Давление открытия форсунки дизель – Давление форсунок дизельных двигателей — info — Справочник моториста

Содержание

При каком давлении срабатывает форсунка дизельного двигателя. Насос-форсунки – что это

Современные двигатели внутреннего сгорания состоят из большого количества деталей. Среди них можно встретить абсолютно разные элементы, имеющие совершенно разное, но очень полезное для движка назначение. Не исключением является и такая маленькая деталь, как насос – форсунка. В этой статье мы разберем устройство, принцип действия и ремонт насос — форсунки.

Устройство и принцип работы насос – форсунки

Форсунка представляет собой металлическую трубку со специальные сечением, предназначенным для распыления топливной смеси. Впервые и по сей день, такое устройство применяется на дизельных двигателях, где важны такие важные параметры, как экономичность мотора, низкий уровень его шума и малая токсичность выхлопных газов.


Насос форсунка устанавливается над каждым цилиндром и имеет одинаковое строение. В ее состав обычно входят: запорный поршень, специальный плунжер, игла распылительного устройство, обратный и управляющий клапана и пружина распылительного устройства.

Плунжер представляет собой деталь, которая создает определенное давление внутри форсунки. Накачка происходит во время поступательного движения плунжера. Для этого на распределительном валу имеются специальные кулачки, которые в определенные моменты времени воздействуют на плунжер и приводят его в действие.

Управляющий клапан открывается наравне с движением плунжера и пропускает топливо в камеру сгорания. Конструкция клапана подбирается таким образом, чтобы дизельное топливо в обязательном порядке подалось в распыленном виде. Так оно сгорает эффективнее и экономнее. По принципу действия управляющие клапаны можно разделить на электромагнитные и пьезоэлектрические.

Пьезоэлектрические клапана являются самыми эффективными, так как работают быстро и не допускают образование излишков топлива, а также его голодание в определенных участках системы впрыска. Основным элементом любого управляющего клапана является его игла, которая, как раз и отвечает за быстродействие системы.

Пружина распылителя устанавливается для обеспечения плотной посадки иглы. Усилие пружины, обычно, дополняется давлением топлива, созданным в топливном насосе высокого давления. Для этого, на противоположной стороне пружины устанавливается специальный запорный поршень, который и давит на нее под действием топлива.

Управление любой насос — форсункой обеспечивается при помощи . ЭБУ получает различные показания со всех датчиков, анализирует их и на основе полученных данных открывает или закрывает форсунки в определенные моменты времени.

Принцип работы:


  • Предварительный впрыск . В этот момент специальный кулачок ГРМ воздействует на плунжер, заставляя его двигаться вниз. Смесь топлива с воздухом переходит в каналы форсунки и обратный клапан закрывается. Плунжер создает давление, составляющее 13 мПа, и в этот момент срабатывает управляющий клапан форсунки, который пропуска смесь под давлением в камеру сгорания. В последний момент открывается входной клапан, и новая порция топлива попадает в каналы форсунки. В это же время, внутри элемента снижается топливное давление.
  • Основной впрыск . На этом этапе плунжер снова опускается вниз, управляющий клапан закрывается, но в форсунке создается давление уже в 30 мПа. На этот раз топливо подается под большим давлением, что обеспечивает его эффективное сжатие и сгорания в рабочей камере. Каждый последующий процесс сжатия сопровождается увеличением давления внутри форсунки. Максимальное значение составляет 220 мПа. Окончание данного этапа происходит точно так же, как и при предварительном впрыске топлива.
  • Дополнительный впрыск . Он заключается в очистке всех элементов форсунки от следов сажи и копоти. Дополнительный впрыск осуществляется сразу же после основного. Все действия по впрыску осуществляются так же, как и при основном этапе. По-другому такое явление называют еще двойным впрыском топлива.

Видео — Как определить какая насос-форсунка не работает или стучит

Как провести ремонт насос — форсунки своими руками

Конечно, замена неисправной форсунки будет намного правильнее. Однако, если учитывать сегодняшние цены на автозапчасти, то невольно напрашивается мысль о том, почему бы не произвести ремонт старой, ведь это дешевле. В действительности, ремонтный комплект форсунки стоит намного дешевле нового элемента, а потому будет намного выгоднее.


Неисправность форсунок обычно заключается в их засорении или ухудшении уплотняющих свойств внутренних резиновых прокладок. Двигатель, при этом, начинает работать неустойчиво и не развивает номинальной мощности, а расход топлива заметно увеличивается.

При подборе ремонтного комплекта, важно соблюсти марку и модель. Чтобы не ошибиться, рекомендуем снять старую и взя

autoglim.ru

Устройство форсунки дизельного двигателя

Дизельная форсунка представляет собой один из главных элементов системы питания дизельного двигателя. Форсунка (инжектор) обеспечивает прямую подачу солярки в камеру сгорания дизеля, а также дозирование подаваемого топлива с высокой частотой (более 2 тыс. импульсов в минуту). Инжектор осуществляет эффективный распыл горючего в пространстве над поршнем. Топливо в результате такого распыла получает форму факела. Форсунки отличных друг от друга систем топливоподачи имеют конструктивные особенности, различаются по способу управления. Инжекторы делят на две группы:

  • механические;
  • электромеханические;

Читайте в этой статье

Принцип работы механической форсунки

Принцип работы системы питания дизеля с механическим управлением форсунки состоит в следующем. К топливному насосу высокого давления (ТНВД) подается горючее из топливного бака. За подачу отвечает подкачивающий насос, который создает низкое давление, необходимое для прокачки солярки по топливопроводам.

Далее ТНВД в нужной последовательности осуществляет распределение и нагнетание горючего под высоким давлением в магистрали, ведущие к механической форсунке. Каждая форсунка данного типа открывается для очередного впрыска порции солярки в цилиндры под воздействием высокого давления топлива. Снижение давления приводит к закрытию дизельной топливной форсунки.

Простой механический инжектор имеет корпус, распылитель, иглу и одну пружину. В устройстве запорная игла свободно движется по направляющему каналу распылителя. Сопло форсунки плотно перекрывается в тот момент, когда нет нужного давления от ТНВД. Внизу игла опирается на уплотнение распылителя, имеющее коническую форму. Прижим иглы реализован посредством закрепленной сверху пружины.

Распылитель является одной из важнейших составных деталей среди других элементов в устройстве инжекторной форсунки. Распылители могут иметь разное количество распылительных отверстий, отличаться способом регулировки подачи топлива.

Простые дизельные моторы, которые имеют разделенную камеру сгорания, зачастую получают распылитель с одним отверстием и иглой. Дизельные моторы, которые устроены на основе непосредственного впрыска топлива, оборудованы форсунками с несколькими распылительными отверстиями. Число отверстий в таком распылителе колеблется от двух до шести.

Подача топлива регулируется зависимо от конструкции распылителя, так как существуют два основных типа подобных решений:

  • распылитель с возможностью перекрытия каналов;
  • распылитель с перекрываемым объемом;

В первом случае игла форсунки перекрывает подачу горючего путем перекрытия каждого отверстия. Второй тип форсунок означает, что игла перекрывает своеобразную камеру в нижней части распылителя.

Давление топлива, нагнетаемого ТНВД, заставляет иглу подниматься благодаря наличию на поверхности такой иглы специальной ступеньки. Солярка проникает в корпус под указанной ступенькой. В момент, когда давление горючего сильнее усилия, которое создает прижимная пружина, игла движется вверх. Таким образом открывается канал распылителя. Дизтопливо под давлением проходит через распылитель и происходит его распыл в форме факела. Так реализован впрыск топлива.

Далее определенное количество горючего, которое подается насосом высокого давления, пройдет через распылитель и попадет в камеру сгорания. После этого давление на ступеньке иглы начинает снижаться, в результате чего игла от усилия пружины возвращается в исходное положение и плотно перекрывает канал. Тогда подача солярки в распылитель полностью прекращается.

Инжектор с двумя пружинами

На эффективность топливоподачи и последующего сгорания топлива в цилиндрах дизеля можно влиять, изменяя различные характеристики форсунки, такие как структура и количество каналов распылителя, усилие пружины и т.п. Одним из конструкторских решений стало внедрение в устройство форсунок специального датчика подъема иглы. Данный подъем учитывается специальными электронными блоками управления, которые взаимодействуют с ТНВД.

Еще одним витком развития стали дизельные форсунки с двумя пружинами. Устройство таких форсунок сложнее, но результатом становится большая гибкость в процессе подачи топлива. Сгорание рабочей смеси становится более мягким, дизель тише работает. 

Особенностью работы указанных инжекторов является двухступенчатый подъем иглы. Получается, нагнетаемое ТНВД топливо сначала превышает по силе давления силу сопротивления одной пружины, а затем другой. В режиме холостого хода и при небольших нагрузках на мотор впрыск осуществляется только посредством первой ступени, подавая в двигатель незначительное количество солярки. Когда мотор выходит на режим нагрузки, давление нагнетаемого ТНВД топлива растет, горючее подается уже двумя дозированными порциями. Первый впрыск небольшого объема (1/5 от общего количества), а далее основной (около 80% солярки). Разница давлений впрыска для открытия первой и второй ступени не особенно большая, что обеспечивает плавность топливоподачи.

Такой подход позволил повысить равномерность, эффективность и полноценность сгорания смеси. Дизельный двигатель стал расходовать меньше горючего, снизилось количество токсичных примесей в выхлопных газах. Дизельные форсунки с двумя пружинами активно использовались на агрегатах с непосредственным впрыском топлива до момента появления систем питания под названием Commоn Rail.

Электромеханическая дизельная форсунка

Дальнейшее развитие систем топливоподачи дизельного ДВС привело к появлению форсунок, в которых солярка подается в цилиндры посредством электромеханических форсунок. В таких инжекторах игла форсунки открывает и закрывает доступ к распылителю не под воздействием давления топлива и противодействия силе пружины, а при помощи специального управляемого электромагнитного клапана. Клапан контролируется ЭБУ двигателя, без соответствующего сигнала которого горючее не попадет в распылитель.

Блок управления отвечает за  момент начала топливного впрыска и длительность подачи топлива. Получается, ЭБУ дозирует солярку для дизеля путем подачи на клапан форсунки определенного количества импульсов. Параметры импульсов напрямую зависят от того, с какой частотой вращается коленчатый вал двигателя, в каком режиме работает дизельный мотор, какая температура ДВС и т.д.

В системе питания Common Rail электромеханическая форсунка может за один цикл реализовать подачу топлива посредством нескольких раздельных импульсов (впрысков). Топливный впрыск за цикл осуществляется до 7 раз. Давление впрыска также значительно повысилось сравнительно с предыдущими системами.

Благодаря дозированной высокоточной подаче давление газов на поршень в результате сгорания смеси растет плавно, сама топливно-воздушная смесь равномернее распределяется по цилиндрам дизеля, лучше распыляется и полноценно сгорает.

Дальнейшее видео наглядно иллюстрирует принцип работы электромеханической форсунки на примере бензинового двигателя. Главное отличие заключается в том, что давление топлива в дизельной форсунке значительно выше. 

Указанный подход позволил окончательно переложить задачу по управлению впрыском с форсунок и ТНВД на электронный блок. Электронный впрыск работает намного точнее, дизель с подобными решениями стал еще более мощным, экономичным и экологичным. Разработчикам удалось значительно снизить вибрации и шумы в процессе работы дизельного агрегата, повысить общий ресурс ДВС.

Насос-форсунка

Одной из разновидностей систем питания дизеля являются конструкции, в которых полностью отсутствует ТНВД. За создание высокого давления впрыска отвечают так называемые дизельные насос-форсунки. Принцип работы системы состоит в том, что насос низкого давления сначала подает солярку напрямую к инжектору, в котором уже имеется собственная плунжерная пара для создания высокого давления впрыска. Плунжерная пара форсунки работает от прямого воздействия на нее кулачков распредвала. Данная система позволяет добиться лучшего качества распыла дизтоплива благодаря способности создать очень высокое давление впрыска. 

Исключение из системы подачи топлива ТНВД позволяет сделать размещение дизельного ДВС под капотом более компактным, избавиться от привода топливного насоса и отбора мощности на его постоянное вращение. Также стало возможным удалить из системы питания решения, которые распределяют топливо от ТНВД по цилиндрам. Инжекторы в системе с насос-форсунками имеют электрический клапан, что позволяет подавать топливо за два импульса.

Принцип похож на работу механической форсунки с двумя пружинами. Решение позволяет реализовать сначала подвпрыск, а уже затем произвести подачу в цилиндр основной порции горючего. Насос-форсунки реализуют подачу топлива в максимально точно заданный момент начала впрыска, лучше дозируют солярку. Дизельный мотор с такой системой экономичен, работает мягко и тихо, содержание вредных веществ в отработавших газах сведено к минимуму.

Главным минусом решения можно считать то, что давление впрыска насос-форсунки напрямую зависит от частоты вращения коленвала двигателя. В списке недостатков также отмечены: сложность исполнения, высокая требовательность к моторному маслу, чистоте и качеству топлива. В процессе эксплуатации выделяют трудности в процессе ремонта и обслуживания, а также общую дороговизну сравнительно с системами, которые оборудованы привычным ТНВД.

Читайте также

krutimotor.ru

Распылитель, Игла, Корпус и Пружина, Какая Система Впрыска Топлива, Диагностика и Симптомы Поломки

Ищем двух авторов для нашего сайта, которые ОЧЕНЬ хорошо разбираются в устройстве современных автомобилей.
Обращаться на почту [email protected]

Форсунки, обеспечивая прямую подачу дозированного количества топлива в камеру сгорания, стали неотъемлемым элементом системы питания дизельного двигателя. Впрыск позволяет оптимально распылить солярку, что улучшает ее воспламенение. Это в свою очередь хорошо сказывается на экономичности автомобиля, динамических характеристиках и влиянии на окружающую среду.

Назначение форсунок

К основным функциям, возложенным на форсунку относят:

  • подача топлива в цилиндр;
  • герметизация камеры сгорания;
  • распыление на мелкодисперсные частички;
  • максимально равномерное распределение солярки по камере сгорания;
  • резкое начало впрыска топлива и такое же быстрое завершение процесса;
  • точное дозирование необходимого количества горючего.

Работа дизельных форсунок сопряжена с агрессивной средой. Постоянно меняющееся давление, которое может достигать 11 МПа. Температурное воздействие также изнашивает систему впрыска. Подача топлива происходит при температуре около 700°С. При сгорании солярки форсунка поддается влиянию 2000°С.

Для стабильной работы двигателя, форсунка должна обеспечивать оптимальную дисперсность. Чем выше степень дробления капель солярки, тем больше их общая площадь поверхности. Это позволяет топливу сгореть в более короткий промежуток времени, что положительно сказывается на экологичности, динамике и экономичности. При этом капли не должны быть слишком мелкими, так как в таком случае они не достигнут краев камеры сгорания. На данный момент топливные форсунки впрыскивают солярку со скоростью, достаточной чтобы обеспечить полное заполнение всего объема при размере частиц от 30 до 50 мкм.

Исторический экскурс

На этапе появления двигателей внутреннего сгорания Рудольф Дизель рассчитывал в качестве топлива применять угольную пыль, вдуваемую через форсунку сжатым воздухом. При сгорании угля с единицы массы получалось мало тепла, что заставило ученного перейти на более высококалорийное топливо. Бензин не получилось применить из-за его взрывоопасности. Предпочтение было отдано керосину.

В 1894 году Рудольфу Дизелю удалось сделать удачный запуск двигателя, топливо в который подавалось при помощи форсунки. Для осуществления впрыска использовался пневматический компрессор. Создаваемое им давление превышало силу, возникающую внутри цилиндра. Из-за этого такой вид двигателя получил название компрессорного дизеля.

Гидравлический впрыск топлива появился чуть позже. Он применяется по сей день, постоянно совершенствуясь. Изобретателем такого способа подачи топлива является французский инженер Сабатэ. Он же предложил делать многократный впрыск. Подавая солярку в несколько этапов, удается получить больше полезной энергии с единицы топлива.

В 1899 году Аршаулов сконструировал дизель с топливным насосом высокого давления, работающий в паре с бескомпрессорной форсункой. Такое техническое решение оказалось успешным, поэтому дизели с ТНВД используются по сей день.

Наиболее современные дизельные системы питания имеют компьютерное управление форсункой и подстраиваются под режим работы двигателя. В зависимости от типа камеры сгорания возможны вариации топливоподачи. Для обеспечения стабильной работы дизеля различного типа смесеобразования появились многодырчатые и штифтовые форсунки.

Работа механической форсунки

Принцип работы механической форсунки дизеля лежит в ее открытии для впрыска топлива под воздействием высокого давления солярки. За подачу горючего отвечает ТНВД. По топливопроводу дизтопливо качает насос низкого давления.

Последовательность впрыска топлива в цилиндры определяет ТНВД. Он отвечает за нагнетание и распределение солярки по магистралям. При достижении давления определенного значения, форсунка открывается, а при снижении усилия переходит в закрытое состояние.

В конструкцию форсунки входят распылитель, игла, корпус и прижимная пружина. Для открытия и закрытия топливоподачи запорная иголка перемещается внутри направляющего канала. Когда воздействие топлива сильнее противодействующей пружинки, игла поднимается вверх, освобождая канал распылителя. При отсутствии требуемого давления от ТНВД сопло плотно перекрыто. Распылитель может иметь несколько отверстий. Для дизельных моторов с раздельной камерой сгорания обычно используется одно отверстие. В остальных случаях число дырок в распылителе может колебаться от двух до шести.

Механическая форсунка

Механическая форсунка

При многодырчатой конструкции перекрытие топливоподачи возможно:

  • закрытием подачи топлива в каждом отверстии;
  • запиранием камеры, расположенной в нижней части распылителя, что приводит к прекращению впрыска топлива.

Для возможности воздействия насосом высокого давления на иголку на ней имеется специальная ступенька. Горючее попадает в форсунку и имеет возможность приподнимать ее. Таким образом удается сдвинуть запорный механизм.

Форсунки с двумя пружинами

В процессе усовершенствования форсунка дизельного двигателя получила две пружины. Усложнение конструкции позволило сделать более гибкую топливоподачу в камеру сгорания. Нагнетаемое ТНВД топливо сначала превышает противодействие одной пружины, а потом второй. Это позволяет подавать горючее ступенчато.

При работе на холостом ходу или незначительной нагрузке топливный насос  задействует в работу только одну пружину. Работа на первой ступени происходит с сжиганием небольшого количества топлива, что повышает экологичность и экономичность машины. Дополнительным бонусом двух пружин является снижение шума работающего двигателя.

Под нагрузкой растет давление, создаваемое ТНВД. Солярка подается двумя порциями, 20% в первый момент и 80% во время основного впрыска. Жесткость пружин подобрана таким образом, чтобы обеспечить максимальную плавность топливоподачи.

Работа форсунки с двумя пружинами

Работа форсунки с двумя пружинами

Электромеханическая система впрыска

Основным отличием электромеханической форсунки от предшественников является открытие и закрытие подачи топлива с помощью управляемого электромагнитного клапана. Контроль над клапаном лежит на электронном блоке управления. Без подачи соответствующего сигнала с контроллера впрыск не произойдет.

Структура электромеханической форсунки

Структура электромеханической форсунки

Блок управления определяет момент впрыска и дозирует необходимое количество топлива, регулируя время открытого состояния, подавая серию импульсов. В ЭБУ длительность подачи солярки определяется с учетом множества факторов, измеряемых при помощи датчиков. Так, например, в зависимости от оборотов коленчатого вала количество импульсов может варьироваться от 1 до 7. Учитывая нагруженность двигателя, его температурный режим, выбранный стиль вождения и множество дополнительных параметров, удается максимально оптимизировать топливоподачу. Это позволяет увеличить ресурс силовой установки, экономичность и экологичность автомобиля. Учет всех факторов позволяет равномерно распределить топливо в камере сгорания, что обеспечивает полноценное сгорание дизтоплива в требуемый момент. Применение электронного контроллера позволило значительно снизить вибрацию и шум от работающего мотора.

Насос-форсунка

Одним из видов топливных дизельных систем является конструкция с отсутствующим насосом высокого давления. Связанно это с низкой надежностью ТНВД и частыми выходами топливных магистралей из строя. Давление, при таком техническом решении, создает насос форсунка. Ее плунжерная пара работает от кулачков распредвала. В такой системе удалось добиться очень высокого давления. Это позволяет получить более качественное распределение топлива в камере сгорания.

Насос-форсунка

Насос-форсунка

Недостатком такой системы является зависимость давления топлива от оборотов двигателя. Усложнение конструкции повысило ее чувствительность к качеству масла и солярки. Ремонт топливной системы с насос-форсунками выйдет дороже на фоне классического варианта с ТНВД.

Симптомы неисправности

Если форсунка неравномерно распределяет топливо в камере сгорания наблюдаются такие симптомы:

  • ухудшение динамических характеристик;
  • стук из подкапотного пространства, который можно спутать со стуком шатуна;
  • троение двигателя из-за неправильной работы какого-либо из цилиндров.

О чрезмерном износе форсунке говорят:

  • сизый дым во время движения;
  • слишком черный выхлоп;
  • повышенная вибрация и шум мотора.

При визуальном осмотре можно увидеть подтеки солярки возле неисправных форсунок. Также может наблюдаться запах топлива, усиливающийся после остановки. Неполадки требуют срочного вмешательства, так как возможно возгорание горючего и пожар в подкапотном пространстве.

Диагностика поломки

Выявив симптомы неисправности форсунок необходимо провести их диагностику. Наиболее тщательная проверка проводится при помощи диагностического стенда. С его помощью можно уловить даже наименьшее отклонение в работе системы впрыска.

При отсутствии диагностического стенда можно определить неисправную форсунку следующим методом. Требуется запустить двигатель и довести обороты коленвала до такого значения, при котором отчетливо будет слышна нестабильность работы мотора. После этого требуется поочередно отсоединять форсунки от топливной магистрали. Двигатель будет менять звук работы. При отключении неисправного элемента топливной системы работа мотора не поменяется. Главным недостатком такого способа является невозможность точно определить причину, вызвавшую нарушения в системе впрыска.

Предыдущий способ был предназначен для обнаружения неисправности без снятия форсунок с двигателя, поэтому на точность определения неисправности влияет исправность всех остальных систем автомобиля. Так, например, некачественная свеча зажигания может привести к неправильному определению неисправной форсунки. Для устранения неточностей возможно сравнение работы форсунки с контрольным образцом.

Равномерность факела неисправной и контрольной форсунок

Равномерность факела неисправной и контрольной форсунок

В топливную систему автомобиля устанавливается тройник. К нему подключается проверяемая и контрольная форсунка. К нетестируемым элементам желательно перекрыть подачу топлива. После этого необходимо начать вращать коленвал. Если форсунка неисправна, то ее факел будет отличатся от эталона, как показано на рисунке.

Промывка элементов системы впрыска

На данный момент для очистки форсунки дизельного двигателя применимы следующие способы:

  • ультразвуковая чистка на специализированном стенде с возможностью контроля процесса промывки;
  • добавление специальных присадок в бензобак, в результате чего чистится вся топливная система, а не только распылители;
  • очистка форсунок дизельного двигателя вручную, путем замачивания в спецсредстве;
  • использование промывочного стенда.

Чистка при помощи ультразвука считается наиболее эффективной. Недостатком является только стоимость оборудования, способного производить такую очистку. На распылители воздействуют колебания, способствующие отслоению отложений в форсунке за короткий промежуток времени. Использование стенда с циркулирующей промывочной жидкостью не менее качественно позволяет убрать загрязнения.

При засорении сопла его очистку можно осуществить, тщательно промыв его керосином и удалив нагар деревянным скребком. Отверстие следует прочистить мягкой стальной проволокой небольшого диаметра. Делать все следует аккуратно, чтобы не повредить форсунку.

С момента первого использования форсунки на двигателе внутреннего сгорания системы впрыска топлива претерпели существенные изменения. Появились новые распылители, повысилось давление и топливоподача стала управляться контроллером. Главной целью всех усовершенствований является повышение надежности и улучшение эксплуатационных свойств системы впрыска.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

swapmotor.ru

Форсунка дизельного двигателя.


Устройства и приборы высокого давления



Форсунки дизельного двигателя


Назначение форсунок и требования к ним

Форсунка служит для подачи топлива в цилиндр двигателя, распыления и распределения топлива по камерам сгорания.

Условия работы форсунок очень тяжелые – они подвержены воздействию колоссальных давлений и тепловых нагрузок. Впрыск начинается при температуре в камере сгорания 700…900 ˚С и давлении 3…6 МПа, а заканчивается при температуре до 2000 ˚С и давлении 10…11 МПа.

К форсункам предъявляются следующие очень жесткие требования:

  • оптимальная дисперсность, т. е. высокая степень дробления капель топлива, так как чем меньше капли, тем больше их суммарная поверхность, быстрее происходит нагрев и сгорание топлива, но при этом уменьшается длина факела;
  • обеспечение такой скорости струи топлива, чтобы оно достигало краев камеры сгорания, поэтому капли не должны быть слишком мелкими – средний размер капель (с учетом требования по первому пункту) – 30…50 мкм;
  • распределение впрыскиваемого топлива по всему объему камеры сгорания;
  • резкое начало впрыска и его прекращение.

Форсунки бывают открытые и закрытые.
Открытые форсунки обеспечивают постоянную подачу топлива. В современных дизелях такие форсунки не применяются.
В дизельных двигателях применяют закрытые форсунки, которые открываются только в момент подачи топлива в камеру сгорания.

Закрытые форсунки могут быть двух типов – одно- и многодырчатые. Первые устанавливают на двигателях с вихревыми камерами сгорания, вторые с неразделенными камерами сгорания.

Различают, также, механические форсунки и форсунки, управляемые электроникой.
Современные системы питания дизельных двигателей используют впрыск, управляемый компьютером (электронным блоком управления). На основании информации, поступающей от многочисленных датчиков, такие системы учитывают многие процессы и текущие параметры работы двигателя. Форсунки в таких системах управляются специальными электромагнитными или пьезоэлектрическими устройствами, что открывает широкие возможности повышения эффективности работы двигателя, а также его экологичности.

К отдельной категории устройств для впрыска топлива в цилиндры относятся насос-форсунки, представляющие собой своеобразный гибрид между ТНВД и форсункой в одном узле.

***

История изобретения форсунки

Как известно, Рудольф Дизель изначально планировал работу своего знаменитого детища на угольной пыли. Его система питания содержала специальный насос, вдувавший угольную пыль в цилиндр двигателя сжатым воздухом. Однако, уголь оказался низкокалорийным топливом, не способным дать высокой температуры сгорания, и Дизелю пришлось обратить свой гениальный взор к жидким топливам. Ведь разница температур в цикле работы двигателя – прямой путь к повышению КПД, как установил француз Николя Сади Карно.

Сначала Дизель попробовал впрыскивать в цилиндр своего двигателя бензин, но при первом же испытании двигателя произошел взрыв, едва не стоивший жизни самого Дизеля и его помощников, и изобретателю пришлось применить менее взрывоопасное топливо – керосин.
В июне 1894 года Дизель построил двигатель, использующий в качестве топлива керосин, который впрыскивался в цилиндры специальной форсункой. Для впрыскивания керосина применялся пневматический компрессор, развивавший давление, превышающее давление в цилиндре двигателя. За такими двигателями закрепилось название «компрессорные дизели».

Идея гидравлического впрыска топлива в дизельных двигателях принадлежит, как утверждает история, французскому инженеру Сабатэ, который, к тому же, предложил многократный впрыск, т. е. впрыск, осуществляемый в несколько этапов (эта идея используется в современных системах питания — Common Rail и насос-форсунка).

В 1899 году русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции — с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой. Эти форсунки устанавливались на дизелях, выпускавшихся Механическим заводом «Людвиг Нобель» в Петербурге в начале прошлого века («русские дизели»).

В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, а также создал удачную модификацию бескомпрессорной форсунки. Эти устройства с различными усовершенствованиями используются в системах питания дизельных двигателей и в наши дни.

Дизельные двигатели, использующие в системе питания повышение давления топлива перед впрыском, называют «бескомпрессорными дизелями».
В настоящее время классические компрессорные дизели не имеют практического применения. В современных двигателях впрыск осуществляется бескомпрессорными способами.

Однако, наука и техника не стоят на месте, и, благодаря широкой компьютеризации всех систем автомобиля, в настоящее время механические форсунки постепенно вытесняются более совершенными устройствами, управляемыми электроникой.

***

Принцип действия многодырчатой форсунки

В многодырчатой форсунке основной частью является распылитель. Он состоит из корпуса 1 (рис. 1, а) и иглы 2. Распылитель притянут к корпусу 7 форсунки накидной гайкой 3. Сверху на иглу давит пружина 12 (рис. 1, б). Топливо в полость Б форсунки подается по каналу В.
Когда нет подачи топлива насосом (рис. 1. I), давление в полости Б составляет 2…4 МПа. Топливо давит на нагрузочный поясок Г иглы, но эта сила меньше силы пружины, которая прижимает иглу к распылителю. Игла запорным конусом Д перекрывает выходные отверстия – сопло А.

При подаче топлива насосом сила давления топлива на поясок Г становится больше силы пружины, игла поднимается, и через сопло А с большой скоростью топливо впрыскивается в камеру сгорания. После окончания подачи топлива давление падает, пружина возвращает иглу на место, запирая выходные отверстия распылителя, и впрыск прекращается.

Подъем иглы ограничен упором ее верхних заплечиков в корпус 5 форсунки и составляет 0,2…0,25 мм.

Качество дробления топлива зависит от скорости его движения через сопла, которая, в свою очередь, зависит от давления впрыска. При нормальном режиме скорость струи топлива составляет 200…400 м/с. Для этого необходимо создать перепад давлений в форсунке и камере сгорания 5…10 МПа. Поскольку давление в цилиндре в момент впрыска достигает 3…5 МПа, давление топлива в форсунке должно быть более 10…20 МПа.
Чтобы обеспечить работу форсунки при таком давлении, корпус распылителя и игла выполнены очень точно и притерты друг к другу. Они являются третьей прецизионной парой в магистрали высокого давления. Игла и корпус распылителя не подлежат разукомплектованию и подлежат замене только в комплекте.



Устройство многодырчатой форсунки

На двигателях с неразделенными камерами сгорания устанавливают, как правило, многодырчатые форсунки. Так, на двигателях КамАЗ-740 устанавливается форсунки серии 33, на двигателях ЗИЛ-645 и ЯМЗ-240 – форсунки Б-2СБ, на двигателях ЯМЗ-238 – форсунки модели 80 (см. рисунок 2 внизу страницы).

К корпусу 7 форсунки накидной гайкой 3 притянут распылитель с иглой 2. Распылитель имеет четыре сопловых отверстия диаметром 0,3 мм. На иглу через штангу 13 давит пружина 12. Топливо от насоса подается в полость форсунки через штуцер 9, в котором установлен фильтр 10. Верхнее отверстие в корпусе служит для отвода в бак топлива, просочившегося через зазоры между иглой и распылителем. Штифты 4 и 6 определяют точное положение распылителя относительно корпуса и топливных каналов. Прокладками 11 регулируют натяжение пружины, которое определяет давление начала впрыска.

Форсунки устанавливают в специальные гнезда головки цилиндра и закрепляют скобами.
Между корпусом форсунки и головкой блока размещается уплотнительная медная шайба (кольцо), которая надевается на корпус распылителя и вместе с форсункой аккуратно вставляется в гнездо головки. Такая шайба служит не только уплотнителем между форсункой и головкой, но и обеспечивает хороший теплоотвод от распылителя к головке цилиндров.
Уплотнительное кольцо 8 предохраняет полость клапанной крышки от попадания в нее пыли и влаги.

***

Устройство однодырчатой штифтовой форсунки

Однодырчатые форсунки иногда называют штифтовыми, поскольку конец ее иглы выполняется в виде штифта. Такие форсунки устанавливают, как правило, в дизелях с разделенными камерами сгорания.
Конструкция распылителя таких форсунок обеспечивает объемно-пленочное смесеобразование, поскольку распыливание топлива более направленное, чем в многодырочных форсунках, и значительная часть топлива достигает стенок камер сгорания, образуя быстро испаряющуюся пленку.

Дизели с вихревыми (раздельными) камерами сгорания менее чувствительны к составу топлива и устойчивее работают в широком диапазоне частот вращения. Применяемые с ними форсунки рассчитаны на меньшее давление, следовательно, не требуют столь высокой точности изготовления, как форсунки для неразделенными камерами сгорания, а потому дешевле.

На рис. 1,в показан распылитель штифтовой однодырчатой форсунки. Такая форсунка устанавливается в вихревых камерах сгорания и имеет одно сопло.
Конец иглы 2 выполнен в виде штифта 13 конусной формы, выступающего за пределы корпуса распылителя. Штифт служит для формирования факела топлива в виде конуса.
Принцип работы однодырчатых форсунок не отличается от принципа работы многодырчатых форсунок.

Устройство некоторых типов форсунок, применяемых на автотракторных дизельных двигателях отечественного производства приведено на рисунке 2.

***

Трубопроводы высокого давления дизеля



k-a-t.ru

Технология ремонта форсунок (замена распылителей). Статьи по обслуживанию и ремонту дизелей. Ремонт ТНВД дизельных двигателей, ремонт форсунок common rail и контрактные запчасти из Японии

после прекращения подачи топлива в форсунке должно некоторое время сохраняться давление (строго говоря, скорость падения этого давления должна контролироваться).

Обычно еще принято говорить о характерном звуке срабатывания форсунок, однако звук не является объективным параметром оценки форсунок. Игнорировать этот параметр нельзя, но и ставить во главу колонны тоже не следует. Если оказалось, что распылители менять действительно необходимо, надеваем на форсунки защитные колпачки и готовим рабочее место. Подготовка заключается в тщательной уборке и мытье стола, тисков и подготовке, как минимум двух ванночек с чистой соляркой, необходимых ключей (как правило, двух штук) и, возможно, еще ножика – все лишнее помешает работе. Предполагаем, что у вас в гараже нет специального устройства для фиксирования форсунок при разборке. Значит разбирать будем в тисках. Сразу оговоримся, форсунки от японских автомобилей, у которых “обратка” отводится через рампу, категорически нельзя зажимать в тиски. При зажиме в тисках происходит смятие кромок уплотнительной поверхности под “обратку” (рис. 3).

Такие форсунки разбирают, помещая их в накидной ключ, зажатый в тиски (рис. 4).

Форсунки немецких производителей (не от самых продвинутых моделей) без ущерба для здоровья разбираются в тисках. Однако для разборки форсунки нельзя использовать рожковые гаечные ключи. Начать с того, что это просто неудобно, но самое главное, что накидные гайки корпусов форсунок некоторых моторов (например, Mercedes OM601,602,603) трескаются при попытке разобрать или собрать их с помощью рожкового ключа. А деталь эта весьма дорогая и труднопокупаемая. Посему для разборки форсунок используем ту же удлиненную головку, что и для снятия с мотора. Ослабив затяжку накидной гайки, руками свинчиваем ее. Часто она свинчивается вместе с распылителем, который прикипает к ней. Не беда. Распылитель, сняв гайку, выколотим любым подходящим стержнем, а полость гайки очистим от всякого безобразия ершом для чистки клемм аккумуляторов. Разумеется, для этой работы отойдем на пару метров от чистой зоны. Гайку промоем в первой ванночке – она у нас будет для грязных дел — и поставим стекать в сторонку на лист бумаги. Далее снимаем промежуточный корпус и ополаскиванием его в чистой ванночке, сливаем корпус форсунки, зажатый в тисках, топливом и кладем промежуточный корпус на место, более ничего не трогая. Вскрываем упаковку нового распылителя и, не разбирая его, споласкиваем в чистом топливе. Вынимать распылитель или промежуточный корпус (впрочем, как и любую деталь топливной аппаратуры) из ванночки после ополаскивания надо так, чтобы стекающее топливо могло унести с собой возможные пылинки с сопрягаемых поверхностей (рис. 5 и 6).

Устанавливаем распылитель на место и затягиваем накидную гайку. Теперь проверяем на стенде, что у нас получилось. Довольно частый вариант, когда до замены на форсунке стоял распылитель достойного производителя, и мы устанавливаем не менее достойный. Если при этом остальные детали форсунки не сильно изношены, то вполне может оказаться, что после замены распылителя форсунка заработает сразу как надо и никаких регулировок не потребуется. В таком случае сразу же закрываем штуцер форсунки колпачком и окончательно проверяем затяжку накидной гайки. Дело в том, что когда этой процедурой занимаешься каждый день по многу раз, то невольно не очень сильно тянешь накидную гайку – ведь через минуту снова разбирать. К сожалению, сразу получается не всегда: либо давление не соответствует, либо распылитель льет. Не надо надеяться на то, что он льет из-за того, что мы его не разобрали и не отмыли от консервации в первый раз.

Такие надежды могут иметь почву только в случае консервации распылителей методом погружения в желатиноподобную массу, да и то редко. Обычно же современные распылители консервируются производителем либо в специальном масле, либо в инертной среде. И чище чем Bosch или Delphi очистил свои детали перед упаковкой, мы не сделаем. Так что причину плохого распыла надо будет искать в износе промежуточного толкателя (поз 2, см. рис. 1,а) или в деформированной пружине. Иногда помогает переворачивание пружины в корпусе, но, как правило, кардинальное решение находится в замене изношенных деталей. И таким образом процедура замены распылителя превращается в череду сборок-разборок-проверок пока не будет достигнут требуемый результат. Но, наконец, результат достигнут, работа форсунок нам нравится, можно ставить их на мотор. Не будем спешить! Вспомним, что форсунки уплотняются специальными сугубо разовыми шайбами, которые не только уплотняют форсуночный канал, но и отводят тепло от распылителей, не давая им перегреваться и закоксовываться. Не поставив новые шайбы мы запросто можем угробить новенькие распылители в первые же полчаса работы мотора. На японских форсунках разовыми являются также и шайбы уплотняющие рампу обратной магистрали. Про японские форсунки хочется особо отметить, что на моторах различных конструкций шайбы уплотнения “обраток” очень похожи (почти неотличимо) друг на друга и, тем не менее, постановка чужой шайбы или шайбы от странного производителя очень часто приводит к подтеканию обратки. Посему, подбирая шайбы уплотнения обраток, необходимо выяснять возможность бокового смещения шайбы на форсунке при затяжке и возможность перекрытия или наоборот неуплотнения отводящих топливо каналов.

Перед вворачиванием форсунок убеждаемся, проворачивая коленвал стартером, а также по масляному щупу в том, что вражеские силы не навредили вам, и в цилиндры не попала вода или нечто иное. Вот теперь можно вворачивать форсунки на место,

предварительно смазав резьбу на корпусе медной или графитовой смазкой,

и затягивать требуемым моментом (как правило, 6-7 кГ.м.). Однако одна милая подробность есть и тут:

всегда надо вворачивать форсунку в канал только усилием пальцев

(если не идет — чистить резьбу), на некоторых машинах (например, на Mercedes) очень легко ввернуть форсунку не по резьбе и загубить предкамеру, заворачивая тугую форсунку ключом. Сколько таких случаев было – не счесть. Обратная сборка не доставит вам хлопот, если вы не погорячились и пометили при снятии все трубки и штуцера. Всего лишь несколько советов. Перед постановкой, трубки высокого давления надо промыть снаружи и обязательно пролить топливом изнутри. И еще не надо пренебрегать постановкой на место зажимов собирающих трубки в пакет. Эти зажимы существуют не для эстетики. Они не дают трубкам вибрировать. Трубки без зажимов быстро ломаются (их как ножом обрезает). Ну вот вроде и все можно выгонять воздух из аппаратуры и пробовать запускаться.

 

Бесспорно, самым лучшим средством для этого является стенд для проверки форсунок, который может быть и сложнейшим электронным за тысячи долларов и очень простым, даже примитивным в духе пятидесятых годов (рис. 7) или вообще самодельным (рис. 8).

Любой из них с большей или меньшей степенью удобства может использоваться для работы. В стране много дизельных гаражей и стенды хоть и простейшие у них имеются. А уж договариваться мы умеем. Но что делать, если ваш дизель единственный в округе? Не очень страшные усилия надо приложить, чтобы изготовить самодельный стенд из списанного тракторно-КАМАЗовского или судового насоса или приспособить ТНВД вашего мотора для проверки форсунок. Конечно не самый красивый способ, но на безрыбье…

Для этого надо изготовить трубку – тройник, которая одним концом будет подсоединяться к одному из штуцеров высокого давления Вашего ТНВД, на другой конец будем крепить форсунку, а на третий – манометр атмосфер эдак на 200-300 (можно и больше). Сначала прокручиваем мотор стартером, пока форсунка не начнет стрелять, а затем, не забыв оставить включенным зажигание, уже вручную. Мучительно конечно, но если другого выхода нет – вполне реально.

О давлении открытия форсунки

На такте сжатия воздушный заряд из цилиндра перетекает в камеру сгорания с очень высокой скоростью. При этом в камере сгорания, за счет ее формы, возникает направленный вихрь, в который впрыскивается топливо. В зависимости от конструкции камеры сгорания и степени сжатия скорость и форма вихря различна, поэтому и существуют различные виды распылителей и различные величины давления впрыска топлива. Проектировщики устанавливают рекомендуемые, а также допустимые величины давления впрыска для каждого двигателя. Как правило эти величины необходимо соблюдать с точностью до 5-10 кг.см2 в пределах комплекта форсунок. При переборке форсунки есть смысл выставлять давление впрыска на 10-15 кг.см2 больше требуемого, в расчете на то, что в первые же минуты работы форсунки произойдет некоторая усадка подвижных деталей и, соответственно, снижение установленного давления.

Особенно необходимо отметить специфическое свойство распределительных топливных насосов роторного типа фирмы LUCAS – очень жесткие требования к точности регулировки давления впрыска в пределах комплекта форсунок. Для справки в моторах с такими топливными насосами часто невозможен поиск неисправной форсунки методом отключения. Мотор тут же заглохнет из-за прекращения подачи топлива в остальные форсунки.

Как в домашних условиях отрегулировать давление открытия форсунки

В подавляющем числе современных форсунок давление открытия регулируется подбором толщины проставочной шайбы между пружиной и корпусом. В приличных мастерских есть наборы этих шайб для решения любых проблем с регулировкой. Для любителей следует иметь в виду, что шайбы существуют различных диаметров (под различные корпуса форсунок), и бывают в исполнении с отверстием и без оного. Вместо шайб без отверстия всегда могут быть использованы шайбы с отверстием, но обратная замена недопустима. Также недопустимым является применение шайб “неродного” диаметра.

Как правило, форсунки спроектированы таким образом, что увеличение толщины шайбы на 0,1 мм приводит к повышению давления впрыска на 10 кГ.см2. Очень часто приходится видеть при ремонте форсунок, что при предыдущих вмешательствах давление впрыска регулировалось с помощью кусочков бритвенных лезвий подложенных под пружину. Такой способ регулировки совершенно недопустим. Во-первых, имея подкладку неконтролируемой формы, вы создаете неопределенность опоры пружины и тем самым неоднородную ее выработку и провоцируете возникновение боковой силы. А во вторых, есть риск скола кусочка лезвия и что он натворит внутри форсунки никому не известно. Поэтому единственно качественным решением проблемы следует признать изготовление новых регулировочных шайб расчетной толщины. И только в тех случаях, когда токарный станок, термообработка и шлифовка абсолютно недоступны, допустимо регулировать давление шайбами из стальной фольги, подкладывая их только между корпусом и штатной шайбой. Если же у вас пружина будет опираться на незакаленную подкладку, то через короткое время от нее мало что останется.

Типичная проблема японских форсунок

Отличительной особенностью форсунок японских двигателей является отвод “обратки” через торец форсунки в специальную рампу. При неаккуратной разборке очень часто происходит деформация уплотнительного торца форсунки, из-за чего добиться герметичного уплотнения “обратки” не удается. Начинаются “эксперименты” с подтяжкой гаек рампы, с постановкой уплотнительных шайб под гайки и т.д. Однако единственным способом решения данной проблемы является только подрезание уплотнительного торца форсунки на токарном станке. Однако надо иметь в виду, что торцеванием исправляется только одна поверхность форсунки, а форма канавки на торце может оказаться деформированной настолько, что уплотнительная шайба уже не может перекрыть ее. Такая форсунка подлежит замене.

Неуемные попытки подтянуть потеющие или текущие обратки часто приводят к деформации фланцев рампы обраток. С такими фланцами уплотнения не добиться и необходимо их восстанавливать. Это совсем несложно сделать вручную на небольшой шлифованной плитке, положив на нее наждачную бумагу.

www.diesel-standart.ru

Дизельные форсунки: устройство и принцип работы, причины неисправности, проверка, замена

Форсунка дизеля – один из основных составляющих системы питания двигателя, которая напрямую подает топливо в камеру сгорания для получения воздушно-топливной смеси. Эта деталь наиболее сильно подвергается износу и требует периодического обслуживания. От качества ее работы зависит полнота сгорания топлива в цилиндре, запуск, динамика и экономичность мотора, а также токсичность выхлопных газов. Некоторые водители пренебрегают регламентными работами, в результате чего форсунки выходят из строя, требуя ремонта или замены.

Назначение и принцип работы дизельных форсунок

Основная задача форсунки в дизельном двигателе – это распыление топлива при обеспечении герметичности камеры сгорания. Работа систем питания с механическим управлением форсунками происходит в следующем порядке:

  1. Из топливного бака подается горючее к насосу высокого давления.
  2. Насос в необходимой последовательности распределяет и нагнетает топливо в магистрали, ведущие к форсункам.
  3. В форсунке топливо давит на штуцер, а от него расходится по топливным каналам к распылителю, который закрыт иглой с пружиной.
  4. Под воздействием давления игла открывается, и после впрыска закрывается.

В зависимости от способа управления процессом впрыска, дизельные форсунки помимо механических делятся на следующие типы:

  1. Электрогидравлические, характеризуется наличием в конструкции электромагнитного клапана, камеры управления, впускного и сливного дросселя. Принцип их работы основывается на применении давления топлива как во время впрыска, так и при прекращении, с участием электронного клапана, который открывает сливной дроссель по команде с ЭБУ.
  2. Пьезоэлектрические. Отличаются высокой быстротой срабатывания и возможностью многократного впрыска за один цикл. Это осуществляется при помощи пьезоэлемента, воздействующего на корпус толкателя, который открывает переключающий клапан для поступления топлива в магистраль.

Признаки неисправности дизельных форсунок

Неисправности форсунок в дизельном двигателе имеют следующие характерные признаки:

1. При неравномерном распылении (форсунка «льет»):

  • Потеря мощности мотора и наличие сизого дыма из выхлопной трубы;
  • Сильный стук, напоминающий стук шатуна;
  • Неравномерная работа силового агрегата, вызванная нарушением работы отдельных цилиндров.

2. При падении рабочего давления впрыска (по причине усталости пружин или износа дистанционных регулировочных шайб):

  • Наличие сизого или черного дыма из выхлопной;
  • Жесткая работа двигателя.

3. Отсутствие герметичности корпуса форсунки, что проявляется в течи топлива из соединений корпуса.

Проверка дизельных форсунок

При наличии признаков неисправности форсунок, производят их проверку. Проведение процедуры может быть осуществлено как в гаражных условиях, так и на СТО при помощи диагностического стенда. Второй способ наиболее оптимальный, но имеет недостатки в виде высокой стоимости услуг и значительной удаленности сервиса. Существуют следующие способы проверки исправности форсунок:

1. На заведенном дизеле ставят такие обороты, когда сбои его работы слышны особо отчетливо. Форсунки последовательно отключают от магистрали высокого давления, ослабляя накидную гайку крепления на соответствующем штуцере насоса. При отсоединении неисправной форсунки характер работы двигателя не поменяется.

2. Проверка максиметром который выполнен в виде специальной форсунки, имеющей тарировочную шкалу для установки необходимого давления впрыска дизтоплива. Прибор представляет собой контрольный образец, при помощи которого анализируется эффективность распыла и соответствие фактического давления с требуемым в момент впрыска.

3. Проверка при помощи контрольного образца рабочей форсунки, которую сравнивают с остальными. Для этого на топливную аппаратуру устанавливают тройник, при помощи которого одновременно устанавливают рабочую и тестируемую форсунку. Ослабляют затяжки гаек на остальных трубопроводах, ведущих от насоса высокого давления к нетестируемым форсункам, перекрыв подачу топлива. На декомпрессионном механизме ставят максимальную подачу топлива и начинают вращение коленвала мотора. При неисправности форсунка покажет отличия от эталона по моменту начала и качеству впрыска.

Ремонт дизельных форсунок

Загрязнение каналов внутри форсунки, по которым проходит топливо, способствует ухудшению распыления топлива и нарушению образования воздушно-топливной смеси. Максимально равномерную пульверизацию нарушают смолы, содержащиеся в соляре. Проблему нарушения подачи топлива форсунками помогает устранить промывка. Данная процедура обеспечивает удаление загрязнений внутри топливных каналов. Для ее осуществления применяются следующие способы:

1. Чистка при помощи ультразвука. Эффективный способ удаления грязи, который проводится на специальном оборудовании. Снятые форсунки помещают в специальную жидкость и воздействуют ультразвуковыми колебаниями, при которых грязь в сопле разрушается в течение короткого времени.

2. Промывка топливом, содержащим специальные присадки. Наиболее популярен среди автолюбителей, так как не требует применения дорогого оборудования. Представляет собой добавление присадки в топливо, которое при прохождении через форсунку будет растворять отложения. Эффективность метода не доказана.

3. Промывка на стенде при помощи специальных жидкостей. Очищение происходит при высоком давлении за счет циркуляции. Способ отличается надежностью и высокой эффективностью.

4. Ручная промывка, при которой имитируется работа форсунки. Достаточно эффективный и недорогой способ, не требующий применения специального оборудования. Для его проведения форсунки демонтируют вместе с рейкой и фиксируют над емкостью. Подача очищающей жидкости производится по прозрачной силиконовой трубке. Дозатор форсунки активируют электрическим током, подведенным по проводам от аккумулятора. Полная очистка происходит после 5-10 мин. распыления жидкости. Сам процесс состоит из следующих этапов:

  • С форсунки снимают фильтры и резиновые уплотнители, чтобы под воздействием жидкости они не вышли из строя;
  • Организуют герметичное соединение баллона с жидкостью и форсунок через силиконовую трубку;
  • Подводят электропитание от аккумулятора с помощью пары проводов;
  • К разрыву одного провода подводят кнопку для размыкания цепи, второй провод оставляют целым;
  • При нажатии кнопки происходит впрыск, который продолжается до момента равномерного распыления струй жидкости.

Достаточно часто некачественный впрыск происходит по причине засорения или износа сопел форсунки, что достаточно хорошо видно в процессе диагностики неисправностей. Для устранения поломки корпус детали разбирают и тщательно промывают в керосине, наружный нагар удаляют деревянным скребком, а отверстия прочищают мягкой стальной проволокой, диаметр которой меньше отверстия сопла. При увеличении размера сопла более чем на 10 %, или разнице в диаметре отверстий на 5%, распылитель заменяют на новый.

Иногда форсунка может давать течь, которую возможно устранить притиркой иглы к седлу. Течь может возникать и при нарушении уплотнения в торце иглы (уплотняющем конусе). Притирка производится разведенной в керосине пастой ГОИ, при которой избегают ее попадания в зазор между направляющей и самой иглой. После притирки все делали промывают в керосине или чистом дизтопливе, продувают сжатым воздухом, и после сборки снова тестируют на герметичность.

Что бы ваши форсунки служили долго, используйте фильтр дизельного топлива тонкой очистки.

Замена дизельных форсунок

Замена дизельных форсунок производится при полном выходе из строя детали. Процедура, выполненная работниками СТО, достаточно дорогостоящая, но ее можно проделать самостоятельно. Для этого потребуются следующие инструменты:

  1. Динамометрический ключ с удлинителем.
  2. Специальная головка под форсунки.
  3. Рожковый ключ на 17.
  4. Пинцет.

Процедура замены осуществляется в следующем порядке:

  1. Отвинчивание гаек с трубок высокого давления.
  2. Выкручивание самих форсунок (иногда происходит сложно из-за прикипания резьбы).
  3. Демонтаж пинцетом термоизоляционных шайб или их остатков (повторно старые шайбы устанавливать нельзя).
  4. Установка новых термоизоляционных шайб и новых форсунок, которые ввинчивают с необходимым усилием при помощи динамометрического ключа.
  5. Сборка топливной системы в обратном порядке.

voditelauto.ru

Чиним форсунки дизелей: Ремонт рассекречен

Высокая стоимость новых компонентов системы питания дизелей в Украине может свести на нет все преимущества легковых автомобилей с этим типом моторов. Но форсунки в большинстве случаев поддаются ремонту.

Высокая стоимость новых компонентов системы питания дизелей в Украине может свести на нет все преимущества легковых автомобилей с этим типом моторов. Но форсунки в большинстве случаев поддаются ремонту.

Обычно производители автомобильных дизелей рекомендуют менять форсунки через каждые 100 – 150 тыс. км пробега. Но далеко не всегда в таком «возрасте» этот узел системы питания уже непригоден для дальнейшей эксплуатации. Часто форсунка способна работать еще 30 – 50 тысяч километров сверх отмеренного изготовителем срока. Однако при этом никто не сможет поручиться за качество распыления топлива. Поэтому через некоторое время «диагностом» выступает инспектор ГАИ, налагающий штраф за чрезмерную дымность выхлопа. Для некоторых автовладельцев «последним звоночком» перед неизбежным ремонтом становятся участившиеся визиты на АЗС. «Лейка есть лейка», – говорят в таких случаях мотористы, имея в виду форсунку, неконтролируемо заливающую топливо в цилиндр.

Доступно для всех

Причинами нарушений в работе форсунки могут стать износ или засорение, коррозия, вызванная неотсепарированной водой и повышенным содержанием серы в топливе.

До недавнего времени некоторые авторитетные производители топливной аппаратуры (например, Bosch) держали тему ремонта форсунок закрытой. Вместо этого по всему миру был организован сбор изношенных форсунок, которые восстанавливались в промышленных условиях. Их качество было высоким, однако стоили они намного дороже существующих ремкомплектов – хоть и неоригинальных, но почти не уступающих им по качеству. Поскольку автомобилисты все же предпочитали ремонт с использованием этих комплектов, Bosch в конце концов «рассекретил» все данные по ремонту форсунок и запчастям для них и наладил соответствующий фирменный сервис.

Ищем неисправность

Проверить состояние приборов впрыска и определить причину неисправности помогает диагностическое оборудование, имеющееся в распоряжении дизелистов-профессионалов. Перед началом теста форсунку необходимо очистить (желательно в ультразвуковой ванне) и проверить, нет ли у нее механических повреждений. Например, кромки отверстия распылителя должны быть острыми.

Основной испытательный тестер представляет собой ручной плунжерный насос с присоединительным штуцером и манометром, измеряющим давление впрыска. Вместо солярки иногда применяют специальное масло. На этом стенде проверяется подвижность иглы в распылителе – о том, что все в порядке, свидетельствует резкий дребезжащий звук во время распыления. Бывает, однако, что неновая форсунка не дребезжит, но это не всегда признак ее непригодности.

Затем проверяют форму факела или факелов распыляемого топлива. При давлении на 20 бар меньшем давления открытия иглы контролируют способность уплотнений форсунки и ее распылителя сохранять герметичность. При этом на носике форсунки допускается появление в течение 10 секунд не более одной капли жидкости, причем капля не должна упасть.

С помощью этого прибора определяют и давление открытия форсунки. Отклонение от нормы и разброс показаний для всех форсунок одного двигателя производители оговаривают индивидуально. Сложнее проверить этот параметр у двухпружинных форсунок – а такими форсунками сегодня оснащено около трети эксплуатируемых в Украине дизелей. Перед впрыском основной дозы топлива при давлении 150 – 250 кг/см2 игла должна приподниматься на 0,03 – 0,05 мм, пропуская предварительную порцию горючего (давление 110 – 170 кг/см2). «Увидеть» момент открытия второй ступени могут только самые совершенные электронные тест-стенды (они уже есть в Украине).

Еще сложнее определить количество топлива, подаваемого в цилиндр из распылителя двухпружинных форсунок. Например, порция предварительного впрыска составляет всего 1,5 мм3. Насколько нам известно, в Украине приборов для подобных измерений нет.

Что менять, а что чинить

Нередко «забастовавшую» форсунку достаточно лишь прочистить, и она начинает исправно работать. Попавшая с топливом в распылитель соринка часто приводит к заклиниванию иглы или изменению формы факела впрыскиваемого топлива. Хорошо, если последствия ограничатся только снижением экономичности и мощности, что не каждый водитель сразу же заметит. Мотористам-ремонтникам известны случаи, когда «неправильная» струя топлива из загрязненной форсунки буквально прожигала поршень. Своевременно выявленные засоренные форсунки чистят в разобранном виде: вручную скребками и щеточками или на стенде с помощью ультразвука и специальной жидкости.

В большинстве случаев все проблемы при отказе гидромеханической форсунки (новая стоит 90 – 200 евро) решаются путем замены комплекта – распылителя с иглой (цена – 35 – 50 евро). Дабы окончательно убедиться, что причина сбоев именно в распылителе, попавшую под подозрение деталь монтируют в специальный тестовый корпус. Если параметры факела «хромают» – виноват испытываемый распылитель, в противном случае ищут другие причины неправильной работы.

Износу также подвергается промежуточная шайба, расположенная между пружиной и распылителем. Круговая выработка на ней провоцирует перекос и несвоевременное срабатывание, подъем иглы на недостаточную высоту. Такую шайбу можно заказать отдельно по каталогу (цена 6 – 12 евро).

Большая редкость – поломка пружины (4 – 7 евро), хотя со временем она может потерять жесткость и просесть. В таком случае ее усилие восстанавливают путем добавления регулировочных шайб. На моторах с большим пробегом встречаются дефекты корпуса форсунки, вызванные коррозией или механическим износом (форсунка в сборе без распылителя стоит 55 – 73 евро). Случается, при неаккуратном монтаже отламывается какой-либо штуцер . Естественно, в таком случае деталь или весь узел подлежат замене.

Проблемы сложных конструкций

Дополнительные хлопоты могут причинить форсунки, снабженные электрическими датчиками подъема иглы. Например, такие устанавливались на дизели Mercedes и VW прошлых поколений. Эти форсунки стоят от 250 до 400 евро за штуку, а предлагаемый для них ремкомплект включает только механическую часть. Замена распылителя на такой форсунке имеет смысл, если это делается не более 2-3 раз. Последующими заменами можно устранить отклонения в параметрах распыления, но в целом это может не улучшить работу двигателя. Износившийся подвижный сердечник датчика все равно будет искажать его показания, давая неверную информацию в блок управления двигателем. Не приносят успеха и попытки отключить неисправный датчик.

Опыт ремонта электромеханических форсунок дизелей с системой питания Common Rail (1 форсунка – 600 евро) и насос-форсунок (600 – 650 евро) в Украине совсем небольшой, поскольку автомобили с такими силовыми агрегатами появились у нас недавно, да и то в ограниченном количестве.

Износившихся форсунок этого типа на большинстве специализированных СТО пока не встречали, хотя известны случаи их отказов из-за применения некачественного топлива. За рубежом уже существуют стенды для проверки электромеханических форсунок и даже выпускаются ремкомплекты, хотя не все производители признают эти детали ремонтопригодными. Например, Bosch некоторые модели таких форсунок только лишь меняет на отреставрированные.

 Дефектовка однопружинной форсунки
 Основные факторы, снижающие ресурс форсунок

Вода наряду с серой – наиболее опасный враг топливной аппаратуры. Когда двигатель уже заглушен, влага в составе солярки остается в полостях форсунок, в том числе и в чувствительном к посторонним включениям распылителе. Если после этого автомобиль некоторое время не эксплуатируется, в местах скопления влаги начинает развиваться коррозия. Ржавчина вызывает образование раковин на поверхностях, портит уплотнительные шайбы, провоцирует течи. Кроме того, продукты коррозии вызывают заклинивание подвижных частей. Если игла успела приржаветь к седлу или направляющему каналу, при первом же запуске двигателя она сдвигается и разрушает распылитель.

 Характеристики факела распыляемого дизтоплива

Топливо распыляется в виде факела, который состоит из трех частей. Сердцевину (1) формируют большие капли и струйки топлива, еще не распавшиеся на микрокапли. Средняя зона (2) содержит относительно крупные капли. Внешняя зона образована (3) из самых мелких распыленных капель.

В целом в факеле содержатся от 500 тыс. до 20 млн. двигающихся микрокапель. Их размер – от нескольких микрон до нескольких сотен микрон. Диаметр большинства капель – от 10 до 30 микрон. В факеле находятся также пары топлива. Концентрация капель в различных участках факела и его геометрия зависят от характеристик топливной аппаратуры и влияют на качество смесеобразования. Эти параметры тщательно согласовывают с характеристиками камеры сгорания.

Игорь Широкун
Фото Bosch и Юрия Нестерова

Редакция благодарит «Аверс-центр» и Bosch Service «Премьер-Центр» за помощь в подготовке материала

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

www.autocentre.ua

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *