Ремонт двигателя 2 az fe – Двигатель 2AZ-FE, вытянуло резьбу болтов ГБЦ

Двигатель 2AZ-FE, вытянуло резьбу болтов ГБЦ

В этой статье я постараюсь описать проблему на двигателях 1AZ-FE и 2AZ-FE — на автомобилях Тойота Camri, Rav 4, Previa и тд. Проблема связанна, как не странно, с технологической недоработкой конструкции самого блока. А точнее — слабостью резьбового крепления болтов ГБЦ к блоку цилиндров. При незначительном перегреве двигателя структурные характеристики алюминиевого сплава блока цилиндров падают и резьбу болтов ГБЦ вытягивает из блока.
Есть несколько факторов, которые на это влияют — это длина резьбового соединения, диаметр болта и шаг резьбы
Первые два показателя прямо увеличивают площадь соприкосновении болта с блоком и увеличивают его надежность.
Третий показатель тоже имеет значение, но на оригинальных болтах резьба — М11 с шагом резьбы1.5 мм, что для болта такого диаметра не мало. А диаметр М11 вполне достаточен. Встречается много 4-рех цилиндровых с диаметром М10 и ниже, у которых такой практики не наблюдается. Таким образом, слабым местом данного двигателя является длина резьбового соединения, которая не выдерживает натяг болта ГБЦ при термической нагрузке и резьбу вытягивает.

Как видно на фото из официальной документации, длину резьбового соединения увеличили с 24 мм в старых версиях на 30 мм в новой версии, таким образом устранив недочет в серийном производстве с 2005 по 2006 года.
Но что же делать, если автомобиль выпуском до 2006 года? Не менять же из-за этого целиком мотор или автомобиль? В народе используют много вариантов, которые усиливают резьбу, но какой же из них все-таки более надежный и технологически правильный? Теперь по-порядку о каждом из них.

Первый — это установка болтов более большого диаметра, с родного М11 на М13 или 14. В данном варианте резьба нарезается от верхней кромки ГБЦ до начала старой резьбы. Отверстия в головке блока тоже увеличиваются. Вариант не плохой, но есть несколько минусов — длина болта уменьшается, увеличение толщины болта. Оба этих показателя увеличивают жесткость болта и увеличивают вероятность повторного выхода из строя при перегреве двигателя.

Второй вариант —  это установка футорок с заменой болтов на короткие. Этот способ более надежен, потому что болты более упруги на растяжение. Но вызывает сомнение длина болта. Короткие болты, как правило, устанавливают на чугунных блоках. В ряде вариантов эти болты берутся от Фольксвагена 14-32045-01 или от двигателя 3S-FE, у которых чугунные блоки.

           

Как  видно на фото, верхнее крепление болтов в алюминиевом блоке создает чрезмерное напряжение и, как следствие, не равномерное распределение прижимной силы болта крепления ГБЦ. Это может привести к деформации поверхность, что выведет конструкцию из строя.

     В алюминиевых блоках используют болты большей длины. Делается это из-за разного коэффициента расширения металлов и разной прочности металлов, для равномерного распределения прижимной силы болтов ГБЦ. Алюминий расширяется больше, чем железо, и двигатель, прогреваясь, создает дополнительную нагрузку на болты крепления ГБЦ, поэтому болты должны быть более длинными и мягкими на растяжку. Иначе при нагреве в критический момент давление расширяющегося блока пересилит возможности резьбового соединения и вытянет или деформирует его или его посадочное место. Поэтому должен соблюдаться баланс  диаметра и длины болта до резьбового соединения.

Теперь непосредственно от теории к практике. 

Двигатель 2AZ-FE, вытянуло резьбу болтов ГБЦ

На практике мы рассмотрим проблему на автомобиле Тойота Превиа, на которой тоже стоит двигатель 2AZ-FE. Характерными признаками проявления проблемы является течь охлаждающей жидкости в районе впускного коллектора, возникшая после повышения рабочей температуры двигателя. Даже если оно было кратковременным и не значительным, для ремонта двигателя, в совокупности с несколькими проблемами, было принято решение о снятии двигателя.

 

Для снятия двигателя нужно отсоединить от двигателя все патрубки и соединяющие шланги.

 

Демонтируем радиатор охлаждения двигателя, чтобы не повредить его при снятии и установке, вытаскиваем косу электропроводки из салона — и мотор готов к спуску. 

 

Отпускаем двигатель вместе с подрамником и коробкой передач на стол. Отсоединяем двигатель от КПП и устанавливаем двигатель на стенд.

 

На фото отчетливо видно место утечки антифриза из-под головки блока цилиндров. Место утечки вымыто антифризом и чище.

 

Демонтируем клапанную и переднюю крышки. По оттенку внутренней поверхности двигателя видно, что двигатель своевременно обслуживался — отсутствует нагар и отложения. Снимаем успокоители  цепи и саму цепь ГРМ.

 

Перед снятием распредвалов проверяем зазоры клапанов, так как отчетливо слышалось «цоканье». После замера зазоров стаканы метят и снимают.

 

При откручивании болтов головки блока цилиндров три центральных болта задней стенки блока, именно в месте утечки антифриза, открутились очень легко. Это подтверждает повреждение резьбы в блоке. После снятия головки блока цилиндров видно, что стенки цилиндров находятся в хорошем состоянии и не требуют дополнительной обработки. Переворачиваем двигатель , снимаем масляный насос и балансировочные валы.

 

После снятия поддона демонтируем коленвал и поршневую группу.  После чего блок цилиндров готов к ремонтным работам. 

 

Все десять резьбовых соединений подлежат ремонту в обязательном порядке. Ввертыши устанавливаются на первоначальную глубину болтов крепления ГБЦ. После установки ввертышей плоскость блока фрезеруется, чтобы исключить возможные деформации при перегреве двигателя.

 

Плоскость головки блока цилиндров тоже подлежит фрезеровке. После фрезеровки ГБЦ отмывают,  очищают и притирают клапана, меняют маслосъемные  колпачки и собирают. Перед установкой регулируют зазоры клапанов в стыке кулачка распредвала и толкателем клапана.

 

Притирка клапанов требует тщательности.

 

Вымытый и отремонтированный блок устанавливаем на стенд и устанавливаем коренные вкладыши. Затем устанавливаем коленвал и притягиваем его.

 

Устанавливаем поршневую группу, предварительно почистив ее и установив новые поршневые кольца. Следом устанавливаем большой поддон и балансировочные валы. Следом масляный насос.

 

Устанавливаем новую прокладку ГБЦ, устанавливаем ГБЦ и протягиваем ее. Затем устанавливаем переднюю крышку.

 

Собираем клапанную крышку, устанавливаем катушки зажигания. Затем собираем топливную рейку. Остались последние штрихи и мотор готов к установке. Установка производится в обратном порядке.

После установки двигателя заливаются все сервисные жидкости и производят запуск двигателя, прогревают его до полного цикла и срабатывания вентилятора системы охлаждения радиатора двигателя. Параллельно проверяют на наличие утечек . 

Все работы производились в нашем автосервисе «Тойота-Люблино»

Стоимость ремонта двигателя 2AZ-FE можно узнать      здесь

По непонятным вопросам и для записи звонить по номеру   —  +7(495) 5071641


 

xn—-7sbe2abobrbbh1bd5o.xn--p1ai

Ремонт двигателя Тойота Хайлендер. 2AZ-FE

Ремонт двигателя  Toyota Highlander 2AZ-FE

Ремонт двигателя Тойота Хайлендер. Изначально автомобиль пришел с проблемой утечки антифриза с задней части ГБЦ в районе впускного коллектора.  Владелец предварительно подозревал, в чем неисправность. После диагностики диагноз подтвердился.

Проблема была очевидна ввиду ее систематичности у двигателей 2AZ-FE определенного года выпуска. Я подробно рассказывал об этой проблеме в соседней статье. После консультации с владельцем было принято решение сделать капремонт двигателя, попутно в корне устранив проблему с резьбой болтов ГБЦ, дабы не возвращаться к ней.

Капитальный ремонт двигателя Тойота Хайлендер.

Перед капремонтом был составлен примерный прогноз стоимости и согласован с владельцем авто. 

 

Двигатель на данном  авто снимается в сборе с АКПП.  Перед снятием были слиты все сервисные жидкости, кроме масла в АКПП. Демонтировали из салона косу, все патрубки и т.д., после чего подрамник с двигателем и АКПП опускается вниз.

 

Демонтируем косу проводки с двигателя и всё навесное оборудование. 

 

Итак, после демонтажа всего навесного оборудования мы добрались до места непосредственной утечки антифриза из двигателя. Антифриз течет из-под стыка ГБЦ и самого блока цилиндров, так как резьбу  болтов ГБЦ в этой части вытянуло. Произошло это из-за технической недоработки этого двигателя, а именно длинной резьбы болтов крепления ГБЦ.

 

На фото отчетливо видно, как резьба из блока осталась на болту ГБЦ. На фото справа выделены места крепления трех болтов, у которых, в первую очередь, вытягивает резьбу. Связанно это с высокой термической нагрузкой, так как у этих болтов не одна из сторон не прикасаются к наружной стенке блока, которая охлаждает блок, соприкасаясь с окружающей средой. Второй фактор, который усугубляет термическую нагрузку на резьбу — это виброизоляция, которая плотно закрывает этот участок между блоком и впускным коллектором, что ослабляет охлаждение стенки блока.

 

Отсоединяем двигатель от АКПП и устанавливаем его на стенд. Следом демонтируем головку блока цилиндров. Три центральных болта с задней стороны открутились от руки, что говорит о повреждении резьбы болтов.

 

Демонтируем малый и большой поддон двигателя и доходим до поршневой группы. Как видно на фото, двигатель довольно чистый, что говорит о своевременной замене масла. Каких либо отложений нагара не обнаружено. Вынимаем поршневую группу и коленчатый вал из постели блока.

 

После разборки двигателя переходим к переборке головки блока цилиндров. В первую очередь ГБЦ проверяется на наличие деформаций. Если ГБЦ повело, то ее в обязательном порядке отправляют на шлифовку плоскости. Притираем выпускные и впускные клапана. При наличии раковин на клапанах их заменяют. После притирки клапанов ГБЦ отмывают от остатков абразива и меняют маслосъемные колпачки (сальники), после чего собирают клапана. После сборки клапанов регулируют тепловые зазоры клапанов . При надобности регулировочные стаканы меняют.

 

Теперь переходим к восстановлению резьбы болтов, крепления головки блока цилиндров. В первую очередь нарезаем резьбу М14х1.5 под наши ввертыши. Устанавливаем ввертыши, предварительно обработав их резьбовым анаэробным герметиком. Ввертыши устанавливаем на определенную глубину от верхней кромки блока.

 

В нашем случае мы использовали другие болты крепления ГБЦ. Их принципиальное отличие от штатных  в диаметре ствола — он тоньше, за счет которого болты обладают более прогрессивными характеристиками к растяжению, нежели штатные.  Это позволило нам устанавливать ввертыши на меньшую глубину.

 

После установки ввертышей переходим к поршневой группе. Перед установкой поршней их вымывают и вычищают от нагара. Устанавливаем на поршня новый комплект поршневых колец и собираем поршневую группу и КШМ.

 

Собираем поддон и устанавливаем балансировочные валы. Теперь переходим к верхней части. Устанавливаем прокладку ГБЦ.

 

Устанавливаем ГБЦ на блок и приступаем к протяжке болтов ГБЦ.

 

Устанавливаем распредвалы и собираем газораспределительный механизм (ГРМ).

 

Устанавливаем переднюю крышку ГРМ, затем крышку поддона и клапанную крышку. Устанавливаем часть навесного оборудования и мотор готов к монтажу на подрамник автомобиля.

 

Устанавливаем двигатель на подрамник и собираем оставшееся навесное оборудование. После повторной, тщательной проверки на наличие недочетов. Подрамник с двигателем устанавливается в автомобиль, после чего производятся монтаж всех систем коммуникации двигателя. Заливаются сервисные жидкости и производится запуск двигателя.  После тестовой проверки производится повторная проверка на наличие утечек и посторонних шумов. После чего автомобиль готов к эксплуатации. На этом работа по ремонту двигателя Toyota Highlander закончена.

Все работы производились в нашем автосервисе —  Тойота-Люблино.

По вопросам ремонта и уточнения цены обращаться по номеру —  +7(495)5071641


 

xn—-7sbe2abobrbbh1bd5o.xn--p1ai

Двигатель Toyota 2.4 2AZ-FE: проблемы и особенности.

Двигатели серии AZ появились на автомобилях Toyota с 2000 года — они постепенно заменили легендарные моторы серии S и в течение десяти лет оставались основными «среднеобъемниками» компании. Устанавливались на большое количество исходно-переднеприводных моделей классов «C», «D», «E», вэнов, средне- и полноразмерных паркетников.















Двигатель Рабочий объем, см3 Диаметр цилиндра x Ход поршня, мм Степень сжатия Мощность, л.с. Крутящий момент, Нм RON Масса, кг EMS Стандарт Модель Год
1AZ-FE 1998 86.0 x 86.0 9.8 147 / 6000 192 / 4000 95 117 EFI-L EEC AZT250 2003
9.8 152 / 6000 194 / 4000 95 131 EFI-L EEC ACA30 2006
9.5 137 / 5600 190 / 4000 95 112 LG EEC AZT250 2003
1AZ-FSE 1998 86.0 x 86.0 9.8 152 / 6000 200 / 4000 91 D-4 JIS AZT240 2000
10.5 155 / 6000 192 / 4000 91 D-4 JIS AZT240 2004
11.0 147 / 5700 196 / 4000 95 124 D-4 EEC AZT250 2003
11.0 149 / 5700 200 / 4000 95 D-4 EEC AZT220 2000
2AZ-FE 2362 88.5 x 96.0 9.6 160 / 5600 221 / 4000 91 EFI-L JIS ACM21 2002
9.8 170 / 6000 224 / 4000 91 138 EFI-L JIS ANh30 2008
2AZ-FSE 2362 88.5 x 96.0 11.0 163 / 5800 230 / 3800 95 D-4 JIS AZT250 2006
2AZ-FXE 2362 88.5 x 96.0 12.5 131 / 5600 190 / 4000 91 EFI-L JIS ATh20 2007
12.5 150 / 6000 190 / 4000 91 EFI-L JIS AHR20 2009
3AZ-FXE 2362 88.5 x 96.0 12.5 150 / 6000 187 / 4400 EFI-L CHN AHV40 2010

 


2AZ-FE — поперечного расположения, с распределенным впрыском, для исходно-переднеприводных легковых автомобилей, вэнов и паркетников. Устанавливался на модели: Alphard 10..20, Avensis Verso 20, Blade 150, Camry 30..40, Corolla/Matrix 140, ES 40, Estima 30/40..50, Harrier 10..30, Highlander 20, Ipsum 20, Kluger, Mark X Zio, Previa 30..50, RAV4 20..30, Rukus 150, Scion TC 10, Solara 20..30, Vanguard 30.
В начале 2010-х постепенно замещался двигателями серий ZR и AR.

Модификации:
— 2AZ-FXE — с распределенным впрыском, для исходно-переднеприводных легковых автомобилей с гибридной силовой установкой (Alphard Hybrid 20, Camry Hybrid 40, Estima Hybrid 10..20, HS250h, Previa Hybrid 20, SAI).
— 3AZ-FXE — для легковых автомобилей с гибридной силовой установкой (Camry Hybrid 40 CHN).

Блок цилиндров

В двигателе применяется алюминиевый (легкосплавный) блок цилиндров с тонкостенными чугунными гильзами и открытой рубашкой охлаждения. Гильзы вплавлены в материал блока, а их специальная неровная внешняя поверхность способствует максимально прочному соединению и улучшенному теплоотводу. Капитальный ремонт двигателя производителем не предусматривается по определению.


К блоку крепится массивный картер, выполняющий роль верхней части масляного поддона и повышающий жесткость конструкции.

Кованый стальной коленчатый вал с 5-ю шейками и 8-ю противовесами удерживается отдельными крышками коренных подшипников. Ось коленчатого вала была смещена на 10 мм относительно линии осей цилиндров (дезаксаж), что позволило снизить боковую составляющую силы, воздействующей со стороны поршня на цилиндр, и уменьшить износ.


Как принято на тойотовских «четверках» рабочим объемом более двух литров — непосредственно от коленчатого вала приводится балансирный механизм с полимерными (для уменьшения шумности) шестернями. К сожалению, кроме улучшения комфорта, он создает еще одно потенциально слабое место механической части двигателя.


Поршни — легкосплавные, с умеренно облегченной юбкой, на которую нанесено антифрикционное полимерное покрытие. Поршни соединяются с шатунами полностью плавающими пальцами.


На тип ‘2006 в рубашке охлаждения появилась проставка, благодаря которой охлаждающая жидкость более интенсивно циркулирует в зоне верхней части цилиндров, что улучшает теплоотвод и способствует более равномерному термонагружению.


 

Головка блока цилиндров

Головка блока традиционной конструкции, с близким к вертикали направлением впускных портов (для улучшения наполнения цилиндров) и посадочными отверстиями под форсунки распределенного впрыска. Крышка головки отливается из магниевого сплава.


 

Привод ГРМ

Газораспределительный механизм — 16-клапанный DOHC, привод осуществляется однорядной роликовой цепью (шаг звеньев 8 мм), для натяжения цепи используется гидронатяжитель с храповым механизмом, для смазки — отдельная масляная форсунка.


На распределительном валу впускных клапанов установлена звездочка привода VVT (системы изменения фаз газораспределения), предел изменения фаз — 50° (тип ‘2006 — 40°). Отдельное описание принципов работы системы Toyota VVT-i приведено по ссылке

Зазор в приводе клапанов регулируется при помощи набора толкателей, без использования шайб или гидрокомпенсаторов. Поэтому от ставшей чрезмерно сложной и дорогой процедуры регулировки владельцы, как правило, воздерживаются.
.


Предсказать ресурс цепи довольно сложно — в редких случаях она не требует замен вплоть до 300 тыс. км пробега, но порой критически удлиняется и к 150 тыс. км (что проявляется шумом в работе, особенно после запуска, и ошибками по фазам газораспределения). При ее замене целесообразно было бы одновременно заменить и все прочие элементы привода (звездочки, натяжитель, направляющую), поскольку бывшие в эксплуатации элементы способствуют быстрому «старению» и новой цепи, но поскольку звездочка впускного распредвала идет в сборе с приводом VVT (~$120), то этой рекомендации следуют не все. Относительно частых замен требует гидронатяжитель цепи, однако эта операция выполняется снаружи, без снятия крышки цепи.

Смазка


Масляный насос трохоидного типа установлен в картере и приводится от коленчатого вала дополнительной цепью. С одной стороны, это увеличило количество подвижных деталей, с другой — улучшились условия прокачивания масла после запуска при низких температурах.


В блоке находятся масляные форсунки охлаждения и смазки поршней.


Масляный фильтр расположен вертикально под двигателем, отверстием вверх.

Охлаждение

Система охлаждения классическая для моторов «третьей волны»: привод помпы от общего ремня привода навесных агрегатов, «холодный» (80-84°C) механический термостат, обогрев корпуса дроссельной заслонки, ступенчатое управление ECM’ом вентиляторами радиатора через реле (без выключателя по температуре ОЖ).


 

Впуск и выпуск

Расположение коллекторов характерно скорее для тойотовских двигателей предыдущего поколения — впуск сзади, выпуск спереди. Заметное нововведение — пластиковый впускной коллектор (для снижения веса и стоимости, и уменьшения нагрева воздуха на входе в двигатель), оказалось достаточно беспроблемным даже для зимних условий.


На некоторых моделях в глушителе находится механический клапан, регулирующий поток отработавших газов. При низкой частоте вращения закрытый клапан способствует снижению шума, при высоких оборотах он открывается, уменьшая противодавление на выпуске.


 

Система впрыска топлива (EFI)

Впрыск топлива — традиционный распределенный, в нормальных условиях — секвентальный. В некоторых режимах (при низких температурах и небольшой частоте вращения) может использоваться попарный впрыск. Кроме того, может выполняться впрыск синхронизированный (один раз за цикл, при одном и том же положении коленчатого вала, с коррекцией продолжительности впрыска) или несинхронизированный (одновременно всеми форсунками).


Топливная система — без линии возврата, с встроенным в модуль насоса регулятором давления и топливным фильтром, давление подачи — около 325 кПа. Демпфер пульсаций давления внешний, установлен на алюминиевом топливном коллекторе. Соединения топливных линий выполнены быстроразъемными.


Форсунки с многоточечным распылителем оптимизированы для мелкодисперсного рассеивания топлива.


Система управления — «L-type SFI» по тойотовской классификации, с датчиком массового расхода воздуха (MAF) типа «hot wire», который совмещен с датчиком температуры воздуха на впуске. Требования к октановому числу для 2AZ-FE адекватные — RON 91 / Regular.


В 2001-2003 выпускалась модификация с механическим приводом дроссельной заслонки и классическим регулятором холостого хода типа «rotary solenoid».


 


Однако на большинстве моделей изначально устанавливалась дроссельная заслонка с электронным управлением (ETCS): привод двигателем постоянного тока, двухканальный потенциометрический датчик положения (к MY2003 заменен на бесконтактный двухканальный датчик на эффекте Холла), плюс отдельный датчик положения педали акселератора (изначально потенциометрический, с тип ‘2006 — на эффекте Холла). ETCS выполняет функции управления частотой вращения холостого хода (ISC), круиз-контроля и контроля крутящего момента при переключении передач.


Вариантов установки кислородных датчиков и широкодиапазонных датчиков состава смеси (AFS) за время выпуска существовало довольно много:


— парные кислородные датчики (89465) перед двойным нейтрализатором,
— один кислородный датчик (89465) перед нейтрализатором и один — после,
— один датчик AFS (89467) перед нейтрализатором и кислородный датчик (89465) — после,
— парные датчики AFS (89467) перед двойным нейтрализатором и парные кислородные датчики (89465) — после…


С тип ‘2006 получили распространение AFS «плоского» (planar) типа (преимущество по сравнению с традиционным колпачковым — быстрый прогрев за счет эффективного нагревателя).


Датчики положения коленчатого и распределительного валов оставались традиционными индуктивными.

К MY2003 был внедрен плоский широкополосный пьезоэлектрический датчик детонации, в отличие от старых датчиков резонансного типа он регистрирует более широкий диапазон частот вибраций.


На североамериканском рынке ECM приходилось также выполнять управление запредельно сложной, по сравнению с версиями для Европы или Японии, и капризной системой улавливания паров топлива (EVAP), которая заслуживает отдельного разговора.

На тип ‘2006 некоторых рынков с жесткими эко-нормами на впуске появился привод IMRV, который при работе непрогретого двигателя на холостом ходу перекрывает впускные каналы особыми заслонками, благодаря чему создаются сильные завихрения, способствующие турбулизации заряда и улучшению эффективности процесса сгорания.


 

Электрооборудование

Система зажигания — DIS-4 (отдельная катушка зажигания со встроенным коммутатором на каждый цилиндр). Свечи зажигания (Denso SK20R11, NGK IFR6A11) с центральным электродом из иридиевого сплава.


Стартер — с планетарным редуктором и сегментной обмоткой якоря, вместо обмотки возбуждения устанавливаются постоянные и интерполяционные магниты.

Генератор — после MY2003 появились новые генераторы с сегментным проводником. С MY2006 появилась обгонная муфта с пружиной между внутренней и внешней частями шкива, которая передает крутящий момент только в направлении вращения коленвала, снижая нагрузку на приводной ремень.


Привод навесных агрегатов — единым ремнем, с автоматическим пружинным натяжителем. Достоинство решения — компактность (габариты силового агрегата), недостатки — больше нагрузка на единый ремень, желательность менять натяжитель одновременно с ремнем, невозможность при поломке сбросить ремень заклинившего агрегата (из-за приводы помпы).


 

Практика


• Главный дефект всех двигателей серии AZ проявился не сразу, но оказался более чем критичным и массовым. В процессе эксплуатации этих моторов происходит самопроизвольное разрушение резьбы в блоке цилиндров под болты крепления головки, с нарушением герметичности газового стыка, утечкой охлаждающей жидкости через прокладку, возможным перегревом, нарушением геометрии привалочной плоскости головки и т.п. печальными последствиями.

Причем владельцы и многие ремонтники изначально даже не допускали мысли о конструктивном просчете со стороны Тойоты и путали причину со следствием, полагая, что «срыв» головок и вытягивание резьбы происходили из-за перегревов различной природы, тогда как в реальности все было наоборот.

Официально проблему признали только в 2007-м, после некоторой доработки (длину резьбы в блоке увеличили с 24 до 30 мм). «Лечить» сорванные головки производитель рекомендовал заменой блока цилиндров в сборе (примеры дефектных деталей — 11400-28130,-28490,-28050, цена $3-4k). Поскольку вне гарантии этот подход был неприемлем, то на практике наиболее оптимальным оказался вариант ремонта с нарезкой резьбы большего диаметра и установкой в нее резьбовых втулок под болты штатного размера (рекомендуется доработать все отверстия, не ограничиваясь только уже вырванной резьбой, и заменить болты крепления новыми).

А в 2011-м уже сами тойотовцы официально рекомендовали специальный ремкомплект серии «Time Sert» для установки резьбовых втулок при ремонте негарантийных машин (единственное, они предписывали не ставить втулки в угловые отверстия).


Модификация блоков с вроде бы небольшим увеличением длины резьбы определенно произвела эффект — если «срыв головки» для автомобилей 2000-2006(7) гг. был только вопросом времени, то для машин последующих лет этот дефект стал уже нехарактерным.

В сравнении с этим другие возможные неисправности серии воспринимаются досадными мелочами.

• Традиционные для тойот с VVT проблемы с треском после холодного запуска или с появлением кодов по фазам газораспределения или системе VVT. Производитель предписывал замену привода VVT (звездочки впускного распредвала в сборе) на очередную, актуальную на тот момент версию.

• На машинах первых лет выпуска на холостом ходу или при небольшом ускорении мог противоестественно шуметь пластиковый впускной коллектор, который предписывалось менять на модифицированный образец.

• Разумеется, что проблемы с течью и шумом насоса охлаждающей жидкости не обошли и серию AZ. По аналогии со всеми современными двигателями Toyota, помпу следует просто считать еще одним расходником с нормальным ресурсом 40-60 тыс.км.

• Ограниченный ресурс обгонной муфты шкива генератора.

• Если для моторов первых выпусков проблемы повышенного расхода масла на автомобилях с небольшим пробегом не существовало, то после модификации и появления тип ‘2006 сработал некий закон сохранения — вместо проблем с резьбой начались проблемы с угаром (видимо по причине быстрого залегания колец, которое спонтанно поражает некоторые модели современных тойотовских двигателей). Впрочем, вред от этих дефектов все равно несопоставим. Так или иначе, при расходе масла свыше 500 мл на 1000 км производитель предписывает замену комплекта поршней (пример дефектных деталей — 13211-28110, -28111) и поршневых колец.

• Что же касается постепенного увеличения расхода масла с «возрастом» (условно — на второй сотне тысяч пробега и далее), то здесь серия AZ не слишком отличается от классических тойотовских двигателей. Не прогрессирующий угар в пределах 200-300 мл / 1000 км при нормальной эксплуатации можно считать приемлемым (хотя при длительной езде с высокими оборотами возможны одномоментные скачки расхода до литра и более). При более заметном или растущем угаре вопрос зачастую может быть решен переборкой двигателя с заменой поршневых колец и маслосъемных колачков (нельзя только забывать о проверке геометрии блока — именно на AZ отмечались случаи ухода не имеющих признаков выработки цилиндров на эллипс).

 

 

Оригинал статьи: http://toyota-club.net/files/faq/04-11-20_faq_az.htm

avtopmr.com

Что не так с одноразовым двигателем Toyota 2.4 (2AZ-FE)?

Toyota Camry 40-й серии – один из самых популярных и востребованных автомобилей на вторичном рынке. Почти все предлагаемые экземпляры оснащены 2,4-литровым двигателем. В этой статье мы расскажем о нюансах и проблемах этого силового агрегата.

2,4-литровый двигатель носит индекс 2AZ-FE и, соответственно, относится к семейству AZ, которое появилось на «Тойотах» в 2000 году.

Блок двигателя 2AZ-FE алюминиевый, с помещенными в него гильзами и открытой рубашкой системы охлаждения. Мотор оснащен двумя балансирными валами.

В ГБЦ, отлитой из алюминиевого сплава, находятся 16 клапанов, приводимые двумя распредвалами. Впускной распредвал оснащен фазовращателем VVTi. В приводе ГРМ используется довольно долговечная цепь. Однако двигатель 2AZ-FE все же требует специфического обслуживиния: тепловые зазоры клапанов нужно проверять и регулировать каждые 100 000 км, т.к. гидрокомпенсаторов в их приводе нет. 

Этот двигатель встречается не только на Camry, но и на всех переднеприводных Toyota. В том числе и на гибридных.

До 2008 года двигатель 2AZ-FE выпускался без изменений. Его мощность составляет 160 л.с. Небольшая модернизация случилась в 2008 году: степень сжатия подросла с 9.6 до 9.8, а мощность достигла 166 л.с.

Гибридный вариант этого 2,4-литрового мотора носит индекс 2AZ-FXE. Этот двигатель работает по циклу Миллера, отличается поршнями, распредвалами и программой управления. Такой мотор выдает 130 л.с. и обладает геометрической степенью сжатия 12:5 (реальная степень сжатия, разумеется, ниже).

Почему одноразовый?

Инженеры Toyota подверглись общей тенденции и не предложили для этого двигателя никаких ремонтных размеров поршней, колец и вкладышей. Поэтому при любых проблемах с цилиндро-поршневой группой приходится сопоставлять стоимость «творческой» расточки или гильзовки и покупки контрактного мотора.

Вообще 2,4-литровый двигатель 2AZ-FE может пройти более полумиллиона км без существенных проблем. Однако он не лишен врожденных дефектов, о которых нужно знать. 

Почему «срывает голову»?

Головка блока цилиндров двигателя 2AZ-FE очень термонагруженная и при высокой нагрузке на двигатель (езда в пробках летом, затяжной подъем в гору в жару) она перегревается, что приводит к деформации. Как говорят, ГБЦ «становится домиком». Нарушается герметичность прилегания ГБЦ и ее прокладки к блоку. В этом случае из открытой рубашки охлаждения блока антифриз моментально прорывается в цилиндры. Газы из цилиндров наоборот рвутся в систему охлаждения: появляются «газики» в расширительном бачке и парение из выхлопной трубы.

А при откручивании болтов ГБЦ двигателя 2AZ-FE некоторые поддаются совсем без усилия. Это значит, что болты «отошли», т.к. из резьба в алюминиевом блоке просто сорвалась. Обычно срывается резьба болтов, крепящих ГБЦ по середине.

Разумеется, это усложняет ремонт и увеличивает расходы. Приходится нарезать новую резьбу либо вставлять резьбовые втулки (ввертыши) и «прикручиваться» к ним.

Проблема была признана компанией Toyota. Немало блоков двигателей 2AZ-FE были заменены по гарантии.

С 2006 года начался выпуск модернизированных блоков с оптимизированной циркуляцией охлаждающей жидкости в его верхней части. 

Причины жора масла

Двигатель 2AZ-FE отличается повышенным расходом масла на угар. Причины «масложора» разные:

  • Двигатели 2AZ-FE для североамериканского рынка (много таких машин было ввезено из США) с конвейера получили неудачные маслосъемные кольца. Солидный жор масла начинался после пробега в 80 000 км (50 000 миль).
  • Масляным аппетитом обладают двигатели 2AZ-FE, выпущенные с 2006 года. У таких моторов улучшенный блок, на котором резьба для болтов ГБЦ держится гораздо лучше. Однако из-за просчетов и дефектов такие моторы более охотно расходуют масло. Для устранения проблемы предлагается менять все поршни в сборе.
  • Еще одна причина повышенного расхода масла также была объяснена производителем. Как оказалось, из-за конструктивных особенностей агрегата 2AZ-FE при торможении двигателем возникает сильное разряжение во впускном коллекторе. Из-за этого масло буквально засасывается во впуск и сгорает в цилиндрах.
  • Расход масла на двигателе 2AZ-FE увеличивается с пробегом из-за естественного износа стенок цилиндров и маслосъемных колец. Иногда удается обойтись только заменой поршней и колец. Но обычно к такому ремонту не прибегают и продолжают эксплуатировать двигатель. Тогда уже ситуация может дойти до того, что цилиндры пойдут эллипсом, увеличится зазор между стенками и поршнями. В результате двигатель 2AZ-FE начнет работать со стуком поршней. В этом случае – либо ремонт двигателя, либо перегильзовка тонкостенного блока. 

ИТОГ

Японский двигатель 2AZ-FE уже не является легендарным в хорошем смысле слова. Его предшественники служили лучше и без серьезных проблем. К сожалению, этот массовый двигатель стал причиной лишних и довольно серьезных расходов у многих владельцев «Тойот».

Дударев Евгений
autospot.by

autospot.by

Отправить ответ

avatar
  Подписаться  
Уведомление о