Двигатель внутреннего сгорания бензиновый – Двигатель внутреннего сгорания — Википедия

Содержание

Бензиновый двигатель внутреннего сгорания — Википедия

Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания. Рабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещённую в трубу, в которой протекает регулируемая среда. В автомобилях управление дросселем производится с места водителя от ноги педалью. В современных автомобилях нет прямой механической связи между педалью акселератора и дроссельной заслонкой. Заслонка поворачивается с помощью электродвигателя, управляемого электронным блоком управления (ЭБУ). В педальном блоке находится потенциометр, изменяющий своё сопротивление в зависимости от положения педали.

Классификация бензиновых двигателей

  • По способу смесеобразования — карбюраторные и инжекторные;
  • По способу осуществления рабочего цикла — четырёхтактные и двухтактные. Двухтактные двигатели обладают большей мощностью на единицу объёма, однако меньшим КПД. Поэтому двухтактные двигатели применяются там, где очень важны небольшие размеры, но относительно неважна топливная экономичность, например, на мотоциклах, небольших моторных лодках, бензопилах и моторизированных инструментах. Четырёхтактные же двигатели устанавливаются на абсолютное большинство остальных транспортных средств. Следует заметить, что дизели также могут быть четырёхтактными или двухтактными; двухтактные дизели лишены многих недостатков бензиновых двухтактных двигателей, однако применяются в основном на больших судах (реже на тепловозах и грузовиках).;
  • По числу цилиндров — одноцилиндровые, двухцилиндровые и многоцилиндровые;
  • По расположению цилиндров — с вертикальным или наклонным расположением цилиндров в один ряд (т. н. «рядный» двигатель), V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным),W-образные, использующие 4 ряда цилиндров, расположенных под углом с 1 коленвалом (у V-образного двигателя 2 ряда цилиндров), звездообразные;
  • По способу охлаждения — с жидкостным или воздушным охлаждением;
  • По типу смазки смешанный тип (масло смешивается с топливной смесью) и раздельный тип (масло находится в картере)
  • По виду применяемого топлива — бензиновые и многотопливные [1];
  • По степени сжатия— двигатели высокого (E=12…18) и низкого (E=4…9) сжатия;
  • По способу наполнения цилиндра свежим зарядом: двигатели без наддува (атмосферные), у которых впуск воздуха или горючей смеси осуществляется за счет разрежения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;
  • По частоте вращения: тихоходные, повышенной частоты вращения, быстроходные;
  • По назначению различают двигатели стационарные, автотракторные, судовые, тепловозные, авиационные и др.
  • Практически не употребляемые виды моторов — роторно-поршневые Ванкеля (производились только фирмами NSU (Западная Германия), Mazda (Япония) и ВАЗ (СССР/Россия)), с внешним сгоранием Стирлинга и т. д..

См. также: Классификация автотракторных двигателей

Рабочий цикл бензинового двигателя

Рабочий цикл четырёхтактного двигателя

Как следует из названия, рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов —

тактов.

1. Впуск. В течение этого такта поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). При этом кулачки распредвала открывают впускной клапан, и через этот клапан в цилиндр засасывается свежая топливно-воздушная смесь.
2. Сжатие. Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степень сжатия . Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Однако для двигателя с большей степенью сжатия требуется топливо с бо́льшим октановым числом, которое дороже.
3. Сгорание и расширение (рабочий ход поршня). Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы основная масса бензовоздушной смеси успела воспламениться к моменту, когда поршень будет находиться в ВМТ (процесс воспламенения является медленным процессом относительно скорости работы поршневых систем современных двигателей). При этом использование энергии сгоревшего топлива будет максимальным. Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов. В старых двигателях эта регулировка производилась механическим устройством, центробежным вакуумным регулятором воздействующим на прерыватель. В более современных двигателях для регулировки угла опережения зажигания используют электронику. В этом случае используется датчик положения коленчатого вала, работающий обычно по индуктивному принципу.
4. Выпуск. После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл начинается сначала.

Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндров горючей смесью, а также для лучшей очистки цилиндров от отработанных газов.

Рабочий цикл двухтактного двигателя

Рабочий цикл двухтактного двигателя

В двухтактном двигателе рабочий цикл полностью происходит в течение одного оборота коленчатого вала. При этом от цикла четырёхтактного двигателя остаётся только сжатие и расширение. Впуск и выпуск заменяются продувкой цилиндра вблизи нижней мёртвой точки поршня, при которой свежая рабочая смесь вытесняет отработанные газы из цилиндра.

Более подробно цикл двигателя устроен следующим образом: когда поршень идёт вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно, движущийся вверх поршень создаёт разрежение в кривошипной камере. Под действием этого разрежения открывается клапан впускного коллектора и свежая порция топливовоздушной смеси (как правило, с добавкой масла) засасывается в кривошипную камеру. При движении поршня вниз давление в кривошипной камере повышается и клапан закрывается. Поджиг, сгорание и расширение рабочей смеси происходят так же, как и в четырёхтактном двигателе. Однако, при движении поршня вниз, примерно за 60° до НМТ открывается выпускное окно (в смысле, поршень перестаёт перекрывать выпускное окно). Выхлопные газы (имеющие ещё большое давление) устремляются через это окно в выпускной коллектор. Через некоторое время поршень открывает также впускное окно, расположенное со стороны впускного коллектора. Свежая смесь, выталкиваемая из кривошипной камеры идущим вниз поршнем, попадает в рабочий объём цилиндра и окончательно вытесняет из него отработавшие газы. При этом часть рабочей смеси может выбрасываться в выпускной коллектор. При движении поршня вверх свежая порция рабочей смеси засасывается в кривошипную камеру.

Можно заметить, что двухтактный двигатель при том же объёме цилиндра, должен иметь почти в два раза большую мощность. Однако, полностью это преимущество не реализуется, из-за недостаточной эффективности продувки по сравнению с нормальным впуском и выпуском. Мощность двухтактного двигателя того же литража, что и четырёхтактный больше в 1,5 — 1,8 раза.

Важное преимущество двухтактных двигателей — отсутствие громоздкой системы клапанов и распределительного вала.

Преимущества 4-тактных двигателей

  • Больший ресурс.
  • Бо́льшая экономичность.
  • Более чистый выхлоп.
  • Не требуется сложная выхлопная система.
  • Меньший шум.
  • Не требуется добавление масла к топливу.

Преимущества двухтактных двигателей

  • Отсутствие громоздких систем смазки и газораспределения у двухтактных вариантов.
  • Бо́льшая мощность в пересчёте на 1 литр рабочего объёма.
  • Проще и дешевле в изготовлении.
  • Проще в ремонте.
  • Отсутствие блока клапанов и распределительного вала.
  • Меньший вес.
  • Лучше разгон.

Карбюраторные и инжекторные двигатели

В карбюраторных двигателях процесс приготовления горючей смеси происходит в карбюраторе — специальном устройстве, в котором топливо смешивается с потоком воздуха за счёт аэродинамических сил, вызываемых энергией потока воздуха, засасываемого двигателем.

В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления — подачей импульса тока, открывающим форсунку или же, в более старых двигателях, специальной механической системой.

Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов). Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов, идущих в катализатор. Постоянство же состава необходимо для нормальной работы катализатора, так как современный катализатор способен работать лишь в узком диапазоне данного состава, и требует строго определённого содержания кислорода. Именно поэтому в тех системах управления, где установлен катализатор, обязательным элементом является лямбда-зонд, он же кислородный датчик. Благодаря лямбда-зонду система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это — процесс, идущий совершенно в другом (с точки зрения химии) направлении. Желательно также ещё раз окислять окончательно весь поток газов. Это возможно лишь в пределах так называемого «каталитического окна», то есть узкого диапазона соотношения топлива и воздуха, когда катализатор способен выполнить свои функции. Соотношение топлива и воздуха в данном случае составляет примерно 1:14,7 по весу (зависит также от соотношения С к Н в бензине), и удерживается в коридоре приблизительно плюс-минус 5 %. Так как одной из труднейших задач является удержание нормативов по оксидам азота, дополнительно необходимо снижать интенсивность их синтеза в камере сгорания. Делается это в основном снижением температуры процесса горения с помощью добавления определённого количества выхлопных газов в камеру сгорания на некоторых критичных режимах (система рециркуляции выхлопных газов).

Основные вспомогательные системы бензинового двигателя

Системы, специфические для бензиновых двигателей

  • Система зажигания — обеспечивает поджиг топлива в нужный момент. Она может быть контактной, бесконтактной или микропроцессорной. Контактная система включает в себя: прерыватель-распределитель, катушку, выключатель зажигания, свечи. Бесконтактная система включает то же самое оборудование, только вместо прерывателя стоит датчик Холла или индукционный датчик. Микропроцессорная система зажигания управляется специальным блоком-компьютером, она включает в себя датчик положения коленвала, блок управления зажиганием, коммутатор, катушки, свечи, датчик температуры двигателя. У инжекторного двигателя к этой системе добавляются датчик положения дроссельной заслонки и датчик массового расхода воздуха.
  • Система приготовления топливовоздушной смеси — карбюратор или же инжекторная система.

Некоторые особенности современных бензиновых двигателей

  • Для повышения надежности работы используется индивидуальная катушка зажигания для каждой свечи.
  • Используется по 2 впускных и 2 выпускных клапана на цилиндр вместо одного впускного и одного выпускного. Это связано с тем, что суммарная площадь отверстий клапанов в головках цилиндров современных двигателей значительно увеличена, а при использовании одного большого клапана на высоких оборотах заслонки клапанов не успевают закрыть отверстие к началу следующего цикла, ввиду своей относительно большой массы. Таким образом, имеет место «зависание» заслонок вокруг определенной позиции, в результате чего клапан получается постоянно открытым. Использование более жестких пружин не решает проблемы.
  • Для управления дроссельной заслонкой используется электропривод, а не тросик педали акселератора.

Системы, общие для большинства типов двигателей

  • Система охлаждения
  • Система выпуска отработанных газов. Включает выпускной коллектор, каталитический конвертер (на современных машинах), и глушитель.
  • Система смазки — бывает с отдельным маслобаком (авиация) и без него (почти все современные автомобили; масло заливается в маслозаливную горловину на клапанной крышке двигателя).
  • Система запуска двигателя. Для приготовления двигателя к работе необходимо произвести хотя бы один оборот коленчатого вала, для того, чтобы в одном из цилиндров произошли такты впуска и сжатия. Для запуска четырёхтактного двигателя обычно применяется специальный электромотор — стартер, работающий от аккумулятора. Для запуска маломощных двухтактных бензиновых двигателей можно применять мускульную силу человека, например так работает кикстартер в мотоцикле.

