Какое давление в форсунках дизельного двигателя: Давление в форсунках дизельного двигателя

Содержание

Давление в форсунках дизельного двигателя


Давление впрыскивания дизельной форсунки

Подробности Просмотров: 19773

При впрыскивании потенциальная энергия давления топлива превращается в кинетическую энергию его струи. Высокое давление приводит к большой скорости выхода топлива из отверстия форсунки. Распыливание топлива происходит из- за импульсного смешения турбулентной струи топлива с воздухом в камере сгорания. Чем выше относительная скорость между впрыскиваемым топливом и воздухом, а также плотность воздуха в камере сгорания, тем тоньше распыливается топливо. Специальным подбором параметров можно добиться того, чтобы давление в магистрали у форсунки (оно же давление впрыскивания) было выше, чем у ТНВД.

Рис. 11

Двигатель с системой непосредственного впрыска топлива, частота вращения коленчатого вала —1200 мин среднее давление 16.2 бар  р —  давление впрыскивания а — момент начала впрыскивания после ВМТ nopшня по углу поворота коленчатого вала SZ —  число почернения по методике Bosch 

Двигатели с непосредственным впрыском топлива

У дизелей с непосредственным впрыском топлива скорость воздуха в камере сгорания сравнительно мала — в соответствии с законом сохранения энергии впускаемого воздуха при его тангенциальном поступлении в цилиндр (вихревой эффект).

Лишь при движении поршня до ВМТ скорость вихря увеличивается.

При непосредственном впрыскивании топливо подается в камеру сгорания под высоким давлением. Впрыскивание с давлениями порядка 2000 бар может сильно уменьшить уровень эмиссии дыма и вредных веществ. В настоящее время системы впрыска при полной нагрузке создают максимальное давление от 1000 до 2050 бар для легковых автомобилей и 1000… 1800 бар для грузовых. Однако максимальное давление достигается только в верхней области частот вращения коленчатого вала (кроме системы Common Rail). В то же время для благоприятного протекания кривой максимального крутящего момента и одновременно малой дымности ОГ при низких нагрузках решающее значение имеет высокое давление впрыскивания. Исходя из этого уровень давления впрыскивания в зоне максимального крутящего момента для легковых и грузовых автомобилей должен лежать в диапазоне 800… 1400 бар.

Двигатели с разделенными камерами сгорания

Двигатели с разделенными камерами сгорания, где нарастание давления сгорания сглаживается перетеканием заряда топливовоздушной смеси из предварительной камеры в основную, имеют высокие скорости воздуха в дополнительной камере и в канале, соединяющем ее с основной камерой сгорания. При этом процессе давление впрыскивания свыше 450 бар не дает никаких преимуществ.

Направление и количество факелов впрыскивания

Дизели с непосредственным впрыском топлива оснащаются, как правило, центрально расположенными форсунками с числом отверстий в распылителе от 4 до10 (в большинстве случаев 6…8 отверстий, см. главу «Форсунки»). Факелы впрыскивания очень точно направлены в камеру сгорания. Отклонение направления впрыскивания уже на 2° от оптимального направления приводит к ощутимому повышению дымности ОГ и расхода топлива.

Двигатели с разделенными камерами сгорания

Дизели с разделенными камерами сгорания работают со штифтовыми распылителями, создающими только один факел.

Форсунка впрыскивает в предварительную или вихревую камеру топливо таким образом, что его факел, направленный точно в предкамеру, касается свечи накаливания. Отклонение от этого направления ведет к ухудшению условий использования воздуха для сгорания и за тем к увеличению уровней концентрации черного дыма и эмиссии углеводородов.

Таблица 1

Показано, как сильно впрыскивание отражается на параметра двигателя. Только хорошo подобранная и точно работающая система впрыска гарантирует дизелю высокую работоспособность

При каком давлении срабатывает форсунка дизельного двигателя. Насос-форсунки – что это

Современные двигатели внутреннего сгорания состоят из большого количества деталей. Среди них можно встретить абсолютно разные элементы, имеющие совершенно разное, но очень полезное для движка назначение. Не исключением является и такая маленькая деталь, как насос – форсунка. В этой статье мы разберем устройство, принцип действия и ремонт насос — форсунки.

Устройство и принцип работы насос – форсунки

Форсунка представляет собой металлическую трубку со специальные сечением, предназначенным для распыления топливной смеси. Впервые и по сей день, такое устройство применяется на дизельных двигателях, где важны такие важные параметры, как экономичность мотора, низкий уровень его шума и малая токсичность выхлопных газов.

Насос форсунка устанавливается над каждым цилиндром и имеет одинаковое строение. В ее состав обычно входят: запорный поршень, специальный плунжер, игла распылительного устройство, обратный и управляющий клапана и пружина распылительного устройства.

Плунжер представляет собой деталь, которая создает определенное давление внутри форсунки. Накачка происходит во время поступательного движения плунжера. Для этого на распределительном валу имеются специальные кулачки, которые в определенные моменты времени воздействуют на плунжер и приводят его в действие.

Управляющий клапан открывается наравне с движением плунжера и пропускает топливо в камеру сгорания. Конструкция клапана подбирается таким образом, чтобы дизельное топливо в обязательном порядке подалось в распыленном виде. Так оно сгорает эффективнее и экономнее. По принципу действия управляющие клапаны можно разделить на электромагнитные и пьезоэлектрические. Пьезоэлектрические клапана являются самыми эффективными, так как работают быстро и не допускают образование излишков топлива, а также его голодание в определенных участках системы впрыска.

Основным элементом любого управляющего клапана является его игла, которая, как раз и отвечает за быстродействие системы.

Пружина распылителя устанавливается для обеспечения плотной посадки иглы. Усилие пружины, обычно, дополняется давлением топлива, созданным в топливном насосе высокого давления. Для этого, на противоположной стороне пружины устанавливается специальный запорный поршень, который и давит на нее под действием топлива.

Управление любой насос — форсункой обеспечивается при помощи . ЭБУ получает различные показания со всех датчиков, анализирует их и на основе полученных данных открывает или закрывает форсунки в определенные моменты времени.

Принцип работы:

  • Предварительный впрыск . В этот момент специальный кулачок ГРМ воздействует на плунжер, заставляя его двигаться вниз. Смесь топлива с воздухом переходит в каналы форсунки и обратный клапан закрывается. Плунжер создает давление, составляющее 13 мПа, и в этот момент срабатывает управляющий клапан форсунки, который пропуска смесь под давлением в камеру сгорания. В последний момент открывается входной клапан, и новая порция топлива попадает в каналы форсунки. В это же время, внутри элемента снижается топливное давление.
  • Основной впрыск . На этом этапе плунжер снова опускается вниз, управляющий клапан закрывается, но в форсунке создается давление уже в 30 мПа. На этот раз топливо подается под большим давлением, что обеспечивает его эффективное сжатие и сгорания в рабочей камере. Каждый последующий процесс сжатия сопровождается увеличением давления внутри форсунки. Максимальное значение составляет 220 мПа. Окончание данного этапа происходит точно так же, как и при предварительном впрыске топлива.
  • Дополнительный впрыск . Он заключается в очистке всех элементов форсунки от следов сажи и копоти. Дополнительный впрыск осуществляется сразу же после основного. Все действия по впрыску осуществляются так же, как и при основном этапе. По-другому такое явление называют еще двойным впрыском топлива.

Видео — Как определить какая насос-форсунка не работает или стучит

Как провести ремонт насос — форсунки своими руками

Конечно, замена неисправной форсунки будет намного правильнее.

Однако, если учитывать сегодняшние цены на автозапчасти, то невольно напрашивается мысль о том, почему бы не произвести ремонт старой, ведь это дешевле. В действительности, ремонтный комплект форсунки стоит намного дешевле нового элемента, а потому будет намного выгоднее.

Неисправность форсунок обычно заключается в их засорении или ухудшении уплотняющих свойств внутренних резиновых прокладок. Двигатель, при этом, начинает работать неустойчиво и не развивает номинальной мощности, а расход топлива заметно увеличивается.

При подборе ремонтного комплекта, важно соблюсти марку и модель. Чтобы не ошибиться, рекомендуем снять старую и взять с собой в магазин автозапчастей. Консультанты подберут для вас тот набор, который вам необходим при ремонте. Если вы установите прокладки, предназначенные для форсунки другой модели, то наверняка форсунка будет работать совсем не правильно. Хотя, в большинстве случаев, они имеют совсем разные размеры прокладок, что сделает проблематичным сам ремонт, нежели дальнейшую эксплуатацию такого элемента.

Чтобы отремонтировать старую форсунку, ее необходимо демонтировать. Для этого нужно, в первую очередь, сбросить давление в топливной системе. Это нужно для того, чтобы не испачкаться топливом и не получить мощную струю прямо в лицо.

После этого, откручивается металлическое крепление трубки к форсунке и она выворачивается. Проведите разборку элемента и внимательно запомните расположение и порядок сборки деталей. Это нужно для последующей сборки, чтобы не было такого явления, как появление «лишних» деталей. Теперь проведите очистку металлических частей в то случае, если они подверглись засорению, замените резиновые уплотнители и другие детали, которые есть в ремонтном комплекте форсунки. После этого проведите сборку детали в обратной разборке последовательности.

Заверните форсунку и подключите ее к топливной системе. Так как давление было снижено, необходимо выкрутить рукоятку ручной подкачки топлива и снова создать давление в системе. Качать следует до того момента, пока рукоятка не пойдет туго. После этого, снова заверните ее и можете приступать к запуску двигателя.

Видео — Ремонт насос-форсунок BOSCH

На этом ремонт насос – форсунки завершен. Следует еще раз напомнить, что данная процедура совсем не сложная, а главное – потребует от вас наименьших затрат. Ведь продлить жизнь старой форсунки намного дешевле, чем установить новую

Использование подобной системы дает возможность увеличить мощность мотора, уменьшить топливные расходы и токсичность, уровень шума.

В системе впрыска данного типа за подачу топлива и его распределение отвечает единое центральное устройство — насос-форсунка. При этом каждой цилиндр оснащен своей собственной форсункой.

Система приводится в действие от распредвала , оснащенного специальными кулачками, которые через коромысло воздействуют на насос-форсунку, обеспечивая ее работу.

Как устроена система насос-форсунки

В состав системы насос-форсунка входят такие элементы, как: плунжер, поршень запорный, управляющий и обратный клапаны, игла распылителя.

Плунжер предназначен для создания рабочего давления внутри форсунки . При этом движение плунжера поступательного характера обеспечивается кулачками распредвала, а возвратное движение — пружиной.

Основной функцией управляющего клапана является впрыск топлива, а точнее управление впрыском. В подобных системах может применяться два вида клапанов — электромагнитные и пьезоэлектрические.

Клапан на основе пьезоэлемента является более совершенным за счет высокого быстродействия. Главным элементом конструкции управляющего клапана является его игла.

Пружина распылителя необходима для обеспечения надежной посадки иглы распылителя в седле. Пружинное усилие дополняется усилием давления топлива, и осуществляется это все при помощи запорного поршня, установленного с одной стороны от пружины и обратного клапана, расположенного с противоположной стороны от пружины.

Игла распылителя обеспечивает непосредственный впрыск дизельного топлива в камеру сгорания двигателя .

Управляются насос-форсунки посредством блока управления двигателем, который на основании данных, получаемых с датчиков, управляет работой клапана насос-форсунки.

Как работает система насос-форсунки

Эффективное получение и распределение ТВС в системе насос-форсунки происходит в три этапа — предварительного, основного и дополнительного впрыска топлива.

Предварительный впрыск

Этап предварительного впрыска предназначен для обеспечения плавного сгорания ТВС на этапе основного впрыска. Этап основного впрыска в свою очередь обеспечивает бесперебойную подачу топливной смеси на всех рабочих режимах ДВС.

Итак, на предварительном этапе подачи топлива насос-форсунка работает по следующей схеме. Кулачек распредвала передает механическое усилие на коромысло, которое опускает плунжер вниз.

Топливная смесь начинает подаваться по каналам, расположенным в корпусе форсунок. Далее происходит закрытие клапана с временным прекращением подачи топлива. При этом создается высокое давление ТС, достигающее 13 МПа.

При таком уровне давления игла, преодолевая усилие, которое оказывает на нее пружина, осуществляет предварительный впрыск горючей смеси.

Завершением этапа предварительной подачи топлива служит открытие входного клапана. Топливо попадает в магистраль, одновременно снижается его рабочее давление. На данном этапе может быть произведен один или два впрыска ТС в зависимости от режима работы дизеля.

Основной впрыск

Начало этапа основного впрыска сопровождается последующим опусканием плунжера. После закрытия клапана давление ТС продолжает нарастать и достигает 30 МПа. При таком давлении происходит поднятие иглы и основная подача топлива.

Высокое давление обеспечивает значительное сжатие топлива, вследствие чего в камеру сгорания поступает его большее количество. Самый большой объем горючей смеси подается при максимально возможном давлении в 220 МПа, чем достигается максимальная мощность двигателя.

Завершение этапа основного впрыска происходит аналогично предыдущему этапу после открытия входного клапана. Это сопровождается снижением давления топлива и опусканием распылительной иглы.

Дополнительный впрыск

Завершающим этапом является дополнительный впрыск, который используется для очистки сажевого фильтра от копоти, сажи и загрязнений. Дополнительная подача топлива осуществляется при опускании плунжера по схеме, аналогичной основному впрыску. На данном этапе, как правило, проводится два впрыска дизельного топлива.

Форсунки и их корпуса служат в качестве соединительного элемента между насосом подачи топлива и двигателем. Их основными функциями являются: участие в дозировании топлива; распыливание топлива; обеспечение характеристик впрыскивания; герметизация камеры сгорания.

Дизельное топливо впрыскивается при максимальных величинах давления порядка 1200 бар, значения которых в будущем, вероятно, будут еще выше. В этих условиях дизельное топливо перестает вести себя как сплошная несжимаемая жидкость и становится сжимаемым. Во время короткого времени подачи (в пределах 1 мс) топливо в системе высокого давления как бы сжимается — поперечное сечение соплового отверстия форсунки определяет количество топлива и распределение его в камере сгорания двигателя. В соответствии с длиной, диаметром отверстия и его направлением форсунка оказывает основное влияние на образование факела топлива с соответствующими изменениями показателей мощности, расхода топлива и токсичности отработавших газов двигателя. В определенных пределах возможно обеспечить оптимальное управление, определяемое ходом запорной иглы форсунки и регулированием ее характеристики.

Распылительное сопло должно обеспечивать герметичность системы впрыскивания топлива при чрезмерном нагреве до температур порядка 1000°С и при высоком давлении газов в камере сгорания двигателя. Для предупреждения противотока горящих газов, когда сопла форсунки все еще открыты, давление в камере повышенного давления форсунки должно быть выше, чем давление в камере сгорания. Это требование становится особенно важным в конце впрыскивания (когда уменьшение давления впрыска сопровождается чрезмерным возрастанием давления продуктов сгорания). Оно может быть обеспечено только тщательным согласованием работы насоса впрыскивания топлива, распылительного сопла и запорной иглы.

Конструкции Конструкции Дизели с разделенными камерами сгорания (предкамерами и вихревыми камерами) требуют разработки форсунок, отличающихся от используемых в неразделенных камерах сгорания. Для данных камер сгорания используются закрытые форсунки (с запорной иглой), имеющие распылитель с одним отверстием и обычно оснащенные иглами, открывающими одно отвер стие. Двигатели с непосредственным впрыскиванием топлива с неразделенными камерами сгорания обычно требуют применения форсунок со многими распылительными отверстиями.

Дроссельно-игольчатые форсунки

Один распылитель (тип DN..SD..) и один корпус форсунки (тип КСА с резьбовым соединением) обычно используются в двигателях с предкамерой и вихревой камерой. Стандартный корпус форсунки имеет резьбу М 24х2 и отворачивается 27-миллиметровым гаечн ым ключом.

Форсунки DN 0 SD в основном имеют диаметр иглы 6 мм с нулевым углом факела. Применяются и распылители с коническим углом факела (например, 12° для DN 12 SD..). Когда пространство для установки форсунок ограничено, то используются корпуса меньших размеров (например, КСЕ).

Штифтовой распылитель: 1 — нажимной штифт; 2 — распылитель; 3 — игла; 4 — впускной канал; 5 — камера сжатия; 6 — распылительное отверстие; 7 — штифт распылителя

Отличительной характеристикой штифтовых форсунок является изменение отверстия распылителя (и, следовательно, скорости потока) в виде функции хода иглы. Сопло в виде распылительного отверстия показывает немедленное возрастание проходного сечения во время открытия иглы. Штифтовые форсунки характеризуются очень плавным ростом сечения при средних величинах хода иглы. В пределах этого диапазона хода штифт иглы остается в распыливающем отверстии. Пропускное отверстие для потока состоит только из небольшого углового зазора между отверстием распыления большего размера и штифта иглы. При возрастании хода иглы она полностью открывает отверстие распылителя с последующим существенным возрастанием размера отверстия. Это изменение отверстия, чувствительного к длине хода, может использоваться для организации в определенной степени управления законом впрыскивания. В начале впрыскивания из форсунки в камеру сгорания вводится только ограниченное количество топлива, а основная его часть подается в конце цикла. Такая последовательность впрыскивания снижает жесткость процесса сгорания. При малом сечении отверстия и излишне малом ходе иглы ускоряется возвращение иглы из зоны дросселирования. Впрыскиваемое количество топлива, приходящееся в единицу времени, резко возрастает, и, соответственно, повышается ж есткость процесса сгорания. Подобное влияние оказывается при использовании чрезмерно малых отверстий в конце цикла впрыска топлива — объем, перемещаемый закрывающейся иглой форсунки, ограничивается более узким отверстием. Результат — увеличение продолжительности такта впуска топлива. Таким образом, конфигурация отверстия должна точ но соответствовать закону подачи топлива насосом с учетом специфических условий процесса сгорания топлива. Во время работы двигателя в дросселирующем зазоре происходит коксование (отложение нагара). Уровень формирования отложения определяется качеством топлива и условиями работы двигателя. В большинстве случаев для прохода топлива остается только 30-процентное сечение по отношению к исходному. Значительно меньшие и более ровные отложения обнаруживаются на плоских игольчатых форсунках, в которых кольцевое отверстие между корпусом форсунки и штифтом почти равно нулю. Уменьшение площади пропускного сечения потока способствует повышению эффекта самоочищения. Температуры свыше 220°С ускоряют образование нагара на форсунках. Для предотвращения этого явления применяются тепловые экраны, передающие тепло от камеры сгорания к головке блока цилиндров.

Для выполнения отверстий распыления, которые бы соответствовали точным геометрическим допускам,используются наиболее совершенные технологии.

Многоструйные распылители Для форсунок этого типа имеются разнообразные комплекты распылителей (DHK). В противоположность штифтовым, многоструйные распылители обычно устанавливаются в заранее заданном положении для обеспечения правильного соотношения между угловым расположением сопловых отверстий и камерой сгорания двигателя. По этой причине для установки комплекта, включающего форсунку и корпус, в головке блока цилиндров обыч но используются выступы или банджо-болты, а дополнительное винтовое удерживающее устройство обеспечивает необходимую ориентацию. Многодырчатые форсунки используют диаметры игл 6 и 5 мм (размерность S) и 4 мм (размерность Р). Пружины форсунок должны соответствовать различным диаметрам игл и предельным величинам давлений во время открытия (>180 бар).

Многоструйный распылитель: 1 — нажимной штифт; 2 — распылитель; 3 — игла распылителя: 4 — впускной канал; 5 — камера высокого давления; 6 — распыливающее отверстие; 7 — закрытый объем; 8 — угол между распыливающими отверстиями

В конце впрыскивания существует опасность засасывания в форсунку продуктов сгорания, поэтому необходимо предотвращать нестабильность гидравлических процессов. Диаметр запорной иглы и ее пружина должны тщательно подбираться с целью обеспечения надежной герметизации топливной форсунки. Существуют три различных варианта

закрытого объема в концевом конусе форсунок многодырчатого типа: конический закрытый объем, цилиндрический закрытый объем и запираемые отверстия. В зависимости от типа распыливающего отверстия, в конце впрыскивания топлива в форсунке остается некоторый заданный объем топлива, который затем испаряется и в камеру сгорания попадают пары топлива. Этот объем уменьшается в следующем порядке в зависимости от выбираемых вариантов форсунок: штифтовая форсунка, форсунка с запираемыми отверстиями и плоско-игольчатая форсунка. Выпуск углеводородов в составе отработавших газов двигателя уменьшается в том же порядке в зависимости от уровня испарения топлива. Длина распылительного отверстия ограничивается механической прочностью конуса форсунки. В настоящее время минимальная длина соплового отверстия впрыска топлива составляет 0,6…0,8 мм для цилиндрических и конических закрытых объемов. Для форсунок с запираемыми объемами допустима длина соплового отверстия 1 мм, но только в том случае, когда для производства распылительных отверстий используются специальные методы обработки.

Тенденцией является уменьшение длины отверстия, так как это позволяет в основном обеспечивать лучший контроль над снижением дымности отработавших газов. Для обеспечения допусков по пропускной способности в пределах ±3,5% для форсунок многодырчатого типа может быть использован процесс сверления. Дополнительные прецизионные процедуры (например, гидро эрозионная обработка) могут применяться в пределах допусков ±2% для конкретных случаев применения. Однако термостойкость материалов ограничивает максимальные температуры для однодырчатых форсунок приблизительно до 270°С. Во время работы в особо трудных условиях следует иметь в распоряжении термозащитные втулки, а также охлаждаемые топливные форсунки для двигателей с большим рабочим объем ом.

Формы распылителей: 1 — штифтовой распылитель; 2 — штифтовой распылитель с плоскоусеченной иглой: 2а — вид сбоку; 2b — вид спереди; 3 — многоструйный распылитель с коническим закрытым объемом; ; 4 — многоструйный распылитель с цилиндрическим закрытым объемом; 5 — распылитель с перекрываемыми отверстиями

Как уже говорит само название, насос-форсунка представляет собой впрыскивающий насос с узлом управления и форсунку в едином узле.

На каждый цилиндр двигателя приходится по насос-форсунке. Поэтому отсутствуют топливопроводы высокого давления, которые имеются на двигателе с ТНВД.

Как и ТНВД с форсунками, система впрыска с насос-форсунками выполняет следующие функции:

  • создает высокое давления для впрыска топлива
  • впрыскивает определенное количество топлива в определенный момент

Местонахождение:

Насос-форсунки расположены непосредственно в головке блока.

Крепление:

Насос-форсунки крепятся в головке блока. При установке насос-форсунок необходимо следить за правильным положением их.Если насос-форсунка не стоит под прямым углом к головке блока, может ослабнуть крепежный болт. Вследствие этого возможно

повреждение как насос-форсунки, так и головки блока.

Устройство насос-форсунки

Привод

На распределительном валу имеется четыре кулачка для привода насос-форсунок. Посредством коромысел усилие передается на плунжеры насос форсунок.

Требования к процессам смесеобразования и сгорания

Обязательным условием эффективного сгорания является хорошее смесеобразование. Для этого топливо должно подаваться в цилиндр в нужном количестве, в нужный момент и под высоким давлением. Уже при незначительных отклонениях от требуемых параметров распыления топлива отмечается увеличение содержания вредных веществ в отработавших газах, повышение шумности процесса сгорания и увеличение расхода топлива. Важным моментом для процесса сгорания в дизельном двигателе является малая величина задержки самовоспламенения. Задержка самовоспламенения представляет собой промежуток времени между началом впрыска топлива и началом повышения давления в камере сгорания. Если в этот временной промежуток подается большое количествотоплива, то это ведет к резкому повышению давления в камере сгорания и, тем самым, к увеличению уровня шума процесса сгорания.

Предварительный впрыск

Для достижения максимально возможной плавности протекания процесса сгорания перед основным впрыском осуществляетсяпредварительный впрыск малого количества топлива под небольшим давлением. Благодаря сгоранию этого малого количества топлива в камере сгорания повышаются давление и температура. Вследствие этого происходит ускоренное самовоспламенение топлива, поданного в ходе основного впрыска. Предварительный впрыск и наличие паузы между предварительным и основным впрыском способствует тому, что давление в камере сгорания повышается не скачкообразно, а относительно равномерно. Вследствие этого достигается снижение шумности процесса сгорания и уменьшение эмиссии окислов азота.

Основной впрыск

При основном впрыске необходимо достичь хорошего смесеобразования для возможно полного сгорания топлива. Благодаря высокому давлению впрыска достигается очень тонкий распыл топлива, что позволяет получить весьма равномерную смесь топлива и воздуха. Полное сгорание топлива обеспечивает уменьшение выброса вредных веществ и повышение мощности двигателя.

Конец впрыска топлива

Для хорошей работы двигателя важно, чтобы в конце процесса впрыска давление впрыска резко упало, а игла распылителя быстровозвратилась в исходное положение. При этом предотвращается попадание топлива в камеру сгорания под низким давлением и с

плохим распылом. Такое топливо сгорает не полностью, что ведет к увеличению токсичности выхлопа.

Процесс впрыска топлива, обеспечиваемой системой впрыска с применением насос- форсунок, с уменьшенным давлением припредварительном впрыске, повышенном давлении и быстром протекании процесса основного впрыска способствует улучшению

показателей работы двигателя.

Заполнение камеры высокого давления

При процессе заполнения камеры высокого давления плунжер под действием пружины движется кверху, что ведет к увеличению объема камеры. Электромагнитный клапан управления насос-форсункой бездействует. Игла клапана находится в положении, открывающем путь топливу из питающей магистрали в камеру высокого давления. Топливо под давлением поступает из питающей магистрали в камеру высокого давления.

Процесс впрыскаНачало предварительного впрыска

Кулачок распределительного вала через коромысло поджимает плунжер книзу; плунжер, в свою очередь, отжимает топливо из камерывысокого давления в питающую магистраль. Протекание процесса впрыска топлива происходит под управлением блока управлениядвигателя через электромагнитный клапан. По сигналу от блока управления двигателем игла электромагнитного клапана прижимаетсяк седлу, перекрывая путь топливу из камеры высокого давления в питающую магистраль. Вследствие этого происходит повышениедавления в камере. Когда давление достигает 180 бар, оно становится выше, чем усилие пружины распылителя. Игла

распылителя приподнимается, и начинается предварительный впрыск.

Начало предварительного впрыска Демпфирование хода иглы распылителя

В процессе предварительного впрыска ход иглы распылителя демпфируется гидравлическим буфером, что дает возможность точно дозировать количество впрыскиваемого топлива.

Это происходит таким образом: на первой трети хода ничто не мешает ходу иглы. При этом в камеру сгорания предварительно впрыскивается топливо

Как только демпферный клапан начнет перемещаться по сверлению корпуса распылителя, топливо над иглой распылителя сможет поступать под давлением в зону размещения пружины только через зазор снизу демпферного клапана. Вследствие этого возникаетгидравлический буфер, который ограничивает ход иглы распылителя при предварительном впрыске.

Процесс впрыскаКонец предварительного впрыска

Непосредственно после открытия иглы форсунки заканчивается предварительный впрыск. Под действием увеличивающегосядавления перепускной клапан движется книзу, тем самым увеличивая объем камеры высокого давления. Вследствие этого давление

на короткое время падает, и игла форсунки закрывается. Предварительный впрыск закончился. Вследствие движения книзу перепускного клапана пружина распылителя сжимается сильнее. Поэтому для повторного открытия иглы форсунки при последующем основном впрыске необходимо давление топлива больше, чем при предварительном впрыске.

Процесс впрыскаНачало основного впрыска

Вскоре после запирания иглы распылителя давление в камере высокого давления опять поднимается. Электромагнитный клапан закрыт, и поршень насос-форсунки движется вниз. Когда давление достигает примерно 300 бар, оно становится больше, чем давлениепружины распылителя. Игла распылителя снова поднимается, и в камеру сгорания впрыскивается основная порция топлива.Давление при этом поднимается до 2050 бар, поскольку в камере высокого давления сжимается больше топлива, чем может его выйтичерез распылитель. При достижении двигателем максимальной мощности, а также при наибольшем крутящем моменте и одновременно

самым большом количестве впрыскиваемого топлива давление максимально.

Процесс впрыскаКонец основного впрыска

Конец впрыска наступает, когда с блока управления двигателя перестает поступать сигнал на электромагнитный клапан.При этом игла клапана под действием пружины отходит от седла, и сжимаемое плунжером топливо может поступать в питающуюмагистраль. Давление топлива падает. Игла распылителя закрывается, и перепускной клапан под действием пружины распылителя

возвращается в исходное положение. Основной впрыск закончился.

Схема топливного контура

Топливо засасывается механическим топливным насосом через фильтр из топливного бака и подается по питающей магистрали в головке блока к насос-форсункам. Избыточное топливо подается обратно в топливный бак через сливную магистраль в головке блока, датчик температуры топлива и охладитель топлива.

  1. Охладитель топлива охлаждает сливаемое топливо для предупреждения попадания в топливный бак слишком горячего топлива.
  2. Датчик температуры топлива определяет температуру топлива в сливной магистрали и посылает соответствующий сигнал блоку управления двигателю
  3. Ограничительный клапан поддерживает давление в сливной магистрали на уровне 1 бар. Благодаря этому достигается постоянство давления топлива на игле электромагнитного клапана.
  4. Байпас Если в топливной системе имеется воздух, к примеру при выработанном топливном баке, ограничительный клапан остается закрытым. Воздух выжимается поступающим топливом из системы
  5. Головка блока
  6. Магистрали. Через дроссельное отверстие отводятся пары топлива, которые могут быть в питающей магистрали
  7. Топливный насос подает топливо из топливного бака через фильтр к насос-форсункам
  8. Сетка-фильтр улавливает пузырьки воздуха и газа в питающей магистрали. Затем они отводятся через дроссельное отверстие и сливную магистраль
  9. Ограничительный клапан регулирует давление топлива в питающей магистрали. При давлении топлива более 7,5 бар клапан открывается, и топливо направляется в зону всасывания топливного насоса
  10. Обратный клапан предотвращает слив топлива от топливного насоса в топливный бак при остановке двигателя (давление открытия топлива 0,2 бар)
  11. Топливный фильтр защищает топливный контур от загрязнения и попадания в него инородных частиц и воды
  12. Топливный бак

Топливный насос расположен непосредственно за вакуумным насосом на головке блока цилиндров. Топливный насос подает топливо из бака к насос- форсункам. Оба насоса имеют общий привод от распределительного вала и поэтому обозначаются как единый тандемный насос.

С развитием и распространением дизельных двигателей, к ним начали выдвигать все большие и большие требования, выражающиеся в увеличении удельной мощности мотора, увеличении давления впрыска и улучшении процесса смесеобразования. Немаловажным фактором также являются компактные размеры самого устройства и соблюдение экологических норм. Все это, вместе с бурным развитием электроники, поспособствовало созданию индивидуальных насос-форсунок и отдельных насосных секций для каждого цилиндра , оборудованного электронным блоком, который и управляет его работой.

1. Как работает насос-форсунка?

Система впрыска топлива, снабженная насос-форсунками, устанавливается на дизельных двигателях внутреннего сгорания и была разработана еще в конце 30-х годов ХХ века. Впервые такую систему применили на морских, железнодорожных и грузовых дизельных моторах, характеризующихся сравнительно низкой скоростью. Главной особенностью таких силовых агрегатов является наличие отдельного впрыскивающего топливного насоса, использующегося для каждого цилиндра мотора и обладающего очень короткими напорными линиями к форсунке. В движение такие насосы приводятся механическим путем, при помощи толкателя и буферов.

В корпусе насос-форсунки объединены насос высокого давления, сама форсунка, дозирующий клапанный узел и силовой привод, благодаря которым данный элемент имеет преимущества в сокращении продолжительности движения топливной жидкости, находящейся под высоким давлением, а также в увеличении гидравлической эффективности и уменьшении своей массы.

Представители последнего поколения насос-форсунок обладают большим рабочим давлением впрыска (до 2500 бар) и способны мгновенно реагировать на команды управляющего блока, в задачу которого входит сбор и анализ текущей информации, поступающей от внешних датчиков. Именно эти данные определяют требуемые количественные и временные характеристики впрыска топлива, что дает возможность получения оптимальных значений мощности при заданном режиме работы, существенно экономит топливную жидкость, обеспечивает минимальные выбросы в атмосферу и способствует снижению уровня шумности от работающего силового агрегата. Кроме того, насос-форсунка достаточно компактна, за счет чего в головке двигателя образуется дополнительное свободное пространство, использующееся для установки других деталей двигателя.

Конструкция насос-форсунки позволяет обеспечить эффективное образование топливно-воздушной смеси, для чего в процессе впрыска предусмотрены фазы предварительного, основного и дополнительного впрыска топлива. Предварительный впрыск помогает достичь плавности сгорания смеси в ходе основного впрыска, обеспечивающего качественное смесеобразование при разных рабочих режимах мотора, а дополнительный служит для очистки сажевого фильтра от накопленных отложений сажи (процесс регенерации).

Процесс работы насос-форсунки проходит следующим образом:

1) Кулачок распредвала посредством коромысла перемещает плунжер вниз, и топливо начинает перетекать по каналам форсунки. В момент закрытия клапана топливо как бы отсекается, и его давление начинает возрастать, а при достижении показателя в 13 мПа игла распылителя преодолевает усилие пружины, вследствие чего происходит предварительный впрыск топлива.

2) Как только клапан открывается, предварительный впрыск прекращается, а топливо переходит в питающую магистраль, и его давление снижается. В зависимости от рабочих режимов силового агрегата, может производиться один или два предварительных впрыска.

3) При продолжении движения плунжера вниз происходит основной впрыск. Клапан опять закрывается, и давление топлива снова возрастает. Достигнув значения в 30 мПа, игла распылителя преодолевает силу давления топлива, и усилие пружины поднимается вверх, вызывая основной впрыск. Чем выше будет давление, тем большее количество топлива сожмется, а значит, в итоге получится больший впрыск в камеру сгорания. Наибольшее количество топлива (что способствует максимальной мощности двигателя) впрыскивается при давлении в 220 мПа. Завершение этапа основного впрыска происходит с открытием клапана, причем давление топлива падает, а игла распылителя закрывается.

4) Дополнительный впрыск топлива происходит при дальнейшем движении плунжера вниз, а принцип действия устройства на этом этапе аналогичен основному впрыску и обычно производится в два захода.

2. Типичные неисправности насос-форсунок, их диагностика и устранение

Автовладельцам, на автомобилях которых установлена описанная система впрыска топлива, наверняка не раз приходилось иметь дело с проблемами, относящимися к следующим группам: проблемы с запуском мотора или полный рабочий отказ агрегата, перерасход топливной жидкости, нестабильная работа мотора, повышенный уровень «дымности» выхлопных газов и потеря мощности. Все эти признаки указывают на нарушения работы в EUI или EUP-секциях – наиболее распространенных видах насос-форсунок в странах Европы и СНГ (в том числе и Украины).

Среди причин нарушения точной работы указанных элементов можно выделить несколько наиболее частых, а чтобы лучше понять их, надо сказать, что составляющие элементы механической части управления насос-форсункой – это отдельные «родственники» деталей газораспределительного механизма, который функционирует в головке блока двигателя внутреннего сгорания. Разница только в природе рабочего тела, в роли которого, в данном случае, выступает не воздушная смесь, а дизельное топливо, находящееся под высоким давлением и обладающее определенными физическими свойствами.

К наиболее типичным неисправностям электронной насос-форсунки относят неисправности клапанного узла (встречаются примерно в 63% случаев), проблемы в работе распылителя (примерно 30% случаев), поломки электромагнитной части (5%) и выход из строя плунжера, пружины или корпуса (2%).

Другими словами, наиболее частой причиной неисправности насос-форсунок есть разрушение клапанного механизма и его механические повреждения. Этой причине следует уделять особое внимание, так как клапан при закрытии отсекает топливо, то есть на седло клапана и отсекающую кромку тарелки клапана создается достаточно большая нагрузка. Однако, надо сказать, что указанный механизм отличается достаточно высоким уровнем надежности, конечно, при условии применения качественного топлива. Точность изготовления элементов описанного механизма может достигать 0,25 мкм, с зазорами прецизионных узлов в 1,5-2 мкм, а чтобы лучше представить себе данную величину, достаточно отметить, что толщина волоса человека составляет около 50 мкм.

На следующем месте по частоте выхода из строя находится распылитель, нарушения в работе которого сказываются на «дымности» двигателя, существенном увеличении расхода топлива и общем ухудшении экологических показателей. Зачастую, проблемы с распылителем не влияют на мощностные характеристики силового агрегата, а замена этой составляющей не составит особой сложности.

Далее, в списке характерных причин поломки насос-форсунок находятся неполадки в электромагнитной части управления работой механизма. Поломка данного узла вызывает неточности в работе насос-форсунки на определенном рабочем режиме мотора, вплоть до полного прекращения его деятельности. Правда, благодаря надежности деталей этой части и при соблюдении водителем требований производителя относительно применяемого топлива, поломки такого рода встречаются достаточно редко.

На последнем месте по частоте проявления находятся неполадки в работе плунжера, связанные с механическими разрушениями, а также разрушение пружины и корпуса детали. В принципе, ничего сложного в восстановлении работоспособности форсунки нет, ведь так же, как и капитальный ремонт силового агрегата, капремонт указанной детали основывается на восстановлении рабочих поверхностей всех трущихся элементов и уплотняющих фасок, но вот только допуски и посадки всех деталей насос-форсунок измеряются в микронах.

Все виды ремонтных работ принято начинать с диагностики ремонтируемого устройства, и насос-форсунка в этом вопросе не исключение. После ее демонтажа проводится соответствующее тестирование детали на специальном стенде. Для осуществления процесса, на форсунку устанавливают новый распылитель, а затем стенд «гоняет» ее на разных рабочих режимах силового агрегата: на холостом ходу, номинальном режиме (условное передвижение транспортного средства с крейсерской скоростью) и при разгоне.

Если установка нового распылителя будет способствовать «недоливу» положенной порции топлива (до 10%), значит, клапан и плунжерная пара пока находятся в нормальном состоянии, и можно будет обойтись лишь заменой распылителя, что позволит автомобилю спокойно ездить еще 100 000 километров. Более 10% «недолива» свидетельствуют о критическом износе клапана , а при самом худшем варианте развития событий неисправной может оказаться еще и плунжерная пара (когда клапан не держит те самые 1500 кг/кв.см, в результате чего цилиндр недополучает топливо). В таком случае, избежать капитального ремонта форсунки уже не получится.

Восстановление работоспособности пары трения клапан-втулка выполняется следующим путем. Втулку расшлифовывают до следующего ремонтного размера (принятые стандарты подразумевают увеличение диаметра на 50 мкм, чего более чем достаточно для удаления всей выработки). Сам клапан покрывают хромом, после чего его шлифуют до нужного размера. Вместе с ним шлифовке поддаются и поверхности втулки и клапана. Аналогичным образом восстанавливается и плунжер, но только он покрывается не хромом, а нитратом титана, путем вакуумного напыления. Нитрат титана обладает вдвое меньшим коэффициентом трения по стали, нежели сама сталь и вдвое большей микротвердостью поверхности. Таким же составом покрывается и клапан.

3. Преимущества и недостатки насос-форсунок

Среди преимуществ использования насос-форсунок выделяют следующие:

1) Данные элементы позволяют впрыскивать топливо под давлением больше 2000 бар, благодаря чему распыление топливной жидкости выполняется более эффективно, а значит, и сгорает полнее. Поэтому моторы с установленными на них насос-форсунками отличаются высокими мощностными характеристиками и экономичностью.

2) Кроме того, учитывая, что давление в системе с насос-форсункой и давление впрыска регулируется при помощи кулачкового механизма распредвала, энергия привода должна применяться только по отношению к области впрыска. Такие системы являются более отказоустойчивыми, нежели их аналоги без насоса и без рампы, поэтому появление проблем в работе насос-форсунок совсем не означает остановку двигателя.

3) Наличие высокого давления гарантирует более тонкое распыление топливной жидкости, а небольшие капли означают меньший объем по отношению к площади поверхности, что само по себе может вызвать появление меньшего количества сажи.

4) Дизельный мотор, обустроенный насос-форсунками, обеспечивает наиболее «горизонтальную» полку крутящего момента.

5) Помимо этого, моторы с такой системой впрыска работают значительно тише аналогичных устройств с механическими форсунками и гораздо компактнее их.

Однако, в описанной системе есть и свои минусы. Основной из них – это необходимость использования качественного топлива, так как любые примеси в виде воды, грязи или использование суррогатного топлива для нее губительны. Вторым серьезным недостатком является высокая стоимость самой насос-форсунки, а ремонт данного узла практически невозможен в «домашних условиях», из-за чего автовладельцам приходится сразу покупать новые детали.

Также стоит учитывать тот факт, что кулачковая зависимость чаще всего вызывает впрыск лишь тогда, когда кулачок задействует насос, а значит, диапазон возможных моментов впрыска обусловлен определенным диапазоном вокруг ВМТ (верхней мертвой точки), что не может обеспечить плавность хода. Поскольку момент и количество впрыска не могут постепенно меняться, то такой процесс является ограниченным. Более того, для соблюдения стандартов EURO 4, температуру выхлопных газов также не получится быстро изменить.

Если резко выполнить восстановление давления в системе впрыска с насос-форсункой, то необходимая при этом движущая энергия будет применяться только лишь в области впрыска. Соответственно, высокие динамические нагрузки, возникающие в результате роста давления, требуют определенного размера распредвала и соответствующую конструкцию его привода. Привод должен быть оборудован широким зубчатым ремнем или цилиндрическим зубчатым колесом, так как высокая жесткость на растяжение и низкая демпфирующая способность цепных приводов в условиях предельных нагрузок часто приводят к их разрыву.

Подписывайтесь на наши ленты в

Форсунки для дизельных двигателей – схема, принцип работы и ремонта + видео

Форсунки для дизельных двигателей – это детали топливной аппаратуры, которые наиболее подвержены износу. Считаются самыми простыми в обслуживании и проведении диагностики в условиях сервисных центров. От того, насколько эффективно работают форсунки, зависит качество сгорания топлива в цилиндрах двигателя, его запуск, динамика разгона автомобиля, экономичность и количество вредных выбросов.

В зависимости от типа распылителей и топливной системы максимальное давление форсунок дизельных двигателей в распылителе в момент впрыска составляет порядка 200 МПа, а время – от 1 до 2 миллисекунд. От качества впрыска зависит уровень шума двигателя, количество выбросов в атмосферу сажи, окислов азота и углеводорода.

Современные модели различаются по форме корпуса, размеру распылителей, а также по способу управления. Отличие различных типов форсунок состоит в использовании различных систем впрыска и видов распылителей, которые бывают штифтовыми и дырчатыми. Штифтовые применяют в двигателях с форкамерной системой зажигания, дырчатые устанавливаются на дизелях с непосредственным впрыском топлива.

По способу управления детали делятся на однопружинные, двухпружинные, с датчиками контроля положения иглы и управляемые пьезоэлектрическими элементами. Кроме всего прочего, схема форсунки дизельного двигателя зависит от способа ее монтажа в головке цилиндров: при помощи фланца, хомута или путем вворачивания в гнездо.

Принцип работы форсунки дизельного двигателя – кратко о сложном

Основное назначение таких деталей заключается в дозировании и распылении топлива, а также герметичной изоляции камеры сгорания. В результате исследований были разработаны насосы-форсунки, которые устанавливаются в каждый цилиндр по отдельности. Принцип работы форсунки дизельного двигателя нового типа заключается в том, что она функционирует от кулачка распределительного вала через толкатель. Подача и слив топлива осуществляется через специальные каналы в головке блока. Дозирование топлива происходит через блок управления, который подает сигналы на запорные электромагнитные клапаны.

Работает насос-форсунка в импульсном режиме, что позволяет перед основным впрыском произвести предварительную подачу топлива. В результате чего значительно смягчается работа двигателя и снижается уровень токсичных выбросов.

Топливные форсунки в большинстве случаев нуждаются в простом уходе, чаще всего, для того чтобы вернуть их в рабочее состояние, достаточно просто их очистить и промыть. Независимо от того, сколько форсунок в двигателе, случается, что при резком нажатии на педаль газа ощущаются рывки и провалы или ощутимо снижается мощность, мотор начинает неустойчиво работать на низких оборотах, значит, произошла закупорка каналов форсунки твердыми смолянистыми отложениями. Что же делать?

Промывка форсунок дизельного двигателя – способы реализации

Загрязнение этого элемента ведет к нарушению распыления топлива и приводит к неправильному образованию воздушно-топливной смеси. В идеале пульверизация должна быть максимально равномерной. Основной источник загрязнения – содержащиеся в топливе смолы. Промывка форсунок дизельного двигателя может устранить все нарушения подачи топлива в цилиндры.

Процесс очистки форсунок предусматривает удаление различных загрязнений в топливных каналах. В настоящее время применяется несколько способов:

  • чистка форсунок дизельных двигателей с помощью ультразвука;
  • промывка форсунок топливом с добавлением специальных присадок;
  • промывка с использованием специальных жидкостей на стендах;
  • промывка вручную.

Для автомобилистов наиболее приемлемым является последний вариант, поскольку он позволяет проводить работы по очистке форсунок в домашних условиях. Однако в запущенных случаях приходится обращаться к услугам автоцентров, где проводится очистка при помощи ультразвука, что является более жестким способом. К данному виду очистки рекомендуется прибегать только в случае, если промывка специальными жидкостями не дала положительного результата.

  • Автор: Михаил
  • Распечатать

Устройство автомобилей



Форсунка служит для подачи топлива в цилиндр двигателя, распыления и распределения топлива по камерам сгорания.

Условия работы форсунок очень тяжелые – они подвержены воздействию колоссальных давлений и тепловых нагрузок. Впрыск начинается при температуре в камере сгорания 700…900 ˚С и давлении 3…6 МПа, а заканчивается при температуре до 2000 ˚С и давлении 10…11 МПа.

К форсункам предъявляются следующие очень жесткие требования:

  • оптимальная дисперсность, т. е. высокая степень дробления капель топлива, так как чем меньше капли, тем больше их суммарная поверхность, быстрее происходит нагрев и сгорание топлива, но при этом уменьшается длина факела;
  • обеспечение такой скорости струи топлива, чтобы оно достигало краев камеры сгорания, поэтому капли не должны быть слишком мелкими – средний размер капель (с учетом требования по первому пункту) – 30…50 мкм;
  • распределение впрыскиваемого топлива по всему объему камеры сгорания;
  • резкое начало впрыска и его прекращение.

Форсунки бывают открытые и закрытые. Открытые форсунки обеспечивают постоянную подачу топлива. В современных дизелях такие форсунки не применяются.

В дизельных двигателях применяют закрытые форсунки, которые открываются только в момент подачи топлива в камеру сгорания.

Закрытые форсунки могут быть двух типов – одно- и многодырчатые. Первые устанавливают на двигателях с вихревыми камерами сгорания, вторые с неразделенными камерами сгорания.

Различают, также, механические форсунки и форсунки, управляемые электроникой. Современные системы питания дизельных двигателей используют впрыск, управляемый компьютером (электронным блоком управления). На основании информации, поступающей от многочисленных датчиков, такие системы учитывают многие процессы и текущие параметры работы двигателя. Форсунки в таких системах управляются специальными электромагнитными или пьезоэлектрическими устройствами, что открывает широкие возможности повышения эффективности работы двигателя, а также его экологичности.

К отдельной категории устройств для впрыска топлива в цилиндры относятся насос-форсунки, представляющие собой своеобразный гибрид между ТНВД и форсункой в одном узле.

***

История изобретения форсунки

Как известно, Рудольф Дизель изначально планировал работу своего знаменитого детища на угольной пыли. Его система питания содержала специальный насос, вдувавший угольную пыль в цилиндр двигателя сжатым воздухом. Однако, уголь оказался низкокалорийным топливом, не способным дать высокой температуры сгорания, и Дизелю пришлось обратить свой гениальный взор к жидким топливам. Ведь разница температур в цикле работы двигателя – прямой путь к повышению КПД, как установил француз Николя Сади Карно.

Сначала Дизель попробовал впрыскивать в цилиндр своего двигателя бензин, но при первом же испытании двигателя произошел взрыв, едва не стоивший жизни самого Дизеля и его помощников, и изобретателю пришлось применить менее взрывоопасное топливо – керосин. В июне 1894 года Дизель построил двигатель, использующий в качестве топлива керосин, который впрыскивался в цилиндры специальной форсункой. Для впрыскивания керосина применялся пневматический компрессор, развивавший давление, превышающее давление в цилиндре двигателя. За такими двигателями закрепилось название «компрессорные дизели».

Идея гидравлического впрыска топлива в дизельных двигателях принадлежит, как утверждает история, французскому инженеру Сабатэ, который, к тому же, предложил многократный впрыск, т. е. впрыск, осуществляемый в несколько этапов (эта идея используется в современных системах питания — Common Rail и насос-форсунка).

В 1899 году русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции — с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой. Эти форсунки устанавливались на дизелях, выпускавшихся Механическим заводом «Людвиг Нобель» в Петербурге в начале прошлого века («русские дизели»).

В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, а также создал удачную модификацию бескомпрессорной форсунки. Эти устройства с различными усовершенствованиями используются в системах питания дизельных двигателей и в наши дни.

Дизельные двигатели, использующие в системе питания повышение давления топлива перед впрыском, называют «бескомпрессорными дизелями». В настоящее время классические компрессорные дизели не имеют практического применения. В современных двигателях впрыск осуществляется бескомпрессорными способами.

Однако, наука и техника не стоят на месте, и, благодаря широкой компьютеризации всех систем автомобиля, в настоящее время механические форсунки постепенно вытесняются более совершенными устройствами, управляемыми электроникой.

***

Принцип действия многодырчатой форсунки

В многодырчатой форсунке основной частью является распылитель. Он состоит из корпуса 1 (рис. 1, а) и иглы 2. Распылитель притянут к корпусу 7 форсунки накидной гайкой 3. Сверху на иглу давит пружина 12 (рис. 1, б). Топливо в полость Б форсунки подается по каналу В. Когда нет подачи топлива насосом (рис. 1. I), давление в полости Б составляет 2…4 МПа. Топливо давит на нагрузочный поясок Г иглы, но эта сила меньше силы пружины, которая прижимает иглу к распылителю. Игла запорным конусом Д перекрывает выходные отверстия – сопло А.

При подаче топлива насосом сила давления топлива на поясок Г становится больше силы пружины, игла поднимается, и через сопло А с большой скоростью топливо впрыскивается в камеру сгорания. После окончания подачи топлива давление падает, пружина возвращает иглу на место, запирая выходные отверстия распылителя, и впрыск прекращается.

Подъем иглы ограничен упором ее верхних заплечиков в корпус 5 форсунки и составляет 0,2…0,25 мм.

Качество дробления топлива зависит от скорости его движения через сопла, которая, в свою очередь, зависит от давления впрыска. При нормальном режиме скорость струи топлива составляет 200…400 м/с. Для этого необходимо создать перепад давлений в форсунке и камере сгорания 5…10 МПа. Поскольку давление в цилиндре в момент впрыска достигает 3…5 МПа, давление топлива в форсунке должно быть более 10…20 МПа. Чтобы обеспечить работу форсунки при таком давлении, корпус распылителя и игла выполнены очень точно и притерты друг к другу. Они являются третьей прецизионной парой в магистрали высокого давления. Игла и корпус распылителя не подлежат разукомплектованию и подлежат замене только в комплекте.



На двигателях с неразделенными камерами сгорания устанавливают, как правило, многодырчатые форсунки. Так, на двигателях КамАЗ-740 устанавливается форсунки серии 33, на двигателях ЗИЛ-645 и ЯМЗ-240 – форсунки Б-2СБ, на двигателях ЯМЗ-238 – форсунки модели 80 (см. рисунок 2 внизу страницы).

К корпусу 7 форсунки накидной гайкой 3 притянут распылитель с иглой 2. Распылитель имеет четыре сопловых отверстия диаметром 0,3 мм. На иглу через штангу 13 давит пружина 12. Топливо от насоса подается в полость форсунки через штуцер 9, в котором установлен фильтр 10. Верхнее отверстие в корпусе служит для отвода в бак топлива, просочившегося через зазоры между иглой и распылителем. Штифты 4 и 6 определяют точное положение распылителя относительно корпуса и топливных каналов. Прокладками 11 регулируют натяжение пружины, которое определяет давление начала впрыска.

Форсунки устанавливают в специальные гнезда головки цилиндра и закрепляют скобами. Между корпусом форсунки и головкой блока размещается уплотнительная медная шайба (кольцо), которая надевается на корпус распылителя и вместе с форсункой аккуратно вставляется в гнездо головки. Такая шайба служит не только уплотнителем между форсункой и головкой, но и обеспечивает хороший теплоотвод от распылителя к головке цилиндров.

Уплотнительное кольцо 8 предохраняет полость клапанной крышки от попадания в нее пыли и влаги.

***

Устройство однодырчатой штифтовой форсунки

Однодырчатые форсунки иногда называют штифтовыми, поскольку конец ее иглы выполняется в виде штифта. Такие форсунки устанавливают, как правило, в дизелях с разделенными камерами сгорания. Конструкция распылителя таких форсунок обеспечивает объемно-пленочное смесеобразование, поскольку распыливание топлива более направленное, чем в многодырочных форсунках, и значительная часть топлива достигает стенок камер сгорания, образуя быстро испаряющуюся пленку.

Дизели с вихревыми (раздельными) камерами сгорания менее чувствительны к составу топлива и устойчивее работают в широком диапазоне частот вращения. Применяемые с ними форсунки рассчитаны на меньшее давление, следовательно, не требуют столь высокой точности изготовления, как форсунки для неразделенными камерами сгорания, а потому дешевле.

На рис. 1,в показан распылитель штифтовой однодырчатой форсунки. Такая форсунка устанавливается в вихревых камерах сгорания и имеет одно сопло. Конец иглы 2 выполнен в виде штифта 13 конусной формы, выступающего за пределы корпуса распылителя. Штифт служит для формирования факела топлива в виде конуса. Принцип работы однодырчатых форсунок не отличается от принципа работы многодырчатых форсунок.

Устройство некоторых типов форсунок, применяемых на автотракторных дизельных двигателях отечественного производства приведено на рисунке 2.

***

Трубопроводы высокого давления дизеля


Главная страница
Специальности
Учебные дисциплины
Олимпиады и тесты

Давление впрыска дизеля » Привет Студент!

Давление впрыска дизеля

Давление впрыска. Эффективность рабочего процесса дизеля зависит не только от характеристики подачи и момента впрыска топлива, но и от качества распыливания. Топливо должно быть распределено по всему объему камеры сгорания. В каждой единице объема сжатого воздуха должно содержаться одинаковое количество как можно более мелких частиц впрыскиваемого топлива.

Топливо дробится и равномерно распределяется в камере сгорания топливоподающей аппаратурой и возникающими в камере воздушными вихрями. В частности, в вихрекамерных двигателях топливо дополнительно дробится потоками воздуха, перетекающего из рабочего цилиндра в камеру, и при обратном прохождении газов из камеры сгорания.

Эффективность распыливания топлива повышается с увеличением числа оборотов двигателя.

Качество распыливания топлива определяют тонкостью и однородностью, дальнобойностью и углом конуса струи, а также относительным распределением топлива по длине и в поперечном сечении струи.

Тонкость распыливания топлива оценивается средним диаметром капли. Чем меньше диаметр, тем тоньше распыливание. Однородность распыливания определяется пределами изменения величины диаметра капель: чем меньше разница между наибольшим и наименьшим диаметрами капель в струе, тем однороднее распыливание.

Под дальнобойностью струи понимается глубина проникновения конца струи в толщу воздуха в зависимости от времени.

Углом конуса называют угол между касательными к контуру струи, сходящимися у сопла форсунки.

Форма и характер разрушения струи в процессе проникновения ее в камеру сгорания зависят от давления впрыска, противодавления,

 

 

 

 

Рис. 5. Зависимость скорости Wф движения переднего фронта факела и диаметра dK капель топлпва от давления Рф впрыска.

 

 

 

Рис. 6. Распределение капель топлива среднего диаметра dK в струе при перепаде давления:

1 — 400 кГ/см2; 2—292 кГ/см2; 3 — 160 кГ/см2‘; 4—62,5 кГ/см2; 5—31,6 кГ/см2.

 

т. е. плотности среды, в которую впрыскивается топливо, скорости вращения кулачкового вала, вязкости топлива и конструкции сопла.

Давлением впрыска называется давление топлива перед сопловым отверстием в момент впрыска. Величина давления впрыска зависит от величины давления начала отрыва иглы форсунки, т. е. от регулировки форсунки и скоростного режима. С повышением давления впрыска увеличивается скорость истечения топлива и уменьшается средний диаметр капель (рис. 5).

Распределение капель разного размера в струе топлива зависит от перепада давления (рис. 6). По оси абсцисс отложен средний диаметр капель dк, по оси ординат — отношение А объема капель одинакового диаметра к объему всех капель в этой части струи в %. Чем выше перепад давлений, тем меньше диаметр капель и тем однороднее распыливание.

 

 

 

 

 Рис. 7. Зависимость дальнобойности Lф факела от давления впрыска

 

 

 

Рис. 8. Зависимость дальнобойности Lф факела от скорости вращения кулачкового вала топливного насоса: т — время от начала впрыска.

 

 

 

Рис. 9. Зависимость величины цикловой подачи топлива q от давления начала впрыска топлива форсункой Рф.пр кг/см2 при положениях рейки насоса, соответствующих подаче топлива: 1—100%; 2—75%; ;3—50%; 4—25%.

 

 

При уменьшении перепада давлений средний диаметр капель возрастает, ухудшается однородность распыливания и повышается дальнобойность струи. Особенно большое значение эти факторы имеют для двигателей непосредственного впрыска. Для двигателей вихрекамерного смесеобразования их влияние сказывается в меньшей степени, так как качество смесеобразования улучшается благодаря воздушным вихрям.

Если у вихрекамерных двигателей дальнобойность струи мала, то топливо распределяется в небольшом объеме камеры сгорания и на ее периферии появляются зоны с избытком воздуха, в центре же камеры может быть недостаток его. Сгорание в этом случае будет перемещаться в такт расширения. При большой дальнобойности струи топливо попадает на стенки камеры сгорания и днище поршня, что для этого типа двигателей нежелательно.

Экономичность двигателя при этом ухудшается. Дальнобойность струи для каждого типа дизелей должна представлять собой определенную величину. Однако она не является постоянной, а зависит от давления впрыска, быстроходности двигателя, величины подачи топлива.

При увеличении давления впрыска возрастает перепад давления в сопле форсунки и в камере сгорания, что и приводит к увеличению дальнобойности факела распыленного топлива.

Зависимость дальнобойности факела от давления впрыска за время 0,0025 сек при постоянном противодавлении показана на рисунке 7. С увеличением давления дальнобойность возрастает. При повышении скорости вращения кулачкового вала топливного насоса увеличивается скорость движения плунжера, а это также способствует росту дальнобойности струи (рис. 8).

Давление начала впрыска оказывает влияние на момент начала и продолжительность впрыска, тонкость и однородность распыливания топлива и резкость отсечки. Подача топлива за цикл возрастает по мере снижения давления начала впрыска (рис. 9). В этом случае игла форсунки поднимается раньте и садится в гнездо позже.

Поздняя посадка вызывается значительным снижением давления конца впрыска при малом давлении начала впрыска. При снижении давления начала впрыска ухудшается запуск двигателя.

 

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера. КАК ТУТ СКАЧИВАТЬ

Пароль на архив: privetstudent.com

Основные неисправности дизельных двигателей | Хиталком

Двигатель не запускается:

  • Подкачивающий насос не подает топливо
  • Слишком ранний или поздний впрыск
  • Неисправности форсунки
  • Неисправные свечи накаливания
  • Неисправности ТНВД

Потеря мощности двигателя:

  • Слишком малая доза впрыска
  • Повреждение распылителя
  • Утечки топлива из трубок высокого давления

Стуки в двигатели:

  • Слишком ранний впрыск
  • Слишком большее давление открытия форсунок
  • Люфт поршневых колец
  • Износ поршневых или шатунных вкладышей
  • Несоответствующая компрессия

Черный дым:

  • Слишком поздний впрыск топлива
  • Низкое давление открытия форсунок
  • Заклинивание иглы в распылителе
  • Лопнувшая пружина форсунки
  • Нагнетательный клапан ТНВД не закрывается
  • Слишком низкая компрессия
  • Если двигатель потерял в мощности, а в месте с тем увеличилась дымность выхлопа на повышенных оборотах, проверьте загрязненность воздушного фильтра

Неравномерная работа двигателя:

  • Завоздушивание топливной системы
  • «льющий» распылитель
  • .Трещина в топливо-проводе высокого давления
  • Лопнувшая пружина форсунки
  • Повышенное давление открытия форсунки
  • Износ газораспределительного механизма

Симптомы основных неисправностей дизелей

Запуск двигателя затруднен

  • Износ нагнетательных элементов насоса высокого давления.
  • Неправильный угол опережения подачи топлива в двигателе.
  • Износ распылителей, вызывающий плохое распыление топлива.
  • Низкое давление впрыска.
  • Нехватка топлива перед насосом высокого давления из-за попадания воздуха в систему подачи топлива.
  • Неисправности подкачивающего топливного насоса.
  • Слишком малая доза топлива при запуске, вызванная неправильной работой регулятора. Загустение топлива зимой.
  • Неисправны свечи накаливания.

Снижение мощности двигателя

  • Износ прецизионных элементов топливного насоса высокого давления или регулятора.

Неправильная регулировка насоса или всережимного регулятора.

  • Неправильный угол опережения впрыска.
  • Износ или повреждение распылителей.
  • Чрезмерное снижение давления впрыска.
  • Недостаточное количество топлива, подаваемого системой нагнетания, из-за засорения топливного фильтра, недостаточной производительности подкачивающего топливного насоса или попадания воздуха в топливную систему.

Повышенный расход топлива

  • Неверный угол опережения впрыска.
  • Износ нагнетательных элементов насоса высокого давления.
  • Неправильная регулировка насоса высокого давления.
  • Износ или повреждение распылителей.
  • Слишком большое снижение давления впрыска.
  • Загрязнен воздушный фильтр.
  • Утечка топлива.
  • Недостаточная компрессия.

Черный дымный выхлоп

  • Плохое смесеобразование в камере сгорания из-за нагара или неплотного закрытия клапанов.
  • Поздний впрыск топлива.
  • Плохое распыление топлива форсунками.
  • Неверные зазоры в клапанах.
  • Недостаточная компрессия.

Серый или белый дымный выхлоп

  • Неверное опережение впрыска.
  • Недостаточная компрессия.
  • Пробита прокладка головки блока.
  • Переохлаждение двигателя.

Жесткая работа двигателя

  • Слишком ранний впрыск топлива.
  • Большая разница между дозами топлива, впрыскиваемого в разные цилиндры двигателя.

Неправильная работа некоторых форсунок.

  • Недостаточная компрессия.

Перегрев двигателя

  • Неправильный угол опережения впрыска.
  • Плохое распыление топлива форсунками (струя вместо «факела»).

Не развивается полная мощность двигателя

  • Короткий ход у педали акселератора, неправильно отрегулирована тяга педали акселератора.
  • Загрязнен воздушный фильтр.
  • Воздух в системе питания.
  • Повреждены топливопроводы.
  • Неисправны крепления распылителей (форсунок).
  • Распылители неисправны.
  • Сбит угол опережения впрыска топлива.
  • Неисправен топливный насос высокого давления.

Повышенный расход топлива

  • Негермётична система питания.
  • Забит топливопровод слива (от насоса к топливному баку).
  • Высокие обороты холостого хода или же сбито опережение впрыска.
  • Плохо работает двигатель.
  • Неисправны распылители, неисправны форсунки.
  • Неисправен топливный насос высокого давления.

Повышенный шум двигателя

  • Загрязнения в системе питания, вследствие чего не работают распылители.
  • Уплотнительные шайбы под распылителями отсутствуют или плохо установлены,
  • распылитель слишком сильно (слишком слабо) завернут в головку цилиндров.
  • Воздух в системе питания.

Неравномерная работа двигателя на холостом ходу

  • Неправильно установлены обороты холостого хода.
  • Затруднен ход педали акселератора.
  • Ослаб топливопровод подачи топлива между топливным насосом высокого давления и топливным фильтром.
  • Повреждена опорная пластина насоса высокого давления.
  • Неисправности в подаче топлива.
  • Неисправны распылители, неисправны форсунки.
  • Неправильное опережение впрыска.

Колебания частоты оборотов коленчатого вала

  • Износ регулятора оборотов.
  • Разрегулирование или износ системы впрыска.
  • Чрезмерное сопротивление перемещению элементов в системе регулирования.
  • Попадание воздуха в топливную систему.
  • Избыточное давление газов в картере.

Внезапная остановка двигателя

  • Смещение угла опережения нагнетания (нарушение соединения насоса с приводом).
  • Засорение топливного фильтра и нехватка топлива, подаваемого в насос.
  • Отсутствие подачи топлива, вызванное повреждением топливного насоса высокого давления или подкачивающего насоса.
  • Повреждение трубопровода впрыска.
  • Износ и перекос поршня-разделителя, ротора или поршней насоса высокого давления.

Часто выходят из строя свечи накаливания

  • Неисправны форсунки в соответствующих цилиндрах.

Невозможно заглушить двигатель

  • Неисправен запорный электромагнитный клапан.
  • Заклинил распылитель форсунки

Повышается уровень моторного масла в картере

  • Течь через уплотнитель цепного или шестеренчатого привода насоса высокого давления.
  • Закрытый клапан не пропускает воздух,в результате не происходит воспламенение топлива и всё что впрыскивает форсунка в цилиндр попадает в моторное масло.

Слабое торможение двигателем

  • Засорены сливные топливопроводы.
  • Неверно установлены ускоренные обороты холостого хода.

Какие бывают топливные дизельные форсунки

Категория: Полезная информация.

Топливные форсунки — один из главных элементов системы питания дизельного двигателя. С течением времени, конструкция и принцип работы форсунок неоднократно менялись, у каждого нового поколения появлялись свои особенности. Рассмотрим основные типы форсунок, которые встречаются в топливной системе дизельных ДВС.

Зачем вообще нужны форсунки

Форсунки обеспечивают прямую подачу топлива в камеры сгорания и его равномерное распределение по стенкам. Распыление топлива происходит через специальные сопла (распылитель форсунки). Сопла формируют строго заданный топливный факел, в результате чего топливо и воздух смешиваются эффективнее, а смесь сгорает лучше.

Основное отличие форсунок для бензиновых и дизельных систем заключается в рабочем давлении топливной магистрали. Так, если бензонасос создает давление в 1-2 атмосферы в бензиновых двигателях, то топливный насос высокого давления (ТНВД) нагнетает дизтопливо до отметки в несколько сотен атмосфер.

Выделяют несколько типов дизельных форсунок, в зависимости от принципа их работы и особенностей конструкции:

  • механические
  • электромагнитные
  • пьезоэлектрические
  • насос-форсунки

Механические форсунки

Имеют самую простую и надежную конструкцию и длительный стаж применения в автомобилестроении (несколько десятилетий). Принцип работы механической форсунки: клапан ее открывается, как только достигнуто необходимое давление.

Корпус форсунки оканчивается соплом и подпружинной иглой. В опущенном состоянии игла закрывает доступ топлива к соплу. Как только давление поднимается благодаря работе ТНВД, игла приподнимается, топливо поступает на распылитель для последующего впрыска. С падением давления, игла снова опускается, перекрывая доступ топлива к распылителю форсунки.

Такое простое конструктивное решение: корпус, распылитель, игла плюс пружина —  позволяет применять механические форсунки на самых простых моделях дизельных ДВС.

Но вследствие ужесточающихся с каждым годом требований к экономичности и экологичности дизелей, производители были вынуждены искать новые решения, ведь механические форсунки не обеспечивают достаточно контроля над смешиванием топливной смеси.

Электромагнитные форсунки

Речь идет о форсунке, в которой солярка подается в цилиндры посредством опускания и поднимания иглы, но управляется она не пружиной, а с помощью специального элекромагнитного клапана, который регулируется электронным блоком управления двигателя. Следовательно, без соответствующего сигнала топливо не попадет в распылитель.

То есть дозирование топлива, начало его впрыска и длительность подачи определяется ЭБУ двигателя. Необходимые параметры определяются частотой вращения коленвала, режимом работы мотора, температурой ДВС и другими важными параметрами.

При этом в системе Common Rail за один цикл электромеханическая форсунка способна подавать топливо посредством нескольких впрысков (до 7 раз). Такая дозированная и точная подача горючего в цилиндр способствует его лучшему распределению по стенкам камеры сгорания и более полноценной переработке.

Таким образом, за счет управления процессом впрыска под контролем ЭБУ, конструкторам удалось существенно увеличить мощность дизельного двигателя, сделать его более экономичным и экологичным. С появлением электромагнитных форсунок связана и более культурная (не такая шумная, как раньше) работа дизеля, и даже повышение его общего ресурса. 

Пьезоэлектрические форсунки

Самое современное изобретение в категории современных дизельных моторов с системой прямого впрыска топлива в цилиндры. Принцип работы пьезоэлектрических форсунок фактически дублирует электромагнитные форсунки, но вместо электрического магнита клапан, регулирующий впрыск горючего, приводит пьезоэлектрический кристалл.

Дело в том, что отдельные кристаллы способны менять свою форму под действием электрического заряда. При конструировании пьезоэлектрических форсунок был учтен этот принцип. В результате появилось устройство, где кристалл удлинялся под действием электричества, что и приводит в действие запорные механизмы форсунки.

Основное преимущества пьезоэлектрических форсунок — скорость срабатывания клапана. Это позволило совершать многократный впрыск за один цикл подачи горючего в цилиндр (до девяти раз!). В результате качество смеси дизтоплива и воздуха улучшается, мощность и эффективность работы дизельного ДВС увеличиваются.

К основному недостатку относят высокую стоимость пьезоэлектрических форсунок. Они крайне чувствительны к качеству топлива, не поддаются ремонту и восстановлению, а их замена обходится владельцу в круглую сумму.

Насос — форсунки

Насос-форсунка это не отдельный вид форсунки, а целая отдельная система подачи топлива в дизельном ДВС. Особенность такой системы — отсутствие ТНВД. Высокое давление впрыска обеспечивают сами дизельные насос-форсунки.

Принцип их работы заключается в следующем: насос низкого давления подает горючее на форсунку, а затем собственная плунжерная пара форсунки от прямого воздействия кулачков распредвала нагнетает необходимое для впрыска давление. В итоге качество распыления топлива в камере улучшается.

Электрический клапан в устройстве насос-форсунки обеспечивает возможность дозированного впрыска, топливо можно подавать в цилиндр за два впрыска.

К другим преимуществам насос-форсунок можно отнести исключение из системы питания дизеля такого узла, как ТНВД, что облегчает конструкцию и уменьшает габариты самого двигателя. Мотор с насос-форсунками работает мягче и экономичнее, а содержание выхлопа максимально экологично.

Главным недостаткам системы насос-форсунок считается прямая зависимость давления впрыска от частоты вращения коленвала. Кроме того, насос-форсунки очень требовательны к качеству топлива и моторного масла. Ремонтировать и заменять их обходится очень дорого, поэтому на сегодняшний день многие автопроизводители отказываются от насос-форсунок в пользу классической схемы «ТНВД + форсунки».

  • Особенности и виды форсунок Bosch, Delphie, Denso мы рассматривали здесь.

Если вы в поиске качественных запчастей для своего дизельного двигателя, проверьте наш каталог

ПЕРЕЙТИ В КАТАЛОГ

 

Давление начала впрыска форсунки — Энциклопедия по машиностроению XXL

Первая группа факторов целиком относится к системе питания и характеризует влияние угла опережения впрыска, давления начала впрыска форсункой и величины цикловой подачи на характер дымления.  [c.158]

Давление начала впрыска форсункой снижается вследствие приработки запорного конуса иглы и седла распылителя, а также накапливания остаточной деформации пружины форсунки.  [c.170]

Давление начала впрыска форсунки регулируют путем изменения затяжки ее пружины с помощью регулировочной гайки.  [c.154]


Проверку давления впрыска топлива форсунками можно осуществить несколькими способами. К тройнику присоединяют с одной стороны испытываемую форсунку, а с другой — эталонную, заранее точно отрегулированную. У форсунки ЯМЗ-236 давление начала впрыска должно составлять 150 5 кг/сл . Третий штуцер тройника присоединяют к секции насоса высокого давления. Регулировочным винтом добиваются того, чтобы впрыск обеими форсунками происходил в одно время.  [c.415]

Подготовка форсунки для проверки на герметичность состоит в том, что снимают защитный колпачок и затягивают пружину настолько, что давление впрыска становится на 30—50 кг/см» больше, чем давление начала проверки форсунки на герметичность (табл. 12, графа 10).  [c.98]

Рис. 43. Изменение производительности форсунки в зависимости от давления начала впрыска
Через одно ТО-2 дополнительно разобрать форсунки, промыть их распылители и отрегулировать давление начала впрыска топлива. Снять насос высокого давления, проверить и отрегулировать его на стенде.  [c.80]

Форсунки отрегулированы на давление начала впрыска в 150+ кгс-см . При необходимости это давление проверяется на специальном стенде и регулируется изменением силы затяжки пружины регулировочным винтом.  [c.88]

Контрольно-диагностические и регулировочные операции. Проверяют и регулируют через одно ТО-2 форсунки на давление начала впрыска и качество распыливания топлива, зазоры между клапанами и коромыслами и в декомпрессионном механизме, а также проверяют пропускную способность фильтров грубой очистки масла, коллектор и щетки генератора, при необходимости зачищают их.  [c.265]

Через одно ТО дополнительно разбирают форсунки, промывают их распылители и регулируют давление начала впрыска топлива. Снимают насос высокого давления, проверяют и регулируют его на стенде.  [c.100]

Если форсунку с нарушенным давлением начала впрыска и плохим качеством распыла топлива, удается отрегулировать и привести эти параметры в соответствие с техническими требованиями без разборки, то ее не ремонтируют. Форсунка, у которой нельзя отрегулировать давление начала впрыска и качественный распыл топлива, подлежит разборке и ремонту.  [c.202]


Вместо эталонной форсунки к тройнику можно присоединить прибор максиметр, имеющий микрометрическую головку и про-тарированную затяжную пружину. Такое устройство позволяет отрегулировать усилие пружины на нужное давление. При помощи максиметра можно проверить как давление начала впрыска топлива форсункой, так и давление, развиваемое секцией насоса непосредственно на двигателе.  [c.352]

Какими способами проверяется давление начала впрыска топлива форсункой  [c.354]

Начало впрыска форсункой, определяемое степенью затяжки ее пружины, влияет на распыливание топлива и на момент воспламенения. С уменьшением затяжки пружины форсунки, а следовательно, и изменением давления начала впрыска (кривая 2 на рис. 78) ухудшается качество распыливания и возрастает дымление двигателя примерно на 20%.  [c.148]

Износ и приработка деталей двигателя происходят особенно интенсивно в первые часы работы нового дизельного двигателя, при этом уменьшается давление начала впрыска топлива форсункой в пределах 0,2—0,4 кгс/см на каждый час работы двигателя изменяется в сторону запаздывания угол опережения впрыска топлива снижается давление конца сжатия и уменьшается коэффициент избытка воздуха по мере износа цилиндро-поршневой группы изменяется величина цикловой подачи топлива.  [c.170]

Давление начала впрыска топлива форсункой проверяют с использованием максиметра. Подсоединив максиметр, вращают его регулировочную головку до появления впрыска одновременно через распылитель форсунки и распылитель максиметра. В этом положении головки определяют давление впрыска топлива форсункой.  [c.271]

Проверка давления начала впрыска топлива форсункой  [c.275]

Максиметр для проверки и регулировки давления начала впрыска топлива форсункой на двигателе  [c.143]

Количество форсунок Давление начала впрыска топлива в цилиндр, кгс/см  [c.88]

Неисправности форсунок. Основные неисправности форсунки заключаются в нарушении регулировки давления начала впрыска топлива, негерметичности закрытия или заедании иглы, засорении отверстий распылителя.  [c.75]

После проверки давления открытия контрольного клапана, не меняя положения насос-форсунки, давление топлива в ней поднимают и проверяют давление начала впрыска. Максимальное давление по манометру, при котором топливо будет выходить из сопловых отверстий в распыленном состоянии, и будет давлением начала впрыска. Это давление для отремонтированных насос-форсунок не должно быть больше 120 ат.  [c.347]

Если при сборке форсунки используют несколько новых деталей (пружину, шток, корпус), то осуществляют приработку форсунки на стенде СДТА-1, который оборудован насосом высокого давления и отрегулирован на подачу топлива 120 мм /цикл при 1050 10 об/мин кулачкового вала. Перед началом приработки с помощью прибора КП-1609А устанавливают регулировочным винтом давление начала впрыска форсунки 170 5 кгс/см и ведут приработку в течение 20 мин.  [c.230]

Давление начала впрыска равно 30—38 кгс/см . Эта система (рис. 47) напоминает систему впрыска дизелей. У дизелей давление газа в цилиндре в конце такта сжатия 30—55 кгс/см , давление начала впрыска форсунок 150—1000 кгс/см . В электронный блок управления поступает информация о следующих параметрах частота вращения коленчатого вала двигателя, температура охлаждающей жидкости, положение дроссельной заслонки (педали газа ), температура и давление всасываемого воздуха, температура топлива, скорость движения автомобиля, режим работы и нагрузка двигателя. После обработки поступивщей информации электронный блок управления вырабатывает команды для регулирования подачи топлива.  [c.93]

Для проверки форсунок двигателей ЯМЗ-236 и др. применяют прибор КП-1609А (рис. 42, г), позволяющий проверят > герметичность сопряжений, давление начала впрыска, качество распыливания.  [c.101]

Проверка и регулиро вка форсунок. В форсунке проверяют герметичность, давление начала впрыска и качество распыливания топлива. Проверку выполняют на приборе — КП-1609А (рис. 148).  [c.201]

При этом обычно задается среднее давление распыли-зания за рабочий цикл впрыска или максимальное авление для закрытых форсунок обязательно огова-)ивается давление начала впрыска (начала подъема 1ГЛЫ форсунки).  [c.317]


Учитывая физико-химические свойства сжиженного газа (повышенная испаряемость и др.) при испытании указанных двигателей приходилось относительно увеличивать опережение впрыска по углу поворота коленчатого вала двигателя иа 4—6° (вихревые камеры) и 10—12° (камера в поршне), а давление затяга пружины иглы форсунки для вихрекамерных двигателей для загрублепия распыла регулировать иа давление начала впрыска, на 40—50 кГ/см меньше установленного для дизельного топлива.  [c.341]

Камера сгорания (фиг. 181) состоит из двух частей собственно вихревой камеры 2 с установленной в ней форсункой 1 и камеры 4, расположенной непосредственно над поршнем. Вихревая камера выполняется чаще всего шарообразной или цилиндрической формы и соединяется с надпоршневым пространством каналом 3, расположенным по отношению к вихревой камере тангенциально. Объем вихревой камеры составляет 60—80% объема всей камеры сгорания. При движении поршня к ВМТ сжимаемый в цилиндре воздух поступает по соединительному каналу в вихревую камеру, где получает вращательное движение в направ лении, показанном на рисунке стрелками. Впрыскиваемое форсункой топливо равномерно перемешивается с воздухом и воспламеняется. При сгорании давление в вихревой камере повышается и газы совместно с несгоревшей частью топлива устремляются в надпоршневое пространство, где также создается вихревое движение, способствующее использованию находящегося в этом пространстве воздуха. Интенсивное вихревое движение, являющееся основным фактором, обеспечивающим смесеобразование, уменьшает требования, предъявляемые к качеству распыливания, и позволяет применять однодырчатые форсунки с относительно невысоким давлением начала впрыска (100—150 кг/см ).  [c.229]

Таким образом, в форсунках закрытого типа давление начала впрыска определяется усилием затяжки пружины. Величина этого давления постоянна и не зависит от числа оборотов двигателя. Давление топлива в форсунке в момент посадки иглы несколько меньще, чем в момент отрыва иглы. Объясняется это изменением площади иглы, на которую передается давление топлива. При подъеме иглы с седла топливо оказывает давление только на  [c.254]

Для проверки форсунки / приспособление соединяют с топливопроводом высокого давления 2 и, делая рычагом 35… 40 подкачиваний в минуту, создают необходимое давление в топливопроводе. По максимальному отклонению стрелки манометра определяют давление начала впрыска. Для двигателей с раздельными камерами сгорания давление начала впрыска должно составлять 12,5…  [c.34]

Гидравлическую плотность распылителей проверяют на приборах КИ-562, КИ-15706, КИ-15703 или КИ-ЗЗЗЗА по запорному конусу и зазору между корпусом и цилиндрической частью иглы распылителя. Для этого собирают форсунку и закрепляют ее на приборе. Регулируют форсунку на повышенное давление начала впрыска (для штифтовых форсунок не менее 25 МПа), рычагом прибора создают давление в форсунке, несколько превышающее нормальное давление впрыска, и, не производя впрыска, осматривают форсунку. Подтекание топлива или потение сопла указывает на плохую герметичность запорного конуса. Одновременно по продолжительности падения давления в форсунке проверяют зазор между корпусом и цилиндрической частью иглы распылителя. Рычагом прибора создают в форсунке давление, соответствующее техническим требованиям (для форсунок автотракторых двигателей 20 МПа), включают секундомер и отмечают время снижения давления на 2 МПа (до 18 МПа). Для большинства форсунок оно должно быть не менее 5 с.  [c.205]

МПа с большой скоростью и далее со скоростью до 0,5 МПа в секунду. Величина давления фиксируется в момент начала впрыска топлива. В случае несоответствия давления начала впрыска техническим условиям регулируют степень затяжки пружины форсунки. При этом регулировочный винт 9 (см. рис. 67) завертывают, если давление меньше нормы, и отвертывают при большем значенип.  [c.175]

После приработки форсунки частично разбирают и осматривают, не образовались ли наклеп на запорном конусе иглы распылителя, местные засветления и натиры на прецизионных поверхностях. Если приработка прошла нормально и отклонений в состоянии контролируемых поверхностей не обнаружено, форсунки вновь собирают и испытывают на герметичность сопряжений, давление начала впрыска, качество распыливания топлива способами, изложенными в 47.  [c.246]

Давление начала подъема иглы распылителя определяют при повышении давления топлива в приборе до 125 кгс/см с большой скоростью и далее со скоростью 5 кгс/см в секунду. Величина давления фиксируется в момент начала впрыска топлива. В случае несоответствия давления начала впрыска техническим условиям регулируют степень затяжки пружины форсунки. При этом регулировочный винт 9 (см. рис. 65) завертываюг, если давление меньше нормы, и отвертывают при большем значении.  [c.165]


Регулировка форсунок дизельного двигателя


Как очистить и отрегулировать дизельные форсунки

Качественный распыл топлива напрямую влияет на эффективность сгорания топливно-воздушной смеси в цилиндре бензинового или дизельного двигателя. Если горючее подается неравномерно или не в заданный момент времени, тогда дизель теряет мощность на разных режимах работы, выхлоп дизеля становится черным, мотор начинает троить и т.д. Дизельный двигатель плохо заводится «на холодную», неустойчиво работает «на горячую».

Такие неисправности в системе питания дизельного двигателя могут привести к дорогостоящему ремонту. Несвоевременная подача топлива в цилиндры приводит к повышенному расходу горючего, перегреву и разрушению поршня, прогару клапанов, выходу из строя сажевого фильтра. Одной из частых причин неисправной работы ДВС является нарушение впрыска по вине топливных инжекторов. Чтобы избежать подобных неприятностей может потребоваться диагностика, промывка и/или ремонт дизельных форсунок.

Проверка форсунок дизельного двигателя своими руками

Для определения неисправной необходимо на заведенном двигателе довести обороты коленвала до такой частоты, когда сбои в работе дизеля заметны наиболее отчетливо. Далее каждую из форсунок последовательно отключают путем ослабления накидной гайки в месте крепления магистралей высокого давления к соответствующим штуцерам насоса. Если отключается «рабочая» деталь, тогда работа двигателя меняется. В момент отключения топливной форсунки, которая заведомо неисправна, никаких явных изменений в работе двигателя не произойдет.

Забитый инжектор можно выявить путем прощупывания топливопровода на предмет толчков, которые возникают в результате пульсации нагнетаемого ТНВД горючего при полной невозможности или только частичной его прокачке через сопло. Следует обратить внимание на штуцер вызывающей подозрение секции. Температура элемента будет выше сравнительно с остальными.

Помните, в процессе проверки  и регулировки дизельных форсунок необходимо соблюдать  повышенную осторожность! Струя топлива подается под большим давлением. При попадании такой струи на открытые участки кожи возможны глубокие и серьезные раны. Одежда также не является эффективной защитой от струи топлива под высоким давлением!

Экономичность дизеля и эффективность его работы сильно зависит от типа установленных распылителей, которые периодически меняют в процессе чистки, регулировки или ремонта топливной системы дизельного двигателя. Перед монтажом дизельной форсунки на мотор нужно убедиться в подходящей маркировке распылителя. Распылители на всех инжекторах должны быть одинаковыми, пропускная способность не должна отличаться.

Проверка форсунок на давление в момент впрыска, а также анализ эффективности распыла осуществляется при помощи специального прибора под названием максиметр. Максиметр является контрольным образцом в виде специальной форсунки. Такой  элемент имеет тарировочную пружину и шкалу, которая нанесена на корпус и колпак. При помощи указанной шкалы становится возможным установить давление начала впрыска солярки.

Вторым способом является наличие контрольной образцовой рабочей форсунки, с которой сравниваются остальные. Данные проверки производят на заведенном дизельном двигателе. Чтобы проверить качество распыла и давление впрыска потребуется демонтаж форсунки и топливопровода с дизельного ДВС. Далее на свободный штуцер топливного насоса высокого давления монтируется специальный тройник, к которому подключают тестируемую деталь параллельно с заведомо исправной контрольной.

Контрольный инжектор предварительно регулируют на оптимальный показатель давления начала топливного впрыска, проверяют на качество распыла. Также необходимо осуществить ослабление затяжки накидных гаек на оставшихся штуцерах ТНВД. Это позволит прервать топливоподачу к другим дизельным форсункам. Последним шагом становится активация декомпрессионного механизма, выставляется максимальная подача горючего. После этого можно начинать  вращение коленвала двигателя. 

Обе форсунки (контрольная и тестируемая) должны демонстрировать одновременное начало впрыска топлива. Если тестируемый инжектор отклоняется от нормы сравнительно с контрольным образцом, тогда потребуется регулировка дизельной форсунки.  Необходимо отрегулировать давление пружины тестируемой детали.

Для регулировки потребуется отвинтить колпак форсунки и ослабить контргайку. Далее при помощи регулировочного винта нужно установить такую степень затяжки пружины,  чтобы оба инжектора в итоге осуществляли впрыск одновременно. Для определения эффективности и качества распыла тестируемой детали необходимо сравнить результат с показателями контрольного образца.

Проверка дизельных форсунок на давление впрыска и качество распыла при помощи контрольного образца займет больше времени по сравнению с использованием заранее подготовленного максиметра. Кроме проверки на двигателе с использованием ТНВД эффективность работы инжектора можно протестировать при помощи специального проверочного (регулировочного) стенда.

Очистка форсунок дизельного ДВС

В том случае, если потребовалась промывка дизельных форсунок своими руками, неисправную деталь снимают для осмотра и регулировки. Прежде чем ответить на вопрос, как очистить форсунки дизельного двигателя, следует отметить, что разбор инжектора необходимо осуществлять в условиях максимальной чистоты и освещенности.

Самостоятельно промыть дизельную форсунку можно керосином или качественным дизтопливом без примесей. Далее элементы детали аккуратно обдувают сжатым воздухом, после чего можно осуществить сборку в обратном порядке.

Для того чтобы избежать возможного смешивания составных элементов от разных форсунок, разборку и сборку каждого инжектора лучше производить отдельно или разбирать и собирать детали в порядке очереди. Составные элементы обтираются исключительно чистыми батистовыми салфетками, а также салфетками из бязи.

Если конструктивно предусматривается возможность регулировки подъема иглы, тогда регулировочный винт затягивают до упора. Далее указанный винт немного отпускают, тем самым обеспечивая нужный подъем иглы. Параметры касательно высоты подъема обычно указываются в руководстве по эксплуатации конкретного двигателя.

Качество распыла дизтоплива

Нормально работающая форсунка в момент подачи топлива производит одиночный, короткий и «кучный» впрыск, который сопровождается резким звуком. Распространенной ситуацией является то, что отверстия сопла форсунок (распылителя) могут быть частично забиты или изношены. Тогда сопло требует чистки или замены.

В этом случае деталь необходимо закрепить на проверочном стенде и направить соплом в специально подготовленное место. В это место нужно положить чистую бумагу для того, чтобы упростить процесс диагностики. Далее осуществляется резкий впрыск топлива. После этого на бумаге можно увидеть следы или прорывы листа от струй солярки. Общее количество таких следов после впрыска должно быть идентичным сравнительно с общим количеством отверстий  в конструкции распылителя. Если следов на бумаге меньше, тогда некоторые отверстия забиты и требуется очистка сопла (распылителя) дизельной форсунки.

Следы солярки на бумаге должны иметь одинаковую сгущенность, а также располагаться на равном удалении от центра. Важной функцией инжектора является не только подача, но и обеспечение максимально равномерного распыла дизтоплива по окружности.

Отверстия прочищают после разбора инжектора. Осуществлять чистку без разбора элемента не рекомендуется по причине того, что грязь и отложения останутся внутри. Распылитель и остальные детали необходимо тщательно промывать в керосине. Образовавшийся нагар, который находится снаружи составных элементов, аккуратно удаляется деревянным скребком. Сами отверстия прочищаются небольшим куском тонкой и мягкой стальной проволоки.

Обратите внимание, что диаметр проволоки обязательно должен быть меньше диаметра отверстий сопла минимум на 0,1 мм. Если сопловые отверстия получат увеличение их суммарного сечения или будет нарушена правильная форма отверстий, это приведет к снижению скорости выхода топлива из форсунки. Качество распыла автоматически ухудшится.

Распылитель подлежит замене, если диаметр отверстий сопла увеличен всего на 10% от максимально допустимого. Также поводом для замены сопла выступает и разница в диаметрах отверстий на 5%. После чистки или замены распылителя осуществляется обратная сборка форсунки.

Диагностика и регулировка дизельных форсунок

Частой проблемой является нарушение плотности посадки иглы форсунки в направляющей втулке. Если плотность уменьшена, тогда существенно больше топлива протекает через образовавшийся зазор между иглой и втулкой. Для исправного инжектора допускается протечка горючего не более 4% от общего количества топлива, которое подается в цилиндр двигателя. Общее количество топлива, которое сливается из разных форсунок за каждый отдельный промежуток времени, не должно существенно отличаться. Выявить отклонения от нормы можно при помощи следующих действий:

  • необходимо затянуть пружину форсунки так, чтобы параметр давления открытия иглы совпадал с тем, который указан в технической литературе по эксплуатации конкретного дизельного двигателя;
  • следующим шагом становится создание заведомо большего давления топлива, чем указанное в документации по эксплуатации ДВС. Затем нужно замерить при помощи секундомера время, за которое давление упадет на 50 кгс/см2 от рекомендуемого;

Оптимальное время падения давления указано в технической документации по эксплуатации мотора. Зачастую требуется не менее 15 секунд для полностью новых форсунок. Для детали с пробегом данный показатель находится в рамках 5 секунд.

Если наклонить направляющую иглы на угол около 45 градусов, тогда игла должна выйти из нее не более чем на треть от длины направляющей. Игла должна выходить свободно, под  собственным весом и при учете любого поворота вокруг оси. Указанную  пару втулка-игла меняют в случае существенных отклонений в работе. Отдельная замена иглы без замены направляющей втулки не рекомендуется, так как данные элементы подгоняются друг к другу с высокой точностью.

Регулировка давления подъема иглы форсунки достигается путем изменения силы натяжения пружины. Максимально допустимое отклонение находится в рамках до 10 кгс/см2. Показатель величины такого давления указан в инструкции по эксплуатации ДВС.

Течи горючего из топливной форсунки

Также дизельные инжекторы могут давать как незначительную, так и обильную течь. В первом случае потребуется ремонт, во втором можно обойтись способом притирки иглы к седлу. Форсунки текут по причине нарушения уплотнения в области торца иглы, который еще называется уплотняющим конусом.

Проверку плотности притирки торца можно проверить путем плавного и поэтапного наращивания давления горючего. Конец распылителя  должен оставаться полностью сухим при достижении такого показателя, который составляет до 10 кгс/см2 меньше, чем необходимое давление впрыска.

В том случае, если замечено подтекание дизельной форсунки, тогда осуществляется аккуратная притирка иглы к седлу. Для этого используется тонкая шлифовальная паста ГОИ, которую дополнительно разводят с керосином. В процессе притирки необходимо избегать попадания пасты в зазор, который присутствует между иглой и направляющей втулкой. По окончании все элементы промываются в керосине или чистой солярке, затем их обтирают соответствующими салфетками. Далее необходимо обдуть все части сжатым воздухом и произвести повторную проверку на наличие течи.

Регулировка форсунок дизельного двигателя

Функции форсунок заключаются в подаче порций горючего в цилиндр под высоким давлением, обеспечивая при этом его максимальное распыление, необходимое для эффективного сгорания смеси. Эксплуатация данных деталей производится в высоконагруженных условиях, способствующих сбою настроек и возникновению различных неисправностей. Помимо этого, качество работы постепенно ухудшается вследствие естественного износа движущихся деталей, ослабления пружин, заедания игл, засорения или закоксовывания отверстий распылителя и т.д. В силу этого форсунки современных дизельных двигателей периодически нуждаются в диагностике и перенастройке на стенде для регулировки.

Предварительная проверка

Для первичной диагностики работы форсунок без снятия их с силового агрегата, используется специализированный прибор – максиметр. Конструкция данного вида оборудования повторяет устройство самой форсунки. Прибор снабжен микрометрическим регулятором со шкалой, цена деления которой составляет 5 Мпа, что позволяет настроить момент начала подъема иглы распылителя на показателях до 50 Мпа. Для проведения проверки форсунка подключается через максиметр к штуцеру нагнетательной секции насоса. При помощи микрометрической головки производится регулировка требуемого давления момента подъема иглы форсунки. После этого ослабляется затяжка всех других гаек топливопроводов и при помощи стартера проворачивается коленвал. В том случае, если впрыск топлива через диагностируемую форсунку и максиметр производится одновременно, то ее настройка признается соответствующей техническим требованиям. Если топливо поступает через распылитель, но не попадает в максиметр, или наоборот, это означает, что давление момента подъема ниже или выше требуемого показателя. Для регулировки необходимого давления в форсунках двигателя производится изменение степени затяжки пружины при помощи винта настроек.

Альтернативный метод

В этом случае в качестве эталона применяется предварительно отрегулированная форсунка, использующаяся по принципу максиметра. Требующий настройки распылитель присоединяется к топливной магистрали через промежуточный тройник, к свободному отводу которого подключают эталонный образец параллельно с диагностируемым элементом. После этого производится ослабление затяжек гаек на оставшихся штуцерах, что дает возможность прервать подачу горючего к остальным форсункам, а также активируется декомпрессионный механизм и открывается «полный газ». После подачи топлива оба распылителя должны производить синхронный впрыск смеси. При выявлении расхождений в их работе производится регулировка давления пружины на настраиваемой форсунке, для чего с нее снимается колпак и ослабляется контргайка. После этого обороты тарировочного винта могут быть изменены. По завершению настройки производится очередное сравнение с работой эталонного образца.

Данный метод характеризуется большей трудоемкостью в сравнении с использованием максиметра.

Комплексная проверка форсунок на стенде

Диагностика и регулировка топливного оборудования дизельных двигателей (форсунок, ТНВД и др.) на специализированных стендах позволяет выявить малозаметные неполадки и добиться оптимального режима работы всех узлов и агрегатов. При помощи специализированной аппаратуры проверяется герметичность распылителей, уровень давления момента подъема игл, качество образования факела и угол конуса подаваемой струи горючего. Основными испытательными устройствами для регулировки дизельных форсунок являются приборы, тестирующие их техническое состояние и проверку гидравлической плотности плунжерной пары насоса.

Конструкция диагностического блока представляет собой плунжерный насос с ручным приводом, предназначенный для подачи горючего под контролируемым давлением, отслеживание которого производится при помощи встроенного манометра. Это позволяет фиксировать момент и степень падения давления.

Качество образующегося факела при подаче смеси отслеживается визуально по четкости начала и завершения фазы впрыска, а также – по характеру выхода струй топлива из отверстий распылителя. Корректно работающая форсунка подает порцию смеси кучно и резко, с характерным сопутствующим звуком. Для наглядности проверки перед соплом размещается лист бумаги, на котором после впрыска остаются следы или прорывы от струй смеси, количество которых должно соответствовать числу отверстий в распылителе.

Устройство для контроля гидравлической плотности функционирует по принципу передачи дозированной нагрузки на плунжер нагнетательной секции, под действием которой тот входит в гильзу. Скорость движения плунжера фиксируется при помощи секундомера и позволяет оценить степень изношенности всей плунжерной пары, а соответственно – и ее гидравлическую плотность.

Перед началом испытаний проверяется собственная герметичность прибора. Для этого на штуцер для подключения форсунки надевается заглушка, после чего открывается запорный кран и при помощи насоса создается давление порядка 30 Мпа. При помощи секундомера отслеживается скорость падения давления, которая должна находиться в пределах 0,5 Мпа/мин.

Герметичность

Для стендовой диагностики герметичности в форсунке с помощью насоса медленно поднимается давление до 30 Мпа при завернутом винте регулировок. После достижения данного показателя производится проверка непроницаемости по запорному конусу и направляющей игле. Помимо этого отслеживаются возможные подтекания из отверстий сопла, а также в зоне стыка распылителя и корпуса форсунки. Внезапное быстрое падения давления до 23 Мпа и ниже указывает на нарушения герметичности контура. Допустимый временной показатель снижения составляет 17 сек — 45 сек при температуре 20 °С и кинематической вязкости горючего от 3,5 сСт до 6 сСт.

Еще одним вариантом является поднятие давления до порогового уровня с моментом начала впрыска (на 0, 5 Мпа-1,5 Мпа меньше точки начала) и удержание его в течение 5 – 10 сек на заданном уровне. При этом на конце иглы не должно образовываться капель просочившегося топлива. В определенных ситуациях допускается незначительное увлажнение кончика распылителя.

Давление момента впрыска

Для определения давления начала подъема производится несколько первичных впрысков для удаления возможного воздуха из системы, после чего медленными нажатиями на рычаг насоса в форсунку нагнетается горючее. Фактический порог давления определяется по максимальному отклонению стрелки манометра в момент начала подачи порции топлива.

При несовпадении действительного давления в дизеле техническим нормам более чем на 0,5 Мпа производится регулировка степени затяжки пружин форсунки. В том случае, если текущий показатель превышает эталонное значение, винт откручивается, а в обратной ситуации – затягивается. Еще одним вариантом настройки является изменение толщины прокладки в соответствии с конструкцией распылителя. После окончания регулировок рекомендуется сделать несколько контрольных впрысков для проверки стабильности работы оборудования. Разность значений моментов начала подъема иглы при этом также не должна превышать 0,5 Мпа.

Качество распыления топлива

Проверка качества образования факела выполняется на отрегулированной форсунке, для чего перекрывается кран, и порция топлива подкачивается при помощи рычага. После заполнения производятся контрольные впрыски. Удовлетворительным результатом является образование факелов смеси туманообразной консистенции, которые равномерно распределяются по поперечному сечению конуса сопла без явных сгущений, капель или струй. При этом начало и конец фазы впрыска должны иметь четкие рамки без последующих подтеканий горючего из распылителя и сопровождаться характерным звенящим звуком отсечки. В качестве варианта дополнительной проверки используется медленное нагнетание горючего насосом стенда. При этом оно должно впрыскиваться малыми порциями при ясно слышимом дробном постукивании.

Для определения угла конуса перед соплом устанавливается фильтровальная бумага, по отпечаткам струй на которой производится расчет.

В том случае, если регулировка форсунки на стенде не позволила обеспечить заданные показатели качества распыления смеси, давления момента подачи, герметичности и т.д. данный узел оценивается как неисправный и поднимается вопрос о возможности его ремонта.

Износ топливного оборудования, или его частичный выход из строя является не критичной, но весьма серьезной проблемой, так как перебои в подаче смеси со временем становятся причиной поломок других узлов силового агрегата. Несмотря на то, что при засорившихся или неотрегулированных форсунках сохраняется возможность эксплуатации транспортного средства, все производители рекомендуют как можно быстрее произвести ремонт, что позволит сохранить работоспособность двигателя и избежать последующих финансовых расходов. Таким образом, при первых признаках нестабильной подачи топлива необходимо обратиться в сервисный центр.

Компания «Росс-Дизель» располагает диагностическими стендами и специализированным оборудованием для проверки и настройки топливной аппаратуры дизельных двигателей различных типов.

Проверка и регулировка форсунок

Категория:

   Ремонт топливной аппаратуры автомобилей

Проверка и регулировка форсунок

В процессе эксплуатации дизельного двигателя качество работы форсунок постепенно ухудшается вследствие снижения давления начала подъема иглы распылителя из-за ослабления рабочей пружины, закоксования или засорения отверстий распылителя, а также заедания его иглы.

Проверку и регулировку форсунок проводят непосредственно на двигателе автомобиля или на специальном оборудовании в цехе.

Предварительную проверку форсунок на двигателе проводят последовательным их отключением на работающем двигателе или по характерному звуку впрыска на неработающем двигателе. Качество работы форсунок без снятия их с двигателя проверяют также максиметром.

Максиметр (рис. 89) представляет собой прибор, аналогичный по устройству форсунке. Он имеет микрометрическую головку со шкалой, с помощью которой устанавливают давление начала подъема иглы распылителя прибора на заданное значение до 50 МПа. Поворот микрометрической головки на один оборот изменяет давление начала подъема на 5 МПа.

Для испытания форсунку снимают с двигателя и присоединяют к штуцеру нагнетательной секции насоса через максиметр. По микрометрической головке максиметра устанавливают требуемое давление начала подъема иглы распылителя (для форсунок двигателей ЯМЭ-236 и ЯМЭ-238 оно составляет 16,5 Па). Затем ослабляют затяжку гаек остальных топливопроводов к форсункам и стартером вращают коленчатый вал двигателя.

Если впрыск топлива через максиметр и испытуемую форсунку начинается одновременно, то можно считать, что регулировка форсунки соответствует техническим требованиям. Если через форсунку топливо впрыскивается, а через максиметр нет, то давление начала подъема иглы распылителя форсунки ниже, чем требуется, и наоборот.

Рис. 89. Максиметр: 1 — игла распылителя, 2— корпус макси-метра, 3 — штуцер для присоединения трубопровода к форсунке, 4 — микрометрическая головка, 5 — установочный винт, 6 — контргайка установочного винта, 7 — стопорный винт, 8, 10 — упоры пружины, 9 — пружина, 11 — гайка крепления к штуцеру нагнетательной секции, 12 — распылитель

Рис. 90. Стенд модели 625 для проверки форсунок и плунжерных пар: 1 — топливный бак, 2 — стол, 3 — игольчатый воздушный клапан, 4 — штуцер для подключения сжатого воздуха, 5 — воздушный манометр, 6 — ванна, 7 — стакан для установки проверяемой форсунки, 8 — прибор для проверки форсунок, 9 — рычаг насоса прибора, 10 — проверяемая форсунка, 11 — манометр давления топлива в форсунках, 12 — бачок с топливом, 13 — прибор для проверки плунжерных пар, 14 — нагрузочный рычаг прибора, 15 — кран подачи топлива к приборам, 16 — кран управления, 17 — предохранительный клапан

Чтобы отрегулировать форсунку на требуемое значение давления, изменяют степень затяжки пружины регулировочным винтом.

Проверку и регулировку давления начала подъема иглы распылителя форсунки выполняют также с помощью эталонной форсунки (предварительно отрегулированной на приборе) по принципу использования максиметра. Для этого на трубопровод, подходящий к испытуемой форсунке, крепят тройник. К одному отводу тройника присоединяют испытуемую форсунку, а к другому эталонную. Дальнейшие действия с испытуемой форсункой выполняют в той же последовательности, что и при использовании максиметра.

Проверка и регулировка форсунок на специальном оборудовании позволяет выявить, не нарушена ли герметичность форсунок, а также давление начала подъема иглы распылителя, качество распыливания топлива, угол конуса струи. Для этих целей применяют стенд модели 625 (рис. 90). Основными испытательными устройствами стенда являются два прибора, один из них предназначен для проверки технического состояния форсунок, другой— для проверки плунжерной пары насоса высокого давления на гидравлическую плотность.

Рис. 91. Прибор КП-1609А для проверки и регулировки форсунок: 1 — прозрачный сборник топлива, 2 — форсунка, 3 — маховичок крепления форсунки. 4 — бачок, 5 — манометр, 6 — корпус распределителя, 7 — запорный кран, 8 — плунжерный насос, 9 — рычаг привода насоса

Прибор для проверки форсунок представляет собой плунжерный насос с ручным приводом, который подает под большим давлением топливо к форсунке. Прибор снабжен манометром, регистрирующим давление топлива, подводимого к форсунке. При испытании форсунки на герметичность, а также при определении давления начала впрыска манометр позволяет фиксировать момент и величину падения давления.

Качество распыливания топлива форсункой оценивают визуально по характеру выхода струй топлива из отверстий распылителя форсунки, а также по четкости начала и окончания процесса впрыска.

Прибор для определения гидравлической плотности плунжерной пары работает на принципе передачи определенной механической нагрузки на плунжер нагнетательной секции. Под действием этой нагрузки плунжер опускается в гильзу. Скорость перемещения плунжера, регистрируемая секундомером, позволяет оценить степень изношенности плунжерной пары, а следовательно, и ее гидравлическую плотность.

При отсутствии стенда 625 техническое состояние форсунок можно проверить на приборе КП-1609А (рис. 91), который по конструкции аналогичен прибору для проверки форсунок, установленному на стенде 625.

Перед испытанием форсунок прибор проверяют на герметичность. Для этого вместо форсунки в устройство для ее крепления завертывают заглушку, открывают запорный кран и создают насосом давление около 30 МПа. Затем, включив секундомер, наблюдают за падением давления, которое не должно превышать 0,5 МПа в минуту.

При испытании форсунок на приборе КП-1609А проверяют те же параметры форсунок, что при испытании на стенде модели 625.

Герметичность форсунки проверяют на приборе, медленно завертывая регулировочный винт и поднимая давление рычагом (см. рис. 91) привода насоса до 30 МПа. После того как достигнуто указанное давление, проверяют герметичность по запорному конусу и направляющей игле в распылителе, подтекание топлива из сопловых отверстий, а также в сопряжении распылителя с корпусом форсунки.

Быстрое падение давления до 25—23 МПа укажет на нарушение герметичности форсунки. Допустимое время падения давления до 23 МПа должно быть 17—45 с при кинематической вязкости дизельного топлива 3,5—6 сСт и температуре 20 °С.

Давление начала подъема иглы распылителя определяют при повышении давления топлива в приборе до 12,5 МПа с большой скоростью и далее со скоростью до 0,5 МПа в секунду. Величина давления фиксируется в момент начала впрыска топлива. В случае несоответствия давления начала впрыска техническим условиям регулируют степень затяжки пружины форсунки. При этом регулировочный винт завертывают, если давление меньше нормы, и отвертывают при большем значении.

Качество распыливания топлива проверяют на отрегулированной форсунке. Для этого закрывают кран прибора и рычагом несколько раз подкачивают топливо. Когда оно поступит в форсунку, нажимают на рычаг с интенсивностью 50—60 ходов в минуту и наблюдают за характером впрысков.

Качество распиливания Топлива при впрысках будет удовлетворительным, если при этом образуются из каждого отверстия распылителя факелы туманообразного топлива и оно равномерно распределяется по поперечному сечению конуса распылителя. Начало и конец впрыска должны быть четкими с характерным звуком отсечки. Не допускается также подтеканий топлива из распылителя после окончания впрыска.

Угол конуса струи распыливаемого топлива определяют по диаметру отпечатка струи на фильтровальной бумаге и расстоянию от нее до сопл форсунки.

Если в результате проверки и регулировки форсунки с помощью прибора КП-1609А не удается получить требуемые показатели по герметичности, давлению начала подачи или качеству распыливаемого топлива, то форсунку ремонтируют.

Реклама:
Читать далее: Особенности технического обслуживания системы питания двигателей автомобилей КамАЗ

Категория: — Ремонт топливной аппаратуры автомобилей

Главная → Справочник → Статьи → Форум

Ремонт дизельных форсунок на 2,5tdi — Делаем сами . — DRIVE2

Отремонтировав уже около сотни дизельных форсунок только на 2,5tdi я решил поделится информацией о их восстановлении с уважаемыми читателями Драйва.

Снимок процесса сгорания в дизельном двигателе

И так начнём с небольшой теории:Что же изнашивается в форсунках до-Коммон Рейловского (КР) поколения, или почему нам так крупно ПОВЕЗЛО :))))

Как видим из рисунка ниже двухступенчатые форсунки 2,5tdi очень просты по конструкции : распылитель, шайбы, 2 пружины, и штифт.

Полный размер

Устройство форсунки от 2,5 tdi

В отличии от подобных форсунок на других двигателях форсунки на 2,5tdi регулируются только ЗАМЕНОЙ ШТИФТОВ, причём регулируются ТОЛЬКО первая ступень, регулировка второй ступени производителем не предусмотрена.

Регулировка дизельных форсунок 2,5 tdi — это САМЫЙ БОЛЬШОЙ РАЗВОД на бабло от ВСЕХ ДИЗЕЛЬНЫХ КОНТОР !— у вас плох тянет/ дымит / троит/ плохо заводится двигатель — виноваты форсунки их надо РЕГУЛИРОВАТЬ, и за это нужно ПЛАТИТЬ !

Теперь разбирёмся ЧТО же изнашивается в ЭТИХ форсунках и как их ПРАВИЛЬНО отремонтировать !

В форсунках 2,5tdi при износе ПАДАЕТ ДАВЛЕНИЕ открытия первой ступени, с 240 бар до предельного 210 бар форсунка начинает плохо распылять — писать и соответсвенно дыметь /больше потреблять и.т.д.

В форсунках изнашиваются ТОЛЬКО РАСПЫЛИТЕЛЬ, в нём изнашивается игла, появляется на ней канавка, изнашивается и сам распылитель изнутри — он чуть проседает — изнашиваются и выходные отверстия — увеличиватся в размерах или забиваются говнами при некоректной фильтрации.

носик распылителя с отверстиями

Теперь уважаемые НАВОСТРИТЕТЕ УШИ !

Для ПОЛНОГО ВОССТАНОВЛЕНИЯ ФОРСУНКИ ДОСТАТОЧНО В НЕЙ ПОМЕНЯТЬ РАСПЫЛИТЕЛЬ BOSCH !НИКАКОЙ РЕГУЛИРОВКИ ФОРСУНОК НЕ ТРЕБУЕТСЯ при соблюдении ТРЕХ УСЛОВИЙ !1. Распылитель должен быть марки BOSCH c ТЕМ-ЖЕ номером, никакого кидая, ни итальяшек только оригинальный BOSCH хоть и сделанный в Индии!..2. Необходимо очистить гайку форсунки от нагара снаружи и внутри

3. Затягиваем гайку форсунки с усилием в 4,5кг

Сами же пружины в этих форсунках НЕ ИЗНАШИВАТСЯ и НЕ ТЕРЯЮТ своих параметров даже при 500тыс пробега.Мне доводилось восстанавливать такие форсунки просто заменой распылителя БЕЗ РЕГУЛИРОВКИ, на стенде их параметры были в приделах допусков !

Сам процесс замены распылителей происъодит так :-заказываем ремкомплект BOSCH DSLA…, смотрим в таблицу ниже, разбираем форсунку, обычно я её зажимаю в тиски через алюминевые проставки распылителем вверх но не за дырку обратки.

Откручиваем гайку, чистим её изнутри, с форсунки снимаем старый распылитель и сразу же за ним 2 шайбы рогатую и в её ценре маленькую, ставим точно такой же комплект нового распылителя, ставим гайку, затягиваем сначала пальцами затем динамометрическим ключём 4,5кг.

Меняем только 3 внешние медные шайбы на распылителе одну под распылителем и две на обратке.

Комплект распылитель BOSCH

AFB — 059130201 — (059130202 — упр.) — распылитель — DSLA142P683 — BOSCH 2437010055AKN — 059130201А (059130202А — упр.) — распылитель -DSLA142P770 BOSCH 2437010092AKN — 059130201B (059130202В — упр.) — распылитель — DSLA142P843 BOSCH 2437010112AKN — 059130201С (059130202С — упр.) — распылитель — DSLA142P893AKE — 059130201Е (059130202D — упр.) — распылитель — DSLA142P925 BOSCH 2437010117AКЕ — 059130201F (059130202F — упр.) — распылитель — DSLA142P1025 BOSCH 2437010130AYM — 059130201F (059130202F — упр.) — распылитель — DSLA142P1025 BOSCH 2437010130BAU — 059130201F (059130202F — упр.) — распылитель — DSLA142P1025 BOSCH 2437010130BDH — 059130201G (059130202G — упр.) — распылитель — DSLA142P1191 BOSCH 2437010139BDG — 059130201G (059130202G — упр.) — распылитель — DSLA142P1191 BOSCH 2437010139BCZ — 059130201F — распылитель — DSLA142P1025 BOSCH 2437010130 нет управляющей !

BFC — 059130201F (059130202F — упр.) — распылитель — DSLA142P1025 BOSCH 2437010130

Взаимозаменяемость форсунок На все эти моторы после 2001 года (начиная с AKE, AKN) можно и нужно устанавливать распылители *130 (евро3) и *139 (евро4).

Для мотора АКЕ *130 — родные, они же DSLA142P1025.

*139 — они же DSLA142P1191, взаимозаменяемые с предыдущими, продвинутые распылители, с новой технологией завихрения, при использовании этих распылителей, уменьшается расход топлива, но чуток падает динамика (требуется чиповка), пропускная способность у них поменьше чем у предыдущих, что влечет за собой увеличение максимального давление впрыска с 1800 до 2000 бар, более качественный распыл. Это я так в двух словах…

Теперь о печальном.Оригинальная Конструкция дизельных форсунок на 2,5 tdi НЕ УДАЧНАЯ !Нами:

мне и Юре (www.tdi-garage.ru) была разработана и внедрена НОВАЯ т.н. ГИБРИДНАЯ конструкция форсунок для 2,5tdi главной особенностью которой является СНИЖЕНИЕ ПОТРЕБЛЕНИЯ ТОПЛИВА НА 25% за счёт повышенного до 500бар давления распыления 2го этажа форсунки, у родных 250-300бар…продолжение следует…

Page 2

Отремонтировав уже около сотни дизельных форсунок только на 2,5tdi я решил поделится информацией о их восстановлении с уважаемыми читателями Драйва.

Снимок процесса сгорания в дизельном двигателе

И так начнём с небольшой теории:Что же изнашивается в форсунках до-Коммон Рейловского (КР) поколения, или почему нам так крупно ПОВЕЗЛО :))))

Как видим из рисунка ниже двухступенчатые форсунки 2,5tdi очень просты по конструкции : распылитель, шайбы, 2 пружины, и штифт.

Полный размер

Устройство форсунки от 2,5 tdi

В отличии от подобных форсунок на других двигателях форсунки на 2,5tdi регулируются только ЗАМЕНОЙ ШТИФТОВ, причём регулируются ТОЛЬКО первая ступень, регулировка второй ступени производителем не предусмотрена.

Регулировка дизельных форсунок 2,5 tdi — это САМЫЙ БОЛЬШОЙ РАЗВОД на бабло от ВСЕХ ДИЗЕЛЬНЫХ КОНТОР !— у вас плох тянет/ дымит / троит/ плохо заводится двигатель — виноваты форсунки их надо РЕГУЛИРОВАТЬ, и за это нужно ПЛАТИТЬ !

Теперь разбирёмся ЧТО же изнашивается в ЭТИХ форсунках и как их ПРАВИЛЬНО отремонтировать !

В форсунках 2,5tdi при износе ПАДАЕТ ДАВЛЕНИЕ открытия первой ступени, с 240 бар до предельного 210 бар форсунка начинает плохо распылять — писать и соответсвенно дыметь /больше потреблять и.т.д.

В форсунках изнашиваются ТОЛЬКО РАСПЫЛИТЕЛЬ, в нём изнашивается игла, появляется на ней канавка, изнашивается и сам распылитель изнутри — он чуть проседает — изнашиваются и выходные отверстия — увеличиватся в размерах или забиваются говнами при некоректной фильтрации.

носик распылителя с отверстиями

Теперь уважаемые НАВОСТРИТЕТЕ УШИ !

Для ПОЛНОГО ВОССТАНОВЛЕНИЯ ФОРСУНКИ ДОСТАТОЧНО В НЕЙ ПОМЕНЯТЬ РАСПЫЛИТЕЛЬ BOSCH !НИКАКОЙ РЕГУЛИРОВКИ ФОРСУНОК НЕ ТРЕБУЕТСЯ при соблюдении ТРЕХ УСЛОВИЙ !1. Распылитель должен быть марки BOSCH c ТЕМ-ЖЕ номером, никакого кидая, ни итальяшек только оригинальный BOSCH хоть и сделанный в Индии!..2. Необходимо очистить гайку форсунки от нагара снаружи и внутри

3. Затягиваем гайку форсунки с усилием в 4,5кг

Сами же пружины в этих форсунках НЕ ИЗНАШИВАТСЯ и НЕ ТЕРЯЮТ своих параметров даже при 500тыс пробега.Мне доводилось восстанавливать такие форсунки просто заменой распылителя БЕЗ РЕГУЛИРОВКИ, на стенде их параметры были в приделах допусков !

Сам процесс замены распылителей происъодит так :-заказываем ремкомплект BOSCH DSLA…, смотрим в таблицу ниже, разбираем форсунку, обычно я её зажимаю в тиски через алюминевые проставки распылителем вверх но не за дырку обратки.

Откручиваем гайку, чистим её изнутри, с форсунки снимаем старый распылитель и сразу же за ним 2 шайбы рогатую и в её ценре маленькую, ставим точно такой же комплект нового распылителя, ставим гайку, затягиваем сначала пальцами затем динамометрическим ключём 4,5кг.

Меняем только 3 внешние медные шайбы на распылителе одну под распылителем и две на обратке.

Комплект распылитель BOSCH

AFB — 059130201 — (059130202 — упр.) — распылитель — DSLA142P683 — BOSCH 2437010055AKN — 059130201А (059130202А — упр.) — распылитель -DSLA142P770 BOSCH 2437010092AKN — 059130201B (059130202В — упр.) — распылитель — DSLA142P843 BOSCH 2437010112AKN — 059130201С (059130202С — упр.) — распылитель — DSLA142P893AKE — 059130201Е (059130202D — упр.) — распылитель — DSLA142P925 BOSCH 2437010117AКЕ — 059130201F (059130202F — упр.) — распылитель — DSLA142P1025 BOSCH 2437010130AYM — 059130201F (059130202F — упр.) — распылитель — DSLA142P1025 BOSCH 2437010130BAU — 059130201F (059130202F — упр.) — распылитель — DSLA142P1025 BOSCH 2437010130BDH — 059130201G (059130202G — упр.) — распылитель — DSLA142P1191 BOSCH 2437010139BDG — 059130201G (059130202G — упр.) — распылитель — DSLA142P1191 BOSCH 2437010139BCZ — 059130201F — распылитель — DSLA142P1025 BOSCH 2437010130 нет управляющей !

BFC — 059130201F (059130202F — упр.) — распылитель — DSLA142P1025 BOSCH 2437010130

Взаимозаменяемость форсунок На все эти моторы после 2001 года (начиная с AKE, AKN) можно и нужно устанавливать распылители *130 (евро3) и *139 (евро4).

Для мотора АКЕ *130 — родные, они же DSLA142P1025.

*139 — они же DSLA142P1191, взаимозаменяемые с предыдущими, продвинутые распылители, с новой технологией завихрения, при использовании этих распылителей, уменьшается расход топлива, но чуток падает динамика (требуется чиповка), пропускная способность у них поменьше чем у предыдущих, что влечет за собой увеличение максимального давление впрыска с 1800 до 2000 бар, более качественный распыл. Это я так в двух словах…

Теперь о печальном.Оригинальная Конструкция дизельных форсунок на 2,5 tdi НЕ УДАЧНАЯ !Нами:

мне и Юре (www.tdi-garage.ru) была разработана и внедрена НОВАЯ т.н. ГИБРИДНАЯ конструкция форсунок для 2,5tdi главной особенностью которой является СНИЖЕНИЕ ПОТРЕБЛЕНИЯ ТОПЛИВА НА 25% за счёт повышенного до 500бар давления распыления 2го этажа форсунки, у родных 250-300бар…продолжение следует…



Форсунка дизельного двигателя.


Устройства и приборы высокого давления



Форсунки дизельного двигателя


Назначение форсунок и требования к ним

Форсунка служит для подачи топлива в цилиндр двигателя, распыления и распределения топлива по камерам сгорания.

Условия работы форсунок очень тяжелые – они подвержены воздействию колоссальных давлений и тепловых нагрузок. Впрыск начинается при температуре в камере сгорания 700…900 ˚С и давлении 3…6 МПа, а заканчивается при температуре до 2000 ˚С и давлении 10…11 МПа.

К форсункам предъявляются следующие очень жесткие требования:

  • оптимальная дисперсность, т. е. высокая степень дробления капель топлива, так как чем меньше капли, тем больше их суммарная поверхность, быстрее происходит нагрев и сгорание топлива, но при этом уменьшается длина факела;
  • обеспечение такой скорости струи топлива, чтобы оно достигало краев камеры сгорания, поэтому капли не должны быть слишком мелкими – средний размер капель (с учетом требования по первому пункту) – 30…50 мкм;
  • распределение впрыскиваемого топлива по всему объему камеры сгорания;
  • резкое начало впрыска и его прекращение.

Форсунки бывают открытые и закрытые.
Открытые форсунки обеспечивают постоянную подачу топлива. В современных дизелях такие форсунки не применяются.
В дизельных двигателях применяют закрытые форсунки, которые открываются только в момент подачи топлива в камеру сгорания.

Закрытые форсунки могут быть двух типов – одно- и многодырчатые. Первые устанавливают на двигателях с вихревыми камерами сгорания, вторые с неразделенными камерами сгорания.

Различают, также, механические форсунки и форсунки, управляемые электроникой.
Современные системы питания дизельных двигателей используют впрыск, управляемый компьютером (электронным блоком управления). На основании информации, поступающей от многочисленных датчиков, такие системы учитывают многие процессы и текущие параметры работы двигателя. Форсунки в таких системах управляются специальными электромагнитными или пьезоэлектрическими устройствами, что открывает широкие возможности повышения эффективности работы двигателя, а также его экологичности.

К отдельной категории устройств для впрыска топлива в цилиндры относятся насос-форсунки, представляющие собой своеобразный гибрид между ТНВД и форсункой в одном узле.

***

История изобретения форсунки

Как известно, Рудольф Дизель изначально планировал работу своего знаменитого детища на угольной пыли. Его система питания содержала специальный насос, вдувавший угольную пыль в цилиндр двигателя сжатым воздухом. Однако, уголь оказался низкокалорийным топливом, не способным дать высокой температуры сгорания, и Дизелю пришлось обратить свой гениальный взор к жидким топливам. Ведь разница температур в цикле работы двигателя – прямой путь к повышению КПД, как установил француз Николя Сади Карно.

Сначала Дизель попробовал впрыскивать в цилиндр своего двигателя бензин, но при первом же испытании двигателя произошел взрыв, едва не стоивший жизни самого Дизеля и его помощников, и изобретателю пришлось применить менее взрывоопасное топливо – керосин.
В июне 1894 года Дизель построил двигатель, использующий в качестве топлива керосин, который впрыскивался в цилиндры специальной форсункой. Для впрыскивания керосина применялся пневматический компрессор, развивавший давление, превышающее давление в цилиндре двигателя. За такими двигателями закрепилось название «компрессорные дизели».

Идея гидравлического впрыска топлива в дизельных двигателях принадлежит, как утверждает история, французскому инженеру Сабатэ, который, к тому же, предложил многократный впрыск, т. е. впрыск, осуществляемый в несколько этапов (эта идея используется в современных системах питания — Common Rail и насос-форсунка).

В 1899 году русский инженер Аршаулов впервые построил и внедрил топливный насос высокого давления оригинальной конструкции — с приводом от сжимаемого в цилиндре воздуха, работавший с бескомпрессорной форсункой. Эти форсунки устанавливались на дизелях, выпускавшихся Механическим заводом «Людвиг Нобель» в Петербурге в начале прошлого века («русские дизели»).

В 20-е годы XX века немецкий инженер Роберт Бош усовершенствовал встроенный топливный насос высокого давления, а также создал удачную модификацию бескомпрессорной форсунки. Эти устройства с различными усовершенствованиями используются в системах питания дизельных двигателей и в наши дни.

Дизельные двигатели, использующие в системе питания повышение давления топлива перед впрыском, называют «бескомпрессорными дизелями».
В настоящее время классические компрессорные дизели не имеют практического применения. В современных двигателях впрыск осуществляется бескомпрессорными способами.

Однако, наука и техника не стоят на месте, и, благодаря широкой компьютеризации всех систем автомобиля, в настоящее время механические форсунки постепенно вытесняются более совершенными устройствами, управляемыми электроникой.

***

Принцип действия многодырчатой форсунки

В многодырчатой форсунке основной частью является распылитель. Он состоит из корпуса 1 (рис. 1, а) и иглы 2. Распылитель притянут к корпусу 7 форсунки накидной гайкой 3. Сверху на иглу давит пружина 12 (рис. 1, б). Топливо в полость Б форсунки подается по каналу В.
Когда нет подачи топлива насосом (рис. 1. I), давление в полости Б составляет 2…4 МПа. Топливо давит на нагрузочный поясок Г иглы, но эта сила меньше силы пружины, которая прижимает иглу к распылителю. Игла запорным конусом Д перекрывает выходные отверстия – сопло А.

При подаче топлива насосом сила давления топлива на поясок Г становится больше силы пружины, игла поднимается, и через сопло А с большой скоростью топливо впрыскивается в камеру сгорания. После окончания подачи топлива давление падает, пружина возвращает иглу на место, запирая выходные отверстия распылителя, и впрыск прекращается.

Подъем иглы ограничен упором ее верхних заплечиков в корпус 5 форсунки и составляет 0,2…0,25 мм.

Качество дробления топлива зависит от скорости его движения через сопла, которая, в свою очередь, зависит от давления впрыска. При нормальном режиме скорость струи топлива составляет 200…400 м/с. Для этого необходимо создать перепад давлений в форсунке и камере сгорания 5…10 МПа. Поскольку давление в цилиндре в момент впрыска достигает 3…5 МПа, давление топлива в форсунке должно быть более 10…20 МПа.
Чтобы обеспечить работу форсунки при таком давлении, корпус распылителя и игла выполнены очень точно и притерты друг к другу. Они являются третьей прецизионной парой в магистрали высокого давления. Игла и корпус распылителя не подлежат разукомплектованию и подлежат замене только в комплекте.



Устройство многодырчатой форсунки

На двигателях с неразделенными камерами сгорания устанавливают, как правило, многодырчатые форсунки. Так, на двигателях КамАЗ-740 устанавливается форсунки серии 33, на двигателях ЗИЛ-645 и ЯМЗ-240 – форсунки Б-2СБ, на двигателях ЯМЗ-238 – форсунки модели 80 (см. рисунок 2 внизу страницы).

К корпусу 7 форсунки накидной гайкой 3 притянут распылитель с иглой 2. Распылитель имеет четыре сопловых отверстия диаметром 0,3 мм. На иглу через штангу 13 давит пружина 12. Топливо от насоса подается в полость форсунки через штуцер 9, в котором установлен фильтр 10. Верхнее отверстие в корпусе служит для отвода в бак топлива, просочившегося через зазоры между иглой и распылителем. Штифты 4 и 6 определяют точное положение распылителя относительно корпуса и топливных каналов. Прокладками 11 регулируют натяжение пружины, которое определяет давление начала впрыска.

Форсунки устанавливают в специальные гнезда головки цилиндра и закрепляют скобами.
Между корпусом форсунки и головкой блока размещается уплотнительная медная шайба (кольцо), которая надевается на корпус распылителя и вместе с форсункой аккуратно вставляется в гнездо головки. Такая шайба служит не только уплотнителем между форсункой и головкой, но и обеспечивает хороший теплоотвод от распылителя к головке цилиндров.
Уплотнительное кольцо 8 предохраняет полость клапанной крышки от попадания в нее пыли и влаги.

***

Устройство однодырчатой штифтовой форсунки

Однодырчатые форсунки иногда называют штифтовыми, поскольку конец ее иглы выполняется в виде штифта. Такие форсунки устанавливают, как правило, в дизелях с разделенными камерами сгорания.
Конструкция распылителя таких форсунок обеспечивает объемно-пленочное смесеобразование, поскольку распыливание топлива более направленное, чем в многодырочных форсунках, и значительная часть топлива достигает стенок камер сгорания, образуя быстро испаряющуюся пленку.

Дизели с вихревыми (раздельными) камерами сгорания менее чувствительны к составу топлива и устойчивее работают в широком диапазоне частот вращения. Применяемые с ними форсунки рассчитаны на меньшее давление, следовательно, не требуют столь высокой точности изготовления, как форсунки для неразделенными камерами сгорания, а потому дешевле.

На рис. 1,в показан распылитель штифтовой однодырчатой форсунки. Такая форсунка устанавливается в вихревых камерах сгорания и имеет одно сопло.
Конец иглы 2 выполнен в виде штифта 13 конусной формы, выступающего за пределы корпуса распылителя. Штифт служит для формирования факела топлива в виде конуса.
Принцип работы однодырчатых форсунок не отличается от принципа работы многодырчатых форсунок.

Устройство некоторых типов форсунок, применяемых на автотракторных дизельных двигателях отечественного производства приведено на рисунке 2.

***

Трубопроводы высокого давления дизеля


Главная страница


Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Морские судебно-медицинские эксперты, Стивенсвилл, Мэриленд — Морские исследования

Работа под давлением , некоторая защита для инъекций

Здравствуйте, любители лодок! Счастливая зимняя погода на лодках. В этой статье будут обсуждаться некоторые из наименее посещаемых, наиболее сложных и, возможно, наименее понятных, но наиболее важных компонентов наших дизельных двигателей. Эти предметы постоянно используются, когда они находятся под напряжением, миллионы циклов за сезон, работают с точностью до тысячи секунд и находятся в реальной опасности разложения во время простоя.Это механические форсунки дизельного топлива. Мы, возможно, знаем, где они расположены, но при техническом обслуживании они почти не учитываются. Дело в том, что обслуживание самих форсунок за пределами ремонтной мастерской практически невозможно. Мы обсудим некоторые принципы, детали и компоненты, а также те области, в которых мы можем повлиять на обслуживание, задолго до отказа. Крайне важно всегда помнить, что топливные форсунки — действительно прекрасные инструменты, такие же хорошо сконструированные, как и любые наручные часы с автоподзаводом, и гораздо более деликатные в неподходящих условиях.Поскольку мы не прилагаем прямых усилий к нашим инжекторам, это, безусловно, можно оценить, поскольку они являются загадкой и очень редко выносятся на открытый воздух. В конце концов, никто никогда не слышит, «как у вас сейчас инжекторный механизм?» На этом позвольте нам окунуться в некоторые чудеса и мифы о впрыске дизельного топлива.

Форсунки ваших дизельных двигателей берут свое начало примерно с 1895 года, когда впрыскивание производилось из угольной пыли или дегтярного масла и, в конечном итоге, из сырой нефти. По мере совершенствования топлива улучшилась и обработка оборудования для впрыска.Не случайно старые примитивные инжекторы пострадали от тех же демонов, которые могут поразить современные системы. Это качество топлива, вода и мелкие загрязнения. Та же история, другой век. В качестве примечания: Рудольф Дизель, ошибочно известный отец системы, предсказал незадолго до своей кончины в 1913 году, что «растительные масла» в какой-то момент станут важным источником топлива — звучит как биодизель, который используется сегодня.

Дизельные форсунки питаются топливом от насосов очень высокого давления или сами являются насосами высокого давления.Давление в форсунках большинства дизельных двигателей, не являющихся двигателями с системой Common Rail, будет составлять от 3 200 до 5 000 фунтов на квадратный дюйм, да, это верно, 5000 фунтов на квадратный дюйм! Двигатели Common Rail, которые мы здесь не будем обсуждать, могут иметь ошеломляющее давление до 29 000 фунтов на квадратный дюйм. Целью такого высокого давления является распыление топлива до очень мелкого тумана, очень быстро, в пределах микро-окон времени, но в различных количествах в зависимости от скорости и нагрузки. Кроме того, давление топлива должно оставаться почти одинаковым на всех скоростях.ТНВД нагнетает топливо под большим давлением к форсункам, давление преодолевает огромное сопротивление пружины внутри форсунки (см. Фото). Форсунка «открывается» на микросекунду, сбрасывая давление. Топливо впрыскивается в зону сгорания двигателя, где поршни двигателя имеют сжатый нагретый воздух до такой степени, что при попадании на него топливного тумана комбинация взрывается. Затем форсунка захлопывается. Это быстрое открытие и закрытие имеет решающее значение для правильной работы инжектора.Ух ты, много чего можно сделать из чисто механического.

При таком давлении возникает несколько потребностей. Во-первых, необходимо отвести тепло. Температура сгорания дизеля может легко достигать 1300-1600 градусов, а допуски на форсунки очень жесткие. Один конец форсунки находится в зоне сгорания двигателя, а другой конец находится в системе охлаждения двигателя на 170 градусов, в то время как остальная часть форсунки находится на открытом воздухе. По длине форсунки происходит разное расширение.Многие форсунки имеют возвратную топливную магистраль, по которой неизрасходованное топливо доставляется обратно в топливный бак и уносит с собой значительное количество тепла. Тепловая ситуация имеет второй эффект в плане способности топлива поддерживать смазку движущихся частей системы впрыска, что называется смазывающей способностью. Это означает, что топливо необходимо постоянно поддерживать в свежем состоянии, чтобы те присадки, которые важны для смазывающей способности, работали, — тепло усугубляет ситуацию. Затем дизельное топливо измеряется так называемым цетановым числом — очень сложным и калорийным — как еда.Для того, чтобы дизельное топливо работало должным образом, а топливо правильно сгорало в тепле камеры сгорания, необходимо добавить точное количество очень хорошего топлива в точные временные рамки. Если топливо не будет гореть правильно в нагретом воздухе камеры сгорания, вы добавляете дроссель, дающий больше топлива, тепло двигателя не может сжечь все топливо, а некоторое количество остается в виде золы или лака, которые помогают загрязнить топливные форсунки.

Как видно из фотографий, инжектор может иметь множество похожих форм и в основном состоит из корпуса инжектора — верхней части и сопла инжектора — действительно блестящих частей — нижней части.Сопло и игла обработаны очень и очень тонко. Фактически, с новой насадкой все так хорошо, если вы будете держать новую иглу в руке и впускать тепло, возможно, она не поместится в прохладную насадку из-за расширения. Инжектор соединен с остальной частью топливной системы линией подачи топлива и, вероятно, линией возврата топлива — гораздо меньшей линией, которая может иметь «полые болты» сквозь нее — см. Фотографии. Все части системы должны постоянно содержаться в исключительной чистоте, и ни в коем случае нельзя трогать внутренние части инжектора сухими руками или быть сухими.Детали должны быть покрыты «топливом», чтобы обработанные детали не травились солями из-за сухого обращения.

Итак, теперь вопросы, когда, почему и как мне обслуживать форсунки ?. Ваши форсунки могут быть повреждены загрязнениями и водой. Если вы заметили, что ваш двигатель дымит, слабый или очень шумный, у вас может быть проблема с форсункой. Быстрый способ определить, не работает ли форсунка, — «закоротить форсунку», «взломав ее при работающем двигателе.» Взломать «означает открыть главную линию подачи форсунки на форсунке с помощью подходящего» гаечного ключа «. когда двигатель работает на холостом ходу, посмотрите фотографии правильного гаечного ключа в отличие от обычного гаечного ключа.Если открыть инжектор всего на четверть оборота в очках, перчатках и накрыть место тканью, это приведет к его выключению. Если топливо протекает и двигатель не показывает замедления или изменений, значит, форсунка работает неправильно. Если двигатель издавал громкие стучащие звуки и когда форсунка «треснула», звуки прекращаются, значит, форсунка «открыта». В любом случае инжектор придется снять. Если «трещина» все же подействует, переходите к следующему инжектору.Эта операция немного грязная, но вы потеряете очень мало топлива. Я предлагаю настроить ваши клапаны в рамках этого теста. Как правило, если одна форсунка выходит из строя, все необходимо обслуживать. Рекомендуется проводить обслуживание каждые тысячу часов, если топливо сильно устарело или сильно загрязнено водой.

Если у вас есть запасная форсунка на кораблях, вы можете заменить слабый блок, сняв крепеж (см. Фото) или открутив его от головки блока цилиндров. Большинство форсунок легко вырываются при осторожном поддевании и проникновении.Нам нравится пенетрант под названием «B-Laster», хотя свежее дизельное топливо работает хорошо. Линии форсунок и держатели линий (маленькие скобки) должны быть ослаблены перед тем, как их снимать, и линии НЕ ДОЛЖНЫ БЫТЬ ИЗГИБНЫМИ !! После удаления любой линии все отверстия должны быть закрыты — см. Маленькие красные пластиковые колпачки на фотографиях форсунок. Примечание. Причина, по которой линии извилистые и извилистые, заключается в том, чтобы поддерживать их в одном длинном коктейльном разговоре. При замене форсунок необходимо позаботиться о замене медной термоуплотнительной шайбы.Это значит, что старую нужно снять с ГБЦ, если она не вышла вместе с форсункой. Вы должны проконсультироваться с руководством по запчастям вашего двигателя для размещения уплотнительных колец. Крепежные детали будут иметь «крутящий момент», и необходимо использовать динамометрический ключ, чтобы крепежные детали или форсунки не оказывали слишком большое давление на головку блока цилиндров. Обслуживание форсунок практически невозможно за пределами магазина, потому что после их разборки для правильной сборки требуется инструмент «тестер» — см. Фотографии, а также обратите внимание на то, насколько высоким и опасным является давление.Не снимайте инжектор и не кладите его обратно на трубопровод на открытом воздухе, чтобы перевернуть двигатель и проверить его. Это приводит к образованию очень тонкого тумана под высоким давлением, прикосновение к которому во время работы может проткнуть кожу и вызвать серьезное отравление крови или тканей. Мы добились определенных успехов, используя комплект для чистки инжектора — фотографии, когда мы в отчаянии, и такие моменты действительно случаются.

По окончании работы форсунки необходимо «удалить воздух» из агрегатов и выполнить тестовый запуск двигателя. Вы должны были заменить все фильтры, сепараторы и дробильные машины во время этого действия.Свежее топливо должно быть приоритетом, так как все агрегаты должны обслуживаться одновременно, так как «давление при испытаниях на всплеск» со стороны одного магазина или строителя будет отличаться. Все агрегаты должны поступать от одного поставщика дома.

Форсунки для дизельного топлива довольно дороги, и не стоит бояться использовать восстановленные детали там, где это возможно. Помните, что чистота превыше всего! Первый шаг в обслуживании форсунок — это правильное топливо, топливо, которое не сильно старело, чистый воздух и неограниченный выпуск выхлопных газов, а также поддержание этих клапанов в регулировке.Если вы не наняли техника для проверки синхронизации ваших двигателей, то это избавит вас от некоторых беспокойств и, скорее всего, сгладит двигатель меньшего размера, улучшит производительность большего двигателя и долговечность любого. Еще одним положительным вложением средств станет установка дополнительных топливных фильтров с байпасной системой и сигнализацией наличия воды.

Мифология двигателя:

  1. «Мой двигатель дизельный, ничего страшного, если он гасит черную сажу». Это просто неправильно! Сильный дым или отложения сажи указывают на старое топливо, отказы системы впрыска, ограничения выхлопа или воздуха.Дизель в отличие от некоторых других дистиллятов на борту не улучшается с возрастом.
  2. «Мой дизель трясется и раскачивается на холостом ходу, но это нормально, потому что он уходит на передаче». Извините, еще один мне наплевать. Сильный стук и тряску на холостом ходу можно отрегулировать с помощью правильного выбора времени впрыска. Как уже говорилось, идея шумного, неравномерного дизельного топлива настолько распространена, что большинство технических специалистов не утруждают себя советом или боятся попытаться установить правильные временные параметры.
  3. «Человек из лодочного клуба сказал добавить галлон бензина в бак с дизельным топливом для очистки форсунок» В любом случае не стал бы пробовать это.Увидев результат в нескольких случаях, когда владелец или работник топливного дока по ошибке залил бензин в бак, а затем судно спустилось. Плохие новости! Соответствующие добавки можно легко приобрести и добавить, следуя инструкциям производителя. Добавление бензина — это не проблема «змеиного масла».
Отличное катание на лодке для вашего следующего сезона !!

Джеймс Р. Ренн, SAMS, AMS-YSCE, MIIMS

Очистители дизельных форсунок — важнее, чем когда-либо

Какой самый важный элемент определяет, будет ли ваш автомобиль пробегом и эффективен? Конечно, поведение водителя.Но помимо этого, чистые топливные форсунки являются наиболее важным фактором, влияющим на пробег и производительность. И сегодняшние высокопроизводительные дизельные двигатели в большей степени зависят от своих топливных форсунок, чем когда-либо прежде.

В современных дизельных двигателях преобладают системы Common Rail. Если вы понимаете, чем эти двигатели отличаются от традиционных дизельных двигателей старой школы, вы лучше понимаете, насколько важно поддерживать форсунки в чистоте, чтобы они могли работать оптимально.

Понимание того, как работали старые двигатели

Понимание конструкции впрыска Common Rail начинается с понимания основ механического впрыска топлива и того, как это изменилось в новых системах. Старые школьные системы «механического впрыска» работали, когда топливный насос подавал топливо к впрыскивающему насосу, где оно создавалось под давлением и отправлялось через жесткий трубопровод к форсункам на головке блока цилиндров. Теперь форсунка получает часть топлива под давлением, которая открывает штифт внутри форсунки (b / c его давления) и позволяет подавать топливо через форсунку в камеру сгорания.Если все работает должным образом, топливо будет подаваться в виде очень мелкого тумана. В целом, давление топлива в этих обычных механических системах будет составлять от 1800 до 3000 фунтов на квадратный дюйм, что представляет собой величину давления, необходимого для открытия цапфы форсунки.

Обратной стороной этого типа системы является то, что количество топлива, которое будет подаваться в каждую форсунку, было заранее определено заранее. То, что было отправлено в насос-форсунку, получилось и в форсунках. Тем не менее, долгое время эта система работала достаточно хорошо.Дизельные двигатели служат долго и относительно эффективны.

Лучший способ впрыска дизельного топлива

Однако то, что кто-то придумал лучший способ, было лишь вопросом времени. Это и есть система впрыска Common Rail. Сегодняшние дизельные двигатели на много лет опережают даже лучшие дизельные двигатели прошлого. Они начинаются с насосов, топливопроводов, форсунок и топливной рампы, которые подают топливо и работают с ним при гораздо более высоком давлении, чем в старых механических системах.

Насос высокого давления подает топливо, где оно находится под давлением 5000 фунтов на квадратный дюйм. Итак, мы уже начинаем с гораздо более высокого давления. Фактически, двигатель с общей топливораспределительной рампой даже не сработает, если давление не превышает 5000 фунтов на квадратный дюйм — это минимальное давление, необходимое только для работы на холостом ходу. Компьютер считает, что что-то не так, если не обнаруживает такое минимальное давление.

Теперь топливо подается в топливную рампу высокого давления. Это тот агрегат, который будет подавать топливо к форсункам.Компьютер транспортного средства (вместе с другими компонентами, такими как датчики и исполнительные механизмы) координирует весь последующий танец, сообщая инжекторам, когда открывать (и как долго) и сколько топлива (и когда) подавать в инжекторы.

Более высокое давление = более высокая эффективность

С дизельным двигателем Common Rail давление впрыска может достигать 28 000 фунтов на квадратный дюйм. Не нужно быть Эйнштейном, чтобы сделать вывод о большой разнице между 3000 фунтов на квадратный дюйм в механической системе и 20 000 фунтов на квадратный дюйм в системе Common Rail.Как показывает практика, чем выше давление подачи топлива, тем эффективнее оно сгорает. Не говоря уже о способности двигателя Common Rail впрыскивать топливо до 4-5 раз за один рабочий ход поршня, в зависимости от того, что компьютер определяет, что необходимо сделать. Такая специфичность никогда не была возможна в старых системах механического впрыска.

Мы говорим все это, чтобы вернуть нас к мысли о том, что как никогда важно поддерживать эти форсунки дизельного топлива в чистоте.Так что использование хорошего очистителя форсунок дизельного топлива — хорошая идея. Существует множество вариантов между чистящими средствами с одним резервуаром, которые вы время от времени используете для многофункциональных «поддерживающих чистоту» добавок, которые объединяют моющие средства для инжекторов с другими активными ингредиентами в формуле, разработанной для постоянного использования. Эти постоянные добавки также оцениваются так, чтобы их использование было более рентабельным. И еще одно преимущество использования таких упаковок с моющими средствами заключается в том, что они удаляют отложения со всех участков, которых касается топливо, а не только с форсунок.Так вы очистите всю топливную систему.

Проверьте эти похожие сообщения:

Этот пост был опубликован 5 июля 2017 года и обновлен 26 октября 2020 года.

Чувствительность дизельных двигателей Системы впрыска Common Rail высокого давления

Двигатели, оснащенные HPCR, обеспечивают более чистый выхлоп, имеют большую мощность и более эффективны, чем предыдущие модели.

Кейт Крамлих, национальный менеджер по продуктам и обучению, Takeuchi

Топливные системы с общей топливораспределительной рампой высокого давления (HPCR) входят в стандартную комплектацию почти всех современных дизельных двигателей, от тяжелого оборудования до сверхмощного. дорожные грузовики, малотоннажные грузовики, большие генераторы и многое другое.Топливные системы HPCR имеют много преимуществ, но они также вызывают недоумение среди операторов. Операторы слишком часто заправляют свои машины загрязненным топливом, которое может разрушить топливную систему.

Чтобы двигатель продолжал гудеть в течение нескольких часов, важно понимать сами топливные системы, их преимущества и недостатки, их чувствительность, степень воздействия загрязненного топлива и предупреждающие знаки, на которые следует обращать внимание.

Преимущества и недостатки

Система HPCR состоит из топливной рампы высокого давления, общей для всех форсунок.Подача топлива в топливную рампу высокого давления осуществляется подающим насосом высокого давления. В зависимости от частоты вращения и нагрузки двигателя давление в рампе может превышать 30 000–40 000 фунтов на квадратный дюйм. Форсунки имеют электронное управление, и каждая имеет свой пусковой механизм или соленоид.

Takeuchi оснащает свои машины одним или двумя топливными фильтрами и водоотделителем для удаления загрязнений и воды, которые могут повредить чувствительные системы HPCR. Благодаря своей конструкции системы HPCR также обеспечивают лучшее распыление топлива при впрыске, обеспечивая более чистое и чистое топливо. более мощное и более полное сгорание.Двигатели, оснащенные HPCR, обеспечивают более чистый выхлоп, обеспечивают большую мощность и топливную экономичность на рабочий объем, чем предыдущие модели.

Кто-то может сказать, что основным недостатком систем HPCR является сложность электрических компонентов. Есть множество датчиков, жгутов проводов и электрических компонентов, которые необходимо добавить, чтобы двигатель работал должным образом. Другой воспринимаемый недостаток — насколько эти системы могут быть чувствительны к загрязненному топливу.

До требований Tier 4 по выбросам в дизельных двигателях внедорожной техники использовалась система механического впрыска.Эти системы не были столь чувствительны к загрязнению. Из-за этого многие операторы ошибочно полагают, что топливные системы HPCR также не слишком чувствительны. На самом деле, это далеко от истины. Грязное или неподходящее топливо, вода в топливе и воздух в системе могут вызвать повреждение новых дизельных двигателей.

Системы очень подвержены повреждению при несоблюдении надлежащего ухода. Это связано с тем, что чем выше давление впрыска, тем более жесткие допуски должны быть между сопрягаемыми деталями в компонентах, работающих с топливом, таких как насосы, клапаны и форсунки.Более жесткие допуски делают эти прецизионные поверхности чрезвычайно уязвимыми для повреждения почти всем, кроме топлива. Таким образом, хотя определенное количество загрязнения или воды не причинит вреда механическим форсункам старой конструкции, то же самое топливо нанесет ущерб топливной системе Common Rail.

Загрязнение водой наносит ущерб дизельным топливным системам

Воздействие загрязненного топлива

Наиболее частой причиной повреждения является вода в топливе, которая часто возникает из-за неправильно обслуживаемых перегрузочных баков.У этих резервуаров есть несколько проблем:

  • В некоторых случаях они редко сливаются.
  • В баке скапливается вода из-за конденсации.
  • Благодаря расположению цистерн и окружающей среде грузовиков, они могут собирать тяжелый мусор. Поэтому перед заполнением перекачивающего бака важно очистить крышку топливного бака и прилегающую территорию.
  • Если бак не обслуживается, содержание воды будет продолжать увеличиваться, что может привести к появлению ржавчины внутри бака и трубопроводов.

Чтобы решить эту проблему, производители оборудования включают в свои машины водоотделитель. Однако само по себе это не полное решение. Его нужно проверять и сливать ежедневно. Если это не так, и уровень воды достигает верхней части сепаратора, вода будет продавливаться через сепаратор и обратно в топливную систему, достигая жизненно важных компонентов.

Вода в топливе может влиять на несколько различных аспектов машины:

  • Чаще всего она снижает смазывающую способность топлива.Это приводит к повреждению игольчатого клапана внутри форсунки, который становится липким, что приводит к большому обратному потоку или большой подаче топлива.
  • Игольчатый клапан также может быть поврежден до такой степени, что он больше не закрывается должным образом, что приведет к утечке наконечника инжектора.
  • Металл из-за повреждения игольчатого клапана или из-за повреждения других компонентов может засорить форсунки, что приведет к искажению формы распыления. Это приведет к разбрызгиванию топлива непосредственно на поверхность поршня или стенку цилиндра.
  • Топливо, впрыскиваемое непосредственно в стенку цилиндра, вызывает промывку цилиндра, когда топливо вымывает смазочное масло. В результате возникает плохая смазка между поршнем и стенкой цилиндра, что приводит к износу. Это неизбежно приводит к низкой компрессии, разбавлению масла и отказу двигателя.
  • В некоторых случаях в инжектор может попасть свободная вода. Избыточное нагревание инжектора приведет к тому, что эта вода превратится в пар и расширится, что приведет к поломке наконечника инжектора.
  • Избыточный нагрев форсунки приведет к превращению воды в пар и расширению, вызывая выход из строя наконечника форсунки.
  • Повреждение игольчатого клапана может помешать его правильному закрытию в закрытом состоянии. Это позволяет нераспыленному топливу вытекать на поверхность поршня, что приводит к расплавлению поршня.
  • Другие загрязнения, такие как частицы пыли и некачественное дизельное топливо с низкими смазывающими свойствами, также могут повредить топливную систему.

Обеспечение использования чистого топлива — самый простой и самый важный шаг в обслуживании HPCR.Это включает использование надежного источника, который обеспечивает чистое и отфильтрованное топливо.

По всем этим причинам очень важно поддерживать чистоту топливной системы и часто менять топливные фильтры. В случае Takeuchi каждая машина имеет от одного до двух топливных фильтров и водоотделитель. Но хотя топливные фильтры очень эффективны для удаления вредных загрязнений и воды, они не могут работать эффективно, если их не обслуживать регулярно.

Обеспечение использования чистого топлива — самый простой и самый важный шаг.Это включает использование надежного источника с чистым и отфильтрованным топливом. Во время наполнения также необходимо установить сетку наливной горловины, чтобы предотвратить попадание крупного мусора в резервуар. Крупный мусор может ограничить поток топлива из бака или, в зависимости от материала, может сломаться и стать достаточно маленьким, чтобы вызвать проблемы с топливной системой.

Дизельное топливо Уборка сокращает простои строительного оборудования

Предупреждающие знаки

Чаще всего первым признаком отказа двигателя из-за загрязнения топлива является несколько неисправных форсунок.Хотя это одни и те же компоненты, они работают по отдельности и имеют только одно общее: источник топлива.

Если оператор начинает замечать плохую работу двигателя, чрезмерное задымление, ненужные запросы на регенерацию или что-то еще ненормальное, лучше всего остановить двигатель до того, как произойдет катастрофическое повреждение. Владелец или оператор машины меньше всего хочет простоя из-за поломки. Некоторые вещи легко исправить, но двигатель — нет — неисправный двигатель будет стоить намного дороже, чем незначительное прерывание работы.

Использование чистого и фильтрованного топлива высшего качества имеет первостепенное значение и может сэкономить владельцу тысячи на ремонтных расходах.

Сопутствующие материалы

Советы по приобретению и хранению DEF для сохранения качества

Выбор топливного бака для строительных площадок

Почему выходят из строя топливные форсунки в дизелях с системой Post-Common-Rail | by Mersad Berberović

Форсунки дизельного топлива обычно выходят из строя либо из-за отсутствия механической прочности конструкции форсунки, либо из-за качества топлива, которое постоянно проходит через форсунку.Понимая внутреннюю работу топливных форсунок, мы можем лучше понять, что заставляет их перестать работать и, что более важно, как этого избежать.

Повышенный риск для современных дизельных топливных форсунок

Следуя последовательной программе технического обслуживания и избегая вредных привычек (например, заправки некачественным топливом), вы с большой вероятностью сможете без проблем проехать тысячи миль. Старые системы впрыска дизельного топлива используют примерно половину давления топлива, которое используют современные дизельные двигатели, и проталкивают топливо через значительно большие каналы.Чтобы быть более точным, современные форсунки Common Rail обычно срабатывают два или три раза за каждый цикл двигателя. Повышенное давление увеличивает вдвое или втрое износ системы впрыска топлива.

Механические проблемы и отказы

Существует пять распространенных типов отказов топливных форсунок. Давайте рассмотрим, что это за неудачи, симптомы проблем, причины и способы их предотвращения.

Отказ № 1: Нет впрыска

Признаки:

  • Высокий (положительный) уровень баланса, который означает, что топливо добавляется в цилиндр, потому что компьютер считает, что поток топливной форсунки недостаточен
  • Низкий вклад цилиндра ( можно проверить, выключив одну форсунку за раз и наблюдая за падением оборотов двигателя)
  • Коды неисправностей блока управления двигателем (ECU)

Причины:

  • Ржавчина или мусор засоряют форсунку
  • Потеря компрессии цилиндра
  • Якорь (вращающиеся катушки) и / или игла застряла
  • В редких случаях неисправный статор

Предотвращение:

  • Замените фильтры в соответствии с рекомендациями
  • Поддерживайте чистую топливную систему
  • Покупайте топливо только у надежных поставщиков
  • Используйте только компоненты, специально разработанные или изготовленные для вашей системы.
  • Не связывайте возврат из нескольких комплектов насоса высокого давления с d форсунки в одну обратную линию (может поднять или даже сдуть статоры форсунок, что приведет к отключению форсунки)
  • Не храните свой автомобиль в течение длительного периода времени, не запустив его и не поместив стабилизаторы дизельного топлива в бак

Отказ № 2: слишком много впрыска

Признаки:

  • Плохая работа
  • Чрезмерный дым на холостом ходу
  • Стук
  • Повышенная температура выхлопных газов
  • Высокие показатели баланса, что указывает на то, что компьютер удаляет топливо из форсунка
  • Повреждение двигателя из-за чрезмерного нагрева или гидравлической блокировки

Причины:

  • Мусор в системе управления форсунки и удерживает ее в открытом состоянии
  • Мусор в седле иглы форсунки и удерживает ее в открытом состоянии
  • Трещина форсунки из-за чрезмерного давления
  • Перегрев форсунки (обычно из-за неправильной установки форсунки)
  • Изношенный шарикоподшипник в форсунке

Профилактика:

  • Как можно скорее замените изношенные форсунки и форсунки с большим пробегом
  • Регулярно заменяйте форсунки
  • Регулярно меняйте топливные фильтры
  • Поддерживайте чистую топливную систему
  • Покупайте топливо только у проверенных поставщиков
  • Используйте только детали, специально разработанные для вашего двигателя.

Неисправность № 3: Неправильная скорость впрыска топлива

Симптомы:

  • Неустойчивая работа
  • Плохая балансировка цилиндров
  • Значительные колебания температуры выхлопных газов от цилиндра к цилиндру

Причины:

  • Засорение форсунки
  • Плохой баланс потока форсунки
  • Неправильный подъем иглы форсунки (часто из-за неправильных или отсутствующих деталей)
  • Форсунки с проволочной щеткой

Предотвращение:

  • Обратитесь к специалистам по обслуживанию и проверке форсунок. авторитетный источник
  • Покупка форсунок у репутаба источник
  • Поддерживайте чистую топливную систему
  • Покупайте топливо только у проверенных источников
  • Используйте только детали, специально предназначенные для вашего двигателя
  • Никогда не чистите форсунки проволочной щеткой

Отказ №4: Неправильное время впрыска и продолжительность

Симптомы:

  • Неровная работа
  • Детонация
  • Плохая балансировка цилиндров
  • Значительные колебания температуры выхлопных газов от цилиндра к цилиндру

Причины:

  • Неправильная сборка форсунки
  • Отсутствующие или неправильные детали
  • Изношенное седло шара

Предотвращение:

  • Замените изношенные или поврежденные форсунки
  • Обратитесь за обслуживанием и проверкой форсунок в надежном источнике
  • Приобретите форсунки у надежного источника

Отказ № 5: Высокая внутренняя утечка или обратный поток

Симптомы:

  • Двигатель не запускается легко, и для этого требуется увеличенное время проворачивания коленчатого вала
  • Коды низкого давления в общей топливораспределительной рампе

Причины:

  • Трещина на корпусе форсунки или форсунке
  • Изношенное седло шара форсунки
  • Выдувание внутреннего высокого давления уплотнение
  • Недостаточный зазор для иглы форсунки
  • Негерметичные трубки поперечной подачи (видно в Cummins)

Предотвращение:

  • Регулярно меняйте топливные фильтры
  • Поддерживайте чистую топливную систему
  • Покупайте топливо только у проверенных источников
  • Предотвращение увеличения давления в рампе и длительности импульса форсунки при настройке
  • Избегайте использования восстановленных или неоригинальных запчастей и используйте только компоненты впрыска, специально разработанные для вашей системы
  • Никогда не смешивайте иглы форсунок, так как они соответствуют корпусу форсунки и движущейся одной от другого может привести к неправильному зазору или подъему иглы

В то время как Существуют и другие потенциальные проблемы, механические или иные, которые могут указывать или вызывать какие-либо из этих проблем, перечисленные индикаторы и причины оказались наиболее вероятными.

Отказы впрыска из-за низкого качества дизельного топлива

Низкокачественное топливо может быть основным источником проблем для любого двигателя, и дизельный двигатель не исключение. Есть три проблемы топливных форсунок, которые обычно вызваны плохим топливом, включая чрезмерный износ, истирание и нежелательные отложения. Давайте обсудим эти общие проблемы более подробно.

Отказ №1: чрезмерный износ

Чрезмерный износ может произойти и повлиять на любую форсунку в течение длительного периода времени, но тип топлива, которое вы используете, оказывает огромное влияние на степень износа вашей форсунки.Сера использовалась в качестве естественной смазки в сырой нефти, но в конечном итоге было обнаружено, что она разрушает сажевые фильтры. С годами уровень серы был значительно снижен, и дизельные нефтеперерабатывающие заводы начали добавлять в топливо присадки для восстановления смазывающей способности. Таким образом, используя новое дизельное топливо со сверхнизким содержанием серы (ULSD), вы можете ограничить износ топливной форсунки.

Отказ № 2: истирание

Истирание обычно вызывается примесями в топливе и может привести к преждевременному отказу впрыска.Эти примеси можно найти даже в самом лучшем дизельном топливе, и они могут проходить даже через самые жесткие бортовые фильтры транспортных средств. Чем больше этих частиц содержится в топливе, тем сильнее они будут вызывать истирание форсунок при прохождении через них. К счастью, при надлежащем обслуживании поставщиками топлива и качественных топливных фильтров ущерб, вызванный истиранием, может быть ограничен.

Отказ № 3: Отложения

Чрезмерное накопление отложений, как внутренних, так и внешних, является причиной большинства отказов форсунок.Эти отложения могут нарушить распыление топлива, что приведет к неэффективному сгоранию топлива. Эта проблема очевидна, если вы заметите заметную потерю мощности двигателя или экономии топлива. Доступны добавки, которые, как было установлено, контролируют любые отложения, которые могут возникнуть.

Заключение

Многое может пойти не так с инжектором для дизельного топлива, но если ваша система исправна с механической точки зрения и вы внимательно относитесь к топливу, которым заправляете свой автомобиль, вы должны без перерывов проехать много миль.

Как Diesel вернули себе привычку

Новый колесный погрузчик Komatsu WA470-8 может похвастаться 6-процентной экономией топлива по сравнению с его предшественником.

В то время как НАСА могло отправить зонд до Плутона, прямо здесь, на Земле, существует еще одно инженерное чудо, по большей части незамеченное у всех под носом.

Речь идет о современных дизельных двигателях Tier 4 Final, в которых используются топливные системы Common Rail высокого давления и форсунки с электронным управлением, управляемые электронным модулем управления (ECM).

Эти системы могут подавать небольшие быстрые выбросы топлива в цилиндры со скоростью в некоторых случаях более 6000 раз в минуту. В результате современные большие дизельные двигатели могут производить больше мощности при меньшем расходе топлива, чем когда-либо прежде, при одновременном сокращении выбросов выхлопных газов более чем на 95 процентов.

Чтобы дать вам лучшее представление о том, как работают эти современные чудеса инженерной мысли, мы поговорили с Джимом Файером, вице-президентом по инжинирингу компании Cummins, и Илидио Серра, менеджером по технической поддержке отдела послепродажного обслуживания автомобилей Robert Bosch.

Мы начнем с рассмотрения разницы между форсунками старого образца и современной новой технологией.

Механический впрыск

До введения современных норм по выбросам в большинстве дизельных двигателей использовался механический впрыск топлива — выступ распредвала, упирающийся в роликовый толкатель, приводил в движение поршень, который создавал давление в топливе. В этих системах топливо под давлением проходит по трубопроводу, пока не наткнется на пружину форсунки и не заставит ее открыться, позволяя топливу течь в цилиндр.Давление до 15000 фунтов на квадратный дюйм было возможно, но только один впрыск за оборот кулачка и один впрыск топлива за цикл сгорания.

Механический впрыск топлива прост и надежен. Он по-прежнему используется на двигателях с меньшей мощностью, но не может обеспечить точный контроль, снижение выбросов и широкий диапазон мощности, необходимые для сегодняшних более крупных двигателей Tier 4 Final, в первую очередь двигателей мощностью 74 л.с. и выше.

По мере того, как нормы выбросов становились все более строгими, были внесены усовершенствования, в том числе распределительные насосы, линейные насосы и насос-форсунки, которые в конечном итоге позволили повысить давление до 23 000–26 000 фунтов на квадратный дюйм.Многие производители оригинального оборудования смогли выполнить требования уровня 3 по выбросам, используя эти более сложные системы. Но настоящее чудо не произошло до тех пор, пока не были внедрены топливные системы Common Rail высокого давления (HPCR), которые позволили создать давление впрыска до 36 000 фунтов на квадратный дюйм.

Система Common Rail

В системе HPCR форсунки забирают топливо из единой, подобной аккумулятору, рейки, которая обслуживает все форсунки с общим источником топлива. Топливо, хранящееся в общей топливной рампе, находится под давлением до 30 000+ фунтов на квадратный дюйм в ожидании использования.

Преимущество здесь заключается в том, что вы больше не зависите от кулачка или топливного насоса для повышения давления топлива в форсунке. Задачи наддува и впрыска, связанные в механических системах, становятся независимыми. И чем выше давление, тем лучше распыляется топливо после того, как оно попадает в цилиндр.

Вместо скорости кулачка или топливного насоса, определяющего, когда форсунка открывается и закрывается, система HPCR управляет форсункой с помощью небольшого быстродействующего исполнительного механизма, либо соленоида, либо пьезокристалла, встроенного в форсунку.А поскольку они управляются электроникой, они могут срабатывать так быстро, как вы можете включать и выключать электрический ток.

«Эти форсунки с электронным управлением обеспечивают гораздо лучший контроль времени и количества впрыска по сравнению с механическими системами», — говорит Файер. «Это стало важным фактором в разработке более чистых и более экономичных дизельных двигателей», — говорит он.

События множественной инъекции

«Горение в дизельном двигателе очень похоже на рецепт выпечки торта», — говорит Серра.«Если вы правильно отмеряете ингредиенты, установите правильные настройки температуры и времени, вы всегда будете получать идеальный торт».

Проблема в том, что рецепт может меняться от одной секунды к другой. Каждый раз, когда вы переключаетесь на другую передачу, поднимаетесь на холм или нажимаете на педаль газа, чтобы максимизировать усилие отрыва, сочетание давления, температуры, времени впрыска и времени меняет рецепт.

Только системы Common Rail с мозгом ECM и сверхбыстрыми инжекторами с электронным управлением обладают скоростью и универсальностью, чтобы реагировать на эти изменения и при этом сохранять параметры выбросов, экономию топлива и выходную мощность.

Дизель Динамика

Цилиндр бензинового двигателя потребляет один впрыск топлива в пределах от 40 до 60 градусов вращения коленчатого вала. «Горение дизельного двигателя длится намного дольше, от 90 до 120 градусов», — говорит Серра. Этот медленный, расширяющийся взрыв — вот что дает дизельным двигателям невероятный крутящий момент. Формирование и максимизация эффективности этого факела горения имеет первостепенное значение.

Расположение клапана, форма чаши поршня и конструкция наконечника форсунки — все это влияет на то, как шлейф циркулирует в цилиндре, говорит Серра.Но синхронизация и частота форсунок — это два элемента, которые могут изменяться по мере изменения требований к двигателю.

В типичном сценарии горения HPCR с низким энергопотреблением у вас может быть три события впрыска в следующей последовательности:

Все начинается с небольшого быстрого пилотного впрыска, чтобы все заработало. При легкой и средней нагрузке двигателя ранние предварительные впрыски также помогают контролировать образование NOx (загрязняющее вещество, регулируемое Tier 4 Final) и уменьшать шум — этот безошибочный звук «стука» дизельного двигателя на холостом ходу.

Далее идет полная нагрузка, главный впрыск мощности. Возможны от шести до восьми событий для изменения процесса сгорания или содействия последующей обработке выбросов.

Наконец, вы получаете небольшой дополнительный впрыск, чтобы сжечь несгоревшее топливо, оставшееся в цилиндре. Дополнительный впрыск также снижает количество твердых частиц в выхлопе, обеспечивает дополнительную энергию для систем нейтрализации выхлопных газов и снижает задержку турбокомпрессора.

Когда приложение требует большой мощности, ECM обычно заказывает один длительный впрыск.

Уродливые Скорости

Инженеры измеряют скорость этих событий впрыска в микросекундах, что составляет 1/1000 секунды. Для всех инъекций существует окно примерно 7000 микросекунд, в течение которого:

Соленоид форсунки или пьезокристаллический привод начинает открываться в течение 100–150 микросекунд после подачи питания.

При трехкратном впрыске каждый впрыск подает измеренное количество топлива примерно с 1225 раз в минуту на холостом ходу (750 об / мин) и до 3300 раз в минуту при номинальной скорости (2200 об / мин).

При шести впрыскивании каждая форсунка может подавать всплески топлива со скоростью до 6600 раз в минуту при 2200 об / мин.

После события впрыска требуется еще от 50 до 100 микросекунд, чтобы соленоид или пьезокристаллический привод вернулся в состояние покоя и рассеял любой электрический заряд.

Компьютерное управление

«Электронный блок управления на двигателе управляет всеми аспектами управления топливной системой», — говорит Фиери. «Контроллер ЭСУД не только содержит электронику, необходимую для приведения в действие регулирующих клапанов и форсунок, но также содержит калибровку и диагностику двигателя.По сути, это мозг двигателя », — говорит он.

И хотя аппаратное обеспечение в большинстве топливных систем HPCR может быть схожим, электронная логика, используемая для управления системой, может быть важным различием между характеристиками различных двигателей, говорит Файер. По его словам, калибровка двигателя и электронное управление стали более сложными и должны быть полностью интегрированы с системой обработки воздуха, топливными системами, дополнительной обработкой и фильтрацией.

Наконечники форсунок

Каждая форсунка имеет одно сопло с множеством распылительных отверстий, оптимизированных для удовлетворения требований к мощности, а также выбросов, — говорит Файер.Сопла изготовлены из стали и используют различные методы термообработки, чтобы выдерживать высокие рабочие температуры.

По словам Файера, по мере того, как требования к выбросам стали более жесткими, способность форсунок обеспечивать равномерную и конкретную струю топлива в цилиндр становится все более важной. Форсунка является неотъемлемой частью формирования факела в момент сгорания. По его словам, распылительные отверстия форсунок согласованы с корпусом цилиндра, чтобы обеспечить наилучшее распыление топлива и, следовательно, лучшую удельную мощность, низкие выбросы и снижение расхода топлива.

Чистое топливо

Хотя материалы, используемые для наконечников форсунок, не сильно изменились при переходе от механического к электронному впрыску, форсунки в системах HPCR по-прежнему уязвимы для загрязненного топлива, говорит Серра. «Грязь, особенно твердые частицы кварца, превращает топливную систему в очень эффективную гидро-измельчитель и сокращает срок службы топливной системы и двигателя», — говорит он.

Когда вы слышите, как люди проповедуют о достоинствах чистого дизельного топлива и хорошей фильтрации, вот почему.Даже вода в топливе при давлении от 30 до 36000 фунтов на квадратный дюйм и от 5000 до 6000 раз в минуту может значительно ускорить износ наконечника форсунки.

Безопасность

В то время как топливо в общей топливной рампе находится под экстремальным давлением, основной риск для механиков, работающих с системой, возникает при работающем двигателе, поскольку большинство двигателей сбрасывают давление в топливной системе в течение нескольких секунд после выключения. Тем не менее, вы всегда должны следовать процедурам, рекомендованным производителем, при удалении воздуха из топливных систем или работе с ними.

«Новые двигатели требуют от технических специалистов забыть свои старые диагностические привычки, такие как открытие топливных магистралей на работающем двигателе», — говорит Серра.«Старые системы перекачивали только 0,01 унции топлива за рабочий ход на цилиндр при полной нагрузке. Следовательно, максимальное количество топлива, которое вы могли бы получить из одной топливной магистрали, составляло примерно 10 унций топлива при минимальном давлении через минуту.

«С двигателем с общей топливораспределительной рампой, если сделать то же самое, при значительной степени распыления будет произведен почти один галлон топлива, — говорит Серра. «Скорость топлива в пределах нескольких дюймов от места утечки достаточно высока, чтобы пробить кожу или перчатки», — говорит он.

Диагностика

Некоторые современные двигатели могут иметь сотни различных кодов неисправностей для различных условий и симптомов, но коды неисправностей не всегда решают проблему.«Даже со всеми этими кодами неисправностей для диагностики по-прежнему требуется хорошо обученный техник, который использует систематический подход к диагностике системы двигателя», — говорит Серра. «Нет никакой замены опыту и пониманию причин и следствий в двигателе. Например, код ошибки пропуска зажигания может быть вызван не только неисправной форсункой, но и неисправной системой рециркуляции отработавших газов, регулировкой клапана или системой жгута проводов ».

По словам Серры, сложнее всего диагностировать проблемы, связанные с жалобами на отсутствие кода неисправности.«Если они не поймут, как должна вести себя вся система, как выглядят нормальные данные и как подойти к диагностике, они будут потеряны», — говорит Серра.

«В более старых двигателях с механическим впрыском топлива 95 процентов топливной системы находилось между ТНВД и форсунками, поэтому диагностика была довольно простой», — говорит Серра. «В двигателе Common Rail топливный насос и форсунки составляют только 25 процентов топливной системы. «Я видел случаи, когда технический специалист тратил недели на современный двигатель, не следя за процессом диагностики, заменяя многие дорогие компоненты только для того, чтобы обнаружить, что он пропустил простую неисправность, такую ​​как засорение топливного фильтра.”

Прочность

По словам Фиера, недавний демонтаж и проверка двигателя Cummins Tier 4 показали, что его инжекторы HPCR могут рассчитывать на 20 000 часов работы до капитального ремонта. Предостережение заключается в том, что это зависит от рабочего цикла, области применения, хорошего обслуживания фильтра и чистого топлива.

«Эти двигатели не требуют плановой замены топливных форсунок в середине срока службы и, как ожидается, будут иметь такой же срок службы, как и двигатель», — говорит Фиери. «Возможно, более важным, чем срок службы в часах, является общее количество инъекций за срок службы системы HPCR, типичное число — 1 миллиард инъекций.”

Топливо под давлением Форсунки дизельного топлива заставляют все работать

Эрик Брисбон

Топливные форсунки, без сомнения, являются одним из наиболее важных компонентов функциональности двигателя, поскольку репутация дизельного двигателя во многом зависит от характеристик форсунки и репутации изготовителя оригинального оборудования.

Проще говоря, инжектор — это устройство, которое забирает определенное количество сырого сжатого топлива (или во многих случаях делает фактическое повышение давления), а затем проталкивает топливо через небольшие отверстия, которые распыляют это топливо в камере сгорания.

Когда ваша форсунка работает правильно, у вас есть точное количество распыленного топлива, которое должно вызвать воспламенение. При неправильном выполнении движок довольно быстро сообщит вам, что он очень недоволен. Опыт подсказывает, что, скорее всего, виноваты форсунки.

Инжекторы

бывают разных форм и размеров. Во всем мире многие дизели до сих пор используют системы форсунок насосных линий (PLN) для управления топливом. Отдельный топливный насос нагнетает и дозирует топливо, отправляет его по магистрали высокого давления к топливным форсункам, которые затем распыляют его на мелкие капли.

Точно так же существует множество различных типов насос-форсунок, в которых насос высокого давления и дозатор топлива встроены в сам корпус форсунки и приводятся в действие распределительным валом двигателя. Другие средства давления, такие как моторное масло, усиливают заряд давления внутри инжектора, как в случае с HEUI. Кроме того, форсунки Common Rail получают топливо под высоким давлением из центральной «топливной рампы» (подача нагнетательной камеры) с помощью топливного насоса, который питает форсунку и измеряет заряд электронным способом.

Гибридные системы существуют; тем не менее, основные условия, заключающиеся в том, чтобы взять известное количество топлива под давлением и протолкнуть его через небольшие отверстия для его распыления, остаются прежними.

Возникает очевидный вопрос, чем отличается дизельный инжектор от инжектора любого другого типа. Основываясь на физике, ответ — ничего. Каждый раз, когда вы берете жидкость и проталкиваете ее под давлением через отверстие, у вас, по сути, есть инжектор. Однако в дизелях критерии выполнения этой задачи совсем другие.

Современные дизели используют давление топлива 1500-2500 Бар. В некоторых случаях это давление вдвое или втрое выше, чем несколько десятилетий назад. Топливные форсунки должны быть способны герметизировать такое давление и работать в течение миллионов циклов при очень постоянных значениях расхода с небольшим ухудшением общей производительности. Если системы со временем начнут деградировать, пострадают общая производительность и выбросы.

В качестве примера рассмотрим текущую систему Common Rail.

Мы обсудили несколько основных элементов, таких как насос высокого давления, который питает «общую магистраль», которая подает топливо под высоким давлением к отдельным форсункам в каждом цилиндре.Форсунки имеют регулирующие клапаны, которые дозируют топливо, которые контролируются FICM (модулем управления впрыском топлива).

Топливо также служит нескольким целям с этими системами. Обратите внимание, что трубопроводы высокого и низкого давления идут взад и вперед, постоянно циркулируя топливо из бака, а излишки возвращаются. Этот контур выполняет функцию охлаждения форсунок и других частей системы, которые поглощают тепло от работы.

Кроме того, форсунки и насосы высокого давления также смазываются топливом, следовательно, фильтрация имеет первостепенное значение для поддержания чистоты топлива, когда оно попадает в форсунку.Достаточно микронного загрязнения, чтобы засорить отверстие или воткнуть иглу.

Форсунки дизельные: Техническое обслуживание механических форсунок

На протяжении более чем пятидесяти лет большинство, если не все двигатели, приводящие в действие сельскохозяйственное оборудование, имели конструкцию с воспламенением от сжатия (CI) или более известные как дизельные.

По сравнению с бензиновым двигателем (с искровым зажиганием, SI) дизель более надежен, имеет более длительный срок службы, требует меньшего обслуживания и более экономичен в эксплуатации при заданной удельной мощности.

Многие фермеры и другие люди не осознают причину снижения расхода топлива. Это связано с повышенным тепловым КПД, присущим более высокой степени сжатия конструкции, и тем, что топливо предлагает больше британских тепловых единиц (энергии) на галлон, чем бензин.

Промышленность заявляет, что галлон бензина без этанола содержит около 117 000 БТЕ, в то время как такое же количество дизельного топлива № 2 содержит от 132 000 до 152 000 БТЕ, в зависимости от плотности смеси. Как и в случае с бензином, все дизельное топливо не имеет одинаковой плотности, и это связано с процессом очистки, который использовался вместе с источником сырой нефти.

Правительство США требует минимального содержания энергии, определяемого удельным весом топлива. Пока это выполняется, это жизнеспособный потребительский продукт. В стороне, вот почему с двигателями SI и CI расход топлива для одних и тех же погодных условий и условий нагрузки может и часто меняется от бака к баку, если используются разные виды топлива.

Несмотря на то, что дизель заработал репутацию способного выполнять большую часть работы с минимальным вниманием, его необходимо понимать и обслуживать, чтобы обеспечить эффективную работу и долгий срок службы.Его требования отличаются от двигателя SI.

Если бы вы поговорили с любым производителем дизельной электростанции, он бы сказал вам, что большая часть стоимости двигателя приходится на топливную систему. На дизельном топливе с механическим впрыском он состоит из ТНВД и форсунок.

Эти компоненты являются сердцем дизельного двигателя и не только критичны для его работы, но и чрезвычайно дороги в замене в случае отказа. Они также могут снижать производительность двигателя, расход топлива и долговечность, если они не работают должным образом.

Знакомство с форсунками

Форсунки дизельного двигателя отвечают за подачу жидкого топлива и его распыление (разрушение на мелкие частицы), чтобы оно могло гореть. Им необходимо подавать необходимое количество топлива в каждый цилиндр в зависимости от нагрузки и требуемой мощности.

Они выполняют эту работу бесчисленное количество раз. В течение срока службы двигателя количество циклов впрыска может исчисляться миллиардами, а возможно, и триллионами. Кроме того, форсунки подвергаются крайне неблагоприятным условиям окружающей среды — больше, чем любая другая часть двигателя.

Форсунки подвергаются воздействию пиков температуры более 2550 F градусов снаружи, в то время как внутреннее давление может превышать 30 000 фунтов на квадратный дюйм. Хотя почти каждый производитель рекомендует обслуживать форсунки для поддержания надлежащего распыления, фермеры часто пренебрегают этими процедурами и решают их только при наличии проблемы.

Профилактическое обслуживание должно быть частью плана каждого владельца дизельного двигателя, если требуется долгий срок службы и безотказная работа.

При обсуждении дизельных двигателей многие относятся к части, подающей топливо в цилиндр, как к форсунке.Для эксперта по дизельному топливу инжектор — это узел держателя форсунки, но со временем он использовался для описания самого форсунки.

Это усложняется из-за различных конструкций топливных систем, используемых в дизельных двигателях. В настоящее время существуют механические насос-форсунки (MUI), электронные насос-форсунки (EUI) и гидравлические насос-форсунки (HEUI), которые стали популярными в легких моделях с двигателем Ford Power Stroke.

Распространенная жалоба, которая требует снятия форсунок, — это синий / черный дым на холостом ходу, отсутствие под нагрузкой, плохое качество холостого хода, снижение мощности и увеличение расхода топлива наряду с затрудненным запуском.

Форсунки разных производителей отличаются от других производителей, но применяются все основные функции, процедуры обслуживания и советы по техническому обслуживанию.

Чтобы усложнить ситуацию, в категории механических устройств существует множество различных конструкций форсунок, которые в некоторых случаях имеют общие рабочие характеристики, но не во всех случаях.

Гидравлические форсунки обычно классифицируются по конструкции форсунок. Есть тарельчатый, игольчатый, многорежимный и электрогидравлический стили.В каждой категории дизайна часто есть подмножества стилей, например, те, которые используются строго с приложениями прямого впрыска (IDI) или прямого впрыска (DI).

Независимо от конструкции механический инжектор, не содержащий электронных компонентов, может и нуждается в обслуживании. Электронные усовершенствованные форсунки в легких условиях эксплуатации традиционно не обслуживаются, и их необходимо заменять как единое целое.

Следует понимать три термина, относящихся к испытаниям и обслуживанию форсунок.Это давление открытия форсунки (NOP), обратная утечка и прямая утечка.

Форсунку форсунки можно рассматривать как гидравлический переключатель. Одним из элементов его дизайна является давление, при котором он открывается. Обычно это устанавливается либо с помощью регулировки натяжения пружины, либо на некоторых моделях с регулировочными шайбами. Термин «давление открытия» или «давление открытия» также используется вместо давления открытия форсунки.

Независимо от того, какой термин используется, он описывает величину давления, которое должно быть создано топливным насосом, прежде чем форсунка подаст топливо в цилиндр.Каждая модель двигателя и конструкция сопла имеют собственное значение NOP, которое обычно варьируется от 1000 до 5880 фунтов на квадратный дюйм.

В некоторых форсунках используется внутренний открывающийся клапан, который возвращает неиспользованное топливо в бак. Внутренняя утечка является результатом зазора между клапаном сопла и корпусом сопла. Он измеряется во время стендовых испытаний в течение десяти секунд и регистрируется как обратная утечка.

Прямая утечка — это способность форсунки не капать и не протекать до тех пор, пока не будет реализовано NOP. Подтверждает герметичность сопла.Для проверки на прямую утечку на испытательном стенде создается давление примерно на 150 фунтов на квадратный дюйм ниже NOP. Никаких видимых капель не допускается.

Для правильного обслуживания форсунки ее необходимо снять с двигателя и доставить на предприятие, специализирующееся на этих процедурах. Эти магазины традиционно относятся к категории услуг по инжекционным насосам и форсункам. Там техник задокументирует проблемы и опасения и, используя испытательный стенд, подтвердит все значения, визуально проверяя схему распыления топлива.

Затем форсунка будет разобрана, очищена ультразвуком, заменены изнашиваемые детали и снова собраны. Затем форсунка будет возвращена на испытательное приспособление, будут установлены критические давления и повторно оценена форма распыления.

Профилактика — лучшее лекарство

Самая эффективная программа для форсунок, которую следует внедрить на вашей ферме, — это не допустить износа компонента до уровня, при котором требуется серьезное обслуживание. Не следует понимать, что форсунки никогда не будут нуждаться в профессиональном обслуживании, а только для продления часов работы до того, как это потребуется.Хорошо, что это очень просто.

Ключ к поддержанию производительности форсунок начинается с чистого топлива и фильтров как на оборудовании, так и в баке для хранения топлива на ферме. Второй шаг — никогда не использовать в двигателе неочищенное топливо, особенно если в механической системе впрыска используется дизельное топливо с низким или сверхнизким содержанием серы.

Процесс удаления серы также подрывает естественную смазывающую способность топлива (сера НЕ является смазкой), и сопло изнашивается с экспоненциальной скоростью.Это создает проблемы с давлением и внутренней утечкой, которые потребуют замены деталей. Продукт, который добавляет смазывающие свойства и способствует удалению лака и нагара, разрушит любые отложения, которые ухудшат работу форсунки.

Хорошо то, что существует множество отличных и легко доступных марок присадок, которые можно использовать для обработки вашего наливного топливного бака перед поставкой от поставщика.

Лучшие продукты обычно включают в себя не только смазку и моющее средство, но и другие ключевые ингредиенты для правильной работы, такие как улучшитель цетанового числа, анти-гель, уменьшение влажности и фунгицид.Многие фермеры не согласны с и без того высокой стоимостью дизельного топлива и считают стоимость хорошей добавки ненужной или «змеиным маслом», но эта логика нарушается, если подсчитать.

Качественная присадка увеличит стоимость топлива примерно на пять-семь центов за галлон и может быть немного ниже при покупке оптом. Если ваша ферма использует 5000 галлонов дизельного топлива в год, это равносильно увеличению затрат на топливо от 250 до 350 долларов США.

Сравните это с улучшенными характеристиками, меньшим расходом топлива, а также временем и расходами на обслуживание форсунок; нет лучшей окупаемости вашего оборудования, чем переработка каждого галлона использованного топлива и поддержание работы форсунок в соответствии с конструкцией.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *