого хозяина. Размеры тоже выбираются из практических соображений.

При разном составе и габаритах есть обязательные элементы:

  1. Рама — прочная конструкция для крепления остальных деталей.
  2. Колеса — от самодельных металлических до резиновых фабричного производства. Положение оси колеса или колесной пары фиксируется относительно рамы железными стойками со впрессованными подшипниками.
  3. Двигатель — мощностью от 5 до 10 лошадиных сил. Можно применять даже электродвигатель с аккумулятором, но наиболее популярны двигатели от мотороллера или мотоцикла. Такой выбор хорош наличием готового управления оборотами и даже передаточным устройством.
  4. Редуктор — узел для передачи вращения от двигателя исполнительному механизму, преобразует скорость и направление.

А вот первый попавшийся редуктор может не подойти. Нужно выбрать тип конструкции, рассчитать размер каждой детали, чтобы скорость и мощность движения навесного культиватора позволяли обрабатывать землю в удобном режиме — не быстро и не медленно.

Типы редукторных узлов

Передача вращательного движения от вала двигателя к валу исполнительного механизма может производиться прямым соединением осей, если скорость и мощность вращения двигателя приемлема для работы, а оси ведущего и ведомого валов совпадают. Такие случаи крайне редки, а при нескольких навесных инструментах разного назначения прямая передача абсолютно не может быть применена. Для согласования скорости и мощности ведущего и ведомого вала используют 4 вида механизмов и их комбинации. Основные типы передач:

  • ременная;
  • цепная;
  • шестеренчатая;
  • червячная.

Червячная передача конструктивно ограничена понижающей скорость функцией, остальные могут применяться как в понижающих передачах, так и в повышающих. К тому же такой редуктор всегда имеет ведомую ось перпендикулярную валу ведущей. Такая схема называется угловым редуктором. Кроме червячной передачи, изменить направление оси можно пространственным планетарным механизмом. Ременная и цепная передачи оставляют ведомую ось параллельной оси двигателя. В простых устройствах реверс возможен только при изменении вращения двигателя.

В мотоблоках применяются двигатели с высоким количеством оборотов в минуту, о чем можно удостовериться в паспорте изделия. Значит, своими руками надо сделать редуктор для понижения скорости, а какого типа будет самодельный редуктор на мотоблок, лучше выбрать, зная характеристики каждого типа.

Ременная передача

Шкив или ремень, передающие вращение от вала к валу, знакомы каждому автомобилисту, заглядывавшему под капот моторного отсека. Коэффициент понижения скорости вращения определяется делением радиуса малого ведомого колеса на радиус большого ведущего.

Плюсы ременным редукторам — это простота изготовления и ремонта, большое разнообразие деталей. А минусы ремня:

  • растягивание ремня, снижение сцепления со шкивом от температуры и износа;
  • проскальзывание при резких увеличениях крутящего момента;
  • небольшой срок эксплуатации.

Компенсируют недостатки подпружиненным роликом, давящим на поверхность ремня между колесами, применением зубчатого ремня на шкивах с поперечными фасками. Ременные редукторы требуют нахождения ведущих и ведомых шкивов в одной плоскости, изгиб или скрутка ремня быстро приведет его к разрыву.

Цепной тип

Принцип действия цепной передачи аналогичен ременному, но вместо шкивов установлены звездочки, а ремень заменен цепью. Такой самодельный редуктор не допустит пробуксовки, а в аналогичных условиях проработает значительно дольше.

Так же, как ременной, цепной редуктор должен иметь ведущую и ведомую звездочки в одной плоскости, а его передаточное число считается по соотношению их зубьев. Вес такой конструкции больше, чем у ременной, но на мощные мотоблоки надежнее ставить ее.

В отличие от ременной передачи, цепная требует осторожности или дополнительных защитных мер. При столкновении вращающегося навесного инструмента с толстым корнем в почве сила его сопротивления будет передана на двигатель, что может его повредить. Пока двигатель не выйдет из строя или не отключится, он будет пытаться с максимальной мощностью провернуться вместе с рамой вокруг ведомой оси редуктора. Чем больше мощность двигателя, тем сильнее будет опрокидывающий момент.

Передаточное число цепного редуктора может быть выше, чем у ременного такого же размера, так как ведущая звездочка, даже имея маленький размер, не допустит проскальзывания цепи.

По стоимости, простоте сборки, распространенности деталей цепная передача не уступает ременной.

При помощи шестерней

Мотоблок с шестеренчатым редуктором надежнее, долговечнее чем с цепным или ременным. Конструкции шестернями ставят на заводские изделия, и не только на мотоблоки. Узлы получаются малогабаритными в результате совмещения на одной оси двух шестеренок с разными диаметрами. Для мотоблока, например, отлично подойдет редуктор от мотороллера Муравей. Но можно сделать свой, используя шестерни от коробок передач автомототранспорта.

Нужное передаточное число можно обеспечить планетарным механизмом, в котором между внешней и солнечной шестернями установлены шестерни-сателлиты, закрепленные на неподвижном кольце — водиле:

Для понижающего редуктора солнечная шестерня установлена на ведущий вал. Водило с планетарными шестернями закреплено на неподвижном корпусе, а наружная шестерня соединена с исполнительным устройством, вращаясь в направлении, противоположном солнечной шестерне.

Передаточное отношение такого редуктора можно рассчитать как отношение числа зубьев солнечной шестерни к количеству зубьев на внешней шестерне.

Для изменения направления оси вращения в редукторах применяют пространственный планетарный механизм, в котором шестерни для изменения направления на 90 градусов должны быть скошены на конус под 45 градусов каждая. Диаметр шестеренок может быть разным, что можно применить для изменения передаточного числа.

Для мотоблока такой угловой редуктор своими руками делают нечасто, так как планетарные шестерни нужного размера надо еще поискать. Изменение оси вращения чаще делают готовыми заводскими редукторами или червячной парой.

Червячная передача

Для перпендикулярного изменения направления оси вращения, создания большого передаточного отношения применяется контакт плоской шестерни с Архимедовым винтом.

Передача вращения от исполнительного устройства к двигателю невозможна. Это уникальная особенность червячного механизма, другие типы передач таким свойством не обладают. Скорость вращения на выходе можно уменьшить во столько раз, сколько зубьев будет у шестерни. Отличается такая передача простотой сборки большим трением, небольшим размером, большой популярностью.

Для того чтобы сделать червячный редуктор своими руками, нужно подобрать шестерню с количеством зубцов, равным снижению скорости вращения в разах, а также с шагом между зубцами, равным шагу гребня червяка.

Реверсивный механизм

Наличие реверсивного передаточного механизма упрощает работу в полях, но сделать реверс в домашних условиях любителю реально только для электродвигателя. Трудности состоят во включении в схему дополнительного передаточного элемента с возможностью его точного перемещения, надежной фиксации. Для этого потребуется разорвать существующую связь с двигателем, а в разрыв вставить новый элемент, будь то еще один шкив с ремнем, звездочка с цепью или шестерня. Такие преобразования с восстановлением требуют деталей, изготовленных с точностью профессиональных станков.

Практичней в этом случае установить заводской реверсивный редуктор. Например, от автомобиля с механической коробкой передач.

Сборка редукторов своими руками

Эксплуатация мотоблоков, а с ними редукторов — это пыль, бездорожье, жара при пахоте или холод при уборке снега, неравномерные нагрузки. Продлить срок эксплуатации передаточного механизма можно с помощью закрытого корпуса.

Для основания, на котором крепятся шкивы, шестерни, прочие детали, применяется сталь СТ-40. Крышку можно изготовить из менее прочной стали, если на ней не закреплены элементы передачи крутящего момента.

Применение подшипников для установки валов, шкивов, звездочек, шестеренок обязательно, иначе трение погасит силу вращения, а блок или быстро выйдет из строя, или сразу не заработает.

Любой вращающийся механизм требует смазки. Червячный редуктор особенно. Продлить срок использования устройства поможет частая замена смазки, для чего крышка редуктора должна быть открывающейся.

Бензиновые, дизельные двигатели имеют регулировку подачи топлива и скорости вращения двигателя. Оптимально переместить так называемую ручку газа на рукоять мотоблока.

Когда нашлись все необходимые детали, для сборки мотоблока потребуются слесарные инструменты. Не обойтись без сварочного аппарата, болгарки, дрели, сверл по металлу.

Потраченное на изготовление мотоблока время окупит себя полностью в первый же дачный сезон.

pochini.guru

Двигатель t gdi – Что такое двигатель GDI — DRIVE2

Что такое двигатель GDI — DRIVE2

Продолжаю тему про Hyundai часть — 1 и часть — 2 в данной записи речь пойдёт о двигателе GDI.
Я приобрел себе автомобиль двигателем GDI (M16GDI), многие мне говорили и прдолжают говорить что типа с этим двигателем хапну горя.Но я считаю что если лить в него минимум АИ-95 и качественное моторное масло, вовремя реагировать на подозрения в работе двигателя, то проблем не должно ни каких быть.

Но как оно на самом деле, давайте разберём…

Что такое двигатель GDI

.

Двигатель GDI (Gasoline Direct Injection) – бензиновый силовой агрегат с прямым (непосредственным) впрыском топлива. Моторы с аббревиатурой GDI производятся японскими компаниями Mitsubishi, Toyota, Nissan, корейскими автопроизводителями, а также фирмой Bosh.
Идея постройки двигателя с непосредственным впрыском топлива в цилиндры родилась достаточно давно, при этом массовый GDI впервые был представлен только в 1995 году. Моторы с технологией GDI в большинстве встречаются на автомобилях марки Mitsubishi. Перовой моделью с таким силовым агрегатом стала модель Mitsubishi Galant, которая получила силовую установку 1.8 GDI.

Особенности и отличия моторов GDI

.

Принцип работы двигателя GDI представляет собой своеобразный «симбиоз» привычных бензиновых и дизельных ДВС. Начнем с того, что для нормальной работы любого двигателя внутреннего сгорания в цилиндры необходимо подать так называемую топливно-воздушную смесь. Другими словами, определенная часть горючего смешивается в необходимой пропорции с частью воздуха применительно к разным режимам работы мотора. От состава смеси напрямую зависит мощность двигателя, КПД, экономичность, экологичность и ряд других характеристик.

Большинство бензиновых и дизельных двигателей сегодня:

— моторы с внешним смесеобразованием. К таковым относятся устаревшие карбюраторные агрегаты на
бензине и современные атмосферные, компрессорные или турбированные инжекторные бензиновые
моторы. В таких двигателях процесс приготовления топливно-воздушной смеси происходит отдельно (во
впускном коллекторе), после чего готовый заряд поступает в цилиндры и воспламеняется от свечи
системы зажигания;

— двигатели с внутренним смесеобразованием. Данный тип агрегатов представлен дизельными моторами, в
которых порция дизтоплива подается напрямую в цилиндры и смешивается с уже имеющимся там
воздухом. Воспламенение заряда происходит от контакта подаваемой солярки с разогретым от сжатия
объемом воздуха, то есть без участия внешнего источника во

www.drive2.ru

Новые двигатели Hyundai T-GDI: меньше объем, больше мощность


Литровый двигатель Kappa мощностью 106 л.с.

Специалисты Hyundai на международной конференции по моторостроению представили свои последние проекты в области создания силовых агрегатов. Принимая во внимание мировую тенденцию по сокращению объема автомобильных двигателей, Хендай планирует более широкое использование силовых установок T-GDI (силовые агрегаты с системой прямого впрыска бензина и турбиной) на своих авто. Как отмечают в компании, двигателя T-GDI обязательно завоюют широкую популярность за счет своей экономичности, улучшенной экологичности и более высокой отдачи мощности.

Как известно, некоторые модели Хендай уже оборудуются моторами данного типа, однако компания планирует совершенствование технологии T-GDI и в дальнейшем. Все работы будут направлены на создание небольших и мощных силовых агрегатов, способных доставить истинное удовольствие от вождения. В недалеком будущем покупателям планируется предложить персонализированные силовые установки, полностью адаптированные для эксплуатации в отдельно взятой стране.


Конструкция перспективного мотора Kappa 1.2

Помимо того, в планах Hyundai достижение лидерства в производстве трансмиссий. Как отмечают эксперты, благодаря постоянной работе Хендай над совершенствованием и разработкой коробок передач это вполне возможно. Нельзя оставить без внимания и то, что компания первой в мире спроектировала и построила 8-ступенчатый «автомат» для платформ с задним приводом.

В ходе показов на конференции, специалисты Hyundai представили ряд моторов разного объема, оснащенных как бензиновыми, так и дизельными системами питания. Отдельно проводилась презентация нового вариатора (бесступенчатой коробки передач) Kappa CVT.


Представитель линейки двигателей T-GDI

Из всех представленных двигателей наибольшего внимания удостоилась модель Kappa 1.0 TCI, оснащенная охлаждаемым турбонагнетателем. Данный силовой агрегат отличается увеличенной мощностью, предлагая 106 л.с. и крутящий момент в 137,3 Нм. Кроме того, новый двигатель выбрасывает в несколько раз меньше СО2, чем модель прошлого поколения.

Для улучшения характеристик Kappa 1.0 TCI был задействован ряд совершенно новых решений. Мотор получил 12 клапанов, турбокомпрессор и модифицированный коленчатый вал. Блок цилиндров из алюминия, крышка головки блока и впускной коллектор из пластика позволили облегчить конструкцию, а за счет использования рамы лестничного типа удалось повысить плавность хода и значительно снизить поступающие вибрации.


Презентация двигателя Hyundai T-GDI Kappa 1.0

www.hundaj.ru

GDI двигатель: что это такое?

Двигатель GDI (Gasoline Direct Injection) – бензиновый силовой агрегат с прямым (непосредственным) впрыском топлива. Моторы с аббревиатурой GDI производятся японскими компаниями Mitsubishi, Toyota, Nissan, корейскими автопроизводителями, а также фирмой Bosh.

Рекомендуем также прочитать статью о том, что такое двигатель TSI. Из этой статьи вы узнаете об особенностях, плюсах и минусах моторов данного типа.

Идея постройки двигателя с непосредственным впрыском топлива в цилиндры родилась достаточно давно, при этом массовый GDI впервые был представлен только в 1995 году. Моторы с технологией GDI в большинстве встречаются на автомобилях марки Mitsubishi. Перовой моделью с таким силовым агрегатом стала модель Mitsubishi Galant, которая получила силовую установку 1.8 GDI.

Читайте в этой статье

Особенности и отличия моторов GDI

Принцип работы двигателя GDI представляет собой своеобразный «симбиоз» привычных бензиновых и дизельных ДВС. Начнем с того, что для нормальной работы любого двигателя внутреннего сгорания в цилиндры необходимо подать так называемую топливно-воздушную смесь. Другими словами, определенная часть горючего смешивается в необходимой пропорции с частью воздуха применительно к разным режимам работы мотора. От состава смеси напрямую зависит мощность двигателя, КПД, экономичность, экологичность и ряд других характеристик.

Большинство бензиновых и дизельных двигателей сегодня:

  • моторы с внешним смесеобразованием. К таковым относятся устаревшие карбюраторные агрегаты на бензине и современные атмосферные, компрессорные или турбированные инжекторные бензиновые моторы. В таких двигателях процесс приготовления топливно-воздушной смеси происходит отдельно (во впускном коллекторе), после чего готовый заряд поступает в цилиндры и воспламеняется от свечи системы зажигания;
  • двигатели с внутренним смесеобразованием. Данный тип агрегатов представлен дизельными моторами, в которых порция дизтоплива подается напрямую в цилиндры и смешивается с уже имеющимся там воздухом. Воспламенение заряда происходит от контакта подаваемой солярки с разогретым от сжатия объемом воздуха, то есть без участия внешнего источника воспламенения;

Двигатель GDI представляет собой бензиновый мотор, в котором процесс смесеобразования аналогичен дизельному, то есть топливо впрыскивается прямо в цилиндры, где происходит смешивание с поданным ранее воздухом. При этом полученная топливно-воздушная смесь воспламеняется в цилиндре посредством искры от свечи зажигания. 

Если сказать иначе, воздух поступает в двигатель отдельно, форсунка GDI осуществляет непосредственный впрыск топлива в цилиндр, затем происходит перемешивание компонентов, после чего поджиг смеси осуществляет электрическая искра свечи зажигания. Следует добавить, что во время такого смесеобразования конструкторами учитывается ряд аэродинамических особенностей для получения оптимально упорядоченного состава смеси. По этой причине конструкция поршня и камеры сгорания существенно отличается от аналогов в двигателях с внешним смесеобразованием, а также форкамерных ДВС. Днище поршня имеет особую форму для направления факела распыла на свечу зажигания, ГБЦ получила вертикальные прямые впускные каналы, что позволяет «закручивать» воздух в цилиндрах двигателя. Благодаря такому устройству топливно-воздушная рабочая смесь в GDI движется по строго заданной траектории.

Более того, состав смеси отличается в разных участках общего объема цилиндра.  В результате подобных решений двигатели линейки GDI способны работать на сильно обедненной смеси, которая была бы непригодна для работы обычного бензинового мотора. Необходимое для воспламенения от искры соотношение топлива и воздуха концентрируется в цилиндре GDI в области расположения свечи зажигания, в то время как по условным «краям» цилиндра смесь остается максимально обедненной.

Рекомендуем также прочитать статью о том, что такое двигатель TDI. Из этой статьи вы узнаете об особенностях конструкции, преимуществах и недостатках агрегатов данного типа.

Еще одной особенностью двигателя GDI является наличие двух топливных насосов:

Данное решение также является аналогом принципа подачи топлива в дизельном двигателе. В моторах GDI давление впрыска составляет около 50 бар, в то время как в обычных бензиновых ДВС около 3 бар.

Впрыск топлива и разновидности GDI

Моторы GDI имеют целый ряд конструктивных различий, благодаря чему их можно разделить на две группы:

  • для внутреннего японского рынка;
  • для европейских рынков;

Отличаются такие агрегаты по конструкции самого мотора, по особенностям исполнения ТНВД и по устройству системы топливного впрыска. Версии для Японии имеют два основных режима впрыска топлива GDI:

  1. ultra lean combustion mode;
  2. superior output mode;

Первый режим предполагает работу мотора на сверхобедненной смеси, которая имеет соотношение 37:1-43:1. Такой режим работы поддерживается ЭБУ на умеренных скоростях до 110-120 км/ч. с учетом плавного разгона, то есть без резких нажатий на педаль газа. В указанном режиме двигатель GDI обеспечивает максимальный показатель крутящего момента. Форсунки впрыскивают горючее в тот момент, когда поршень находится на такте сжатия и не дошел до ВМТ. Подача топлива инжектором в этом случае происходит в виде однородной струи, после происходит завихрение потока по часовой стрелке для наилучшего смешивания с воздухом в цилиндре.

Во втором режиме предполагается стехиометрический состав смеси топлива и воздуха. Указанный режим работы активируется в том случае, если мотор находится под нагрузкой (движение на высокой скорости, буксирование прицепа, езда в гору и т.п.)

В версиях для Европы мотор GDI получил дополнительный режим two-stage mixing. Указанный режим рассчитан на активный разгон с места или необходимость резкого ускорения при обгоне. В таком режиме топливо выпрыскивается в цилиндры ступенчато (в два этапа за 4 такта).

На такте впуска в этом режиме совершается первый впрыск, результатом которого становится максимально обедненная смесь в цилиндре с соотношением около 60:1. Данная смесь не рассчитана на воспламенение. Главной задачей является эффективное охлаждение камеры сгорания, так как в охлажденную камеру можно будет подать больший объем воздуха и топлива на такте сжатия. Другими словами, данное решение позволяет улучшить наполнение цилиндров. Затем на такте сжатия происходит второй впрыск, после которого состав смеси уже составляет 12:1, то есть рабочая смесь становится максимально обогащенной.

В результате цилиндры эффективно наполняются и двигатель отдает максимально доступную мощность. По сравнению с моторами, которые имеют распределенный впрыск, GDI оказывается на 10% мощнее. В итоге европейские версии GDI более эластичны и способны отдавать больше крутящего момента на «низах» при необходимости резко ускориться во время движения на скорости 30-60 км/ч.

Также следует отметить особый режим двигателя GDI под названием stich F/B. Указанный режим работы предполагает наиболее приближенный к стехиометрическому состав топливно-воздушной смеси, а также делится на два подрежима: closed loop и open loop.

В первом случае состав смеси регулируется на основе показаний кислородного датчика, во втором показания датчика не влияют на состав смеси топлива и воздуха. Данная особенность является отличием GDI от других моторов во время работы на холостом ходу. ЭБУ двигателем динамично меняет режимы compression on lean и stich F/B во время работы мотора на холостых оборотах, условно продувая цилиндры. Особенностью  является повышение холостых оборотов двигателя до 900-950 об/мин. в момент перехода между указанными режимами. Указанная смена режимов работы GDI в норме должна происходить 1 раз в 4 мин. Все режимы переключаются под управлением ЭБУ. Если говорить о комфорте водителя, смена режимов и изменения в работе мотора практически не ощущаются.

Что касается токсичности GDI, японские инженеры разработали специальные катализаторы для моторов, которые работают на сильно обедненной смеси. В результате уровень окислов азота в выхлопе такого двигателя уложился в рамки Евро-3. Стоит отметить, что высокое содержание серы, которое отмечено в отечественном бензине, быстро выводит каталитические нейтрализаторы из строя.

Неисправности и проблемы моторов GDI

Главной проблемой моторов данного типа является повышенная чувствительность к качеству топлива, а также к любым факторам и поломкам, способным повлиять на качество смесеобразования.

На моторах GDI быстро чернеют и выходят из строя свечи зажигания. Топливная аппаратура таких двигателей намного более чувствительна к наличию воды и механических примесей в бензине. Образование нагара во впускном коллекторе и скопление сажи на клапанах способны изменить процесс смесеобразования, так как траектория движения потоков в цилиндре нарушается. В результате GDI теряет мощность и работает с заметными перебоями.

В целях профилактики на моторах GDI рекомендуется менять свечи зажигания каждые 10-20 тыс. пройденных километров, а также один раз в 25-30 тыс. км. производить очистку впускного коллектора от нагара и частиц сажи на его стенках. Также периодически нужно контролировать состояние инжекторов, проверять качество распыла топлива и чистить форсунки.

Читайте также

krutimotor.ru

Двигатель GDI: констукция, характеристики

Двигатель GDI — пожалуй, одна из наиболее обсуждаемых тем на автомобильных форумах. Пик дискуссий совпал с началом 2000-х, когда на российском вторичном рынке появились японские авто с незнакомым индексом в наименовании модели. Счастливые покупатели столкнулись с неизвестными до этого проблемами системы питания.

Положение осложнялось тем, что работники сервиса оказались не готовы, не то чтобы сделать ремонт такого двигателя, но даже найти причину неисправности. Справедливости ради следует заметить, что в последние годы ситуация несколько улучшилась.

Почти дизель

Что означает аббревиатура GDI, которую можно увидеть на моторе и кузове автомобиля японского производства? Расшифровывается это как: Gasoline Direct Injection, в переводе — бензиновый прямой впрыск. Англоязычная фонетика этого сокращения — ДжиДиАй, в России произносят как ГДИ, иногда ЖДИ.

Автомобилисты прозвали эти движки «джедаями». Впервые буквы GDI появились на автомобилях Mitsubishi Galant/Legnum в 1996 году. У других японских автопроизводителей свои обозначения прямого впрыска: у Toyota — D4, у Nissan — DI и Neo DI. Такая же картина и в Европе:

  • группа Volkswagen обозначает такие двигатели — FSI;
  • Daimler Chrysler — CGI;
  • Renault — IDE;
  • Ford — SCi.

Итак, GDI — это новый тип бензинового инжекторного двигателя с прямым или непосредственным впрыском (НВ), что одно и то же. Форсунки у них выходят непосредственно в камеру сгорания, а не во впускной коллектор, как при распределенном впрыске. Этим бензиновый агрегат напоминает дизель.

Основная идея заключается в том, чтобы заставить двигатель хотя бы часть времени работать на сверхобедненной топливовоздушной смеси с целью экономии топлива и сокращения количества вредных выбросов.

Отличия в конструкции

Для того чтобы создать условия для подобного протекания рабочего процесса, бензин необходимо подавать внутрь цилиндра, находящегося под давлением такта сжатия. Поскольку традиционный насос, находящийся в бензобаке, неспособен преодолеть такое сопротивление, требуется применять дополнительный аппарат — топливный насос высокого давления (ТНВД).

Моторы с НВ имеют необычную форму головки поршня, обусловленную необходимостью придать подаваемой порции горючего строго рассчитанное вихреобразное движение.

В связи с тем, что двигатель с НВ, так же как и любой другой ДВС, не может постоянно работать при недостаточной концентрации смеси, эти моторы отличаются более сложной программой работы, обеспечивающей сочетание экономных и мощностных режимов смесеобразования. Наконец, двигатели GDI имеют 2 катализатора — иридиевый и платиновый.

Первый предназначен для накопления и выжигания окислов азота, образующихся при работе на супербедной топливовоздушной смеси, второй — для обычного смесеобразования.

Благодаря увеличению степени сжатия до 12 — 13 увеличилась литровая мощность силового агрегата при одновременном сокращении расхода топлива и снижении токсичности выхлопа.

На скудном пайке

Прежде чем рассматривать режимы работы двигателя GDI, нужно немного вспомнить теорию. Смесь бензина с воздухом в цилиндре может воспламениться, только в том случае, когда имеет определенную концентрацию. Оптимальной величиной является 1 часть горючего на 14,7 частей воздуха (стехиометрический состав).

Максимальное количество воздуха на 1 объемную часть бензина в инжекторном двигателе не должно превышать 20 — 24 частей. Описываемые двигатели могут работать на сверхобедненной смеси (до 1:40). Как это можно объяснить?

Топливо в цилиндре после впрыска распределяется по объему неравномерно за счет отражения его от выемки в днище поршня, который в момент впрыска находится в крайнем верхнем положении (конец такта сжатия). Топливный факел имеет компактную форму и, отражаясь, образует обратный вихрь. При общей бедной смеси, в районе свечи зажигания она близка к стехиометрическому составу и успешно воспламеняется.

Затем пламя поджигает прилегающий слой, интенсивность горения увеличивается, и процесс охватывает весь объем цилиндра. Описанный режим — ULTPA LEAN COMBUSTION MODE называется еще послойным смесеобразованием или сгоранием и поддерживается программой ЭБУ при спокойном характере движения со скоростью до 100 — 120 км/час.

Двухразовое питание

К сожалению, для дальнейшего ускорения мощности оказывается недостаточно, и приходится обогащать смесь до обычного уровня (1:12 — 1:15). Смесь при этом является однородной (гомогенной) и образуется в результате впрыска топлива на такте впуска, когда поршень идет вниз, и топливный факел в форме широкого конуса заполняет весь раскрывающийся объем.

Отражения факела от поршня не происходит, и после обратного хода сжатия смесь поджигается. Этот режим — SUPERIOR OUTPUT MODE — активируется также при движении под нагрузкой, то есть, в тех случаях, когда требуется увеличение выдаваемой мощности.

В двигателях для европейского рынка присутствует и третий режим — TWO-STAGE MIXING (двухэтапное смесеобразование). Впрыск при этом производится дважды: на такте впуска и в конце хода сжатия.

Смысл заключается в том, что небольшая порция бензина, впрыснутая не первом этапе, охлаждает стенки цилиндра и способствует увеличению массового количества всасываемого воздуха, что позволяет пропорционально увеличить и подачу топлива на второй стадии впрыска (в конце такта сжатия).

Совет: учитывая привередливость системы к качеству воздуха, следует уделять особое внимание профилактике воздушного фильтра, а впускной коллектор рекомендуется очищать каждые 25 — 30 тысяч км.

Кто портит воздух?

На холостом ходу (ХХ) мотор GDI работает также на двух режимах. Основным является Compression on Lean (обедненная смесь) — 625 — 650 об/мин. Однако постоянная работа на нем приводит к накапливанию в катализаторе высокотоксичного оксида азота (NO), что заметно по неприятному запаху из выхлопной трубы.

Чтобы выжечь это соединение, периодически включается режим STICH F/B (продувка). Обороты возрастают примерно до 750, на некоторых моделях — до 900.

По такому поведению мотора, работающего на ХХ, и можно распознать двигатель GDI. На исправном двигателе продувка кратковременно включается примерно через 4 минуты. Режим STICH F/B функционирует в свою очередь по двум вариантам: регулирование смесеобразования с учетом коррекции датчика кислорода (CLOSED LOOP) и нерегулируемый процесс (OPEN LOOP).

Стоит ли овчинка выделки?

Какие выгоды сулит новый двигатель с НВ, в том числе и системы GDI:

  • Ежедневная эксплуатация автомобиля в городских условиях, когда силовой агрегат постоянно работает на стабильных оборотах ХХ, сопровождается заметной экономией топлива — примерно на 20 — 25%. За городом расход горючего остается таким же, как и у агрегата с распределенным впрыском.
  • Особенности принципа смесеобразования обеспечивают «джедаю» взрывной характер, тяга и мощность агрегата превосходят аналогичные показатели обычного (распределенного) инжектора.
  • Он более чист с экологической точки зрения, правда, российский владелец от этого ничего не имеет, в отличие от японца. Ведь островные жители приобретают тот же Mitsubishi с двигателем GDI в основном для получения льготной скидки по транспортному налогу, а ремонт силового агрегата они перекладывают на будущего покупателя, как правило, зарубежного.
  • Некоторые утверждают, что GDI двигатель лучше запускается в зимнее время.

Следует заметить, что из двигателей прямого впрыска японского и корейского производства самые надежные и доработанные моторы стоят на автомобилях Мицубиси (Митсубиси).

Приключения японцев в России

И все-таки, перефразируя известную пословицу: что японцу хорошо, то русскому — смерть. В России все преимущества НВ перечеркиваются низким качеством отечественного бензина. В чем это выражается?

Недостаточно чистое топливо, да и просто высокий процент содержания серы в бензине приводит к ускоренному износу ТНВД и засорению форсунок. Ремонт последних, кстати, невозможен. Если промывка не получается, приходится заменять их новыми, что довольно накладно. Наиболее часто на форумах жалуются на «плавающие» обороты ХХ.

Одной из причин, если не главной, такого явления является вышеупомянутый насос. Как было сказано выше, холостые обороты изменяются регламентировано, в соответствии с прошивкой ЭБУ.

Когда износ качающего плунжера (плунжеров) достигает определенной величины, после перехода на режим Compression on Lean давление впрыска падает ниже допустимого, и компьютер возвращает систему в режим обогащения. После нормализации давления процессор снова пытается переключить работу впрыска на «обедненный» режим.

То есть, частота переключений увеличивается, а если на процесс накладываются и другие факторы, то периодичность становится хаотичной, что и приводит к неприятным дерганиям на ХХ. Скорее всего, потребуется диагностика и ремонт ТНВД, чистка форсунок, а также удаление сажи из впускной системы.

То, что часть отработанных газов из экологических соображений направляется во впускной коллектор, приводит к засаживанию каналов, регулирующих заслонок, клапанов. В системах распределенного впрыска впускные клапаны омываются топливом, которое подается форсунками в коллектор, и проблема отложения сажи не стоит так остро.

Еще одна проблема заключается в отсутствии достаточного количества квалифицированного персонала по обслуживанию подобных систем. Определить причину неисправности и сделать необходимый ремонт проблематично даже в крупных городах, а что уж говорить о российской глубинке.

Наибольшая опасность для двигателя с прямым впрыском исходит от бензина. Горючим следует заправляться на проверенных АЗС. Категорически нельзя использовать различные присадки, октаноповышающие добавки — это прямой путь убить топливный насос.

Несмотря на серьезные недостатки, система прямого впрыска пока еще не похоронена. Многие владельцы японских авто утверждают, что довольны этим движком. Да и круг автопроизводителей расширяется. К примеру, GDI-моторами комплектуются корейские Hyundai Avante и Hyundai Gamma. Возможно, в ближайшем будущем новые двигатели избавятся от своих болезней, и гадкий утенок превратится, наконец, в красивого лебедя.

avtodvigateli.com

Что такое двигатель GDI или Gasoline Direct Injection

Ни для кого не секрет, что двигатель прямого впрыска далеко не новинка. Первооткрывателями в данной области стали инженеры Mitsubishi. Первые из авто, оснащёнными двигателями GDI, были Mitubishi Galant и Legnum, продаваемые на внутреннем рынке Японии. Двигатель имел марк