См. также

Ссылки

wikipedia.green

Чем отличается дизельный двигатель от бензинового? — DRIVE2

Каждый из нас стремится к экономии, поэтому, одним из критериев выбора личного транспорта, который, как мы знаем, давно перестал быть роскошью, является его двигатель. Тысячи людей каждый день решают важную дилемму, какой двигатель выбрать: бензиновый или дизельный. Те, кому посчастливилось попробовать и один, и другой, уверенно скажут, что и в уходе, и в работе двигателя есть существенная разница, которую нам и предстоит рассмотреть.

Принцип работы дизельного и бензинового двигателя:
Принцип работы дизельного двигателя заключается в следующем: двигатель внутреннего сгорания работает как поршень и при сжатии происходит воспламенение топлива. В цилиндр топливо подаётся отдельно от воздуха.(Дизельный двигатель (в просторечии — дизель) — поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха).

Дизельный двигатель.

Принцип работы бензинового двигателя таков: с помощью свечей подаваемая воздушно-бензиновая смесь воспламеняется в определённый момент, приводя в действие двигатель.(Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки).

Полный размер

Бензиновый двигатель.

Характеристики работы двигателей.
В процессе работы дизельный двигатель издаёт громкий звук, который отталкивает многих автовладельцев. Но на сегодняшний момент большинство машин на дизеле укомплектованы таким образом, что звука практически не слышно. Второй неприятный момент – выхлопы характерного чёрного цвета и неприятного запаха. На сегодняшний день и эта проблема успешно решается современными автопроизводителями. По мнению многих экспертов, современные дизельные двигатели стали более экологичными, нежели бензиновые. Ну, а «старички» по-прежнему продолжают портить экологическую картину. Ещё один момент, на который нужно обратить внимание – нежелание дизельного двигателя работать при температурах ниже 20 градусов. Поэтому многие запасаются зимним топливом, или добавляют присадку-антигель, который не позволяет топливу сворачиваться. Но при всех недостатках, дизельное топливо – более бюджетный вариант, нежели бензиновое, так как уровень КПД может достигать 50%, то есть идёт существенная экономия топлива. Бензиновые двигатели, особенно в современных машинах, работают бесшумно, позволяя владельцу и пассажирам наслаждаться дорогой. Кроме того, бензин до недавнего времени, хоть и не являлся другом окружающей среды, но приносил меньше неприятностей, чем двигатель дизельный. Хотя и запах, и выхлопы присутствуют, но в меньшей степени, чем у стареньких дизельных авто. Кроме того, он устойчив к падению температур.

Обслуживание и ремонт дизельного и бензинового двигателей.
Дизельный двигатель более долговечен, конструкция блока цилиндров более прочная. Но проблема заключается в его капризности в плане топлива. Зачастую, российский дизель может существенно подпортить работу двигателя. Именно из-за проблем с качественным топливом в автомобиле на дизеле часто приходится заменять масла и фильтры. В ремонте тоже могут быть загвоздки, так как устройство дизельного двигателя несколько сложнее, чем бензинового.

Бензиновый автомобиль менее привередлив к качеству бензина. Запчасти для ремонта бензинового двигателя более доступны, а сам двигатель имеет более высокую мощность и обороты.

Полный размер

Обслуживание и ремонт двигателя.

Разница между дизельным и бензиновым двигателем:
У дизельного двигателя в цилиндр топливо подаётся отдельно от воздуха, у бензинового – вместе.
Дизельный двигатель более долговечен, нежели бензиновый.
У дизельного двигателя более высокий уровень КПД.
Дизельные двигатели старого поколения работают с характерным шумом и вибрацией, бензиновые практически бесшумны.
Дизельные двигатели требуют частой смены масла и фильтров, в отличие от бензинового.
Бензиновый двигатель более экологичный.
Дизельный двигатель не устойчив к падению температур, в отличие от бензинового.
_________________________________________________________________________

www.drive2.ru

История создания двигателей внутреннего сгорания — Википедия

Тепловые машины (в основном, паровые) с момента появления отличались большими габаритами и массой, обусловленными в значительной степени применением внешнего сгорания (требовались котлы, конденсаторы, испарители, теплообменники, тендеры, насосы, водяные резервуары и др.). В то же время основная (функциональная) часть паровой машины (поршень и цилиндр) сравнительно невелика. Поэтому мысль изобретатетелей всё время возвращалась к возможности совмещения топлива с рабочим телом двигателя, позволившего затем значительно уменьшить габариты и вес, интенсифицировать процессы впуска и выпуска рабочего тела. Облегчение двигателей позволило устанавливать их на транспорте, в том числе даже на самолёт. Современные самолёты (кроме небольшого количества на электромоторах) комплектуются исключительно двигателями внутреннего сгорания — реактивными, турбореактивными, или поршневыми.

Прогресс в области ДВС тесно увязан с открытием и применением различных топлив, включая синтезированные. Поскольку состав рабочего тела (получающегося сгоранием топливо-воздушной смеси), теплотворная способность, скорость сгорания смеси, и параметры цикла (степень сжатия) зависит от применённого топлива, оно и определяет в значительной части массо-габаритные и мощностные показатели таких двигателей. Топливо ДВС определяет устройство последнего, и вообще возможность его создания. Первым таким топливом стал светильный газ.

В 1799 году французский инженер Филипп Лебон открыл светильный газ и получил патент на использование и способ получения светильного газа путём сухой перегонки древесины или угля. Это открытие имело огромное значение, прежде всего для развития техники освещения. Очень скоро во Франции, а потом и в других странах Европы газовые лампы стали успешно конкурировать с дорогостоящими свечами. Однако светильный газ годился не только для освещения. Изобретатели взялись за конструирование двигателей, способных заменить паровую машину, при этом топливо сгорало бы не в топке, а непосредственно в цилиндре двигателя.

В 1801 году Лебон взял патент на конструкцию газового двигателя. Принцип действия этой машины основывался на известном свойстве открытого им газа: его смесь с воздухом взрывалась при воспламенении с выделением большого количества теплоты. Продукты горения стремительно расширялись, оказывая сильное давление на окружающую среду. Создав соответствующие условия, можно использовать выделяющуюся энергию в интересах человека. В двигателе Лебона были предусмотрены два компрессора и камера смешивания. Один компрессор должен был накачивать в камеру сжатый воздух, а другой — сжатый светильный газ из газогенератора. Газовоздушная смесь поступала потом в рабочий цилиндр, где воспламенялась. Двигатель был двойного действия, то есть попеременно действовавшие рабочие камеры находились по обе стороны поршня. По существу, Лебон вынашивал мысль о двигателе внутреннего сгорания, однако в 1804 году он был убит, не успев воплотить в жизнь своё изобретение[1].

Barsanti-Matteucci (1853)

В последующие годы несколько изобретателей из разных стран пытались создать работоспособный двигатель на светильном газе. Однако все эти попытки не привели к появлению на рынке двигателей, которые могли бы успешно конкурировать с паровой машиной. Честь создания коммерчески успешного двигателя внутреннего сгорания принадлежит бельгийскому механику Жану Этьену Ленуару. Работая на гальваническом заводе, Ленуар пришёл к мысли, что топливовоздушную смесь в газовом двигателе можно воспламенять с помощью электрической искры, и решил построить двигатель на основе этой идеи.

Ленуар не сразу добился успеха. После того как удалось изготовить все детали и собрать машину, она проработала совсем немного и остановилась, так как из-за нагрева поршень расширился и заклинил в цилиндре. Ленуар усовершенствовал свой двигатель, продумав систему водяного охлаждения. Однако вторая попытка запуска также закончилась неудачей из-за заедания поршня. Ленуар дополнил свою конструкцию системой смазки, только тогда двигатель начал работать. Таким образом, именно Ленуар впервые решил проблемы смазки и охлаждения ДВС. Двигатель Ленуара имел мощность около 12 л.с. с КПД около 3,3%[2].

К 1864 году было выпущено уже более 300 таких двигателей разной мощности. Разбогатев, Ленуар перестал работать над усовершенствованием своей машины, и это предопределило её судьбу — она была вытеснена с рынка более совершенным двигателем, созданным немецким изобретателем Николаусом Отто.

В 1864 году он получил патент на свою модель газового двигателя и в том же году заключил договор с богатым инженером Лангеном для эксплуатации этого изобретения. Вскоре была создана фирма «Отто и Компания».

На первый взгляд, двигатель Отто представлял собой шаг назад по сравнению с двигателем Ленуара. Цилиндр был вертикальным. Вращаемый вал помещался над цилиндром сбоку. Вдоль оси поршня к нему была прикреплена рейка, связанная с валом. Двигатель работал следующим образом. Вращающийся вал поднимал поршень на 1/10 высоты цилиндра, в результате чего под поршнем образовывалось разрежённое пространство и происходило всасывание смеси воздуха и газа. Затем смесь воспламенялась. Ни Отто, ни Ланген не владели достаточными знаниями в области электротехники и отказались от электрического зажигания. Воспламенение они осуществляли открытым пламенем через трубку. При взрыве давление под поршнем возрастало примерно до 4 атм. Под действием этого давления поршень поднимался, объём газа увеличивался и давление падало. При подъёме поршня специальный механизм отсоединял рейку от вала. Поршень сначала под давлением газа, а потом по инерции поднимался до тех пор, пока под ним не создавалось разрежение. Таким образом, энергия сгоревшего топлива использовалась в двигателе с максимальной полнотой. В этом заключалась главная оригинальная находка Отто. Рабочий ход поршня вниз начинался под действием атмосферного давления, и после того, как давление в цилиндре достигало атмосферного, открывался выпускной вентиль, и поршень своей массой вытеснял отработанные газы. Из-за более полного расширения продуктов сгорания КПД этого двигателя был значительно выше, чем КПД двигателя Ленуара и достигал 15 % (до 22%?[2]), то есть превосходил КПД самых лучших паровых машин того времени[3].

Поскольку двигатели Отто были почти в пять раз экономичнее двигателей Ленуара, они сразу стали пользоваться большим спросом. В последующие годы их было выпущено около пяти тысяч. Отто упорно работал над усовершенствованием их конструкции. Вскоре зубчатую рейку заменила кривошипно-шатунная передача. Но самое существенное из его изобретений было сделано в 1877 году, когда Отто взял патент на новый двигатель с четырёхтактным циклом. Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей. В следующем году новые двигатели уже были запущены в производство.

Четырёхтактный цикл был самым большим техническим достижением Отто. Но вскоре обнаружилось, что за несколько лет до его изобретения точно такой же принцип работы двигателя был описан французским инженером Бо де Роша. Группа французских промышленников оспорила в суде патент Отто. Суд счёл их доводы убедительными. Права Отто, вытекавшие из его патента, были значительно сокращены, в том числе было аннулировано его монопольное право на четырёхтактный цикл.

Хотя конкуренты наладили выпуск четырёхтактных двигателей, отработанная многолетним производством модель Отто всё равно была лучшей, и спрос на неё не прекращался. К 1897 году было выпущено около 42 тысяч таких двигателей разной мощности. Однако то обстоятельство, что в качестве топлива использовался светильный газ, сильно сужало область применения первых двигателей внутреннего сгорания (невозможно применения на транспорте, ввиду громоздкости баллонов и трудностей заправки). Количество светильногазовых заводов было незначительно даже в Европе, а в России их вообще было только два- в Москве и Петербурге.

Поэтому не прекращались поиски нового горючего для двигателя внутреннего сгорания. Некоторые изобретатели пытались применить в качестве газа пары жидкого топлива. Ещё в 1872 году американец Брайтон пытался использовать в этом качестве керосин. Однако керосин плохо испарялся, и Брайтон перешёл к более лёгкому нефтепродукту — бензину. Но для того, чтобы двигатель на жидком топливе мог успешно конкурировать с газовым, необходимо было создать специальное устройство для испарения бензина и получения горючей смеси его с воздухом. Брайтон в том же 1872 году придумал один из первых так называемых «испарительных» карбюраторов, но он действовал неудовлетворительно.

Работоспособный бензиновый двигатель появился только десятью годами позже. Вероятно, первым его изобретателем можно назвать Костовича О.С., предоставившим работающий прототип бензинового двигателя в 1880 году. Однако его открытие до сих пор остается слабо освещенным. В Европе в создании бензиновых двигателей наибольший вклад внес немецкий инженер Готлиб Даймлер. Много лет он работал в фирме Отто и был членом её правления. В начале 80-х годов он предложил своему шефу проект компактного бензинового двигателя, который можно было бы использовать на транспорте. Отто отнёсся к предложению Даймлера холодно. Тогда Даймлер вместе со своим другом Вильгельмом Майбахом принял смелое решение — в 1882 году они ушли из фирмы Отто, приобрели небольшую мастерскую близ Штутгарта и начали работать над своим проектом.

Проблема, стоявшая перед Даймлером и Майбахом была не из лёгких: они решили создать двигатель, который не требовал бы газогенератора, был бы очень лёгким и компактным, но при этом достаточно мощным, чтобы двигать экипаж. Увеличение мощности Даймлер рассчитывал получить за счёт увеличения частоты вращения вала, но для этого необходимо было обеспечить требуемую частоту воспламенения смеси. В 1883 году был создан первый калильный бензиновый двигатель с зажиганием от раскалённой трубочки, вставляемой в цилиндр. Первая модель бензинового двигателя предназначалась для промышленной стационарной установки[3].

Процесс испарения жидкого топлива в первых бензиновых двигателях оставлял желать лучшего. Поэтому настоящую революцию в двигателестроении произвело изобретение карбюратора. Создателем его считается венгерский инженер Донат Банки. В 1893 году он взял патент на карбюратор с жиклёром, который был прообразом всех современных карбюраторов. В отличие от своих предшественников Банки предлагал не испарять бензин, а мелко распылять его в воздухе. Это обеспечивало его равномерное распределение по цилиндру, а само испарение происходило уже в цилиндре под действием тепла сжатия. Для обеспечения распыления всасывание бензина происходило потоком воздуха через дозирующий жиклёр, а постоянство состава смеси достигалось за счёт поддержания постоянного уровня бензина в карбюраторе. Жиклёр выполнялся в виде одного или нескольких отверстий в трубке, располагавшейся перпендикулярно потоку воздуха. Для поддержания напора был предусмотрен маленький бачок с поплавком, который поддерживал уровень на заданной высоте, так что количество всасываемого бензина было пропорционально количеству поступающего воздуха.

Первые двигатели внутреннего сгорания были одноцилиндровыми, и, для того чтобы увеличить мощность двигателя, обычно увеличивали объём цилиндра. Потом этого стали добиваться увеличением числа цилиндров.

В конце XIX века появились двухцилиндровые двигатели, а с начала XX столетия стали распространяться четырёхцилиндровые.

Многие ученые и инженеры внесли свой вклад в разработку двигателей внутреннего сгорания.  В 1791 году Джон Барбер изобрел газовую турбину. В 1794 году Томас Мид запатентовал газовый двигатель. В том же 1794 году Роберт Стрит запатентовал двигатель внутреннего сгорания на жидком топливе и построил рабочий прототип. В 1807 году французские инженеры Никифор и Клод Ниепсе запустили экспериментальный твердотопливный двигатель внутреннего сгорания, который использовал в качестве топлива измельченный в порошок пиреолофор. В 1807 году французский изобретатель Франсуа Исаак де Риваз построил первый поршневой двигатель, называемый часто двигателем де Риваза[en]. Двигатель работал на газообразном водороде, имея элементы конструкции, с тех пор вошедшие в последующие прототипы ДВС: поршневую группу и искровое зажигание. Кривошипно-шатунного механизма в конструкции двигателя ещё не было.

Первый практически пригодный двухтактный газовый ДВС был сконструирован французским механиком Этьеном Ленуаром в 1860 году. Мощность составляла 8,8 кВт (11,97 л. с.). Двигатель представлял собой одноцилиндровую горизонтальную машину двойного действия, работавшую на смеси воздуха и светильного газа с электрическим искровым зажиганием от постороннего источника и золотниковым газораспределением. В конструкции двигателя появился кривошипно-шатунный механизм. КПД двигателя не превышал 4,65 %. Несмотря на недостатки, двигатель Ленуара получил некоторое распространение. Использовался как лодочный двигатель.

Познакомившись с двигателем Ленуара, осенью 1860 года выдающийся немецкий конструктор Николаус Аугуст Отто с братом построили копию газового двигателя Ленуара и в январе 1861 года подали заявку на патент на двигатель с жидким топливом на основе газового двигателя Ленуара в Министерство коммерции Пруссии, но заявка была отклонена. В 1863 году создал двухтактный атмосферный двигатель внутреннего сгорания. Двигатель имел вертикальное расположение цилиндра, зажигание открытым пламенем и КПД до 15 %. Вытеснил двигатель Ленуара.

В 1876 году Николаус Август Отто построил более совершенный четырёхтактный газовый двигатель внутреннего сгорания.

В 1884 году[4]Огнеслав Степанович Костович в России построил первый бензиновый карбюраторный двигатель. Двигатель Костовича был оппозитным, с горизонтальным размещением направленных встречно цилиндров[5]. В нём впервые в мире было применено электрическое зажигание[6]. Он был 4-тактным, 8-цилиндровым, с водяным охлаждением. Мощность двигателя составляла 80 л. с. при массе двигателя 240 кг[7], что существенно превышало показатели двигателя Г. Даймлера, созданного годом позже. Однако, заявку на свой двигатель Костович подал только 14 мая 1888 г.[8], а патент получил в 1892 г., т.е. позже, чем Г. Даймлер и В. Майбах, разрабатывавшие карбюраторный двигатель параллельно и независимо от О. Костовича.

Мотоцикл Даймлера с ДВС 1885 года

В 1885 году немецкие инженеры Готтлиб Даймлер и Вильгельм Майбах разработали лёгкий бензиновый карбюраторный двигатель. Даймлер и Майбах использовали его для создания первого мотоцикла в 1885, а в 1886 году — на первом автомобиле.

Немецкий инженер Рудольф Дизель, опираясь на богатые угольные ресурсы Германии (ввиду отсутствия в последней месторождений нефти) в 1897 предложил двигатель с воспламенением от сжатия, работавшим на угольной пыли. Однако, такой двигатель ввиду быстрого абразивного износа поршневой группы, низкой скорости и полноты сгорания угля не получил никакого распространения. Однако, имя Дизеля стало нарицательным для всех моторов с воспламенением от сжатия.

На заводе «Людвиг Нобель» Эммануила Людвиговича Нобеля в Петербурге в 1898—1899 Густав Васильевич Тринклер усовершенствовал этот двигатель, использовав бескомпрессорное распыливание топлива, что позволило применить в качестве топлива нефть. В результате бескомпрессорный двигатель внутреннего сгорания высокого сжатия с самовоспламенением стал наиболее экономичным стационарным тепловым двигателем. В 1899 на заводе «Людвиг Нобель» построили первый дизель в России и развернули массовое производство дизелей. Этот первый дизель имел мощность 20 л. с., один цилиндр диаметром 260 мм, ход поршня 410 мм и частоту вращения 180 об/мин. В Европе дизельный двигатель, усовершенствованный Густавом Васильевичем Тринклером, получил название «русский дизель» или «Тринклер-мотор». На всемирной выставке в Париже в 1900 двигатель Дизеля получил главный приз. В 1902 Коломенский завод купил у Эммануила Людвиговича Нобеля лицензию на производство дизелей и вскоре наладил массовое производство.

В 1908 году главный инженер Коломенского завода Р. А. Корейво строит и патентует во Франции двухтактный дизель с противоположно-движущимися поршнями и двумя коленвалами. Дизели Корейво стали широко использоваться на теплоходах Коломенского завода. Выпускались они и на заводах Нобелей.

В 1896 году Чарльз В. Харт[en] и Чарльз Парр[en] разработали двухцилиндровый бензиновый двигатель. В 1903 году их фирма построила 15 тракторов. Их шеститонный #3 является старейшим трактором с двигателем внутреннего сгорания в Соединенных Штатах и хранится в Смитсоновском Национальном музее американской истории в Вашингтоне, округ Колумбия. Бензиновый двухцилиндровый двигатель имел совершенно ненадёжную систему зажигания и мощность 30 л. с. на холостом ходу и 18 л. с. под нагрузкой[9].

Дэн Элбон с его прототипом сельскохозяйственного трактора Ivel

Первым практически пригодным трактором с двигателем внутреннего сгорания был американский трёхколёсный трактор lvel Дэна Элбона 1902 года. Было построено около 500 таких лёгких и мощных машин.

В 1903 году состоялся полёт первого самолёта братьев Орвила и Уилбура Райт. Двигатель самолёта изготовил механик Чарли Тэйлор. Основные части двигателя сделали из алюминия. Двигатель Райт-Тэйлора был примитивным вариантом бензинового инжекторного двигателя.

На первом в мире теплоходе — нефтеналивной барже «Вандал», построенной в 1903 году в России на Сормовском заводе для «Товарищества Братьев Нобель», были установлены три четырёхтактных двигателя Дизеля мощностью по 120 л. с. каждый. В 1904 году был построен теплоход «Сармат».

В 1924 по проекту Якова Модестовича Гаккеля на Балтийском судостроительном заводе в Ленинграде был создан тепловоз ЮЭ2 (ЩЭЛ1).

Практически одновременно в Германии по заказу СССР был по проекту профессора Ю. В. Ломоносова и по личному указанию Ленина в 1924 году на заводе Эсслинген[de] (бывш. Кесслер) близ Штутгарта построен тепловоз Ээл2 (первоначально Юэ001).

Реактивные, турбореактивные, газотурбинные, роторные ДВС[править | править код]

Начали широкое техническое развитие только в XX веке, ввиду сложностей технического характера для их конструирования, расчёта и изготовления. Хотя первые реактивные двигатели применяли в ракетах ещё задолго до этого, они имели ограниченное применение (пиротехника, военное дело) и были одноразовыми (разрушались вместе с ракетой). Космонавтика стала возможна лишь благодаря новым, усовершенствованным ДВС (многоступенчатые ракеты с мощными ЖРД).

Турбореактивные двигатели были анонсированы в условиях военных действий в гитлеровской Германии. Первые такие двигатели были установлены на реактивных самолётах, таких как Ме-209. Неоценимый вклад в этой области внёс Вернер фон Браун: разработанные им ДВС на новых ракетах Сатурн-5 позволили осуществить лунную программу. Без разработки столь мощных и надёжных ДВС выход за пределы атмосферы до сих пор является невозможным.

Газотурбинные двигатели, также СПГГ и дизель-молоты имеют широкое распространение в промышленности, строительстве, флоте и военном деле. Начиная с середины XX века, они получили широчайшее распространение.

Роторные ДВС одно время представлялись полноценным заменителем поршневых ДВС. Однако, несмотря на все усилия конструкторов фирмы Mazda и последующих, они не смогли уложиться в ужесточающиеся экологические нормы. Вместе с этим, осталась проблемой и долговечность таких двигателей, наряду с достаточно большой стоимостью изготовления и ремонта. Поэтому к настоящему времени такие двигатели почти полностью исчезли, их область применения занята поршневыми комбинированными и газотурбинными двигателями.

  1. ↑ История газовых и бензиновых двигателей | Великие открытия человечества (рус.)  (неопр.) ?. Дата обращения 26 июля 2019.
  2. 1 2 Infourok. История создания ДВС (8 класс) (неопр.). Инфоурок. Дата обращения 28 июля 2019.
  3. 1 2 ДВС — termodinamikaVM.ru (неопр.). sites.google.com. Дата обращения 28 июля 2019.
  4. ↑ 100 лет со дня смерти изобретателя Огнеслава Степановича Костовича (неопр.). ruvera.ru. Дата обращения 8 февраля 2019.
  5. ↑ Мы были первыми :: Сделано в России, в СССР :: Двигатель внутреннего сгорания, дирижабль «Россия», фанера, электроаэронавтический телеграфный аппарат, триплан, гидроаэроплан, моноплан-амфибия :: О.С. Костович (рус.)  (неопр.) ?. Великая Страна СССР. Дата обращения 8 февраля 2019.
  6. ↑ Костович Огнеслав Степанович, выдающийся изобретатель, создавший первый в мире бензиновый двигатель (1879-1880 гг) — Российская империя — Впервые в мире — Статьи — Славные имена (неопр.). slavnyeimena.ru. Дата обращения 8 февраля 2019.
  7. ↑ Дизель, Костович и двигатели внутреннего сгорания (рус.). Политехнический музей. Дата обращения 8 февраля 2019.
  8. admin. Двигатель внутреннего сгорания для дирижабля о.с.костовича. — О самолётах и авиастроении (рус.)  (неопр.) ?. Дата обращения 8 февраля 2019.
  9. ↑ Hart Parr #3 Tractor на сайте Национального музея американской истории (англ.)

ru.wikipedia.org

Бензиновый двигатель внутреннего сгорания Википедия

Бензиновые двигатели — класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания. Рабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещённую в трубу, в которой протекает регулируемая среда. В автомобилях управление дросселем производится с места водителя от ноги педалью. В современных автомобилях нет прямой механической связи между педалью акселератора и дроссельной заслонкой. Заслонка поворачивается с помощью электродвигателя, управляемого электронным блоком управления (ЭБУ). В педальном блоке находится потенциометр, изменяющий своё сопротивление в зависимости от положения педали.

Классификация бензиновых двигателей[ | ]

  • По способу смесеобразования — карбюраторные и инжекторные;
  • По способу осуществления рабочего цикла — четырёхтактные и двухтактные. Двухтактные двигатели обладают большей мощностью на единицу объёма, однако меньшим КПД. Поэтому двухтактные двигатели применяются там, где очень важны небольшие размеры, но относительно неважна топливная экономичность, например, на мотоциклах, небольших моторных лодках, бензопилах и моторизированных инструментах. Четырёхтактные же двигатели устанавливаются на абсолютное большинство остальных

ru-wiki.ru

Бензиновый двигатель внутреннего сгорания — Википедия. Что такое Бензиновый двигатель внутреннего сгорания

Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания. Рабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещённую в трубу, в которой протекает регулируемая среда. В автомобилях управление дросселем производится с места водителя от ноги педалью. В современных автомобилях нет прямой механической связи между педалью акселератора и дроссельной заслонкой. Заслонка поворачивается с помощью электродвигателя, управляемого электронным блоком управления (ЭБУ). В педальном блоке находится потенциометр, изменяющий своё сопротивление в зависимости от положения педали.

Классификация бензиновых двигателей

  • По способу смесеобразования — карбюраторные и инжекторные;
  • По способу осуществления рабочего цикла — четырёхтактные и двухтактные. Двухтактные двигатели обладают большей мощностью на единицу объёма, однако меньшим КПД. Поэтому двухтактные двигатели применяются там, где очень важны небольшие размеры, но относительно неважна топливная экономичность, например, на мотоциклах, небольших моторных лодках, бензопилах и моторизированных инструментах. Четырёхтактные же двигатели устанавливаются на абсолютное большинство остальных транспортных средств. Следует заметить, что дизели также могут быть четырёхтактными или двухтактными; двухтактные дизели лишены многих недостатков бензиновых двухтактных двигателей, однако применяются в основном на больших судах (реже на тепловозах и грузовиках).;
  • По числу цилиндров — одноцилиндровые, двухцилиндровые и многоцилиндровые;
  • По расположению цилиндров — с вертикальным или наклонным расположением цилиндров в один ряд (т. н. «рядный» двигатель), V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным),W-образные, использующие 4 ряда цилиндров, расположенных под углом с 1 коленвалом (у V-образного двигателя 2 ряда цилиндров), звездообразные;
  • По способу охлаждения — с жидкостным или воздушным охлаждением;
  • По типу смазки смешанный тип (масло смешивается с топливной смесью) и раздельный тип (масло находится в картере)
  • По виду применяемого топлива — бензиновые и многотопливные [1];
  • По степени сжатия— двигатели высокого (E=12…18) и низкого (E=4…9) сжатия;
  • По способу наполнения цилиндра свежим зарядом: двигатели без наддува (атмосферные), у которых впуск воздуха или горючей смеси осуществляется за счет разрежения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;
  • По частоте вращения: тихоходные, повышенной частоты вращения, быстроходные;
  • По назначению различают двигатели стационарные, автотракторные, судовые, тепловозные, авиационные и др.
  • Практически не употребляемые виды моторов — роторно-поршневые Ванкеля (производились только фирмами NSU (Западная Германия), Mazda (Япония) и ВАЗ (СССР/Россия)), с внешним сгоранием Стирлинга и т. д..

См. также: Классификация автотракторных двигателей

Рабочий цикл бензинового двигателя

Рабочий цикл четырёхтактного двигателя

Как следует из названия, рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов.

1. Впуск. В течение этого такта поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). При этом кулачки распредвала открывают впускной клапан, и через этот клапан в цилиндр засасывается свежая топливно-воздушная смесь.
2. Сжатие. Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степень сжатия . Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Однако для двигателя с большей степенью сжатия требуется топливо с бо́льшим октановым числом, которое дороже.
3. Сгорание и расширение (рабочий ход поршня). Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы основная масса бензовоздушной смеси успела воспламениться к моменту, когда поршень будет находиться в ВМТ (процесс воспламенения является медленным процессом относительно скорости работы поршневых систем современных двигателей). При этом использование энергии сгоревшего топлива будет максимальным. Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов. В старых двигателях эта регулировка производилась механическим устройством, центробежным вакуумным регулятором воздействующим на прерыватель. В более современных двигателях для регулировки угла опережения зажигания используют электронику. В этом случае используется датчик положения коленчатого вала, работающий обычно по индуктивному принципу.
4. Выпуск. После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл начинается сначала.

Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндров горючей смесью, а также для лучшей очистки цилиндров от отработанных газов.

Рабочий цикл двухтактного двигателя

Рабочий цикл двухтактного двигателя

В двухтактном двигателе рабочий цикл полностью происходит в течение одного оборота коленчатого вала. При этом от цикла четырёхтактного двигателя остаётся только сжатие и расширение. Впуск и выпуск заменяются продувкой цилиндра вблизи нижней мёртвой точки поршня, при которой свежая рабочая смесь вытесняет отработанные газы из цилиндра.

Более подробно цикл двигателя устроен следующим образом: когда поршень идёт вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно, движущийся вверх поршень создаёт разрежение в кривошипной камере. Под действием этого разрежения открывается клапан впускного коллектора и свежая порция топливовоздушной смеси (как правило, с добавкой масла) засасывается в кривошипную камеру. При движении поршня вниз давление в кривошипной камере повышается и клапан закрывается. Поджиг, сгорание и расширение рабочей смеси происходят так же, как и в четырёхтактном двигателе. Однако, при движении поршня вниз, примерно за 60° до НМТ открывается выпускное окно (в смысле, поршень перестаёт перекрывать выпускное окно). Выхлопные газы (имеющие ещё большое давление) устремляются через это окно в выпускной коллектор. Через некоторое время поршень открывает также впускное окно, расположенное со стороны впускного коллектора. Свежая смесь, выталкиваемая из кривошипной камеры идущим вниз поршнем, попадает в рабочий объём цилиндра и окончательно вытесняет из него отработавшие газы. При этом часть рабочей смеси может выбрасываться в выпускной коллектор. При движении поршня вверх свежая порция рабочей смеси засасывается в кривошипную камеру.

Можно заметить, что двухтактный двигатель при том же объёме цилиндра, должен иметь почти в два раза большую мощность. Однако, полностью это преимущество не реализуется, из-за недостаточной эффективности продувки по сравнению с нормальным впуском и выпуском. Мощность двухтактного двигателя того же литража, что и четырёхтактный больше в 1,5 — 1,8 раза.

Важное преимущество двухтактных двигателей — отсутствие громоздкой системы клапанов и распределительного вала.

Преимущества 4-тактных двигателей

  • Больший ресурс.
  • Бо́льшая экономичность.
  • Более чистый выхлоп.
  • Не требуется сложная выхлопная система.
  • Меньший шум.
  • Не требуется добавление масла к топливу.

Преимущества двухтактных двигателей

  • Отсутствие громоздких систем смазки и газораспределения у двухтактных вариантов.
  • Бо́льшая мощность в пересчёте на 1 литр рабочего объёма.
  • Проще и дешевле в изготовлении.
  • Проще в ремонте.
  • Отсутствие блока клапанов и распределительного вала.
  • Меньший вес.
  • Лучше разгон.

Карбюраторные и инжекторные двигатели

В карбюраторных двигателях процесс приготовления горючей смеси происходит в карбюраторе — специальном устройстве, в котором топливо смешивается с потоком воздуха за счёт аэродинамических сил, вызываемых энергией потока воздуха, засасываемого двигателем.

В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления — подачей импульса тока, открывающим форсунку или же, в более старых двигателях, специальной механической системой.

Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов). Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов, идущих в катализатор. Постоянство же состава необходимо для нормальной работы катализатора, так как современный катализатор способен работать лишь в узком диапазоне данного состава, и требует строго определённого содержания кислорода. Именно поэтому в тех системах управления, где установлен катализатор, обязательным элементом является лямбда-зонд, он же кислородный датчик. Благодаря лямбда-зонду система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это — процесс, идущий совершенно в другом (с точки зрения химии) направлении. Желательно также ещё раз окислять окончательно весь поток газов. Это возможно лишь в пределах так называемого «каталитического окна», то есть узкого диапазона соотношения топлива и воздуха, когда катализатор способен выполнить свои функции. Соотношение топлива и воздуха в данном случае составляет примерно 1:14,7 по весу (зависит также от соотношения С к Н в бензине), и удерживается в коридоре приблизительно плюс-минус 5 %. Так как одной из труднейших задач является удержание нормативов по оксидам азота, дополнительно необходимо снижать интенсивность их синтеза в камере сгорания. Делается это в основном снижением температуры процесса горения с помощью добавления определённого количества выхлопных газов в камеру сгорания на некоторых критичных режимах (система рециркуляции выхлопных газов).

Основные вспомогательные системы бензинового двигателя

Системы, специфические для бензиновых двигателей

  • Система зажигания — обеспечивает поджиг топлива в нужный момент. Она может быть контактной, бесконтактной или микропроцессорной. Контактная система включает в себя: прерыватель-распределитель, катушку, выключатель зажигания, свечи. Бесконтактная система включает то же самое оборудование, только вместо прерывателя стоит датчик Холла или индукционный датчик. Микропроцессорная система зажигания управляется специальным блоком-компьютером, она включает в себя датчик положения коленвала, блок управления зажиганием, коммутатор, катушки, свечи, датчик температуры двигателя. У инжекторного двигателя к этой системе добавляются датчик положения дроссельной заслонки и датчик массового расхода воздуха.
  • Система приготовления топливовоздушной смеси — карбюратор или же инжекторная система.

Некоторые особенности современных бензиновых двигателей

  • Для повышения надежности работы используется индивидуальная катушка зажигания для каждой свечи.
  • Используется по 2 впускных и 2 выпускных клапана на цилиндр вместо одного впускного и одного выпускного. Это связано с тем, что суммарная площадь отверстий клапанов в головках цилиндров современных двигателей значительно увеличена, а при использовании одного большого клапана на высоких оборотах заслонки клапанов не успевают закрыть отверстие к началу следующего цикла, ввиду своей относительно большой массы. Таким образом, имеет место «зависание» заслонок вокруг определенной позиции, в результате чего клапан получается постоянно открытым. Использование более жестких пружин не решает проблемы.
  • Для управления дроссельной заслонкой используется электропривод, а не тросик педали акселератора.

Системы, общие для большинства типов двигателей

  • Система охлаждения
  • Система выпуска отработанных газов. Включает выпускной коллектор, каталитический конвертер (на современных машинах), и глушитель.
  • Система смазки — бывает с отдельным маслобаком (авиация) и без него (почти все современные автомобили; масло заливается в маслозаливную горловину на клапанной крышке двигателя).
  • Система запуска двигателя. Для приготовления двигателя к работе необходимо произвести хотя бы один оборот коленчатого вала, для того, чтобы в одном из цилиндров произошли такты впуска и сжатия. Для запуска четырёхтактного двигателя обычно применяется специальный электромотор — стартер, работающий от аккумулятора. Для запуска маломощных двухтактных бензиновых двигателей можно применять мускульную силу человека, например так работает кикстартер в мотоцикле.

См. также

Ссылки

wiki.sc

Бензиновый двигатель внутреннего сгорания — Википедия

Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания. Рабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещённую в трубу, в которой протекает регулируемая среда. В автомобилях управление дросселем производится с места водителя от ноги педалью (на автомобилях старше 10-ти лет). В современных автомобилях нет прямой механической связи между педалью акселератора и дроссельной заслонкой. Заслонка поворачивается с помощью электродвигателя, управляемого электронным блоком управления (ЭБУ, по-народному «Мозгами»). В педальном блоке находится потенциометр, изменяющий свое сопротивление в зависимости от положения педали.

Классификация бензиновых двигателей[править]

  • По способу смесеобразования — карбюраторные и инжекторные;
  • По способу осуществления рабочего цикла — четырехтактные и двухтактные. Двухтактные двигатели обладают большей мощностью на единицу объёма, однако меньшим КПД. Поэтому двухтактные двигатели применяются там, где очень важны небольшие размеры, но относительно неважна топливная экономичность, например, на мотоциклах, небольших моторных лодках, бензопилах и моторизированных инструментах. Четырёхтактные же двигатели устанавливаются на абсолютное большинство остальных транспортных средств. Следует заметить, что дизели также могут быть четырёхтактными или двухтактными; двухтактные дизели лишены многих недостатков бензиновых двухтактных двигателей, однако применяются в основном на больших судах (реже на тепловозах и грузовиках).;
  • По числу цилиндров — одноцилиндровые, двухцилиндровые и многоцилиндровые;
  • По расположению цилиндров — двигатели с вертикальным или наклонным расположением цилиндров в один ряд (т. н. «рядный» двигатель), V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным),W-образные, использующие 4 ряда цилиндров, расположенных под углом с 1 коленвалом (у V-образного двигателя 2 ряда цилиндров), звездообразные;
  • По способу охлаждения — на двигатели с жидкостным или воздушным охлаждением;
  • По типу смазки смешанный тип (масло смешивается с топливной смесью) и раздельный тип (масло находится в картере)
  • По виду применяемого топлива — бензиновые и многотопливные [1];
  • По степени сжатия. В зависимости от степени сжатия различают двигатели высокого (E=12…18) и низкого (E=4…9) сжатия;
  • По способу наполнения цилиндра свежим зарядом: двигатели без наддува (атмосферные), у которых впуск воздуха или горючей смеси осуществляется за счет разрежения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;
  • По частоте вращения: тихоходные, повышенной частоты вращения, быстроходные;
  • По назначению различают двигатели стационарные, автотракторные, судовые, тепловозные, авиационные и др.
  • Практически не употребляемые виды моторов — роторно-поршневые Ванкеля (производились только фирмами NSU (Западная Германия), Mazda (Япония) и ВАЗ (СССР/Россия)), с внешним сгоранием Стирлинга и т. д..

См. также: Классификация автотракторных двигателей

Рабочий цикл бензинового двигателя[править]

Рабочий цикл четырёхтактного двигателя[править]

Как следует из названия, рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов.

1. Впуск. В течение этого такта поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). При этом кулачки распредвала открывают впускной клапан, и через этот клапан в цилиндр засасывается свежая топливно-воздушная смесь.
2. Сжатие. Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степень сжатия . Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Однако для двигателя с большей степенью сжатия требуется топливо с бо́льшим октановым числом, которое дороже.
3. Сгорание и расширение (рабочий ход поршня). Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы основная масса бензовоздушной смеси успела воспламениться к моменту, когда поршень будет находиться в ВМТ (процесс воспламенения является медленным процессом относительно скорости работы поршневых систем современных двигателей). При этом использование энергии сгоревшего топлива будет максимальным. Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов. В старых двигателях эта регулировка производилась механическим устройством, центробежным вакуумным регулятором воздействующим на прерыватель. В более современных двигателях для регулировки угла опережения зажигания используют электронику. В этом случае используется датчик положения коленчатого вала, работающий обычно по емкостному принципу.
4. Выпуск. После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл начинается сначала.

Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндров горючей смесью, а также для лучшей очистки цилиндров от отработанных газов.

Рабочий цикл двухтактного двигателя[править]

Рабочий цикл двухтактного двигателя

В двухтактном двигателе рабочий цикл полностью происходит в течение одного оборота коленчатого вала. При этом от цикла четырёхтактного двигателя остаётся только сжатие и расширение. Впуск и выпуск заменяются продувкой цилиндра вблизи нижней мёртвой точки поршня, при которой свежая рабочая смесь вытесняет отработанные газы из цилиндра.

Более подробно цикл двигателя устроен следующим образом: когда поршень идёт вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно, движущийся вверх поршень создаёт разрежение в кривошипной камере. Под действием этого разрежения открывается клапан впускного коллектора и свежая порция топливовоздушной смеси (как правило, с добавкой масла) засасывается в кривошипную камеру. При движении поршня вниз давление в кривошипной камере повышается и клапан закрывается. Поджиг, сгорание и расширение рабочей смеси происходят так же, как и в четырёхтактном двигателе. Однако, при движении поршня вниз, примерно за 60° до НМТ открывается выпускное окно (в смысле, поршень перестаёт перекрывать выпускное окно). Выхлопные газы (имеющие ещё большое давление) устремляются через это окно в выпускной коллектор. Через некоторое время поршень открывает также впускное окно, расположенное со стороны впускного коллектора. Свежая смесь, выталкиваемая из кривошипной камеры идущим вниз поршнем, попадает в рабочий объём цилиндра и окончательно вытесняет из него отработавшие газы. При этом часть рабочей смеси может выбрасываться в выпускной коллектор. При движении поршня вверх свежая порция рабочей смеси засасывается в кривошипную камеру.

Можно заметить, что двухтактный двигатель при том же объёме цилиндра, должен иметь почти в два раза большую мощность. Однако, полностью это преимущество не реализуется, из-за недостаточной эффективности продувки по сравнению с нормальным впуском и выпуском. Мощность двухтактного двигателя того же литража, что и четырёхтактный больше в 1,5 — 1,8 раза.

Важное преимущество двухтактных двигателей — отсутствие громоздкой системы клапанов и распределительного вала.

Преимущества 4-тактных двигателей[править]

  • Больший ресурс.
  • Бо́льшая экономичность.
  • Более чистый выхлоп.
  • Не требуется сложная выхлопная система.
  • Меньший шум.
  • Не требуется добавление масла к топливу.

Преимущества двухтактных двигателей[править]

  • Отсутствие громоздких систем смазки и газораспределения у двухтактных вариантов.
  • Бо́льшая мощность в пересчёте на 1 литр рабочего объёма.
  • Проще и дешевле в изготовлении.
  • Проще в ремонте.
  • Отсутствие блока клапанов и распределительного вала.
  • Меньший вес.
  • Лучше разгон.

Карбюраторные и инжекторные двигатели[править]

В карбюраторных двигателях процесс приготовления горючей смеси происходит в карбюраторе — специальном устройстве, в котором топливо смешивается с потоком воздуха за счёт аэродинамических сил, вызываемых энергией потока воздуха, засасываемого двигателем.

В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления — подачей импульса тока, открывающим форсунку или же, в более старых двигателях, специальной механической системой.

Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов). Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов, идущих в катализатор. Постоянство же состава необходимо для нормальной работы катализатора, так как современный катализатор способен работать лишь в узком диапазоне данного состава, и требует строго определённого содержания кислорода. Именно поэтому в тех системах управления, где установлен катализатор, обязательным элементом является лямбда-зонд, он же кислородный датчик. Благодаря лямбда-зонду система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это — процесс, идущий совершенно в другом (с точки зрения химии) направлении. Желательно также ещё раз окислять окончательно весь поток газов. Это возможно лишь в пределах так называемого «каталитического окна», то есть узкого диапазона соотношения топлива и воздуха, когда катализатор способен выполнить свои функции. Соотношение топлива и воздуха в данном случае составляет примерно 1:14,7 по весу (зависит также от соотношения С к Н в бензине), и удерживается в коридоре приблизительно плюс-минус 5 %. Так как одной из труднейших задач является удержание нормативов по оксидам азота, дополнительно необходимо снижать интенсивность их синтеза в камере сгорания. Делается это в основном снижением температуры процесса горения с помощью добавления определённого количества выхлопных газов в камеру сгорания на некоторых критичных режимах (система рециркуляции выхлопных газов).

Основные вспомогательные системы бензинового двигателя[править]

Системы, специфические для бензиновых двигателей[править]

  • Система зажигания — обеспечивает поджиг топлива в нужный момент. Она может быть контактной, бесконтактной или микропроцессорной. Контактная система включает в себя: прерыватель-распределитель, катушку, выключатель зажигания, свечи. Бесконтактная система включает то же самое оборудование, только вместо прерывателя стоит датчик Холла или индукционный датчик. Микропроцессорная система зажигания управляется специальным блоком-компьютером, она включает в себя датчик положения коленвала, блок управления зажиганием, коммутатор, катушки, свечи, датчик температуры двигателя. У инжекторного двигателя к этой системе добавляются датчик положения дроссельной заслонки и датчик массового расхода воздуха.
  • Система приготовления топливовоздушной смеси — карбюратор или же инжекторная система.

Некоторые особенности современных бензиновых двигателей[править]

  • Для повышения надежности работы используется индивидуальная катушка зажигания для каждой свечи (например, в двигателе ЗМЗ-405.24, ВАЗ 21124 и многих современных японских двигателях).
  • Используется по 2 впускных и 2 выпускных клапана на цилиндр вместо одного впускного и одного выпускного. Это связано с тем, что суммарная площадь отверстий клапанов в головках цилиндров современных двигателей значительно увеличена, а при использовании одного большого клапана на высоких оборотах заслонки клапанов не успевают закрыть отверстие к началу следующего цикла, ввиду своей относительно большой массы. Таким образом, имеет место «зависание» заслонок вокруг определенной позиции, в результате чего клапан получается постоянно открытым. Использование более жестких пружин не решает проблемы.
  • Для управления дроссельной заслонкой используется электропривод, а не тросик педали акселератора (например, в двигателе ЗМЗ-405.24 и многих современных иностранных двигателях, особенно тех, что оснащены системой cruise control).

Системы, общие для большинства типов двигателей[править]

  • Система охлаждения
  • Система выпуска отработанных газов. Включает выпускной коллектор, каталитический конвертер (на современных машинах), и глушитель.
  • Система смазки — бывает с отдельным маслобаком (авиация) и без него (почти все современные автомобили; масло заливается в маслозаливную горловину на клапанной крышке двигателя).
  • Система запуска двигателя. Для приготовления двигателя к работе необходимо произвести хотя бы один оборот коленчатого вала, для того, чтобы в одном из цилиндров произошли такты впуска и сжатия. Для запуска четырёхтактного двигателя обычно применяется специальный электромотор — стартер, работающий от аккумулятора. Для запуска маломощных двухтактных бензиновых двигателей можно применять мускульную силу человека, например так работает кикстартер в мотоцикле.

Сайт о скутерах с 2х тактными двигателями

wp.wiki-wiki.ru

Бензиновый двигатель внутреннего сгорания — Википедия (с комментариями)

Материал из Википедии — свободной энциклопедии

Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.

Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания. Рабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещённую в трубу, в которой протекает регулируемая среда. В автомобилях управление дросселем производится с места водителя от ноги педалью (на автомобилях старше 10-ти лет). В современных автомобилях нет прямой механической связи между педалью акселератора и дроссельной заслонкой. Заслонка поворачивается с помощью электродвигателя, управляемого электронным блоком управления (ЭБУ, по-народному «Мозгами»). В педальном блоке находится потенциометр, изменяющий своё сопротивление в зависимости от положения педали.

Классификация бензиновых двигателей

  • По способу смесеобразования — карбюраторные и инжекторные;
  • По способу осуществления рабочего цикла — четырёхтактные и двухтактные. Двухтактные двигатели обладают большей мощностью на единицу объёма, однако меньшим КПД. Поэтому двухтактные двигатели применяются там, где очень важны небольшие размеры, но относительно неважна топливная экономичность, например, на мотоциклах, небольших моторных лодках, бензопилах и моторизированных инструментах. Четырёхтактные же двигатели устанавливаются на абсолютное большинство остальных транспортных средств. Следует заметить, что дизели также могут быть четырёхтактными или двухтактными; двухтактные дизели лишены многих недостатков бензиновых двухтактных двигателей, однако применяются в основном на больших судах (реже на тепловозах и грузовиках).;
  • По числу цилиндров — одноцилиндровые, двухцилиндровые и многоцилиндровые;
  • По расположению цилиндров — двигатели с вертикальным или наклонным расположением цилиндров в один ряд (т. н. «рядный» двигатель), V-образные с расположением цилиндров под углом (при расположении цилиндров под углом 180 двигатель называется двигателем с противолежащими цилиндрами, или оппозитным),W-образные, использующие 4 ряда цилиндров, расположенных под углом с 1 коленвалом (у V-образного двигателя 2 ряда цилиндров), звездообразные;
  • По способу охлаждения — на двигатели с жидкостным или воздушным охлаждением;
  • По типу смазки смешанный тип (масло смешивается с топливной смесью) и раздельный тип (масло находится в картере)
  • По виду применяемого топлива — бензиновые и многотопливные [1];
  • По степени сжатия. В зависимости от степени сжатия различают двигатели высокого (E=12…18) и низкого (E=4…9) сжатия;
  • По способу наполнения цилиндра свежим зарядом: двигатели без наддува (атмосферные), у которых впуск воздуха или горючей смеси осуществляется за счет разрежения в цилиндре при всасывающем ходе поршня; двигатели с наддувом, у которых впуск воздуха или горючей смеси в рабочий цилиндр происходит под давлением, создаваемым турбокомпрессором, с целью увеличения заряда воздуха и получения повышенной мощности и КПД двигателя;
  • По частоте вращения: тихоходные, повышенной частоты вращения, быстроходные;
  • По назначению различают двигатели стационарные, автотракторные, судовые, тепловозные, авиационные и др.
  • Практически не употребляемые виды моторов — роторно-поршневые Ванкеля (производились только фирмами NSU (Западная Германия), Mazda (Япония) и ВАЗ (СССР/Россия)), с внешним сгоранием Стирлинга и т. д..

См. также: [azbukadvs.ru/tehinfo/50-classification.html Классификация автотракторных двигателей]

Рабочий цикл бензинового двигателя

Рабочий цикл четырёхтактного двигателя

Как следует из названия, рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов.

1. Впуск. В течение этого такта поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). При этом кулачки распредвала открывают впускной клапан, и через этот клапан в цилиндр засасывается свежая топливно-воздушная смесь.
2. Сжатие. Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степень сжатия . Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Однако для двигателя с большей степенью сжатия требуется топливо с бо́льшим октановым числом, которое дороже.
3. Сгорание и расширение (рабочий ход поршня). Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы основная масса бензовоздушной смеси успела воспламениться к моменту, когда поршень будет находиться в ВМТ (процесс воспламенения является медленным процессом относительно скорости работы поршневых систем современных двигателей). При этом использование энергии сгоревшего топлива будет максимальным. Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов. В старых двигателях эта регулировка производилась механическим устройством, центробежным вакуумным регулятором воздействующим на прерыватель. В более современных двигателях для регулировки угла опережения зажигания используют электронику. В этом случае используется датчик положения коленчатого вала, работающий обычно по емкостному принципу.
4. Выпуск. После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл начинается сначала.

Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндров горючей смесью, а также для лучшей очистки цилиндров от отработанных газов.

Рабочий цикл двухтактного двигателя

В двухтактном двигателе рабочий цикл полностью происходит в течение одного оборота коленчатого вала. При этом от цикла четырёхтактного двигателя остаётся только сжатие и расширение. Впуск и выпуск заменяются продувкой цилиндра вблизи нижней мёртвой точки поршня, при которой свежая рабочая смесь вытесняет отработанные газы из цилиндра.

Более подробно цикл двигателя устроен следующим образом: когда поршень идёт вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно, движущийся вверх поршень создаёт разрежение в кривошипной камере. Под действием этого разрежения открывается клапан впускного коллектора и свежая порция топливовоздушной смеси (как правило, с добавкой масла) засасывается в кривошипную камеру. При движении поршня вниз давление в кривошипной камере повышается и клапан закрывается. Поджиг, сгорание и расширение рабочей смеси происходят так же, как и в четырёхтактном двигателе. Однако, при движении поршня вниз, примерно за 60° до НМТ открывается выпускное окно (в смысле, поршень перестаёт перекрывать выпускное окно). Выхлопные газы (имеющие ещё большое давление) устремляются через это окно в выпускной коллектор. Через некоторое время поршень открывает также впускное окно, расположенное со стороны впускного коллектора. Свежая смесь, выталкиваемая из кривошипной камеры идущим вниз поршнем, попадает в рабочий объём цилиндра и окончательно вытесняет из него отработавшие газы. При этом часть рабочей смеси может выбрасываться в выпускной коллектор. При движении поршня вверх свежая порция рабочей смеси засасывается в кривошипную камеру.

Можно заметить, что двухтактный двигатель при том же объёме цилиндра, должен иметь почти в два раза большую мощность. Однако, полностью это преимущество не реализуется, из-за недостаточной эффективности продувки по сравнению с нормальным впуском и выпуском. Мощность двухтактного двигателя того же литража, что и четырёхтактный больше в 1,5 — 1,8 раза.

Важное преимущество двухтактных двигателей — отсутствие громоздкой системы клапанов и распределительного вала.

Преимущества 4-тактных двигателей

  • Больший ресурс.
  • Бо́льшая экономичность.
  • Более чистый выхлоп.
  • Не требуется сложная выхлопная система.
  • Меньший шум.
  • Не требуется добавление масла к топливу.

Преимущества двухтактных двигателей

  • Отсутствие громоздких систем смазки и газораспределения у двухтактных вариантов.
  • Бо́льшая мощность в пересчёте на 1 литр рабочего объёма.
  • Проще и дешевле в изготовлении.
  • Проще в ремонте.
  • Отсутствие блока клапанов и распределительного вала.
  • Меньший вес.
  • Лучше разгон.

Карбюраторные и инжекторные двигатели

В карбюраторных двигателях процесс приготовления горючей смеси происходит в карбюраторе — специальном устройстве, в котором топливо смешивается с потоком воздуха за счёт аэродинамических сил, вызываемых энергией потока воздуха, засасываемого двигателем.

В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления — подачей импульса тока, открывающим форсунку или же, в более старых двигателях, специальной механической системой.

Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов). Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов, идущих в катализатор. Постоянство же состава необходимо для нормальной работы катализатора, так как современный катализатор способен работать лишь в узком диапазоне данного состава, и требует строго определённого содержания кислорода. Именно поэтому в тех системах управления, где установлен катализатор, обязательным элементом является лямбда-зонд, он же кислородный датчик. Благодаря лямбда-зонду система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это — процесс, идущий совершенно в другом (с точки зрения химии) направлении. Желательно также ещё раз окислять окончательно весь поток газов. Это возможно лишь в пределах так называемого «каталитического окна», то есть узкого диапазона соотношения топлива и воздуха, когда катализатор способен выполнить свои функции. Соотношение топлива и воздуха в данном случае составляет примерно 1:14,7 по весу (зависит также от соотношения С к Н в бензине), и удерживается в коридоре приблизительно плюс-минус 5 %. Так как одной из труднейших задач является удержание нормативов по оксидам азота, дополнительно необходимо снижать интенсивность их синтеза в камере сгорания. Делается это в основном снижением температуры процесса горения с помощью добавления определённого количества выхлопных газов в камеру сгорания на некоторых критичных режимах (система рециркуляции выхлопных газов).

Основные вспомогательные системы бензинового двигателя

Системы, специфические для бензиновых двигателей

  • Система зажигания — обеспечивает поджиг топлива в нужный момент. Она может быть контактной, бесконтактной или микропроцессорной. Контактная система включает в себя: прерыватель-распределитель, катушку, выключатель зажигания, свечи. Бесконтактная система включает то же самое оборудование, только вместо прерывателя стоит датчик Холла или индукционный датчик. Микропроцессорная система зажигания управляется специальным блоком-компьютером, она включает в себя датчик положения коленвала, блок управления зажиганием, коммутатор, катушки, свечи, датчик температуры двигателя. У инжекторного двигателя к этой системе добавляются датчик положения дроссельной заслонки и датчик массового расхода воздуха.
  • Система приготовления топливовоздушной смеси — карбюратор или же инжекторная система.

Некоторые особенности современных бензиновых двигателей

  • Для повышения надежности работы используется индивидуальная катушка зажигания для каждой свечи (например, в двигателе ЗМЗ-405.24, ВАЗ 21124 и многих современных японских двигателях).
  • Используется по 2 впускных и 2 выпускных клапана на цилиндр вместо одного впускного и одного выпускного. Это связано с тем, что суммарная площадь отверстий клапанов в головках цилиндров современных двигателей значительно увеличена, а при использовании одного большого клапана на высоких оборотах заслонки клапанов не успевают закрыть отверстие к началу следующего цикла, ввиду своей относительно большой массы. Таким образом, имеет место «зависание» заслонок вокруг определенной позиции, в результате чего клапан получается постоянно открытым. Использование более жестких пружин не решает проблемы.
  • Для управления дроссельной заслонкой используется электропривод, а не тросик педали акселератора (например, в двигателе ЗМЗ-405.24 и многих современных иностранных двигателях, особенно тех, что оснащены системой cruise control).

Системы, общие для большинства типов двигателей

  • Система охлаждения
  • Система выпуска отработанных газов. Включает выпускной коллектор, каталитический конвертер (на современных машинах), и глушитель.
  • Система смазки — бывает с отдельным маслобаком (авиация) и без него (почти все современные автомобили; масло заливается в маслозаливную горловину на клапанной крышке двигателя).
  • Система запуска двигателя. Для приготовления двигателя к работе необходимо произвести хотя бы один оборот коленчатого вала, для того, чтобы в одном из цилиндров произошли такты впуска и сжатия. Для запуска четырёхтактного двигателя обычно применяется специальный электромотор — стартер, работающий от аккумулятора. Для запуска маломощных двухтактных бензиновых двигателей можно применять мускульную силу человека, например так работает кикстартер в мотоцикле.

См. также

Напишите отзыв о статье «Бензиновый двигатель внутреннего сгорания»

Ссылки

  • [icarbio.ru/articles/uvelichivaem_probeg.html Бен Найт «Увеличиваем пробег»]//Статья о технологиях, которые уменьшают расход топлива автомобильным ДВС
  • [www.carfactum.ru/2011/05/24/sovetyi-po-ekonomii-topliva-ot-chempiona-mira-po-ekonomichnomu-vozhdeniyu/ Советы по экономии топлива от чемпиона по экономичному вождению.]
  • [www.kartingzone.com/articles/strokes/ «Два такта и четыре. В чём отличия?»]

Отрывок, характеризующий Бензиновый двигатель внутреннего сгорания

– Но ежели мост перейден, значит, и армия погибла: она будет отрезана, – сказал он.
– В этом то и штука, – отвечал Билибин. – Слушайте. Вступают французы в Вену, как я вам говорил. Всё очень хорошо. На другой день, то есть вчера, господа маршалы: Мюрат Ланн и Бельяр, садятся верхом и отправляются на мост. (Заметьте, все трое гасконцы.) Господа, – говорит один, – вы знаете, что Таборский мост минирован и контраминирован, и что перед ним грозный tete de pont и пятнадцать тысяч войска, которому велено взорвать мост и нас не пускать. Но нашему государю императору Наполеону будет приятно, ежели мы возьмем этот мост. Проедемте втроем и возьмем этот мост. – Поедемте, говорят другие; и они отправляются и берут мост, переходят его и теперь со всею армией по сю сторону Дуная направляются на нас, на вас и на ваши сообщения.
– Полноте шутить, – грустно и серьезно сказал князь Андрей.
Известие это было горестно и вместе с тем приятно князю Андрею.
Как только он узнал, что русская армия находится в таком безнадежном положении, ему пришло в голову, что ему то именно предназначено вывести русскую армию из этого положения, что вот он, тот Тулон, который выведет его из рядов неизвестных офицеров и откроет ему первый путь к славе! Слушая Билибина, он соображал уже, как, приехав к армии, он на военном совете подаст мнение, которое одно спасет армию, и как ему одному будет поручено исполнение этого плана.
– Полноте шутить, – сказал он.
– Не шучу, – продолжал Билибин, – ничего нет справедливее и печальнее. Господа эти приезжают на мост одни и поднимают белые платки; уверяют, что перемирие, и что они, маршалы, едут для переговоров с князем Ауэрспергом. Дежурный офицер пускает их в tete de pont. [мостовое укрепление.] Они рассказывают ему тысячу гасконских глупостей: говорят, что война кончена, что император Франц назначил свидание Бонапарту, что они желают видеть князя Ауэрсперга, и тысячу гасконад и проч. Офицер посылает за Ауэрспергом; господа эти обнимают офицеров, шутят, садятся на пушки, а между тем французский баталион незамеченный входит на мост, сбрасывает мешки с горючими веществами в воду и подходит к tete de pont. Наконец, является сам генерал лейтенант, наш милый князь Ауэрсперг фон Маутерн. «Милый неприятель! Цвет австрийского воинства, герой турецких войн! Вражда кончена, мы можем подать друг другу руку… император Наполеон сгорает желанием узнать князя Ауэрсперга». Одним словом, эти господа, не даром гасконцы, так забрасывают Ауэрсперга прекрасными словами, он так прельщен своею столь быстро установившеюся интимностью с французскими маршалами, так ослеплен видом мантии и страусовых перьев Мюрата, qu’il n’y voit que du feu, et oubl celui qu’il devait faire faire sur l’ennemi. [Что он видит только их огонь и забывает о своем, о том, который он обязан был открыть против неприятеля.] (Несмотря на живость своей речи, Билибин не забыл приостановиться после этого mot, чтобы дать время оценить его.) Французский баталион вбегает в tete de pont, заколачивают пушки, и мост взят. Нет, но что лучше всего, – продолжал он, успокоиваясь в своем волнении прелестью собственного рассказа, – это то, что сержант, приставленный к той пушке, по сигналу которой должно было зажигать мины и взрывать мост, сержант этот, увидав, что французские войска бегут на мост, хотел уже стрелять, но Ланн отвел его руку. Сержант, который, видно, был умнее своего генерала, подходит к Ауэрспергу и говорит: «Князь, вас обманывают, вот французы!» Мюрат видит, что дело проиграно, ежели дать говорить сержанту. Он с удивлением (настоящий гасконец) обращается к Ауэрспергу: «Я не узнаю столь хваленую в мире австрийскую дисциплину, – говорит он, – и вы позволяете так говорить с вами низшему чину!» C’est genial. Le prince d’Auersperg se pique d’honneur et fait mettre le sergent aux arrets. Non, mais avouez que c’est charmant toute cette histoire du pont de Thabor. Ce n’est ni betise, ni lachete… [Это гениально. Князь Ауэрсперг оскорбляется и приказывает арестовать сержанта. Нет, признайтесь, что это прелесть, вся эта история с мостом. Это не то что глупость, не то что подлость…]
– С’est trahison peut etre, [Быть может, измена,] – сказал князь Андрей, живо воображая себе серые шинели, раны, пороховой дым, звуки пальбы и славу, которая ожидает его.
– Non plus. Cela met la cour dans de trop mauvais draps, – продолжал Билибин. – Ce n’est ni trahison, ni lachete, ni betise; c’est comme a Ulm… – Он как будто задумался, отыскивая выражение: – c’est… c’est du Mack. Nous sommes mackes , [Также нет. Это ставит двор в самое нелепое положение; это ни измена, ни подлость, ни глупость; это как при Ульме, это… это Маковщина . Мы обмаковались. ] – заключил он, чувствуя, что он сказал un mot, и свежее mot, такое mot, которое будет повторяться.
Собранные до тех пор складки на лбу быстро распустились в знак удовольствия, и он, слегка улыбаясь, стал рассматривать свои ногти.
– Куда вы? – сказал он вдруг, обращаясь к князю Андрею, который встал и направился в свою комнату.
– Я еду.
– Куда?
– В армию.
– Да вы хотели остаться еще два дня?
– А теперь я еду сейчас.
И князь Андрей, сделав распоряжение об отъезде, ушел в свою комнату.
– Знаете что, мой милый, – сказал Билибин, входя к нему в комнату. – Я подумал об вас. Зачем вы поедете?
И в доказательство неопровержимости этого довода складки все сбежали с лица.
Князь Андрей вопросительно посмотрел на своего собеседника и ничего не ответил.
– Зачем вы поедете? Я знаю, вы думаете, что ваш долг – скакать в армию теперь, когда армия в опасности. Я это понимаю, mon cher, c’est de l’heroisme. [мой дорогой, это героизм.]
– Нисколько, – сказал князь Андрей.
– Но вы un philoSophiee, [философ,] будьте же им вполне, посмотрите на вещи с другой стороны, и вы увидите, что ваш долг, напротив, беречь себя. Предоставьте это другим, которые ни на что более не годны… Вам не велено приезжать назад, и отсюда вас не отпустили; стало быть, вы можете остаться и ехать с нами, куда нас повлечет наша несчастная судьба. Говорят, едут в Ольмюц. А Ольмюц очень милый город. И мы с вами вместе спокойно поедем в моей коляске.
– Перестаньте шутить, Билибин, – сказал Болконский.
– Я говорю вам искренно и дружески. Рассудите. Куда и для чего вы поедете теперь, когда вы можете оставаться здесь? Вас ожидает одно из двух (он собрал кожу над левым виском): или не доедете до армии и мир будет заключен, или поражение и срам со всею кутузовскою армией.
И Билибин распустил кожу, чувствуя, что дилемма его неопровержима.
– Этого я не могу рассудить, – холодно сказал князь Андрей, а подумал: «еду для того, чтобы спасти армию».
– Mon cher, vous etes un heros, [Мой дорогой, вы – герой,] – сказал Билибин.

В ту же ночь, откланявшись военному министру, Болконский ехал в армию, сам не зная, где он найдет ее, и опасаясь по дороге к Кремсу быть перехваченным французами.
В Брюнне всё придворное население укладывалось, и уже отправлялись тяжести в Ольмюц. Около Эцельсдорфа князь Андрей выехал на дорогу, по которой с величайшею поспешностью и в величайшем беспорядке двигалась русская армия. Дорога была так запружена повозками, что невозможно было ехать в экипаже. Взяв у казачьего начальника лошадь и казака, князь Андрей, голодный и усталый, обгоняя обозы, ехал отыскивать главнокомандующего и свою повозку. Самые зловещие слухи о положении армии доходили до него дорогой, и вид беспорядочно бегущей армии подтверждал эти слухи.
«Cette armee russe que l’or de l’Angleterre a transportee, des extremites de l’univers, nous allons lui faire eprouver le meme sort (le sort de l’armee d’Ulm)», [«Эта русская армия, которую английское золото перенесло сюда с конца света, испытает ту же участь (участь ульмской армии)».] вспоминал он слова приказа Бонапарта своей армии перед началом кампании, и слова эти одинаково возбуждали в нем удивление к гениальному герою, чувство оскорбленной гордости и надежду славы. «А ежели ничего не остается, кроме как умереть? думал он. Что же, коли нужно! Я сделаю это не хуже других».
Князь Андрей с презрением смотрел на эти бесконечные, мешавшиеся команды, повозки, парки, артиллерию и опять повозки, повозки и повозки всех возможных видов, обгонявшие одна другую и в три, в четыре ряда запружавшие грязную дорогу. Со всех сторон, назади и впереди, покуда хватал слух, слышались звуки колес, громыхание кузовов, телег и лафетов, лошадиный топот, удары кнутом, крики понуканий, ругательства солдат, денщиков и офицеров. По краям дороги видны были беспрестанно то павшие ободранные и неободранные лошади, то сломанные повозки, у которых, дожидаясь чего то, сидели одинокие солдаты, то отделившиеся от команд солдаты, которые толпами направлялись в соседние деревни или тащили из деревень кур, баранов, сено или мешки, чем то наполненные.
На спусках и подъемах толпы делались гуще, и стоял непрерывный стон криков. Солдаты, утопая по колена в грязи, на руках подхватывали орудия и фуры; бились кнуты, скользили копыта, лопались постромки и надрывались криками груди. Офицеры, заведывавшие движением, то вперед, то назад проезжали между обозами. Голоса их были слабо слышны посреди общего гула, и по лицам их видно было, что они отчаивались в возможности остановить этот беспорядок. «Voila le cher [„Вот дорогое] православное воинство“, подумал Болконский, вспоминая слова Билибина.
Желая спросить у кого нибудь из этих людей, где главнокомандующий, он подъехал к обозу. Прямо против него ехал странный, в одну лошадь, экипаж, видимо, устроенный домашними солдатскими средствами, представлявший середину между телегой, кабриолетом и коляской. В экипаже правил солдат и сидела под кожаным верхом за фартуком женщина, вся обвязанная платками. Князь Андрей подъехал и уже обратился с вопросом к солдату, когда его внимание обратили отчаянные крики женщины, сидевшей в кибиточке. Офицер, заведывавший обозом, бил солдата, сидевшего кучером в этой колясочке, за то, что он хотел объехать других, и плеть попадала по фартуку экипажа. Женщина пронзительно кричала. Увидав князя Андрея, она высунулась из под фартука и, махая худыми руками, выскочившими из под коврового платка, кричала:
– Адъютант! Господин адъютант!… Ради Бога… защитите… Что ж это будет?… Я лекарская жена 7 го егерского… не пускают; мы отстали, своих потеряли…
– В лепешку расшибу, заворачивай! – кричал озлобленный офицер на солдата, – заворачивай назад со шлюхой своею.
– Господин адъютант, защитите. Что ж это? – кричала лекарша.
– Извольте пропустить эту повозку. Разве вы не видите, что это женщина? – сказал князь Андрей, подъезжая к офицеру.
Офицер взглянул на него и, не отвечая, поворотился опять к солдату: – Я те объеду… Назад!…
– Пропустите, я вам говорю, – опять повторил, поджимая губы, князь Андрей.
– А ты кто такой? – вдруг с пьяным бешенством обратился к нему офицер. – Ты кто такой? Ты (он особенно упирал на ты ) начальник, что ль? Здесь я начальник, а не ты. Ты, назад, – повторил он, – в лепешку расшибу.
Это выражение, видимо, понравилось офицеру.
– Важно отбрил адъютантика, – послышался голос сзади.
Князь Андрей видел, что офицер находился в том пьяном припадке беспричинного бешенства, в котором люди не помнят, что говорят. Он видел, что его заступничество за лекарскую жену в кибиточке исполнено того, чего он боялся больше всего в мире, того, что называется ridicule [смешное], но инстинкт его говорил другое. Не успел офицер договорить последних слов, как князь Андрей с изуродованным от бешенства лицом подъехал к нему и поднял нагайку:
– Из воль те про пус тить!
Офицер махнул рукой и торопливо отъехал прочь.
– Всё от этих, от штабных, беспорядок весь, – проворчал он. – Делайте ж, как знаете.
Князь Андрей торопливо, не поднимая глаз, отъехал от лекарской жены, называвшей его спасителем, и, с отвращением вспоминая мельчайшие подробности этой унизи тельной сцены, поскакал дальше к той деревне, где, как ему сказали, находился главнокомандующий.
Въехав в деревню, он слез с лошади и пошел к первому дому с намерением отдохнуть хоть на минуту, съесть что нибудь и привесть в ясность все эти оскорбительные, мучившие его мысли. «Это толпа мерзавцев, а не войско», думал он, подходя к окну первого дома, когда знакомый ему голос назвал его по имени.
Он оглянулся. Из маленького окна высовывалось красивое лицо Несвицкого. Несвицкий, пережевывая что то сочным ртом и махая руками, звал его к себе.
– Болконский, Болконский! Не слышишь, что ли? Иди скорее, – кричал он.
Войдя в дом, князь Андрей увидал Несвицкого и еще другого адъютанта, закусывавших что то. Они поспешно обратились к Болконскому с вопросом, не знает ли он чего нового. На их столь знакомых ему лицах князь Андрей прочел выражение тревоги и беспокойства. Выражение это особенно заметно было на всегда смеющемся лице Несвицкого.
– Где главнокомандующий? – спросил Болконский.
– Здесь, в том доме, – отвечал адъютант.
– Ну, что ж, правда, что мир и капитуляция? – спрашивал Несвицкий.
– Я у вас спрашиваю. Я ничего не знаю, кроме того, что я насилу добрался до вас.
– А у нас, брат, что! Ужас! Винюсь, брат, над Маком смеялись, а самим еще хуже приходится, – сказал Несвицкий. – Да садись же, поешь чего нибудь.
– Теперь, князь, ни повозок, ничего не найдете, и ваш Петр Бог его знает где, – сказал другой адъютант.
– Где ж главная квартира?
– В Цнайме ночуем.
– А я так перевьючил себе всё, что мне нужно, на двух лошадей, – сказал Несвицкий, – и вьюки отличные мне сделали. Хоть через Богемские горы удирать. Плохо, брат. Да что ты, верно нездоров, что так вздрагиваешь? – спросил Несвицкий, заметив, как князя Андрея дернуло, будто от прикосновения к лейденской банке.
– Ничего, – отвечал князь Андрей.
Он вспомнил в эту минуту о недавнем столкновении с лекарскою женой и фурштатским офицером.
– Что главнокомандующий здесь делает? – спросил он.
– Ничего не понимаю, – сказал Несвицкий.
– Я одно понимаю, что всё мерзко, мерзко и мерзко, – сказал князь Андрей и пошел в дом, где стоял главнокомандующий.
Пройдя мимо экипажа Кутузова, верховых замученных лошадей свиты и казаков, громко говоривших между собою, князь Андрей вошел в сени. Сам Кутузов, как сказали князю Андрею, находился в избе с князем Багратионом и Вейротером. Вейротер был австрийский генерал, заменивший убитого Шмита. В сенях маленький Козловский сидел на корточках перед писарем. Писарь на перевернутой кадушке, заворотив обшлага мундира, поспешно писал. Лицо Козловского было измученное – он, видно, тоже не спал ночь. Он взглянул на князя Андрея и даже не кивнул ему головой.
– Вторая линия… Написал? – продолжал он, диктуя писарю, – Киевский гренадерский, Подольский…
– Не поспеешь, ваше высокоблагородие, – отвечал писарь непочтительно и сердито, оглядываясь на Козловского.
Из за двери слышен был в это время оживленно недовольный голос Кутузова, перебиваемый другим, незнакомым голосом. По звуку этих голосов, по невниманию, с которым взглянул на него Козловский, по непочтительности измученного писаря, по тому, что писарь и Козловский сидели так близко от главнокомандующего на полу около кадушки,и по тому, что казаки, державшие лошадей, смеялись громко под окном дома, – по всему этому князь Андрей чувствовал, что должно было случиться что нибудь важное и несчастливое.

wiki-org.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о