Турбина для дизельного двигателя: Купить турбину на дизельный двигатель в интернет магазине

Содержание

Турбина дизельного двигателя: устройство и ремонт механизма

Дизельный двигатель – это поршневой двигатель внутреннего сгорания, который работает соответственно с принципом самовоспламенения распыленного топлива, что получается в результате воздействия нагретого воздуха при предварительном сжатии.

Достаточно широким является разнообразие топлива для дизельного двигателя. Таким образом, сюда включаются практически все фракции от нефтеперегонной продукции: от самого простого керосина, и до мазуты, а также ряда других продуктов естественного происхождения – рапсового масла, фритюрного жира, пальмового масла и т.д.

Дизельный двигатель уникален, так как может даже работать на обычной, не переработанной сырой нефти.

Дизельные двигатели имеют несколько конструкций камер сгорания. В зависимости от этого существует и несколько типов дизельного двигателя:

1. Дизельный двигатель с неразделенной камерой.

Данная камера сгорания выполнена в поршне. Само топливо впрыскивается непосредственно через надпоршневое пространство. Главной особенностью данного типа двигателя является минимальное потребление топлива.

Несущественным, но все же недостатком, является повышенная шумность данного двигателя, в сравнении с его собратом. Сейчас же ведутся также интенсивные работы во блага нововведений, чтобы вышеуказанный недостаток был устранен. Так, в некоторых системах дизельных двигателей было основано устройства предвпрыска топлива в камеру сгорания, что снижает жесткость работы всего агрегата.

2. Дизельный двигатель с разделенной камерой. В данном виде дизельного двигателя существует дополнительная камера, в которою, собственно, и впрыскивается топливо. Вихревая, предкамерная камера в большинстве дизельных двигателей имеет непосредственную связь с цилиндром через специальный канал так, чтобы воздух при его сжатии, когда попадал в оную камеры завихрялся более интенсивно. Это, в свою очередь, способствует тому, что начинается процесс отменного перемешивания воздуха с впрыскиваемым топливом, в результате чего происходит более полное сгорание топлива.

Именно данная схема очень долгий период считалась оптимальной для большинства легких двигателей и в основном использовалась на легковом типе автомобилей. Тем не менее, вследствие того, что экономичность не самая лучшая и оставляет желать лучшего, в последнее десятилетие происходит активное вытеснение этаких двигателей теми двигателями, которые имеют нераздельную камеру и иную систему подачи топлива.

1. Ремонт турбин дизельных двигателей – изучаем устройство механизма

Турбина являет собою крыльчатку, которая была насажена на вал. Через этот вал компрессор приводится в свою эффективную работу. Корпус его производится из жаропрочного сплава алюминия, а сам вал делают зачастую из стали среднелегированной. Именно эти детали практически не поддаются никакому ремонту и в том случае, если они выходят из строя, их необходимо заменять новыми.

Корпус самого турбонадува дизельного двигателя делается из чугуна. Весь процесс активной работы двигателя, по большей части, порождает износ постелей под подшипниками, а также гнезд уплотнительных колец. Сама улитка турбины отливается из чугуна, а уже за счет ее довольно не простой формы образуется определенный поток газов, который дает толчок к развитию и началу движения всего описанного агрегата.

Также, изготавливают алюминиевую отливку под улитку компрессора с небольшим местом для крыльчатки. В момент самого вращения через центральное отверстие компрессор затягивает воздух, после чего он сжимает его и нагнетает его в двигатель по кольцевому каналу.

Само устройство этого механизма не отличается особой сложностью. Тем не менее, для его изготовления нужна высокая точность литья, а также минимальные допуски при подборе деталей.

2. Ресурс турбины дизельного двигателя

Включение турбины дизельного двигателя происходит с самыми первыми его оборотами. Заканчивается же уже немного позже его первичной остановки. При непосредственном пуске мотора выхлопные газы сразу же попадают в турбинную улитку, а это, в свою очередь, приводит вал с крыльчатками в движение.

На самих холостых оборотах у выхлопных газов наблюдается маленькое давление, вследствие чего вращение турбины и ее скорость не влияет на весь объем воздух, который попадает непосредственно в двигатель.

Увеличение количества выхлопных газов сопутствуется ростом оборотов. Вследствие этого процесса обороты турбокомпрессора увеличиваются, а турбина начинает свою эксплуатацию в штатном режиме. В автомобильном «мифовом» мире существует теория, что ресурс турбины у дизельного двигателя очень невысок.

Миф этот нужно развеять, так как он не соответствует действительности. Сам ресурс турбины дизельного двигателя сравняется по долговечности ресурса мотора. Он немного меньше чем он, так как это вызвано его деятельностью и спецификой работы.

Зачастую ресурс турбокомпрессора, вследствие плохого эксплуатирования и несоблюдения всех правил и рекомендаций производителей, снижается.

Сопутствуют этому следующие моменты:

1. Использование некачественной смазки.

2. Несвоевременная замена масла.

3. Резкий набор оборотов при холодном и непрогретом двигателе.

4. Остановка горячего двигателя, если он не выдерживается на холостом ходу.

5. Засор каналов масла. В результате этого перебои подачи смазки неизбежны.

Срок службы турбины никоим образов не является зависимым от уровня умения владения автомобилем водителя. Это миф. На практике же, эксплуатация турбины дизельного двигателя не имеет сложностей даже для новичков.

Для того, чтобы двигатель работал бесперебойно нужно соблюдать все те же правила, которые используются при использовании обычного мотора. Нужно лишь учитывать минимальные вышеуказанные нюансы.

3. Эксплуатация дизельного двигателя с турбиной

Нужна регулярная проверка состояния воздушного фильтра при эксплуатации дизельного двигателя и его турбины. Это нужно потому, что при загрязнении фильтра возникает большое давление на всасывании воздуха.

Это, в свою очередь, приводит к тому, что работоспособность и производительность компрессора снижается. Из-за того, что масло имеет высокую степень вязкости ощущается дефицит смазки при запуске холодного двигателя. Именно поэтому мотор с турбиной требует значительного прогрева перед началом полноценной работы.

Ниже указаны основные признаки при неисправностях турбин дизельного двигателя:

1. Двигатель не может набрать максимальные обороты, а также присутствует черный выхлоп. Это скорее всего вызвано из-за недостаточного поступления воздуха. Таким образом можно определить, что воздушный канал был загрязнен. Также, можно предположить, что выпускной коллектор разгерметизировался. Очень часто наблюдается утечка через слабые и неплотные соединения патрубков.

2. Также, о неисправности турбины может рассказывать синий цвет у выхлопного газа. Основной причиной этого может быть попадание масла в сам выхлопной коллектор. В данном случае нужно проверить целостность роторов, а также полное состояние всей сливной системы, которая идет от турбины непосредственно к двигателю. Иногда в ней могут образовываться засоры и сужения.

3. Громкая работа двигателя также свидетельствует о неисправности его турбины. Для того, чтобы определить причины этого нужно очень тщательно проверить всю герметичность трубопроводов и легкость вращения оси у компрессора. Может быть такое, что были повреждены роторы, или деформированы, или чересчур потерты. В таком случае необходим демонтаж всего узла для полного осмотра и дальнейшего ремонта.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Турбина дизельного двигателя: обслуживание, профилактика, ремонт

Обслуживание турбины дизельного двигателя

Большинство современных автомобилей с дизельными моторами оснащены турбокомпрессором.

Проверка общего состояния и техническое обслуживание турбодизелей проводятся в соответствующие сроки.

Наиболее распространенные проблемы дизельных турбин

Устройство турбины дизельного двигателя отличается повышенной сложностью. При длительной эксплуатации рабочие узлы и детали механизма приходят в негодность. Чаще всего причиной выхода из строя турбодизеля являются следующие факторы:

  1. Снижение уровня моторного масла в двигателе внутреннего сгорания.
  2. Скопление вредных отложений на рабочих поверхностях геометрии турбины.
  3. Повышение температуры отработавших газов.
  4. Заклинивание соплового аппарата.
  5. Проникновение посторонних предметов в полость турбокомпрессора (фрагменты поломанных поршней, фильтров, клапанов, крепежные детали).
Основные признаки неисправностей турбин:
  • резкое падение мощности силового агрегата;
  • появление сизого дыма из выхлопной трубы;
  • увеличение расхода смазочной жидкости;
  • появление неприятного запаха горелой смазки;
  • сбои при работе дизельного мотора в режиме холостого хода.

Особенности ТО турбин

Квалифицированные специалисты сервисного центра TurboRotor знакомы с принципом работы турбины на дизеле, методами проведения ремонтно-восстановительных работ и техобслуживания сложного агрегата. Учитывая, что текущий или капитальный ремонт турбодизеля – это дорогостоящее мероприятие, рекомендуется проводить своевременную проверку состояния и качественное обслуживание данного устройства.

Благодаря налаженным связям с поставщиками оригинальных запчастей и расходных материалов непосредственно от производителей, TurboRotor предоставляет высококачественные услуги по ремонту и сервисному обслуживанию турбокомпрессоров по доступным ценам.

Основные работы по выполнению ТО турбин:
  1. Проверка уровня и состояния моторного масла в ДВС (при этом жидкость проверяется по таким параметрам: цвет, запах, консистенция, уровень вязкости, наличие мелких частиц – продуктов износа металлических деталей).
  2. Подбор марки смазки по рекомендациям завода-изготовителя авто.
  3. Замена смазочного материала и охлаждающей жидкости в соответствии с рекомендованными сроками.
  4. Замена фильтрующих элементов.

Рекомендации опытных автовладельцев

Важно: чтобы продлить эксплуатационный срок дизельного двигателя, оборудованного турбонаддувом, необходимо:

  • соблюдать стандартный режим эксплуатации автомобиля,
  • не ездить на непрогретом моторе,
  • не допускать агрессивный стиль вождения,
  • следить за уровнем моторного масла, при необходимости доливать недостающие объемы
  • смазочной и охлаждающей жидкостей.

Наши отличия от конкурентов

Компания TurboRotor занимается ремонтом турбомоторов уже более 5 лет. В работе используются только современные компьютерные цифровые технологии. На базе СТО имеются уникальные стенды для проведения диагностики и балансировки турбин. При необходимости замены запчастей клиентам предлагаются фирменные детали и узлы оригинального исполнения.

Мы проводим гарантийное и послегарантийное обслуживание турбокомпрессоров в соответствии с требованиями норм Закона о защите прав потребителей. При гарантийном обслуживании мы производим бесплатный ремонт и восстановление турбин в течение всего срока гарантии. По окончании гарантийного обслуживания сервисные послегарантийные услуги производятся за счет заказчика.

Принцип работы турбины на дизельном двигателе – Турбобаланс

Дизельный двигатель, относящийся к категории двигателей внутреннего сгорания, был изобретён в феврале месяце 1893года в Германии инженером Рудольфом Дизелем.

С момента изобретения двигатель постоянно усовершенствовался, менялись виды топлива, способы его подачи, баланс топливной смеси и т.д.

Собранные по классической схеме двигатели, используют принцип превышения атмосферного давления над давлением, создающимся в цилиндре в момент движения поршня к нижней мёртвой точке. Однако за счёт незначительного времени затраченного на выполнения этого действия и небольшого перечного сечения воздухоподводящего канала поступающего воздуха недостаточно для полного сгорания топливной смеси.

Позже на родине Рудольфа Дизеля нашли способ решения данной проблемы. Воздух в цилиндры должен подаваться под избыточным давлением! Это основной принцип работы турбины на дизельном двигателе

Для этой цели было разработано специальное устройство, совмещающее в себе свойства вентилятора и компрессора. Это устройство приводилось в движение непосредственно от коленчатого вала двигателя, что снижало коэффициент полезного действия всей конструкции в целом.

Следующим усовершенствованием системы подачи воздуха стала установка в качестве привода для компрессораспециальной турбины, которая приводилась во вращение за счёт использования энергии потока использованных отработанных газов.

Однако при работе двигателя на малых оборотах, воздуха подаваемого в цилиндры компрессором было недостаточно для полноценной работы дизеля. Вскоре и этот вопрос был решён путём установки двух турбин различного диаметра и приводимых во вращение выхлопными газами, забираемыми из разных частей выпускного тракта. Турбина меньшего диаметра разгонялась быстрее и обеспечивала работу двигателя на малых оборотах, а большая турбина работала при больших оборотах двигателя, что качественно изменило принципы работы турбины на дизельном двигателе. Так же для уменьшения турбоямы использовались механизмы изменяемой геометрии.

Работает турбокомпрессор следующим образом:

— Выхлопные газы, отводимые от выпускного коллектора дизеля, направляются в приемный патрубок турбокомпрессора.

— Проходят по каналу корпуса турбины, который постепенно уменьшается в сечении, а газы увеличивают скорость и воздействуя на ротор заставляют вращаться турбину. Число оборотов турбины зависит от многих факторов: конфигурации канала, его формы, сечения и т.д. Турбина вращается со скоростью около150000 об/сек, её размеры подбираются в зависимости от типа двигателя.

— Наружный воздух, проходя через фильтрующий элемент, очищается от пыли и других посторонних примесей и в сжатом состоянии попадает во впускной коллектор дизеля. После этого происходит закрытие впускного канала, дополнительное сжатие топливной смеси и её воспламенение. В завершении рабочего цикла открывается выпускной коллектор.

Поскольку уходящие выхлопные газы имеют температуру около 800° — 900° С, турбокомпрессор имеет систему охлаждения, радиатором которой является корпус подшипника. При работе турбокомпрессора, за счёт сжатия и увеличения внутренней силы трения воздух, нагнетаемый в цилиндры дизеля подогревается до температуры около 170°С. Во время охлаждения воздух «сгущается», то есть увеличивается, его плотность и соответственно взрастает, объём подаваемого воздуха. Подача в двигатель охлаждённого воздуха положительно влияет на повышение мощности дизеля, что в свою очередь снижает потребление топлива, уменьшает отрицательное воздействие на окружающую среду.

Турбокомпрессорные двигатели имеют перед обычными двигателями определённые преимущества:

  • При одних и тех же энергозатратах расход топлива меньше, поскольку часть энергии выхлопных газов, раскручивая турбокомпрессор, подавая большее количество воздуха в цилиндры двигателя, увеличивает его мощность.
  • Двигатели с турбокомпрессорами имеют меньший наружный объём и соответственно меньшие потери нагрева.
  • За счёт относительно небольшого веса на 1Л.С. мощности снижается расход металла на сам двигатель и конструкцию, на которой он установлен.
  • Также меньше объём отсека, в который может быть установлен турбодвигатель.
  • За счёт малого числа оборотов при номинальной мощности турбодвигатели обладают лучшими нагрузочными характеристиками.
  • В условиях разряженного воздуха, за счёт высокого давления развиваемого турбокомпрессором и низкого внешнего давления турбодвигатель имеет огромные преимущества в сравнении с обычным двигателем, поскольку мощность его практически не теряется.
  • турбодвигатель за счёт малых размеров имеет меньшую звукоизлучающую поверхность, а турбокомпрессор работает как дополнительный глушитель.

Имеет турбонаддув и свои недостатки – это заметная задержка набора мощности при резком нажатии на педаль акселератора. Такое случается в связи с тем, что отсутствует механическая связь коленчатого вала и турбины Мощность начинает расти, когда турбина раскрутится выхлопными газами. Хотя подобное явление в той или иной степени наблюдается у любого двигателя.

Основное применение дизельные двигатели с турбонаддувом нашли на автомобилях большой грузоподъёмности, работающих с полной нагрузкой.

Принцип работы дизельной турбины, как работает турбина дизельного двигателя ⋆ блог компании Turbovector

Деталь раскручивается силой отработанных газов. Турбокомпрессором называется воздушный насос, приводимый в движение турбиной. Дизельный двигатель разгоняет лопатки до 130 000 оборотов в минуту. Сгорание топлива происходит более полно, расход снижается, а КПД увеличивается. Дополнительно уменьшается количество вредных выбросов в атмосферу.

Схема узла

Турбина соединена с компрессором жёсткой осью. Компрессор втягивает и спрессовывает воздух, и под давлением выдувает в коллектор двигателя. Чем выше давление, тем большее количество газов подаётся в двигатель. Возрастает КПД, скорость разгона, манёвренность.

Существует прямо пропорциональная зависимость между давлением, с которым подаётся воздух, и быстротой движения турбины. Бесконечно наращивать нагнетаемый объём воздуха нельзя, так как существуют предельные нагрузки на крыльчатки.

Конструкция турбонаддува

Деталь состоит из корпуса и ротора. Газы под давлением выдуваются из выпускного коллектора двигателя в приёмный патрубок турбокомпрессора. В узком канале происходит ускорение. Газы попадают на улитку турбины, затем раскручивают ротор. На скорость влияет размер и форма внутреннего канала.

Модификации

Модели для дизельных, бензиновых двигателей, а также грузовиков и тяжёлой техники отличаются по внутреннему строению корпуса. Для наращивания мощности автобусов и грузовой техники применяют 2 параллельных канала. Ротор разгоняют 2 синхронных воздушных потока.

Турбокомпрессоры большого объёма специально комплектуют кольцом с направляющими лопатками. Это позволяет создать равномерную струю воздуха на роторе. Также появляется возможность регулировать скорость и мощность воздушной массы.

Комплектующие изготавливают из тугоплавких металлов, выдерживающих 1000-1150 °С. Ось, на которой закреплён ротор, менее тугоплавкая.

Способ сборки:

  • • Ротор и ось соединяют. В процессе обе детали вращаются в противоположные стороны. Трение образует большое выделение тепла. Происходит сплавление.
  • • В месте контакта ось имеет внутреннюю полость. Это необходимо для изоляции жара от ротора.
  • • Ближе к корпусу турбины в выемке на оси размещают уплотнительное кольцо.
  • • Радиальные подшипники полируют.
  • • Один конец оси отливается меньшего диаметра и заострённым. На него надевается ротор с закрепительной резьбой. Навинчивающаяся гайка плотно удерживает запчасть на месте.

Ось подлежит обязательной балансировке, как и все части турбокомпрессора. Проводится минимум два этапа балансировки: отдельно и в сборке – перед установкой на двигатель.

Компрессор

Узел включает корпус и ротор. Величина зависит от объёма двигателя и общего размера транспортного средства. Чем больше ротор, тем ниже предельная скорость вращения. Ротор компрессора неразрывно связан с осью и движется с одинаковой быстротой по сравнению с ротором турбины.

Форма алюминиевых лопаток продумана для втягивания воздуха через середину детали. Газы подталкиваются к краям ротора и лопатками передаются на стенки картриджа. Этот механизм сжимает воздух до размеров впускного коллектора. Картридж турбокомпрессора обычно отливают из алюминия.

Корпус подшипников

Центральная ось является связующим звеном между компрессором и турбиной. Движение оси задаётся подшипниками. Между ними, корпусом и осью течёт моторное масло. Оно смазывает всю систему, включая двигатель.

Существуют модели со стационарным подшипником. Смазывание оси производится благодаря наличию масляной ванны. Такой механизм изолирован от системы двигателя. Конструкция хороша тем, что жидкость не только снижает трение, но и остужает механизм в процессе работы.

Комплект из маслоотражательных прокладок и уплотнительных колец служит для предотвращения утечки масла. Расходники прикрепляются по обе стороны турбокомпрессора. Дополнительно затрудняется прохождение воздуха между турбиной, компрессором и осью. Это необходимо, так как внутреннее давление компрессора и турбины превосходит его же в корпусе оси.

Чтобы нивелировать разницу, часть газов и воздуха спускается в картер двигателя вместе с текущим моторным маслом.

Динамические уплотнения

  • • Уплотнительное кольцо раскручивается по ходу движения оси с аналогичной быстротой. Три отверстия позволяют создать противовес давлению масла.
  • • Внутренний дизайн картриджа в том месте, где снаружи крепится кольцо, имеет специальную конструкцию для изоляции протечек.

Заказать ремонт или замену дизельной турбины в Минске недорого можно по телефону +375 (29) 123 59 55 или через форму на сайте turbovector.by.

Узнайте, как устроен принцип работы дизельной турбины!

Узнайте, как устроен принцип работы дизельной турбины!

Турбокомпрессор — это компрессор, или воздушный насос, который приводится в работу от турбины. Турбина вращается за счет использования энергии потока отработанных газов. Частота вращения турбокомпрессора дизельного двигателя находится в пределах от 1 000 до 130 000 об/мин (это значит, что лопатки турбины разгоняются почти до линейной скорости звука).

Турбина непосредственно соединяется с компрессором жесткой осью. Компрессор засасывает через воздушный фильтр свежий воздух, сжимает его и затем под давлением подает во впускной коллектор двигателя.
Чем больше воздуха подается в цилиндры, тем больше топлива может сгореть, а это повышает мощность двигателя.

Теоретически существует равновесие мощностей между турбиной и компрессором турбокомпрессора. Чем большую энергию имеют отработанные газы, тем быстрее будет вращаться турбина.
Как следствие, компрессор тоже будет вращаться быстрее.


1. Всасываемый воздух
2. Ротор компрессора
3. Сжатый воздух
4. Вход отработавших газы
5. Ротор турбины
6. Выход отработавших газов

Турбина

Турбина состоит из корпуса и ротора Отработанные газы из выпускного коллектора двигателя попадают в приемный патрубок турбокомпрессора. Проходя по сужающемуся внутреннему каналу корпуса турбины, они ускоряются, и минуя «улитку» направляются к ротору турбины, который приводят во вращение.

Скорость вращения турбины определяется размером и формой канала в ее корпусе.

Корпусы турбин значительно различаются в зависимости от сферы применения. Корпус турбины двигателя грузовика может быть разделен на два параллельных канала, поэтому на ротор воздействуют два потока отработанных газов.

В турбокомпрессоры с большим объемом часто устанавливают дополнительное кольцо с направляющими лопатками. Оно облегчает создание постоянного потока отработанных газов на роторе турбины и делает возможным регулировку потока.

Корпус турбины и ротор отливаются из сплава с высокой термостойкостью.

На оси жестко крепится ротор турбины. Материал оси отличается от материала, используемого для ротора турбины.
Сборка этого соединения осуществляется следующим способом:

  • Ось и ротор, вращающиеся в противоположных направлениях на очень большой скорости, прижимают друг к другу.
  • Выделяющееся при трении тепло сплавляет их друг с другом, образуя неразъемное соединение.
  • Ось в месте соединения пустотелая. Эта пустота затрудняет передачу тепла от ротора турбины к ее оси. На оси со стороны турбины имеется углубление, в котором располагается уплотнительное кольцо.
  • Рабочая поверхность радиальных подшипников упрочняется и полируется.
  • На более тонкий конец оси устанавливается ротор компрессора; там имеется резьба, на которую навинчивается предохранительная гайка для закрепления ротора.
  • После того, как ось изготовлена, она должна быть отбалансирована с максимально возможной точностью, прежде чем она будет установлена в корпус.
  • Компрессор

    Компрессор состоит из корпуса и ротора
    Размеры компрессора определяются количеством воздуха, требуемого для двигателя, и скоростью вращения турбины. Ротор компрессора жестко закреплен на оси турбины и, следовательно, вращается с той же скоростью, что и ротор турбины.

    Лопатки ротора компрессора, изготавливаемые из алюминия, имеют такую форму, что воздух засасывается через центр ротора. Всасываемый таким образом воздух направляется к периферии ротора и при помощи лопаток отбрасывается на стенку корпуса компрессора.
    Благодаря этому воздух сжимается и через впускной коллектор попадает в двигатель.
    Корпус компрессора также изготовлен из алюминия.

    Корпус подшипников

    Смазка турбокомпрессора производится от системы смазки двигателя:

  • Корпус оси образует центральную часть турбокомпрессора, расположенную между турбиной и компрессором
  • Ось вращается в подшипниках скольжения
  • Моторное масло по каналам проходит между корпусом и подшипниками, а также между подшипниками и осью
  • Примечание: В настоящее время появились конструкции, в которых подшипник неподвижен, а ось вращается в масляной ванне. В таких конструкциях масло не только служит для смазки оси, но и охлаждает подшипники с корпусом.

    Для уплотнения турбокомпрессора с двух сторон устанавливаются маслоотражательные прокладки и уплотнительные кольца. Но, несмотря на то, что эти кольца помогают избежать утечек масла, они в действительности не являются уплотнительными прокладками. Их нужно рассматривать как элемент, затрудняющий утечку воздуха и газов между турбиной, компрессором и корпусом оси.

    В обычном режиме работы турбокомпрессора давление в турбине и компрессоре больше давления в корпусе оси.
    Часть газов из турбины и часть воздуха, сжатого в компрессоре, попадают в корпус оси и вместе с моторным маслом по сливному маслопроводу проходят в масляный картер двигателя.

    Все масляные уплотнения динамического типа, т.е. работают на принципе разности давлений:

  • Уплотнительное кольцо вращается с той же скоростью, что и ось. Благодаря имеющимся в нем трем отверстиям создается противодавление маслу
  • Внутренняя часть корпуса оси на уровне кольца имеет сложную герметическую форму для предотвращения просачивания масла к компрессору
  • У нас новая услуга!

    Независимая экспертиза и дефектовка вышедших из строя турбокомпрессоров

    Подробности по телефону: 8-912-895-44-41

    Эксплуатация и принцип работы турбины на дизельном двигателе

    Гениальная идея использования выхлопных газов для разгона ротора позволила создать турбированный дизельный двигатель внутреннего сгорания и увеличить его мощность на 40–50%. Это притом, что во время работы в обычном режиме выброс газов сопровождается снижением коэффициента полезного действия в пределах 30 — 40%.

    Принцип работы турбины дизельного двигателя основан на увеличении количества воздуха, смешиваемого с топливом и поступающего в камеру сгорания. За один и тот же период времени и при равных объемах цилиндров, двигатель с турбонаддувом может сжечь большее количество топлива, чем движок, не оснащенный таким устройством. А значит, его мощность и КПД в единицу времени значительно возрастет.

    Рассмотрим устройство турбины дизельного двигателя, как работает, и каким образом достигаются такие показатели.

    Конструктивные элементы системы

    Для осуществления возложенных функций, система турбонаддува состоит из двух основных частей:

    1. Компрессор;
    2. Турбина.

    Компрессор служит для нагнетания атмосферного воздуха в систему подачи топлива. Он состоит из корпуса и расположенной в нем крыльчатки, которая, вращаясь, всасывает воздух. Чем выше ее скорость вращения, тем больше объем принятого воздуха. Увеличению скорости способствует работа турбины.

    Она также состоит из корпуса с крыльчаткой (ротором), которая приводится в движение выхлопными газами. В корпусе газы проходят через специальный канал, имеющий форму улитки, что позволяет им увеличить скорость.

    Как работает турбонаддув дизельного двигателя

    Ротор турбины и крыльчатка компрессора жестко закреплены на одном валу. Таким образом, скорость вращения ротора передается крыльчатке. Круг замыкается:

    • Через компрессор воздух из атмосферы, смешиваясь с топливом, подается в цилиндры двигателя;
    • Смесь сгорает, приводя в движение поршни, и образовавшиеся в результате газы поступают в выпускной коллектор;
    • Здесь они принимаются в корпус турбины, разгоняются в канале и на выходе взаимодействуют с ротором, заставляя его вращаться;
    • Ротор через вал передает вращение крыльчатке компрессора, которая всасывает в корпус атмосферный воздух.

    Получается взаимосвязанная схема работы, когда количество всасываемого воздуха зависит от скорости вращения крыльчатки и, наоборот, крыльчатка вращается быстрее при большем количестве забираемого воздуха.

    Принцип работы турбонаддува имеет два момента, называемые турбоямой и турбоподхватом.

    Первый момент характеризуется задержкой в работе турбины после увеличения подачи топлива нажатием на педаль газа, так как для разгона ротора выхлопными газами требуется время.

    Вслед за турбоямой наступает момент турбоподхвата, когда разогнавшийся ротор резко увеличивает подачу воздуха в цилиндры, повышая мощность двигателя.

    Регулировка давления наддува

    Турбонаддув дизельного двигателя повышает его мощность за счет возрастания давления выхлопных газов, являющихся результатом увеличения числа оборотов и интенсивности работы мотора. Этот же процесс повышает давление наддува. Если его не регулировать, то на самых высоких оборотах оно может достичь опасных значений, приводящих к поломкам и механическим повреждениям.

    Регулировка давления производится с помощью выпускного предохранительного клапана, а контроль максимально допустимого значения — с помощью мембраны и пружины определенной жесткости.

    Суть работы: при достижении предельного значения давления, мембрана, установленная в корпусе компрессора, преодолевает воздействие пружины и открывает регулировочный клапан.

    Давление регулируют как на стороне компрессора, так и на стороне турбины:

    1. Работающий турбокомпрессор сбрасывает в атмосферу через выпускной клапан излишки забранного воздуха, тем самым снижая давление.
    2. В турбине клапан выпускает отработанные газы под воздействием мембраны компрессора, когда давление всасываемого воздуха достигает максимального уровня. Благодаря этому, ротор вращается с установленной скоростью, а компрессор не забирает лишний воздух и не увеличивает давление.

    Второй вариант расположения клапана позволяет изготавливать системы меньших габаритов. Кроме того, турбонагнетатель с клапаном в компрессоре подвержен чрезмерному нагреву из-за повышенной температуры выпускаемого воздуха, что негативно сказывается на эффективности его работы.

    Поэтому турбонаддув дизельного двигателя чаще оснащают регулировочным клапаном в турбине, а регулировку в компрессоре используют в качестве дополнения.

    Система смазки

    Смазка вала турбонагнетателя осуществляется смазочной системой двигателя.

    На вал устанавливают уплотнительные кольца, предотвращающие проникновение масла в полости корпусов компрессора и турбины. Они же предохраняют корпуса от перегрева. Но герметичность обеспечивается не столько уплотнениями, сколько разностью величины давления в различных частях агрегата. Эту разницу давлений создает турбинная ось (вал), имеющая неравномерный диаметр.

    Особая форма литья корпуса, в котором расположен вал, также способствует удержанию масла.

    Если мотор не развивает требуемую мощность, это может быть симптомом неисправности турбонаддува. Наиболее часто встречающиеся проблемы — загрязнение воздушного фильтра или потеря герметичности впускного коллектора. Кроме потери мощности, их можно диагностировать по несвойственному для исправной машины цвету и количеству дыма, выходящего из выхлопной трубы.

    Недостатки турбокомпрессоров

    Принцип работы турбины на дизельном двигателе создает и негативные факторы:

    • Повышенный расход горючего. Возможность сжечь большее количество солярки за счет увеличенного объема подачи воздуха, вместе с мощностью повышает и «прожорливость» машины. Уменьшить аппетит до разумных пределов позволяет правильная регулировка системы.
    • Положительные стороны наддува приводят к многократному повышению температуры во время такта сжатия, что может вызвать детонацию в двигателе. Решается эта проблема установкой охладителей, регуляторов и прочих элементов.

    Правила эксплуатации

    Чтобы в полной мере использовать ресурс турбины дизельного мотора и продлить ее срок службы, необходимо выполнять ряд условий:

    • Регулярно менять масло в системе, чтобы не допустить попадания абразива в маслопровод и его засорения.
    • Применять только качественное масло, имеющее сертификат, той марки, которая соответствует указанной в паспортных данных двигателя.
    • Прогревать мотор перед началом движения и не давать холодному двигателю высоких нагрузок.
    • Никогда резко не отключать движок, а после остановки автомобиля давать ему возможность поработать несколько секунд на холостых оборотах.

    7 главных заблуждений о турбомоторах: развенчиваем все! — журнал За рулем

    Турбонаддувными двигателями оснащается все больше автомобилей по всему миру. При этом многие наши автолюбители до сих пор остаются во власти предрассудков, считая такие моторы ненадежными. Эксперт «За рулем» утверждает: это давно не так!

    Материалы по теме

    Все современные турбомоторы — это комбинированные двигатели. Состоит такой мотор из поршневого двигателя внутреннего сгорания, работающего на бензине либо дизельном топливе, и агрегата наддува. Выхлопные газы поршневого двигателя имеют высокие температуру и давление и несут в себе бо́льшую энергию. Эта энергия составляет примерно треть от всей, которую дало сгоревшее топливо. Выхлопные газы вращают центростремительную турбину, которая сидит на одном валу с центробежным компрессором. Компрессор сжимает воздух и подает его в цилиндры. Таким образом, сама идея турбонаддува — это использование энергии выхлопных газов для увеличения количества воздуха, подаваемого в поршневой двигатель.

    Миф 1. Турбомотор — это обычный двигатель, к которому добавили турбину

    Раньше — да. Сейчас двигатели, на которые устанавливают систему наддува, подвергаются значительным изменениям. Им полагаются усиленные поршни и шатуны, часто другой коленчатый вал. На них устанавливают систему, охлаждающую днища поршней маслом. Дорабатывают головку блока цилиндров: корректируют фазы газораспределения, применяют более жаростойкие материалы в клапанном механизме. Часто усиливают систему охлаждения и многое другое.

    Миф 2. У турбомотора всегда есть турбояма

    У первых наддувных моторов ухудшение разгонной характеристики действительно наблюдалось. Это происходило из-за инерции ротора турбины на определенных оборотах вращения коленвала, когда от двигателя требуется мощность, а агрегат наддува лишь начал раскручиваться. На современных моторах инерция сильно снижена благодаря уменьшению диаметра роторов турбины. Меньше диаметр — меньше инерция — быстрее раскрутка. А еще современные турбонаддувы обладают большим запасом, и даже на малых оборотах двигателя турбина сполна обеспечивает снабжение воздухом. Чтобы по мере роста оборотов поршневого двигателя турбонаддув не пошел вразнос, часть выхлопных газов перепускают, минуя турбину. Процессом управляет электроника. Это и позволяет получить высокий крутящий момент при небольших оборотах, а далее следует полка крутящего момента, которая так удобна при разгоне. И никакой турбоямы.

    Миф 3. Турбомотор жрет топливо

    Вовсе нет. Благодаря использованию энергии выхлопных газов наддувные двигатели имеют расход топлива на 20–40% ниже, чем у атмосферных аналогов. Большим расход будет только тогда, когда с мотора снимают полную мощность, нажимая педаль газа до упора.

    Миф 4. Двигатели с турбонаддувом — всегда мощные и оборотистые

    Материалы по теме

    В Японии уже давно и успешно используют автомобили (кейкары) с рабочим объемом двигателя 0,66 л, которые благодаря наддуву развивают 64 л.с. Могли бы и больше, но это законодательное ограничение. В Европе тоже вовсю идет внедрение моторов рабочим объемом около литра, и благодаря наддуву они часто развивают больше 100 л.с.

    Для турбодизельных двигателей большие обороты нехарактерны. Уже около трех десятилетий дизельные моторы для автомобилей не разрабатываются без системы турбонаддува. Безнаддувные двигатели на тяжелом топливе имели крайне низкую энерговооруженность и сравнительно высокий расход топлива. У современного дизеля с турбонаддувом все иначе. При этом обороты коленвала не бывают больше 4800 в минуту.

    Миф 5. Сломалась турбина — можно ездить и так, пока не накоплю денег на новую

    Современный мотор не сможет работать с вышедшим из строя турбонаддувом. Электронный блок управления позволит работать мотору лишь на небольших оборотах и мощности, а также зажжет контрольную лампу «Check engine».

    Миф 6. Турбокомпрессоры неремонтопригодны — только менять

    Современный агрегат наддува, укрупненно, состоит из четырех узлов: улитка турбины, улитка компрессора, картридж (корпус с подшипниковым узлом и рабочие колеса турбины и компрессора на валу) и модуль регулирования давления наддува. Чаще всего проблемы бывают с картриджем. Этот элемент можно приобрести новым или восстановленным и заменить, как, впрочем, и все остальные компоненты.

    Миф 7. Турбомотор требует высокооктанового топлива

    Все зависит от политики автопроизводителя. Премиум-сегмент считает ниже своего достоинства рекомендовать октановое число ниже 95. А, например, представленный год назад новый турбонаддувный двигатель с непосредственным впрыском топлива для Geely Atlas адаптирован под 92-й бензин. Благодаря системе непосредственного впрыска граница детонации отодвинута, что и позволяет использовать топливо с более низким октановым числом на турбомоторе.

    • О плюсах и минусах турбомоторов узнайте тут.

    Газовая турбина / Дизельные двигатели / Газовые двигатели | Ресурсы, энергия и окружающая среда | Продукция | IHI Corporation

    IHI ​​предлагает широкий спектр продукции для выработки электроэнергии, включая газовые турбины, дизельные двигатели и газовые двигатели с энергосистемами простого цикла, когенерации и комбинированного цикла. Мы также предоставляем удаленный мониторинг, техническое обслуживание двигателя и другие услуги на протяжении всего жизненного цикла продукта. Мы добиваемся сокращения выбросов NOx и CO2 за счет использования газовых турбин с высоким КПД и низким уровнем выбросов.Поставляем газовые турбины для скоростных судов и других морских судов. Мы также поставляем полный спектр дизельных двигателей, от больших двигателей, способных работать на средних и низких скоростях, до моделей малых и средних размеров, работающих на низких, средних и высоких скоростях. В наш разнообразный модельный ряд входят дизельные двигатели для наземных генераторов.


    Газотурбинные системы выработки энергии

    Газотурбинная электростанция «LM6000»

    Это электростанции класса 100 МВт, которые сочетают в себе две газовые турбины LM6000, два парогенератора-утилизатора и одну паровую турбину, чтобы производить самую эффективную в мире выработку электроэнергии, а также обеспечивать наилучшие экологические характеристики и надежность.

    Газотурбинная электростанция «ЛМ2500»

    Это электростанции класса 20–30 МВт, в которых используется высокоэффективная и очень надежная газовая турбина LM2500, созданная на основе легкого и компактного авиадвигателя.


    Системы когенерации

    Газотурбинная когенерационная установка «IM270»

    Это типичные энергосберегающие системы, которые вырабатывают 2 МВт мощности и 6 тонн пара в час за счет комбинации нашей оригинальной спроектированной и разработанной газовой турбины IM270 с высоким КПД и низким выбросом NOx и парогенератора-утилизатора.

    Когенерационная система «IM400 IHI-FLECS»

    Это системы когенерации класса 4–6 МВт и оригинальные системы когенерации IHI, которые могут изменять выработку как электроэнергии, так и тепла (пара) в соответствии с потребностями. Если есть избыток пара, он может быть преобразован в выработку электроэнергии для рекуперации энергии.


    Двигатели среднего / большого размера

    Двухтопливный двигатель «DU-WinGD 6X72DF»

    Это двухтопливный двигатель, использующий технологии сгорания с предварительным смешиванием и обедненной смесью, которые считались технически сложными для низкооборотного двухтактного двигателя.
    Это большая особенность, позволяющая существенно снизить количество выбросов NOx двигателем.

    Дизельный двигатель «DU-Win GD 9X82»

    Двигатели X — это двигатели нового поколения, которые разработаны и спроектированы с высокой эксплуатационной гибкостью, чтобы адаптироваться к различным условиям работы двигателя и удовлетворять требованиям более низкого расхода топлива.Двигатели 9X82 устанавливаются на контейнеровозы компании NYK 14 000 TEU в качестве главного двигателя. Эти двигатели 9X82 оснащены «двойной рейтинговой системой», которая включает функции оптимизации двух диапазонов мощности для работы с высокой и низкой нагрузкой. Эта «Двойная рейтинговая система» — лучшая в мире технология, которая позволяет судам значительно снизить потребление топлива и снизить выбросы CO2 для обоих диапазонов, что значительно способствует экономии энергии при эксплуатации судна.

    DU-S.E.M.T. Дизельный двигатель Pielstick

    Четырехтактный среднеоборотный двигатель, используемый в качестве основного двигателя для больших паромов и патрульных катеров береговой охраны, а также в качестве генератора для наземных электростанций.

    НИИГАТА Дизельный двигатель «28AHX»

    Дизельный двигатель — это «экологичный» среднеоборотный дизельный двигатель (от 2070 до 6660 кВт) следующего поколения, который, очевидно, соответствует нормам IMO Tier II NOx, а также ориентирован на будущее судовых двигателей.

    Как земля, используемая для генераторов энергии (от 2000 до 6300 кВт), дизельный двигатель достигает показателя мирового класса по высокому КПД и низкому расходу топлива, используя как DO, так и HFO.

    Двухтопливный двигатель NIIGATA «28AHX-DF»

    28AHX-DF — это экологически чистый двигатель, соответствующий нормам IMO Tier III по NOx в газовом режиме.В нем используется сжигание чистого газа, что позволяет соблюдать новые правила без селективного каталитического восстановления (SCR).


    Системы выработки энергии на газовых двигателях

    НИИГАТА Газовый двигатель «28АГС»

    Газовый двигатель вносит значительный вклад в сокращение выбросов CO2 за счет высокоэффективной работы с использованием природного и городского газа, а также низкокалорийных газов, таких как газообразные в плавильных печах.
    2000–6000 кВтэ, серия AGS с зажиганием от свечей и серия AG с микропилотным зажиганием поставляются как в пределах Японии, так и за границу в качестве стационарных генераторов энергии.


    Силовые установки

    Азимутальное подруливающее устройство NIIGATA «Z-PELLER®»

    Z-PELLER® — самая популярная силовая установка на мировом рынке буксиров.Заказчики высоко оценивают этот силовой агрегат за его высокое качество и долговечность.
    Наша линейка Z-PELLER® предлагает непрерывную мощность от 735 кВт (1000 л. с.) до 3310 кВт (4500 л.с.), что позволяет нам реагировать на различные потребности клиентов.


    Оборудование для впрыска топлива

    Оборудование для впрыска топлива

    NICO производит и поставляет так называемое оборудование для впрыска топлива, клапан впрыска топлива и насос впрыска топлива для 4-тактного двигателя Deisel для производителей двигателей, таких как отечественные производители двигателей, европейцы, корейцы и китайцы, а также компания Niigatra Power Systems, которая занимается производством двигателей. Материнская компания NICO.NICO также разрабатывает FIE с электрическим управлением (то есть CRS: Common Rail System), а также обычные механические FIE.

    Ссылки

    Запросы на продукцию

    Прочие товары

    Продукты

    Как работает турбокомпрессор | Cummins

    Существенная разница между дизельным двигателем с турбонаддувом и традиционным бензиновым двигателем без наддува заключается в том, что воздух, поступающий в дизельный двигатель, сжимается перед впрыском топлива .Именно здесь турбокомпрессор имеет решающее значение для выходной мощности и эффективности дизельного двигателя.

    Работа турбокомпрессора заключается в сжатии большего количества воздуха, поступающего в цилиндр двигателя. Когда воздух сжимается, молекулы кислорода собираются ближе друг к другу. Это увеличение количества воздуха означает, что для безнаддувного двигателя такого же размера можно добавить больше топлива. Это приводит к увеличению механической мощности и повышению общей эффективности процесса сгорания. Следовательно, размер двигателя может быть уменьшен для двигателя с турбонаддувом, что приведет к лучшей компоновке, преимуществам экономии веса и общей улучшенной экономии топлива.

    Как работает турбокомпрессор?

    Турбокомпрессор состоит из двух основных частей: турбины и компрессора. Турбина состоит из турбинного колеса (1) и корпуса турбины (2) . Корпус турбины направляет выхлопной газ (3) в рабочее колесо турбины. Энергия выхлопного газа вращает турбинное колесо, и затем газ выходит из корпуса турбины через зону выхода выхлопа (4) .

    Компрессор также состоит из двух частей: крыльчатки компрессора (5) и корпуса компрессора (6) . Принцип действия компрессора противоположен турбине. Колесо компрессора прикреплено к турбине валом из кованой стали (7) , и когда турбина вращает колесо компрессора, высокоскоростное вращение втягивает воздух и сжимает его. Затем корпус компрессора преобразует высокоскоростной воздушный поток низкого давления в воздушный поток высокого давления и низкого давления посредством процесса, называемого диффузией. Сжатый воздух (8) проталкивается в двигатель, позволяя двигателю сжигать больше топлива для выработки большей мощности.

    1. Колесо турбины
    2. Корпус турбины
    3. Выхлопной газ
    4. Выходное отверстие для выхлопных газов
    5. Колесо компрессора
    6. Корпус компрессора
    7. Вал стальной кованый
    8. Сжатый воздух

    Узнайте, как работает Turbo

    Первый для семейства турбин GE Marine

    GE Marine заявила, что ее авиационная морская газовая турбина GE LM2500 + G4 предназначена для питания U. С. Морской корабль впервые.

    Компания заявила, что предоставит Fincantieri Marinette Marine турбину для фрегата класса Constellation (FFG 62) ВМС США. GE также предоставит вспомогательные блоки для газовых турбин (системы электрического запуска, подачи топлива и промывки водой) и систему управления газовой турбиной.

    Новый класс ВМС США Constellation основан на конструкции FREMM Fincantieri, которая уже используется на борту фрегатов класса Carlos Bergamini ВМС Италии (программа из 10 кораблей).«Фрегаты ВМС США будут оснащены газовой турбиной GE LM2500 + G4 в двигательной установке CODLAG», — сказал Крис Шеперд, вице-президент и генеральный директор GE Marine. «FFG 62 знаменует собой первое использование ВМС США двигателя LM2500 + G4. На сегодняшний день 37 газовых турбин LM2500 + G4 были выбраны для боевых надводных кораблей и две — для коммерческих морских судов, а также более 1100 из этих двигателей, работающих по всему миру в промышленных условиях. ВМС США извлекут выгоду из проверенной конструкции корабля Fincantieri с низким уровнем риска, оснащенной надежной газовой турбиной LM2500 + G4 от GE.

    Газовая турбина LM2500 + G4 для фрегатов нового класса сертифицирована для ВМС США мощностью 30,3 МВт (стандартный день ВМС США). GE обеспечит соответствие газовой турбины и всего сопутствующего вспомогательного оборудования техническим требованиям и полную интеграцию с силовой установкой.

    LM2500 + G4 будет поставляться в составе композитного газотурбинного модуля GE. Одной из наиболее важных особенностей конструкции этого нового модуля является то, что он обеспечивает более безопасную среду и улучшенный доступ для моряков.По заявлению компании, при использовании легких композитов по сравнению со стальным корпусом-предшественником температура стенок составляет 25-50 o F, что ниже, поэтому меньше тепла отводится в машинное отделение. GE также предлагает возможность пожаротушения водяным туманом для композитного корпуса. Двигатель LM2500 + G4 будет производиться в США на производственном предприятии GE в Эвендейле, штат Огайо.

    Морская газовая турбина LM2500 + G4 была представлена ​​в 2012 году с вводом в эксплуатацию многоцелевого фрегата FREMM ВМС Франции Aquitaine (также программа из 10 кораблей). С тех пор LM2500 + G4 был выбран для фрегатов FREMM ВМС Италии и многоцелевых морских патрульных кораблей Pattugliatori Polivalenti d’Altura (PPA); первый из семи PPA будет введен в эксплуатацию в 2021 году.

    Парк морских и промышленных двигателей LM2500 + G4 наработал более 4,5 миллионов часов. Этот подтвержденный производственный опыт можно проследить благодаря постоянному внедрению технологий GE. Семейство двигателей LM2500 имеет много общего, так как все они представляют собой два золотниковых двигателя.LM2500 + и LM2500 + G4 отличаются от LM2500 тем, что у них есть блиск компрессора высокого давления нулевой ступени; и каждая из них имеет технические усовершенствования, позволяющие увеличить поток воздуха (на 22% и 33% больше потока воздуха при ISO от LM2500, соответственно) и более высокие температуры обжига.

    3-D лопатки турбины выиграли награду

    Компания Siemens получила награду Американского общества инженеров-механиков (ASME) за успешную трехмерную печать и полное тестирование лопаток газовых турбин.

    Журнал «Машиностроение» Emerging Technology Awards отмечает некоторые выдающиеся примеры того, что ASME называет восходящими технологиями: новые продукты и процессы, которые вышли из стадии прорыва, пересекли так называемую долину смерти коммерциализации и готовы изменить отрасли, в которых они конкурируют. .

    Редакторы

    ASME выбрали технологии из каждой из пяти основных областей: передовое производство, автоматизация и робототехника, биоинженерия, чистая энергия и технология давления.

    «Трехмерная печать турбинных лопаток ставит Siemens в авангард технологической тенденции, которая стимулирует глобальную революцию в дизайне и производстве продукции», — сказала Чарла К. Вайз, президент ASME. «Журнал« Машиностроение »рад вручать одну из пяти наград Emerging Technology Awards лидеру в производстве, и мы благодарим команду разработчиков этого лезвия с трехмерной печатью за продвижение передовых технологий».

    Ранее в этом году компания Siemens завершила свои первые испытания двигателя при полной нагрузке для лопаток газовых турбин, полностью изготовленных с использованием технологии аддитивного производства (AM). Компания успешно проверила несколько лопаток турбины с трехмерной печатью с традиционной конструкцией лопаток в условиях полного двигателя.
    Это означает, что компоненты были протестированы при 13 000 оборотов в минуту и ​​температурах выше 1250 o C. Кроме того, Siemens протестировал новую конструкцию лопастей с полностью пересмотренной и улучшенной геометрией внутреннего охлаждения, изготовленной с использованием технологии AM.

    «Мы особенно гордимся тем, что нас наградила такая признанная организация, как ASME», — сказала Дженни Нильссон, возглавлявшая команду, реализовавшую проект лезвия.«Цель проекта заключалась в том, чтобы опробовать и отобразить этот радикально новый способ работы. Результат является еще одним подтверждением того, что мы находимся на правильном пути к дальнейшему совершенствованию нашей технологии газовых турбин ».

    Команда проекта работала с лезвиями, изготовленными на цехе трехмерной печати Siemens в Финспонге, Швеция, и в недавно приобретенной компании Materials Solutions в Вустере, Великобритания. Компания Materials Solutions обладает более чем 10-летним опытом аддитивного производства высокоэффективных деталей для турбомашин.Компания Materials Solutions сертифицирована по стандарту AS 9100 и является утвержденным поставщиком AM для ведущих клиентов в аэрокосмической отрасли. Применяя свой аэрокосмический опыт, компания Materials Solutions также поставляет инструменты ведущим автомобильным компаниям и высокопроизводительные детали из титановых и никелевых суперсплавов для автоспорта.

    По словам Сименс,

    AM потенциально может стать ключевой технологией в производстве компонентов газовых турбин, и компания инвестировала в эту инновационную технологию с самого начала, а в настоящее время ведет индустриализацию и коммерциализацию этих процессов.Помимо награжденных турбинных лопаток, Siemens использует инновационные технологии для производства наконечников горелок, сопел горелок и ремонта головок горелок. «Аддитивное производство — одна из наших основных составляющих нашей стратегии цифровизации. Благодаря нашему объединенному ноу-хау в области трехмерной печати мы продолжим стимулировать технологическое развитие и применение в этой области », — сказал Кристоф Хаберланд, ключевой эксперт по аддитивному производству и член группы по производству лезвий.

    Знак отличия ASME является третьей наградой за этот проект после Международной премии в области трехмерной печати и общекорпоративной премии Вернера фон Сименса.В дополнение к 16-страничному специальному разделу декабрьского выпуска журнала «Машиностроение» за 2017 год, ASME также выпустила серию из пяти видеороликов, посвященных технологиям. Некоторые из этих видеороликов были представлены на крупнейшем ежегодном мероприятии ASME — Международном конгрессе и выставке машиностроения, проходившем в ноябре в Тампе, Флорида, США.

    Краткое руководство: разница между газовой турбиной и дизельным двигателем — Блог промышленного производства

    Дизельные двигатели и газовые турбины классифицируются как двигатели внутреннего сгорания. Дизельные двигатели — это хорошо известная движущая сила, обычно используемая вокруг нас, а газотурбинные двигатели могут быть нам не знакомы. В этой статье мы обсудим два типа энергетических двигателей и их отличия. Подпишитесь на этот новый блог на Linquip, чтобы узнать больше о разнице между газовой турбиной и дизельным двигателем.

    Газовая турбина

    Газовые турбины в качестве основного производителя электроэнергии возникли незадолго до начала 20-го века, и они постоянно совершенствуются, чтобы обеспечить надежные энергетические сообщества во всем мире сегодня.Во всех современных газотурбинных двигателях двигатель вырабатывает собственный сжатый газ, сжигая что-то вроде пропана, природного газа или реактивного топлива. Тепло, возникающее при сгорании топлива, расширяет воздух, и высокоскоростной поток этого горячего воздуха раскручивает турбину. Варианты газовых турбин использовали Леонардо да Винчи, Никола Тесла и сэр Чарльз Парсонс, и сегодня они широко используются во многих областях. Эти турбины используются для создания тяги для реактивных двигателей, для создания массовой мощности или на кораблях, локомотивах, вертолетах и ​​танках.В небольшом количестве автомобилей, автобусов и мотоциклов также используются газовые турбины.

    Дизельный двигатель

    С 1897 года, когда Рудольф Дизель построил свой первый хорошо известный прототип двигателя с высокой степенью сжатия, дизельный двигатель превратился в одну из самых эффективных и надежных форм выработки энергии в мире. В дизельных двигателях внутреннее сгорание приводит к расширению высокотемпературных газов под высоким давлением, которые, в свою очередь, приводят в движение поршни, преобразуя химическую энергию в механическую.Сегодня они широко используются на флоте в качестве силовых установок для малых катеров, кораблей, наземной техники. Дизельные двигатели также используются в качестве строительного и сельскохозяйственного оборудования и тягачей во вспомогательном оборудовании, таком как аварийные дизельные генераторы, насосы и компрессоры, а также в бесчисленных промышленных приложениях.

    Газовая турбина VS Дизельный двигатель

    Оба этих двигателя являются тепловыми двигателями, например, они работают, принимая тепло в качестве входа. Здесь мы укажем на разницу между газовой турбиной и дизельным двигателем.Несколько факторов играют важную роль в выборе лучшего движка для вашего приложения. Здесь мы сравниваем некоторые атрибуты между этими двумя.

    Компоненты

    • Важными компонентами газовой турбины являются компрессор, камера сгорания и силовая турбина.
    • В дизельном двигателе важными компонентами являются поршни, шатуны, коленчатые валы, цилиндр, выпускной клапан, камера сгорания и крышки подшипников.

    Долговечность

    • Срок службы газовой турбины составляет около 20 лет и более.
    • Срок службы дизельного двигателя составляет 30 и более лет.

    Затраты на техническое обслуживание

    • Газовая турбина требует больших затрат на техническое обслуживание.
    • Паровая турбина требует меньше затрат на техническое обслуживание.

    Топливо

    • Газовая турбина может использовать в качестве топлива многие виды горючих газов и жидкостей. Например, бензин, легкая нефть, керосин, спирт, природный газ и водород. Регенеративные виды топлива, такие как спирт и метан, в последнее время привлекают большое внимание, и газовая турбина хорошо им подходит.
    • Наиболее распространенным типом дизельного моторного топлива является особый фракционный дистиллят нефтяного мазута, но альтернативы, которые не производятся из нефти, такие как биодизель, жидкое топливо из биомассы (BTL) или дизельное топливо из газа в жидкость (GTL), все чаще разрабатываются и принимаются.

    Эффективность

    • Газовая турбина простого цикла может достигать КПД от 20 до 35 процентов.
    • Дизельный двигатель имеет КПД до 41 процента, но чаще 30 процентов.

    Начиная с

    • Газовая турбина запускается легко и быстро.
    • Запуск дизельного двигателя непростой и занимает много времени.

    Система зажигания и смазки

    • В газовой турбине система зажигания и смазки проще.
    • В дизельном двигателе система зажигания и смазки более сложная по сравнению с газовой турбиной.

    Выбросы NOx

    • В газовой турбине выброс NOx меньше.
    • Дизельные двигатели производят недопустимо высокие уровни NOX.

    Работа, разработанная на кг воздуха

    • В газовой турбине работа на 1 кг воздуха больше, чем в дизельном двигателе.
    • В дизельном двигателе работа, развиваемая на 1 кг воздуха, меньше.

    Стоимость топлива

    • В газовой турбине можно использовать более дешевое топливо.
    • В дизельном двигателе требуется сравнительно более дорогое топливо.

    Размер машины

    • Газовая турбина включает машины малых размеров.
    • Существует три основных размерных группы дизельных двигателей в зависимости от мощности; маленький, средний и большой.

    Внутренняя температура

    • В газовой турбине внутренняя температура достигает 1500 градусов Цельсия.
    • В дизельном двигателе температура поднимается до 600 градусов Цельсия.

    Производство выхлопных газов

    • Газовая турбина производит выхлопных газов в пять раз больше, чем дизельный двигатель.
    • Дизельный двигатель производит меньше выхлопных газов.

    Контроль топлива

    • В газовой турбине регулирование подачи топлива сравнительно затруднено из-за больших рабочих скоростей.
    • В дизельном двигателе управление подачей топлива проще.

    Рабочая жидкость

    • В газовой турбине в качестве рабочего тела используется воздух или другой газ.
    • В дизельном двигателе топливо сжигается внутри, а продукты сгорания используются в качестве рабочего тела.

    Более высокие скорости

    • Газовая турбина может работать на более высоких скоростях. (40000 об / мин)
    • Дизельный двигатель не может работать на более высоких оборотах.

    Еще несколько моментов о разнице между газовой турбиной и дизельным двигателем, о которых следует помнить:

    • Наиболее отличительной чертой газовых турбин по сравнению с дизельными двигателями является количество газа, которое необходимо обработать в двигателе того же объема. Газовая турбина может обрабатывать большое количество газа в небольшом двигателе, что приводит к очень высокой удельной мощности. В дизельном двигателе размер будет такой же, как у большого грузовика.
    • Газовые турбины имеют очень высокое отношение мощности к массе, они легче и меньше дизельных двигателей той же мощности.
    • Дизельный двигатель имеет более высокий термический КПД (КПД двигателя), чем газовая турбина, из-за очень высокой степени расширения и естественного сжигания обедненной смеси, которое позволяет рассеивать тепло избыточным воздухом.
    • Газовая турбина наиболее эффективна при максимальной выходной мощности любого практического двигателя внутреннего сгорания.
    • Дизельные двигатели используют гораздо более высокую степень сжатия, чем газовые турбины, и эта более высокая степень компенсирует потери при перекачивании воздуха в двигателе.
    • Газовые турбины действительно имеют преимущество в удельной мощности по сравнению с дизельными двигателями.
    • Газовые турбины дороги по сравнению с дизельными двигателями того же размера. Поскольку они вращаются с такими высокими скоростями и из-за высоких рабочих температур, проектирование и производство газовых турбин представляет собой сложную проблему как с инженерной точки зрения, так и с точки зрения материалов.
    • В газовой турбине лопатки постоянно находятся в контакте с горячими газами на протяжении всего рабочего цикла, тогда как поршень и цилиндр дизельного двигателя подвергаются воздействию высокого давления и высокой температуры в течение очень ограниченного периода времени в течение всего цикла.Следовательно, самая высокая температура в дизельном двигателе выше, чем в газовой турбине.
    • Объемный расход в газовых турбинах довольно высок по сравнению с дизельными двигателями.
    • Газовая турбина — это открытая система, или вы могли бы назвать ее системой контрольного объема. С другой стороны, дизельный двигатель является примером замкнутой системы, например, системы контрольной массы.
    • В газовой турбине, благодаря своей функции открытой системы, она непрерывно производит работу. В то время как дизельный двигатель производит работу только на определенном такте цикла.

    Это все, что вам нужно знать о различиях между газовой турбиной и дизельным двигателем. Если вам понравилась эта статья в Linquip, дайте нам знать, оставив ответ в разделе комментариев. Есть вопросы, с которыми мы можем вам помочь? Не стесняйтесь зарегистрироваться на нашем веб-сайте, чтобы получить самую профессиональную консультацию от наших экспертов.

    Основы турбокомпрессора

    Основы турбокомпрессора

    Ханну Яэскеляйнен, Магди К. Хаир

    Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
    Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

    Abstract : Турбокомпрессоры — это центробежные компрессоры, приводимые в действие турбиной выхлопного газа и используемые в двигателях для повышения давления наддувочного воздуха. Производительность турбокомпрессора влияет на все важные параметры двигателя, такие как экономия топлива, мощность и выбросы. Прежде чем переходить к более подробному обсуждению специфики турбокомпрессора, важно понять ряд фундаментальных концепций.

    Конструкция турбокомпрессора

    Турбокомпрессор состоит из колеса компрессора и колеса турбины выхлопного газа, соединенных сплошным валом и используемого для повышения давления всасываемого воздуха двигателя внутреннего сгорания. Турбина выхлопного газа извлекает энергию из выхлопного газа и использует ее для привода компрессора и преодоления трения. В большинстве автомобильных применений и компрессор, и турбинное колесо являются радиальными. В некоторых приложениях, таких как средне- и низкооборотные дизельные двигатели, можно использовать колесо турбины с осевым потоком вместо турбины с радиальным потоком.Поток газов через типичный турбокомпрессор с радиальным компрессором и турбинными колесами показан на Рисунке 1 [482] .

    Рисунок 1 . Конструкция турбокомпрессора и расход газов

    (Источник: Schwitzer)

    Center-Housing. Общий вал турбина-компрессор поддерживается системой подшипников в центральном корпусе (корпусе подшипника), расположенном между компрессором и турбиной (Рисунок 2). Узел колеса вала (SWA) относится к валу с прикрепленными колесами компрессора и турбины, т.е.е., вращающийся узел. Узел вращения центрального корпуса (CHRA) относится к SWA, установленному в центральном корпусе, но без корпусов компрессора и турбины. Центральный корпус обычно отлит из серого чугуна, но в некоторых случаях может использоваться и алюминий. Уплотнения предотвращают попадание масла в компрессор и турбину. Турбокомпрессоры для систем с высокой температурой выхлопных газов, таких как двигатели с искровым зажиганием, также могут иметь охлаждающие каналы в центральном корпусе.

    Рисунок 2 . Турбокомпрессор в разрезе

    Турбонагнетатель отработавших газов бензинового двигателя в разрезе, показывающий колесо компрессора (слева) и колесо турбины (справа). Подшипниковая система состоит из упорного подшипника и двух полностью плавающих опорных подшипников. Обратите внимание на охлаждающие каналы.

    (Источник: BorgWarner)

    Подшипники турбокомпрессора

    Подшипники. Система подшипников турбокомпрессора проста по конструкции, но играет ключевую роль в ряде важных функций.К наиболее важным из них относятся: контроль радиального и осевого движения вала и колес и минимизация потерь на трение в подшипниковой системе. Подшипниковым системам уделяется значительное внимание из-за их влияния на трение турбокомпрессора и его влияние на топливную экономичность двигателя.

    За исключением некоторых крупных турбонагнетателей для тихоходных двигателей, подшипники, поддерживающие вал, обычно расположены между колесами в выступе. Эта гибкая конструкция ротора гарантирует, что турбокомпрессор будет работать выше своей первой и, возможно, второй критических скоростей, и, следовательно, может подвергаться динамическим условиям ротора, таким как завихрение и синхронная вибрация.

    Уплотнения. Уплотнения расположены на обоих концах корпуса подшипника. Эти уплотнения представляют собой сложную конструктивную проблему из-за необходимости поддерживать низкие потери на трение, относительно больших перемещений вала из-за зазора в подшипниках и неблагоприятных градиентов давления в некоторых условиях.

    Эти уплотнения в первую очередь служат для предотвращения попадания всасываемого воздуха и выхлопных газов в центральный корпус. Давление во впускной и выпускной системах обычно выше, чем в центральном корпусе турбонагнетателя, который обычно находится на уровне давления в картере двигателя. По существу, они в первую очередь предназначены для уплотнения центрального корпуса, когда давление в центральном корпусе ниже, чем во впускной и выпускной системах. Эти уплотнения не предназначены для использования в качестве основного средства предотвращения утечки масла из центрального корпуса в выхлопную и воздушную системы. Попадание масла в контакт с этими уплотнениями обычно предотвращается другими средствами, такими как масляные дефлекторы и вращающиеся пальцы.

    Уплотнения турбокомпрессора отличаются от мягких манжетных уплотнений, которые обычно используются во вращающемся оборудовании, работающем при гораздо более низких скоростях и температурах.Уплотнение с поршневым кольцом — это один из наиболее часто используемых типов уплотнений. Он состоит из металлического кольца, внешне похожего на поршневое кольцо. Уплотнение остается неподвижным при вращении вала. Иногда используются уплотнения лабиринтного типа. Обычно уплотнения вала турбокомпрессора не предотвращают утечку масла, если перепад давления меняется на противоположный, так что давление в центральном корпусе выше, чем во впускной или выпускной системах.

    ###

    Turbocompounding

    Turbocompounding

    Hannu Jääskeläinen, W.Адди Маевски

    Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
    Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

    Abstract : Турбонагнетание — это использование силовой турбины для извлечения дополнительной энергии из выхлопных газов. Механический турбонагнетатель коммерчески используется в дизельных двигателях для различных применений в течение многих десятилетий. В двигателях большой мощности наиболее важной конфигурацией является последовательное турбонагнетание, когда силовая турбина соединена последовательно с турбиной турбонагнетателя.Технология может обеспечить повышение эффективности на несколько процентов, но на эти преимущества может негативно повлиять система рециркуляции отработавших газов, которая отклоняет поток газа от силовой турбины. Параллельное турбонагнетание подходит, когда имеется энергия выхлопных газов, превышающая необходимую для турбонагнетателя, и в противном случае ее необходимо было бы обойти вокруг турбонагнетателя.

    Введение

    Турбонагнетание — это использование силовой турбины для извлечения дополнительной энергии из выхлопных газов. Извлеченная энергия выхлопных газов может быть добавлена ​​к коленчатому валу двигателя или преобразована в электрическую энергию:

    • Если выходной вал силовой турбины соединен с коленчатым валом двигателя посредством механической связи, обычно зубчатой ​​передачи, технология обычно упоминается как с механическим турбонагнетателем .
    • Если силовая турбина подключена к генератору, технология упоминается как , электрическая турбосоставная .

    Механический турбонагнетатель коммерчески используется в дизельных двигателях для различных применений в течение многих десятилетий. В Северной Америке 10% новых тяжелых дорожных двигателей, проданных в 2011 и 2012 годах, имели турбонагнетатель, но к 2015 году этот показатель снизился до 2% после того, как Daimler (Detroit Diesel) отказался от него в пользу асимметричного турбонаддува для своего двигателя DD15 в 2013 [3788] . По оценкам Агентства по охране окружающей среды США, уровень проникновения снова достигнет 10% к 2027 году [3789] . Механический турбонагнетатель применялся в авиационных двигателях в 1950-х годах, а в наземных транспортных средствах — с 1960-х годов. Более подробные исторические сведения о работах до 1990-х годов можно найти в литературе [3791] .

    Электрический турбокомпаунд находится в стадии разработки для дизельных двигателей большой мощности. Однако для того, чтобы существенно повлиять на КПД, потребуется относительно высокая электрическая нагрузка в диапазоне 50 кВт.Для дорожных транспортных средств такая нагрузка может быть реализована только с гибридной трансмиссией и, следовательно, должна сопровождаться другими серьезными технологическими изменениями. В электроэнергетике и некоторых морских приложениях, где легко доступна достаточно высокая электрическая нагрузка, электрическое турбонагнетание является коммерческой технологией [1945] [1946] [1929] [2369] [3790] [3821] [3822] .

    Механический турбокомпаунд

    В двигателях с турбонаддувом механическое турбонагнетание может быть реализовано в нескольких различных конфигурациях:

    • Добавление силовой турбины последовательно с турбиной турбонагнетателя и после нее
    • Добавление силовой турбины параллельно турбине турбонагнетателя
    • В составе турбокомпрессора

    В двигателях большой мощности наиболее важной конфигурацией является последовательное турбонагнетание, схематически изображенное на Рисунке 1.

    Рисунок 1 . Схематическое изображение турбонагнетателя механической серии

    На Рисунке 2 более подробно показаны две различные серии систем с турбонаддувом. В системе Volvo используется силовая турбина с осевым потоком, тогда как в более старой системе Scania используется силовая турбина с радиальным потоком.

    Рисунок 2 . Серийные системы турбонагнетания, используемые в некоторых двигателях Euro III и Euro IV: Volvo D12 и Scania DT12

    (Источник: Volvo и Scania)

    Для применений с расходом выхлопных газов, превышающим требуемый для удовлетворения требований турбокомпрессора, силовая турбина может быть размещена параллельно с турбиной турбонагнетателя. На рисунке 3 показана такая система, которая была внедрена в двигатели Sulzer RTA в начале 1980-х годов; Система повышения эффективности Sulzer (η-Booster) включала другой турбокомпрессор в дополнение к силовой турбине, подключенной параллельно [3816] [2586] [3792] . В то время на рынке появлялись более новые турбокомпрессоры с повышенным КПД; более высокий КПД турбокомпрессора означал, что при некоторых условиях работы двигателя была доступна дополнительная энергия выхлопных газов, которую можно было использовать для других целей.Силовая турбина, установленная параллельно турбине турбонагнетателя, стала обычным явлением в больших четырехтактных среднескоростных и двухтактных низкоскоростных двигателях. На рисунке 3 верхняя кривая показывает снижение BSFC двигателя Sulzer RTA, представленного в 1983 году, по сравнению с предыдущей версией. Нижняя кривая показывает дополнительное снижение BSFC, доступное в двигателе RTA 1983 года с системой повышения эффективности, состоящей из повторно согласованного турбонагнетателя и силовой турбины. При включенной силовой турбине с мощностью выше примерно 40-50% показано дополнительное снижение BSFC до 5 г / кВтч.При отключенной силовой турбине при низкой нагрузке снижение BSFC все еще возможно из-за меньшей общей площади сопла турбины. Параллельный турбонагнетатель также был изучен для использования в двигателях малой мощности [3793] [3794] [3795] [3796] [3797] .

    Рисунок 3 . Параллельное турбонагнетание в двигателях Sulzer RTA

    Схема системы и уменьшение BSFC по сравнению с предыдущей версией двигателя. Система η-Booster компании Sulzer, представленная в начале 1980-х годов, состояла из повторно согласованного турбокомпрессора и силовой турбины.

    В другом месте показан прототип системы, в которой вал турбонагнетателя соединен с коленчатым валом через бесступенчатую трансмиссию (CVT). В принципе, это не только позволит подавать избыточную мощность от турбины к коленчатому валу, но также позволит подавать мощность от коленчатого вала на компрессор в условиях, когда энтальпия выхлопа слишком мала для создания адекватного давления наддува [2259] .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *