Водородный двигатель для автомобиля: Водородные двигатели не так хороши, как кажется

Содержание

Водородный двигатель для автомобиля: описание, преимущества, принцип работы

Актуальность вопроса о замене нефтепродуктов более рентабельным и чистым экологически вариантом с каждым днём только прогрессирует. Сегодня лучшие умы планеты стараются его решить. И многое уже сделано. Лидирующей альтернативой потребителям нефти является водородный двигатель.

Технологии не стоят на месте и водородный двигатель вполне может заменить современные бензиновые агрегаты

Что такое водород, как использовать

При всестороннем рассмотрении водород наиболее соответствует сегодняшним пожеланиям к дающим энергию источникам. Не загрязняет окружающую среду и практически бесконечен, если получать его из обычной воды.

Есть уже и автомобили, работающие на таком летучем веществе, как водород. Понятно, что до массового перехода на этот газ вместо бензина ещё далеко. Но тем не менее всё к тому идёт.

В основе используется реакция распада молекул воды на кислородные и водородные атомы. На сегодня применение этой реакции развивается по двум направлениям:

Рассмотрим каждое из них отдельно.

Водородные двигатели внутреннего сгорания

Здесь несколько нюансов. Внушительный нагрев и сжатие заставляют газ реагировать с металлическими составляющими агрегата и смазочной жидкостью. А при утечке, контактируя с раскалённым выпускным коллектором, конечно, он воспламеняется. Учитывая это, нужно использовать моторы роторные, у которых выпускной коллектор на приличном расстоянии от впускного. Что снижает вероятность воспламенения.

Также система зажигания требует некоторых изменений. И агрегат на водороде с внутренним сгоранием уступает по КПД электродвигателю на водородных элементах. Но всё это уже разрабатывается достаточно долго, поэтому не далёк тот день.

Вот пример — BMW 750hL, автомобиль с водородным двигателем. Сошедший с ленты конвейерной маленьким тиражом. Под капотом двигатель на двенадцать цилиндров. Топливом ему служит замес из кислорода и водорода, по составу идентичный ракетному горючему. Машина может набрать максимум 140 км/ч. Газовое ассорти, сжиженно-охлаждённое, содержится в добавочном баке. Его объёма достаточно для покрытия трёхсот километров, а если по пути смесь закончилась, мотор начинает потреблять чистый бензин из основного бака автоматом. Стоимость авто не превышает цен на машины такой же категории, но с карбюраторным движком — порядка 90 тыс. $.

Агрегаты, работающие от водородных батарей

Здесь принцип работы водородного двигателя — электролиз. Тот же, что у свинцовых аккумуляторов. Только КПД составляет 45%.

Через мембрану такой «батарейки» пройти могут только протоны. Электроды разных полюсов разделены этой мембраной. К аноду подаётся водород, на катод — кислород. Катализатор, покрывающий их (это платина), заставляет терять электроны. Катод притягивает протоны, пропущенные мембраной, и они начинают реагировать на электроны, итог реакции — образование воды и электрического тока. От анода электричество посредством проводов поступает уже к электромотору, т. е. питает его.

Агрегаты, питающиеся от водородных батарей, с рабочими названиями «Антэл-1» и «Антэл-2», уже работают на отечественных авто «Нива» и «Лада» в качестве концепта. Первая силовая установка преодолевает двести тысяч метров за один «полный бак», вторая триста.

О выгодах применения

У водородного карбюраторного мотора горючее только обогащается газовой смесью на 10%, но это на 30–50% понижает расход самого горючего. Получается, что на том же объёме топлива вы будете проезжать, например, не сто пятьдесят, а двести вёрст.

Вот какие достоинства водородного двигателя уже сегодня. А в будущем применение этого чудесного газа, как движущей силы для автомобиля, открывает широчайший ряд выгодных аспектов.

Для получения энергии нужна будет только вода

Выгодные аспекты

  • бесплатное сырьё — вода, из которой газ можно брать бесконечно;
  • во время реакции получаемые вещества вреда экологии не доставляют;
  • благодаря реактивному сгоранию КПД рассматриваемого агрегата на порядок выше карбюраторного;
  • колоссальная горючесть газа позволяет силовой установке бесперебойно работать при любых атмосферных показателях как минусовых, так и плюсовых;
  • детонация при сгорании водородной смеси в разы ниже, чем у бензина, что снижает шумы и вибрацию при работе агрегата;
  • здесь не требуется сложных систем трансмиссии, охлаждения и смазки, значит, повышается простота обслуживания благодаря уменьшению числа деталей.

Доводка до совершенства

Чтобы двигатель на водородных элементах работал в постоянном режиме, помимо прочего, ему нужны объёмные аккумуляторы и преобразователи. А в том виде, в котором они доступны сейчас, используется слишком много места для них. Здесь при изготовлении нужен принципиально новый подход.

Топливные элементы ещё слишком дорогие. Пока только ведётся поиск альтернативных материалов для их производства.

Не доработана пожаробезопасность силовой установки. И вопрос ёмкостей для водорода остаётся открытым. Само устройство водородного двигателя, можно сказать, ещё только приобретает будущие черты.

Экскурс по истории

Примечательно, что водородный двигатель был изобретён гораздо раньше бензинового. Но развитие получил почему-то второй. Построенный во Франции ещё в 1806 году учёным Франсуа Исааком де Риваз агрегат уже тогда работал от гидролиза воды. А бензин для ДВС стали применять только в 1870.

Видео об использовании водорода в качестве топлива для авто:

Во времена, не столь далёкие, а именно в Великую Отечественную войну, есть свидетельство ещё одного удачного использования водорода, как источника получения энергии. В Ленинграде в блокаду бензина катастрофически не хватало. Поэтому было решено для работы аэростатов заграждения и приводящих лебёдок использовать водород, которого было достаточно. И это сыграло немаловажную роль по защите города.

Вот такая альтернатива нефтепродуктам есть у человечества на сегодня. И работа в этом направлении ведётся всё интенсивнее. Про то, как работает водородный двигатель сейчас и как он будет работать завтра, можно говорить только в общих чертах.

Ясно одно — за водородом будущее нашей планеты.

Если имеется чем дополнить, комментарии ждут вас внизу.

Водородный двигатель для автомобиля или как избавиться от нефтяной зависимости

Запасы нефти подходят к концу, что вынуждает человечество искать альтернативные источники энергии, способные заменить «черное золото». Одним из решений является применение водородного двигателя, отличающегося меньшей токсичностью и большим КПД. Главное то, что запас сырья для производства горючего почти неограничен.

Когда появился водородный двигатель? В чем особенности его устройства, и каков принцип действия? Где применяется такая технология? Реально ли сделать такой мотор своими руками? Эти и другие вопросы рассмотрим ниже.

Когда появился водородный двигатель, основные компании, ведущие его разработку

Интерес к применению водорода появился еще в 70-х годах в период острого дефицита топлива. Первым современным разработчиком, который представил двигатель для автомобиля работающий на водороде, стал концерн Toyota. Именно он в 1997 году выставил на всеобщее обозрение внедорожник FCHV, который так и не пошел в серийное производство.

Несмотря на первую неудачу, многие компании продолжают исследования и даже производство таких автомобилей. Наибольших успехов добились концерны Тойота, Хендай и Хонда. Разработки ведут и другие компании — Фольксваген, Дженерал Моторз, БМВ, Ниссан, Форд.

В 2016 году появился первый поезд на водородном топливе, являющийся детищем немецкой компании Alstom (ранее GEC-Alsthom) . Планируется, что новый состав Coranda iLint начнет движение в конце 2017 года по маршруту из Букстехуде в Куксхавен (Нижняя Саксония).

В будущем планируется заменить такими поездами 4000 дизельных составов Германии, перемещающихся по участкам дорог без электрификации.

Интерес к покупке Coranda iLint уже проявила Норвегия, Дания и другие страны.

Особенности водорода как топлива для двигателя

В ДВС бензин смешивается с воздухом, после чего подается в цилиндры и сгорает, в результате чего происходит перемещение поршней и движение транспортного средства.

Применение водорода в виде топлива имеет ряд нюансов:

  • После сжигания топливной смеси на выходе образуется только пар.
  • Реакция воспламенения происходит быстрее, чем в случае с дизельным топливом или бензином.
  • Благодаря детонационной устойчивости, удается поднять степень сжатия.
  • Теплоотдача водорода на 250% выше, чем у топливно-воздушной смеси.
  • Водород — летучий газ, поэтому он попадает в мельчайшие зазоры и полости. По этой причине немногие металлы способны перенести его разрушительное влияние.
  • Хранение такого топлива происходит в жидкой или сжатой форме. В случае пробоя бака водород испаряется.
  • Нижний уровень пропорции газа для вхождения в реакцию с кислородом составляет 4%. Благодаря этой особенности, удается настроить режимы работы мотора путем дозирования консистенции.

С учетом перечисленных нюансов применять H2 в чистом виде для двигателя внутреннего сгорания нельзя. Требуется внесение конструктивных изменений в ДВС и установка дополнительного оборудования.

Устройство водородного двигателя

Автомобили с двигателем работающем на водороде делятся на несколько групп:

  • Машины с 2-мя энергоносителями. Они обладают экономичным мотором, способным работать на чистом водороде или бензиновой смеси. КПД двигателя такого типа достигает 90-95 процентов. Для сравнения дизельный мотор имеет коэффициент полезного действия на уровне 50%, а обычный ДВС — 35%. Такие транспортные средства соответствуют стандарту Евро-4.
  • Автомобиль со встроенным электродвигателем, питающим водородный элемент на борту транспортного средства. Сегодня удалось создать моторы, имеющие КПД от 75% и более.
  • Обычные транспортные средства, работающие на чистом водороде или топливно-воздушной смеси. Особенность таких двигателей заключается в чистом выхлопе и увеличении КПД еще на 20%.

Как отмечалось выше, конструкция мотора, работающего на H2, почти не отличается от ДВС за исключением некоторых аспектов.

Главной особенностью является способ подачи горючего в камеру сгорания и его воспламенения. Что касается преобразования полученной энергии в движение КШМ, процесс аналогичен.

Принцип работы

Принцип работы водородных двигателей стоит рассмотреть применительно к двум видам таких установок:

  1. Моторы внутреннего сгорания;
  2. Двигатели на водородных элементах.

Водородные моторы внутреннего сгорания

В ДВС из-за того, что горение бензиновой смеси осуществляется медленнее, топливо попадает в камеру сгорания раньше достижения поршнем своей верхней точки.

В водородном двигателе, благодаря мгновенному воспламенению газа, удается сместить время впрыска до момента, пока поршень начнет возвратное движение. При этом для нормальной работы мотора достаточно небольшого давления в топливной системе (до 4-х атмосфер).

В оптимальных условиях водородный мотор способен работать с питающей системой закрытого вида. Это значит, что в процессе образования смеси атмосферный воздух не применяется.

После завершения такта сжатия в цилиндре остается пар, который направляется в радиатор, конденсируется и становится водой.

Реализация варианта возможна в случае, если на машине смонтирован электролизер — устройство, обеспечивающее отделение водорода от H2O для последующей реакции с O2.

Воплотить в реальность описанную систему пока не удается, ведь для нормальной работы двигателя и снижения силы трения применяется масло.

Последнее испаряется и является частью отработавших газов. Так что применение атмосферного воздуха при работе водородного двигателя пока необходимо.

Двигатели на водородных элементах

Принцип действия таких устройств построен на протекании химических реакций. Кожух элемента имеет мембрану (проводит только протоны) и электродную камеру (в ней находится катод и анод).

В анодную секцию подается H2, а в катодную камеру — O2. На электроды наносится специальное напыление, выполняющее функцию катализатора (как правило, платина).

Под действием каталитического вещества происходит потеря водородом электронов. Далее протоны подводятся через мембрану к катоду, и под влиянием катализатора формируется вода.

Из анодной камеры электроны выходят в электрическую цепь, подключенную к мотору. Так формируется ток для питания двигателя.

Где использовались водородные топливные элементы?

Особенность топливных элементов водородного типа —способность производить энергию для электрического мотора. Как результат, система заменяет ДВС или становится источником бортового питания на транспортном средстве.

Впервые топливные элементы были использованы в 1959 году компанией из США.

Если говорить в целом, топливные элементы применяются:

  • НА АВТОМОБИЛЬНОМ ТРАНСПОРТЕ. В отличие от КПД стандартного двигателя, они показывают лучшие результаты. На испытании первого автобуса топливные элементы показали КПД в 57%. Сегодня такие устройства тестируются многими производителями автомобилей — Хонда, Форд, Ниссан, Фольксваген и другими.
  • НА ЖЕЛЕЗНОДОРОЖНОМ ТРАНСПОРТЕ. На современном этапе больше 60% транспорта на ж/д — тепловозы. Сегодня водородные поезда разрабатываются во многих странах — Японии, Дании, США и Германии.
  • НА МОРСКОМ ТРАНСПОРТЕ. Водородные топливные элементы наиболее востребованы на подводных лодках. Активные работы в этом направлении ведутся в Германии и Испании, а в роли заказчиков выступают другие страны, среди которых Италия, Греция, Израиль.
  • В АВИАЦИИ. Первые самолеты на водородном двигателе появились еще в 80-х годах прошлого века. На современном этапе новый вид топлива применяется для создания беспилотных летательных аппаратов (в том числе вертолетов).

Также водородные топливные элементы нашли применение на вилочных погрузчиках, велосипедах, скутерах, мотоциклах, тракторах, автомобилях для гольфа и другой технике.

Преимущества и недостатки

Чтобы понять особенности и перспективы водородного двигателя в автомобиле, стоит знать его плюсы и минусы. Рассмотрим их подробнее.

Плюсы:

  • ЭКОЛОГИЧНОСТЬ. Внедрение водородного двигателя — возможность забыть о проблеме загрязнения окружающей среды. При глобальном переходе на этот вид топлива удастся снизить парниковый эффект и, возможно, спасти планету. Экологичность новых разработок подтверждена компанией Тойота. Работники концерна доказали, что выхлоп из машины безопасен для здоровья. Более того, выходящую воду можно пить, ведь она дистиллирована и очищена от примесей.
  • ОПЫТ РАЗРАБОТОК. Известно, что водородный двигатель создан давно, поэтому с его применением на автомобилях проблем быть не должно. Если углубится в историю, первое подобие мотора на водороде в начале XIX века удалось создать Франсуа Исаак де Ривазу — конструктору из Франции. Кроме того, в период блокады Ленинграда на новый вид топлива было переведено почти 500 машин.
  • ДОСТУПНОСТЬ. Не менее важный фактор в пользу H2 — отсутствие дефицита. При желании этот вид топлива можно получать даже из сточных вод.
  • ВОЗМОЖНОСТЬ ПРИМЕНЕНИЯ В РАЗНЫХ СИЛОВЫХ УСТАНОВКАХ. Существует мнение, что водород используется только в ДВС. Это не так. Новая технология задействована при создании топливного элемента, с помощью которого удается получить электрический ток и запитать электромотор транспортного средства. Преимущества заключаются в безопасности и отсутствии ископаемых элементов, что исключает загрязнение окружающей среды. На современном этапе такая схема считается наиболее безопасной и пользуется наибольшим спросом у разработчиков.

Также к плюсам стоит отнести:

  • Минимальный уровень шума;
  • Улучшение мощности, приемистости и других параметров двигателя;
  • Большой запас хода;
  • Низкий расход горючего;
  • Простота обслуживания;
  • Высокий потенциал применения в виде альтернативного топлива.

Недостатки водородного двигателя:

  • СЛОЖНОСТЬ ИЗВЛЕЧЕНИЯ H2 ИЗ ВОДЫ. Как отмечалось, данный газ считается наиболее распространенным элементом на планете, но в чистом виде его почти нет. Этот газ имеет минимальный вес, поэтому он поднимается и удерживается в верхних слоях атмосферы. Атомы H2 быстро связываются с другими элементами, в результате чего образуется вода, метан и другие вещества. Вот почему для применения водорода его необходимо извлечь, а для этого требуются большие объемы энергии. На текущий момент такое производство нерентабельно, что тормозит процесс внедрения водородных двигателей. По приблизительным расчетам цена литра, сжиженного H2 равна от 2 до 8 евро. Итоговые расходы во многом зависят от способа добычи топлива.
  • ОТСУТСТВИЕ НЕОБХОДИМОГО ЧИСЛА ЗАПРАВОК. Не меньшая проблема — дефицит АЗС, готовых заправлять машины водородным топливом. Проблема заключается в высокой стоимости оборудования для таких автозаправочных станций (если сравнивать с обычной АЗС). Сегодня разработано множество проектов станций для заправок водородом — от крупных до небольших заправок, но из-за дороговизны и отсутствия массового применения водородных двигателей на автомобилях процесс внедрения идеи может растянуться на десятилетия.
  • НЕОБХОДИМА ДОРОГОСТОЯЩАЯ МОДЕРНИЗАЦИЯ ДВС. Как отмечалось, водородное топливо теоретически может использоваться для заправки ДВС. Но для применения H2 в качестве основного топлива требуются конструктивные изменения. Если ничего не менять, мощность мотора падает на 20-35%, а ресурс силового узла значительно снижается. Но и это не главный недостаток. Опасность в том, что такой механизм проработает недолго и быстро выйдет из строя. Сгорая, водородная смесь выделяет большее тепло, что приводит к перегреву поршневой и клапанной системы, а мотор работает в режиме повышенных нагрузок. Кроме того, высокие температуры негативно влияют на материалы, из которых сделан силовой узел, и смазывающие вещества. В результате рабочие элементы двигателя быстро износятся. Это значит, что без модернизации ДВС применение H2 невозможно.
  • ДОРОГОВИЗНА МАТЕРИАЛОВ. Главным «камнем преткновения» в вопросе развития водородных технологий является высокая стоимость материалов. В качестве катализатора используется платина, цена которой для рядового автовладельца очень высока. Проще потратить деньги и подарить дорогое кольцо жене, чем отдавать их для установки новой детали. Надежда остается на ученых, которые ищут альтернативы для дорогостоящего катализатора. Проводятся тестирования элементов, способных заменить драгоценный металл.

Кроме уже рассмотренных выше, стоит выделить еще ряд недостатков:

  • Опасность пожара или взрыва.
  • Риски для планеты, ведь увеличение объема водорода может привести к непоправимым последствиям для озонового слоя.
  • Увеличение веса машины из-за применения мощных АКБ и преобразователей.
  • Наличие проблем с хранением водородного топлива — под высоким давлением или в сжиженном виде. Исследователи еще не пришли к единому выводу, какой из вариантов лучше.

Опасность водородного топлива

В рассмотренных выше недостатках упоминалось об опасности применения водородного топлива для двигателя. Это главный минус новой технологии.

В сочетании с окислителем (кислородом) возрастает риск воспламенения водорода или даже взрыва. Проведенные исследования показали, что для воспламенения H2 достаточно 1/10 части энергии, необходимой для зажигания бензиновой смеси. Другими словами, для вспыхивания водорода хватит и статической искры.

Еще одна опасность заключается в невидимости водородного пламени. При горении вещества огонь почти незаметен, что усложняет процесс борьбы с ним. Кроме того, чрезмерное количество H2 приводит к появлению удушья.

Опасность в том, что распознать данный газ крайне сложно, ведь у него нет запаха и он полностью невидим для человеческого глаза.

Кроме того, сжиженный H2 имеет низкую температуру, поэтому в случае утечки с открытыми частями тела высок риск серьезного обморожения. Находится данный газ должен в специальных хранилищах.

Из рассмотренного выше напрашивается вывод, то водородный двигатель опасен, и использовать его крайне рискованно.

На самом деле, газообразный водород имеет небольшой вес и в случае утечки он рассеивается в воздухе. Это значит, что риск его воспламенения минимален.

В случае с удушьем такая ситуация возможна, но только при нахождении в замкнутом помещении. В ином случае утечка водородного топлива опасности для жизни не несет. В оправдание стоит отметить, что выхлопные газы ДВС (а именно угарный газ) также несут смертельный риск.

Современные автомобили с водородными двигателями

Возможность применения двигателей на водородном топливе заинтересовала многих производителей. В результате в автомобильной индустрии появляется все больше машин, работающих на данном газе.

К наиболее востребованным моделям стоит отнести:

  • Компания Тойота выпустила автомобиль Fuel Cell Sedan. Для устранения проблем с дефицитом пространства в салоне и багажном отсеке емкости с водородным топливом размещены на полу транспортного средства. Fuel Cell Sedan предназначен для перевозки людей, а его стоимость составляет 67.5 тысяч долларов.
  • Концерн БМВ представил свой вариант автомобиля Hydrogen Новая модель протестирована известными деятелями культуры, бизнесменами, политиками и другими популярными личностями. Испытания показали, что переход на новое топливо не влияет на комфортабельность, безопасность и динамику транспортного средства. При необходимости виды горючего можно переключать с одного на другой. Скорость Hydrogen7 — до 229 км/час.
  • Honda Clarity — автомобиль от концерна Хонда, который поражает запасом хода. Он составляет 589 км, чем не может похвастаться ни одно транспортное средство с низким уровнем выбросов. На дозаправку уходит от трех до пяти минут.
  • «Монстр» от Дженерал Моторс показан в октябре 2016 года. Особенность автомобиля заключается в невероятной надежности, что подтверждено проведенными исследованиями армией США. Во время испытаний транспортное средство прошло больше 3 миллионов километров.
  • Концерн Тойота выпустил на рынок водородную модель Mirai. Продажи начались еще в 2014 году на территории Японии, а в США — с октября 2015 года. Время на заправку Mirai составляет пять минут, а запас хода на одной заправке 502 км. ФОТО 21 22 Недавно представители концерна заявили, что планируют внедрять данную технологию не только в легковой транспорт, но и в вилочные погрузчики и даже грузовики. 18 колесный грузовик уже тестируется в Лос-Анжелесе.
  • Производитель Лексус планирует свой вариант автомобиля с водородным двигателем в 2020 году, поэтому о транспортном средстве известно мало подробностей.
  • Компания Ауди представила концепт H-tron Quattro в Детройте. По заверению производителя машина может проехать на одном баке около 600 км, а набрать скорость до 100 км/час удается за 7,1 секунду. Машина имеет «виртуальную» кабину, заменяющую стандартную приборную панель.
  • БМВ в сотрудничестве с Тойотой планирует выпуск своего водородного транспортного средства к 2020 году. Производитель заверяет, что запас хода новой модели составляет больше 480 км, а дозаправка будет занимать до 5 минут.
  • В 2013 году в компании Форд заявили, что активное производство водородных двигателей начнется уже к концу 2017 года при сотрудничестве с Ниссан и Мерседес-Бенц. Но реализовать задуманное на практике пока не удается — работники концерна находятся на этапе разработки.
  • Мерседес-Бенц на Франкфуртском автосалоне представил внедорожник GLC, который появится на рынке в конце 2019 года. Авто комплектуется аккумулятором на 9,3 кВт*ч, а запас хода составляет 436 км. Максимальная скорость ограничивается электроникой на уровне 159 км/час.
  • Nikola Motor представила грузовой автомобиль с водородным двигателем, имеющий запас хода от 1287 до 1931 км. Стоимость нового автомобиля составит 5-7 тысяч долларов за аренду в месяц. Выпуск планируется начать с 2020 года.
  • Производитель Хендай создал новую линейку Tucson. На сегодняшний день произведено и реализовано 140 машин. Бренд Hyundai Genesis представил свой автомобиль с водородным двигателем GV Впервые транспортное средство было представлено в Нью-Йорке, но его производство пока не планируется.
  • Великобритания тоже не отстает в плане новых технологий. В стране уже можно арендовать водородный автомобиль Riversimple Rasa на три или шесть месяцев. Машина весит чуть больше 500 кг и способна проехать на одной заправке около 500 км.
  • Дизайнерский дом Pininfarina создал машину на водородном топливе h3 Speed. Особенность авто заключается в способности ускорятся до сотни всего за 3,4 секунды, а максимальная скорость — 300 км/час. Время на заправку составляет всего три минуты. Стоимость новой модели достигает 2,5 млн. долларов.

Трудности в эксплуатации водородных ДВС

Главным препятствием для внедрения новой технологии является чрезмерные расходы на получение водородного топлива, а также на приобретение комплектующих материалов.

Возникают проблемы и с хранением H2. Так, для удерживания газа в требуемом состоянии требуется температура на уровне -253 градусов Цельсия.

Простейший способ получения водорода — электролиз воды. Если производство H2 требуется в промышленных масштабах, не обойтись без высоких энергетических затрат.

Чтобы повысить рентабельность производства, требуется применение возможностей ядерной энергетики. Чтобы избежать рисков, ученые пытаются найти альтернативы такому варианту.

Перемещение и хранение требует применения дорогих материалов и механизмов высокого качества.

Нельзя забывать и о других сложностях, с которыми приходится сталкиваться в процессе эксплуатации:

  • Взрывоопасность. При утечке газа в закрытом помещении и наличии небольшой энергии для протекания реакции возможен взрыв. Если воздух чрезмерно нагрет, это только усугубляет ситуацию. Высокая проникаемость H2 приводит к тому, что газ попадает в выхлопной коллектор. Вот почему применение роторного мотора считается более предпочтительным.
  • При хранении водорода применяются емкости, имеющей большой объем, а также системы, исключающие улетучивание газа. Кроме того, используются устройства, исключающие механическое повреждение емкостей. Если для грузовых машин, водного или пассажирского транспорта эта особенность не имеет большого значения, легковая машина теряет ценные кубометры.
  • При больших нагрузках и высокой температуре H2 провоцирует разрушение элементов ЦПГ (цилиндропоршневой группы) и смазки в двигателе. Использование специальных сплавов и смазочных материалов приводит к повышению стоимости производства водородных двигателей.

Будущее водородных двигателей

Применение H2 открывает большие перспективы и не только в автомобильной сфере. Водородные двигатели активно применяются на ж/д транспорте, на самолетах и вертолетах. Также они устанавливаются на вспомогательной технике.

Интерес к разработке таких моторов проявляют многие концерны, о которых уже упоминалось выше — Тойота, БМВ, Фольксваген, Дженерал Моторс и другие.

Уже сегодня на дорогах встречаются реальные автомобили, которые работают на водороде. Многие из них рассмотрены выше — БМВ 750i Hydrogen, Хонда FSX, Тойота Mirai и другие.

К работе подключились почти все крупные концерны, которые пытаются найти свою нишу на рынке.

Главным недостатком остается высокая цена H2, нехватка АЗС, а также дефицит квалифицированных работников, способных обслуживать такую технику. Если имеющиеся проблемы удастся решить, машины с водородными двигателями обязательно появятся на наших дорогах.

Конкурирующие технологии

Внимание к моторам на водороде развеивается по той причине, что у технологии имеются конкуренты.

Вот только некоторые из них:

  • ГИБРИДНЫЕ ТРАНСПОРТНЫЕ СРЕДСТВА — автомобили, способные работать от нескольких источников энергии. Многие концерны объединяют обычный двигатель внутреннего сгорания и электрический мотор. Еще один вариант гибридной машины — совмещение ДВС, а также силового узла, использующего в качестве топлива сжатый воздух.
  • ЭЛЕКТРИЧЕСКИЕ АВТОМОБИЛИ (ЭЛЕКТРОМОБИЛИ) — транспортные средства, которые приводятся в движение с помощью одного или группы электрических моторов, питающихся от АКБ или топливных элементов. В таких машинах ДВС не применяется. Электромобили не стоит путать с авто, имеющими электрическую подачу, а также с электрическим общественным транспортом (троллейбусами и трамваями).
  • АВТОМОБИЛИ НА ЖИДКОМ АЗОТЕ. Источником энергии, как уже понятно по названию, является жидкий азот (находится в специальных емкостях). Мотор работает следующим образом. Топливо нагревается в специальном механизме, после чего испаряется и преобразуется в газ высокого давления. Далее оно направляется в мотор, где действует на ротор или поршень, передавая таким способом имеющуюся энергию. Машины на жидком азоте были представлены публике, но на современном этапе они не получили широкого применения. Один из таких автомобилей «сыграл» в фильме «Жидкий воздух» в 1902 году. Разработчики уверяют, что такое транспортное средство способно проехать больше 100 км на одном баке.
  • АВТОМОБИЛЬ НА СЖАТОМ ВОЗДУХЕ. Особенность транспортного средства заключается в применении пневмодвигателя, благодаря которому и перемещается транспортное средство. Специальный привод называется пневматическим. Вместо топливовоздушной смеси источником энергии является сжатый воздух. Как отмечалось выше, такая технология входит в состав гибридных машин.

Можно ли сделать своими руками?

Технология работы двигателя на газ известна давно, и многие концерны достигли успехов в вопросе внедрения водородных двигателей. Над совершенствованием классического ДВС задумались и народные умельцы.

Суть заключается в подаче в камеру сгорания специального газа. Такое устройство носит название системы Брауна. При этом бензин также подается в двигатель, но смешивается с газом, что обеспечивает лучшее горение.

В результате появляется водяной пар, очищающий клапана и поршни двигателя от нагара, улучшающий характеристики мотора и повышающий его ресурс.

Чтобы своими руками разложить воду на газ, требуется катализатор, дистиллят, электроды и электричество.

Конструкция собирается из подручных материалов. Допускается применение одной банки, но лучше использовать шесть.

После вырезаются пластинки и объединяются по принципу крест-накрест. Далее они обматываются проволокой и крепятся на крышке. Важно, чтобы электроды не замыкались между собой.

На последнем этапе банки заполняются электролитом и катализатором. Такая схема может работать на любом автомобиле.

Если же говорить о полноценном водородном двигателе, то в гаражных условиях сделать его конечно же не получится из-за сложности технологии.

Ученые приблизились к созданию дешевых водородных автомобилей

https://ria.ru/20200824/avtomobili-1576244320.html

Ученые приблизились к созданию дешевых водородных автомобилей

Ученые приблизились к созданию дешевых водородных автомобилей — РИА Новости, 24.08.2020

Ученые приблизились к созданию дешевых водородных автомобилей

Датские ученые разработали новый дешевый вид катализаторов для водородных двигателей. Это может изменить ситуацию в автомобилестроении. Результаты описаны в… РИА Новости, 24.08.2020

2020-08-24T18:00

2020-08-24T18:00

2020-08-24T18:01

наука

дания

копенгагенский университет

открытия — риа наука

химия

автомобили

/html/head/meta[@name=’og:title’]/@content

/html/head/meta[@name=’og:description’]/@content

https://cdnn21.img.ria.ru/images/17102/65/171026525_0:26:501:307_1920x0_80_0_0_b16035c94c22bf37e028c5ac3d03fde5.jpg

МОСКВА, 24 авг — РИА Новости. Датские ученые разработали новый дешевый вид катализаторов для водородных двигателей. Это может изменить ситуацию в автомобилестроении. Результаты описаны в статье, опубликованной в журнале Nature Materials.Пока автомобили с водородным двигателем — большая редкость. Все дело в стоимости катализаторов, для производства которых нужна платина. И если в обычных автомобилях используется около пяти граммов этого дорогого металла, то в экологически чистых водородных двигателях — в десять раз больше.Химики из Копенгагенского университета разработали катализатор, который не требует такого большого количества платины.»Для нашего катализатора нужна лишь небольшая часть того количества платины, которое обычно используется в современных водородных топливных элементах для автомобилей, — приводятся в пресс-релизе университета слова руководителя исследования, профессора химии Маттиаса Аренца (Matthias Arenz). — Мы приближаемся к тому же количеству платины, которое требуется для обычного автомобиля. При этом наш новый катализатор намного более стабилен, чем катализаторы, используемые в современных водородных автомобилях».Авторы отмечают, что новые устойчивые технологии часто сталкиваются с проблемой ограниченной доступности редких материалов, что служит препятствием для их промышленного применения. Возможность снизить зависимость от дефицитных или дорогих материалов меняет правила игры.»Новый катализатор позволяет организовать производство водородных транспортных средств в гораздо большем масштабе, чем когда-либо в прошлом», — заявляет еще один автор статьи, профессор Ян Россмейсл (Jan Rossmeisl), руководитель Центра катализа высокоэнтропийных сплавов при кафедре химии Копенгагенского университета.Новый катализатор позволяя производить больше лошадиных сил на грамм платины. При этом он более прочный. Последнее качество не менее важное, чем стоимость. Чем больше поверхность катализатора, тем эффективнее он работает. Но для покрытия большой поверхности, требуется много металла, а если слой будет очень тонким и непрочным, активность катализатора снизится. Для решения этой дилеммы в современных катализаторах слой наночастиц платины покрывают сверху углеродом. К сожалению, углерод делает катализаторы нестабильными. Новый катализатор не содержит углерода. Вместо наночастиц исследователи применили в нем сеть нанопроволок, характеризующихся большой площадью поверхности и высокой прочностью.»С этим прорывом надежда на то, что что водородные автомобили станут обычным явлением, заметно усилилась. Это позволяет сделать их более дешевыми, экологичными и долговечными», — говорит Россмейсл.На следующем этапе исследователи планируют начать переговоры с представителями автомобильной промышленности, чтобы реализовать новую технологию на практике.Центр катализа высокоэнтропийных сплавов (CHEAC), в котором велась разработка, — своего рода центр передового опыта, поддерживаемый Датским национальным исследовательским фондом. В нем разрабатывают новые каталитические материалы для создания экологически чистых химикатов и топлива.

https://ria.ru/20200506/1571028781.html

https://ria.ru/20200804/1575334175.html

дания

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

2020

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

Новости

ru-RU

https://ria.ru/docs/about/copyright.html

https://xn--c1acbl2abdlkab1og.xn--p1ai/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

https://cdnn21.img.ria.ru/images/17102/65/171026525_28:0:472:333_1920x0_80_0_0_18b115f59d18d61416f2bb0318e74aef.jpg

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

[email protected]

7 495 645-6601

ФГУП МИА «Россия сегодня»

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

дания, копенгагенский университет, открытия — риа наука, химия, автомобили

МОСКВА, 24 авг — РИА Новости. Датские ученые разработали новый дешевый вид катализаторов для водородных двигателей. Это может изменить ситуацию в автомобилестроении. Результаты описаны в статье, опубликованной в журнале Nature Materials.

Пока автомобили с водородным двигателем — большая редкость. Все дело в стоимости катализаторов, для производства которых нужна платина. И если в обычных автомобилях используется около пяти граммов этого дорогого металла, то в экологически чистых водородных двигателях — в десять раз больше.

Химики из Копенгагенского университета разработали катализатор, который не требует такого большого количества платины.

«Для нашего катализатора нужна лишь небольшая часть того количества платины, которое обычно используется в современных водородных топливных элементах для автомобилей, — приводятся в пресс-релизе университета слова руководителя исследования, профессора химии Маттиаса Аренца (Matthias Arenz). — Мы приближаемся к тому же количеству платины, которое требуется для обычного автомобиля. При этом наш новый катализатор намного более стабилен, чем катализаторы, используемые в современных водородных автомобилях».

Авторы отмечают, что новые устойчивые технологии часто сталкиваются с проблемой ограниченной доступности редких материалов, что служит препятствием для их промышленного применения. Возможность снизить зависимость от дефицитных или дорогих материалов меняет правила игры.

6 мая 2020, 14:30НаукаКитайские ученые создали прототип реактивного двигателя на воздухе

«Новый катализатор позволяет организовать производство водородных транспортных средств в гораздо большем масштабе, чем когда-либо в прошлом», — заявляет еще один автор статьи, профессор Ян Россмейсл (Jan Rossmeisl), руководитель Центра катализа высокоэнтропийных сплавов при кафедре химии Копенгагенского университета.

Новый катализатор позволяя производить больше лошадиных сил на грамм платины. При этом он более прочный. Последнее качество не менее важное, чем стоимость. Чем больше поверхность катализатора, тем эффективнее он работает.

Но для покрытия большой поверхности, требуется много металла, а если слой будет очень тонким и непрочным, активность катализатора снизится. Для решения этой дилеммы в современных катализаторах слой наночастиц платины покрывают сверху углеродом. К сожалению, углерод делает катализаторы нестабильными.

Новый катализатор не содержит углерода. Вместо наночастиц исследователи применили в нем сеть нанопроволок, характеризующихся большой площадью поверхности и высокой прочностью.

«С этим прорывом надежда на то, что что водородные автомобили станут обычным явлением, заметно усилилась. Это позволяет сделать их более дешевыми, экологичными и долговечными», — говорит Россмейсл.

На следующем этапе исследователи планируют начать переговоры с представителями автомобильной промышленности, чтобы реализовать новую технологию на практике.

Центр катализа высокоэнтропийных сплавов (CHEAC), в котором велась разработка, — своего рода центр передового опыта, поддерживаемый Датским национальным исследовательским фондом. В нем разрабатывают новые каталитические материалы для создания экологически чистых химикатов и топлива.

4 августа 2020, 09:04НаукаРоссийские ученые смоделировали материал для хранилищ водорода

Водородный транспорт — хорошая идея только в теории / Хабр

Я очень хочу потыкать острой палкой в идею об электрических автомобилях на водородных топливных элементах (ТЭ). Некоторые люди совершенно очарованы этой идеей. Как можно не очароваться? На вход подается водород, абсолютно «чистое» топливо, а на выходе получается только вода или пар, и никакого углекислого газа, оксидов азота, сажи, и т. д. Водородный двигатель — тихий и компактный. Это не тепловой двигатель, и поэтому на него не распространяются жесткие ограничения цикла Карно. Заправка очень быстрая и не сильно сложнее чем обычная бензиновая заправка.

Кроме того, если вы — нефтяная компания, и спрос на бензин и дизель начнет уменьшаться, вы только что обнаружили новое топливо, которое можно продавать! Вы спасены!

Если вы живете в частном доме и хотите потреблять меньше энергии, вы думаете что можете делать водород из воды используя электричество от солнечных панелей на крыше, убивая сразу двух зайцев: вы получаете топливо для вашей машины и запасаете излишки энергии от солнечной генерации, с помощью единственной магической технологии. Звучит потрясающе!

К сожалению, дьявол кроется в деталях, и он не то чтобы сильно прячется, если вы будете смотреть внимательно.

В моей предыдущей статье я обсуждал эффективность в энергетических циклах двигателей внутреннего сгорания и электрических автомобилей. Я буду ссылаться на результаты из этой статьи когда буду делать предположения об электрических автомобилях на топливных элементах (fuel cell electric vehicle, FCEV). Я буду делать аналогичные допущения и использовать похожие источники.

Дисклеймер: я упомянут в нескольких патентах компании Texaco о получении водорода из природного газа для подачи на протонообменную мембрану (ПОМ, ПЭМ) топливных элементов (теперь патенты принадлежат Chevron, которая поглотила Texaco). Я занимался водородом еще с институтских времен, и примерно каждый второй проект на протяжении десятилетий, которые я провел в компании Zeton, включал в себя водород или синтез-газ.

Однако, еще раз хочу четко сказать: водород это прекрасная идея — в теории. Но большая проблема с водородом заключается… в самой молекуле водорода. Никакие изобретения или технологии не решат эту проблему.

Давайте разбирать цепочку эффективности электрического транспорта на водородных топливных элементах этап за этапом, также как мы делали с двигателем внутреннего сгорания и электрическими машинами на аккумуляторах (battery electric vehicle, BEV).

Производство водорода

КПД самого производства водорода — примерно 70%, в лучшем случае, к сожалению. Я недавно [статья 2017 года — прим. перев.] разговаривал с Hydrogenics, большим производителем щелочных и ПЭМ-электролизеров. Эффективность их более дешевых щелочных электролизеров — примерно 60%, а эффективность ПЭМ-электролизеров — 70%, когда он работает на минимальном токе. (Вы можете делать гораздо больше водорода на этом же приборе просто увеличив ток, но жертвуя эффективностью.) Это достаточно близко к теоретическому пределу эффективности электролиза — ~83%, которая получается, если поделить низшую теплоту сгорания (HTC) получаемого водорода на энергию затрачиваемую на электролиз. Мы не вернем эту потерю в топливном элементе потому что мы не используем теплоту конденсации водяного пара.

Большинство производителей электролизеров указывают КПД в расчете на высшую теплоту сгорания (ВТС), то есть включая теплоту конденсации пара. В этом случае 70% (НТС) КПД электролизеров превращаются в примерно 83% (ВТС).

Проблема электролиза в том, что часть энергии очевидно идет на создание молекул кислорода. Это может быть полезно в больших системах, которые могут собирать и сжимать чистый кислород (который затем можно продавать), либо если водород используется не как топливо, а как сырье в технологическом процессе, и этот процесс также использует кислород. К сожалению, водородная заправка не будет использовать кислород, она будет просто выпускать его в воздух.

Поэтому давайте остановимся на 70% (НТС) КПД конвертации электричества в водород, предположительно, электричества от возобновляемых источников (ВИЭ). Если совсем строго, мы еще должны учесть 6% потерь в электросети от источника электричества до электролизера.

70% КПД электролиза почти совпадает с наивысшей доступной на данный момент эффективностью технологии получения водорода из природного газа, парового риформинга (паровой конверсии) метана (steam methane reforming, SMR). Большие установки повышают эффективность, утилизируя теплоту продуктов процесса и сжигая побочные газы после очистки водорода.

Максимально чистый водород нужен, чтобы увеличить эффективность и долговечность топливных элементов. Они очень чувствительны к угарному газу, который уменьшает эффективность платинового катализатора в топливном элементе (то есть, является каталитическим ядом). К сожалению, невозможно конвертировать углеводороды в водород, не получив на выходе также какое-то количество угарного газа. Более того, сам катализатор может преобразовать углекислый газ в угарный газ, поэтому водородное топливо должно быть полностью очищено от обоих газов. Даже инертные газы, такие как аргон и азот, уменьшают эффективность ПЭМ-топливного элемента, потому что надо позаботиться об их выводе на аноде. Поэтому реальные топливные элементы требуют очень чистый водород: посмотрите на спецификации ПЭМ-топливных элементов производства Ballard, Plug Power, и других.

К сожалению, эффективность паровой конверсии метана стремительно падает с уменьшением установки. Тепловые потери увеличиваются, что имеет особенно большое значение в таком высокотемпературном процессе как паровая конверсия. Вы быстро обнаружите это когда попробуете спроектировать процесс для относительно небольшой водородной заправки.

Доставка природного газа по трубопроводам к установке по паровой конверсии в водород и последующая доставка водорода от централизованной установки к заправкам скорее всего будет стоить больше чем 6% от энергии конечного водорода, но давайте будем щедрыми и примем эти потери тоже за 6% чтобы делать меньше подсчетов (хотя, в конечном счете, это все равно будет неважно). Таким образом, вне зависимости от того, начинаем мы с электричества или с метана, мы приходим к 70%*94% ~= 66% КПД производства водорода, без существенных возможностей для улучшения потому что мы уже близки к термодинамическим пределам.

Стоит отметить что КПД электролиза горячего пара может казаться очень высоким (даже выше 100%), например, при использовании твердооксидного топливного элемента в реверсе. Естественно, при этом не учитывается работа по испарению воды и нагреву пара. Никто не использует электролиз пара если у него нет а) источника «бесплатного» пара и б) процесса в котором используется горячий водород или горячий кислород или желательно оба газа. Кроме того, как всякие высокотемпературные устройства, паровые электролизеры «не любят» работать с перерывами, поэтому вам также нужен стабильный круглосуточный источник электричества, а возобновляемые источники — не стабильные.

Хранение водорода

Теперь нам надо хранить водород, и загвоздка опять в самой молекуле. Хотя плотность энергии водорода на единицу массы очень большая, даже в форме криогенной жидкости (при температуре 24 выше абсолютного нуля) водород имеет плотность всего 71 кг/м3. Поэтому единственная практичная на данный момент форма хранения водорода для небольших машин — это газ высокого давления. Любые способы увеличения объемной плотности хранения водорода или уменьшения давления (например, гидриды металлов, абсорбенты, органические носители, и т. д.) или сильно увеличивают массу бака, или увеличивают потери водорода во время хранения, или требуют энергии для извлечения водорода. Я бы не рассчитывал на некий магический прорыв в этой области: у нас было тридцать лет на исследования с того момента, как водород стал всерьез рассматриваться как топливо.

Про опасность водорода хорошо известно, и в моей статье не будет картинки с дирижаблем «Гинденбург»! На самом деле, уже достаточно давно научились безопасно обращаться с водородом в промышленности если использовать разные меры предосторожности. Но я не хочу, чтобы мои соседи даже думали о производстве водорода под давлением 400 или 600 атмосфер с помощью своих домашних солнечных панелей. Это кажется мне кошмарной идеей по многим причинам.

Чтобы сжать водород с давления ~20 атмосфер на выходе с установки по паровой конверсии из метана или с примерно атмосферного давления (на выходе из некоторых электролизеров) до 400 атмосфер надо потратить энергию, обычно электричество. К сожалению, мы вынуждены рассеивать тепло от сжатия водорода на достаточно низкой температуре чтобы сберечь элементы компрессора, и поэтому это тепло трудно как-то использовать. Более того, давление в баке на заправке может снизиться с 400 атмосфер только до 395 во время заправки одной машины, поэтому вся работа по сжатию делается при самом высоком коэффициенте сжатия [я не понимаю, что тут сказано — прим. перев.]. Бак на заправке должен быть очень большим. В противном случае, требования заправляющего компрессора или ограничения по переносу тепла могут уменьшить скорость заправки (ведь мы помним, что скорость заправки — чуть ли не главная причина, по которой нам интересен водород в качестве топлива для транспорта!).

На большом масштабе, с гигантскими компрессорными агрегатами, можно хранить водород под большим давлением теряя не больше 10% от теплоты сгорания (НТС) хранимого водорода на работу компрессоров, что, на самом деле, удивительно хорошо, учитывая вышесказанное. (Заметим, что политропный КПД самих компрессоров — это лишь малая часть этих потерь. Мы смотрим на другую меру эффективности.) К сожалению, когда мы уменьшаем размер компрессоров, эффективность улетает вниз. Многоступенчатый диафрагменный компрессор для автомобиля может потреблять до половины энергии сжимаемого водорода или даже больше. При уменьшении масштаба также растут капитальные расходы в расчете на единицу энергии проходящей через установку на протяжении ее жизненного цикла. Прискорбно, что транспортировка водорода на большие расстояния нереалистична по той же причине, по которой его тяжело хранить — свойства молекулы. [Тут автор не развивает мысль почему транспортировка водорода на большие расстояния нереалистична, но в другой статье он пишет, что доставка водорода по трубопроводам требует в три раза больше энергии, чем доставка природного газа, на единицу переносимой энергии — прим. перев.] Все мечты о «водородной экономике» предполагают малые и распределенные системы производства водорода, так что мы не должны гонять водород с места на место, что оставляет нам только один реалистичный вариант: электролиз.

Таким образом, у нас остается 70% (производство) * 94% (потери в электросети или на работу трубопровода) * 90% (хранение под высоким давлением) = 59% КПД от исходной энергии до бака автомобиля. Для сравнения, для бензина этот показатель — 80%. Конечно, мы не будем использовать водород в неэффективном двигателе внутреннего сгорания как замену бензину, особенно если водород получен из углеводородов: мы бы лучше просто сжигали эти углеводороды в ДВС напрямую.

Если нас заботят выхлопы парниковых газов, производство водорода из метана точно не решает проблему [см. недавнюю статью «Насколько чист «голубой» водород?» на эту тему — прим. перев.]. Мы бы лучше просто ездили на Приусах. Электролиз с использованием электричества из возобновляемых источников — это единственный возможный вариант.

Топливный элемент с протонообменной мембраной

Печально, но мы все еще не закончили терять энергию — далее идут потери в топливном элементе. Хотя это и не тепловой двигатель, топливный элемент все равно имеет собственные термодинамические пределы. Топливные элементы достигают эффективности в 50–60%, и это недалеко от теоретического предела в 83% для идеального топливного элемента. 

Давайте будем щедрыми и возьмем 60% как КПД топливного элемента. Реальные ТЭ которые можно купить имеют эффективность около 50% — лучше, чем у небольшого двигателя, примерно так же, как у судовых двигателей или стационарных скоростных двигателей, или у газовых турбин.

Вся цепочка, от источника энергии до колес

Учитывая эффективность электрического инвертора и мотора (90%), общая эффективность «от электростанции до колес» — 94%*70%*90%*60%*90% = 32%. Напомню, что по показателю «от скважины до колес», Приус достиг эффективности 30% на бензине, то есть мы «сделали» Приус, и это без вредных выхлопов. И с быстрой заправкой. Ура! Ура?…

Мой самодельный электрический автомобиль, «E-Fire», имеет эффективность 76.5%… и тоже не дает никаких выхлопов. [Источник этой оценки неясен: если автор берет такие же потери в инверторе, моторе, и электросети, его батарея должна иметь КПД 90%. — прим. перев.] несмотря на очень маленькую батарею по нынешним стандартам, всего 18.5 кВч, этого хватает на мою дорогу до работы и обратно. Я уже проехал на этой машине 20 тыс. км. без парниковых выхлопов, и я никогда не ждал ее зарядки: я заряжаю ее один раз ночью, и один раз утром на работе. Эта машина не делает всего того, что делает машина с ДВС, не пытается, и не должна этого делать.

Капитальные затраты на водородный стек

Таким образом, электромобили на топливных элементах (FCEV) в лучшем случае примерно в 2.4 раза хуже чем лучшая доступная сейчас альтернативная технология, электромобили на аккумуляторах (BEV). Взамен мы получаем более быструю заправку и, возможно, немного большую дальность хода на одной заправке, и это все. Не слишком ли высока цена за немного большее удобство? Хотя, подождите, мы ведь даже не начали говорить о цене….

Водород это очень дорогое топливо, с любой точки зрения.

В 2.4 раза худшая эффективность транспорта на топливных элементах означает что мы должны установить в 2.4 раза больше генерирующих мощностей из возобновляемых источников. Сам по себе этот факт должен заставить сторонников водорода задуматься.

Мы также должны построить инфраструктуру по распределению водорода. Вы не будете заправляться водородом дома, это слишком огнеопасно. Это значит что кто-то должен заняться этой инфраструктурой как бизнесом, но никто не захочет это делать потому что на этом не получится заработать.

Наконец, давайте посмотрим на сам электромобиль на ТЭ. В нем, конечно, должен быть бак для водорода и топливные элементы. А также все остальные части обычных электромобилей, включая аккумулятор! Аккумулятор будет меньше, ближе по размеру к аккумуляторам в гибридах, но он все равно нужен чтобы было куда девать энергию от рекуперативного торможения, чтобы управлять потребностями в системе топливных элементов чтобы уменьшить ее стоимость. Батарея также нужна во время старта и выключения топливных элементов. Таким образом, электромобиль на ТЭ — это гибрид.

В дополнение ко всему вышесказанному, сами топливные элементы по-прежнему очень дороги. Хотя цены однозначно снизятся с началом массового использования и производства, также как сейчас снижаются цены на литий-ионные аккумуляторы, металлы платиновой группы (МПГ), такие как платина и палладий, используемые в катализаторах топливных элементов, не позволят ценам упасть слишком сильно. Уменьшите долю МПГ, и топливные элементы станут еще более чувствительными к примесям в водороде, и, я подозреваю, эффективность упадет. Замените МПГ на более дешевые металлы, такие как никель, и большая часть преимуществ топливных элементов пропадет: они должны будут работать при более высоких температурах, и т. д.

Toyota Mirai, электромобиль на топливных элементах

Означает ли это, что водород — это мертвая идея для персональных электромобилей? Одним словом, на мой взгляд, ДА. Я полностью согласен с Илоном Маском в этом вопросе. Разве что, уточнив, что мы говорим не о мире в котором электричество ничего не стоит, или его цена даже становится отрицательной потому что генерация из возобновляемых источников становится такой дешевой что не требует вообще никаких денежных вложений. Но я готов поспорить, что а) этого никогда не произойдет, б) даже если мы приблизимся к этой странной экономической ситуации, капитальные затраты и другие практические проблемы с электролизерами, компрессорами, резервуарами для хранения и топливными элементами все равно полностью убьют идею.

Сравнение двух реальных автомобилей которые можно купить (по крайней мере, в Калифорнии) показывает, что мои оценки оптимистичны в пользу водорода. Для автомобилей с аналогичными характеристиками и дальностью хода, водородный автомобиль потребляет в 3.2 раза больше энергии и стоит в 5.4 раза больше в расчете на проеханный километр:

Конечно, обе технологии будут улучшены в будущем, но расчеты выше по тексту задают пределы. Невозможно преодолеть законы термодинамики неким хитрым изобретением или принимая желаемое за действительное.

Означает ли все это, что топливные элементы вообще не нужны? Вовсе нет! Существуют устоявшиеся области в которых ПЭМ-топливные элементы имеют смысл, но это лишь те ситуации, где энергоэффективность гораздо менее важна, чем, например, быстрая заправка. Таким образом, Plug Power находит свою нишу на рынке складских вилочных погрузчиков, особенно на охлаждаемых складах.

Вилочный погрузчик на топливных элементах

То же самое относится к так называемым «power to gas» (P2G) схемам. Это совсем другая модель: они используют «избыточную» возобновляемую электроэнергию для производства водорода, который затем под низким давлением подмешивается в газовую сеть, где в конечном итоге используется для производства тепла, часто в устройствах, которые в конечном итоге рекуперируют тепло конденсации водяного пара (продукта горения водорода). Как средство хранения электроэнергии схемы P2G настолько смехотворно неэффективны, что о них даже не стоит говорить, но зато они требуют лишь небольших капитальных вложений и сокращают выбросы парниковых газов, когда водород вытесняет метан. Это не так уж и плохо, если только вы не сделаете вывод, что однажды мы ПОЛНОСТЬЮ заменим природный газ водородом… Это будет очень глупо.

Другие применения водорода на транспорте

На данный момент, в некоторых видах транспорта: самолеты, поезда, суда, аккумуляторы практически или совсем неприменимы. Главный вопрос в этих случаях стоит так: насколько мы заботимся о токсичных выбросах? Если они волнуют нас больше всего, водород — единственные решение. Но если мы больше думаем о парниковом эффекте, мы также можем использовать биотопливо как альтернативу водороду. [При сжигании биотоплива в воздух попадает углекислый газ, но этот углерод был извлечен из атмосферы самими растениями в течение предыдущего года, поэтому общий атмосферный баланс не нарушается — прим. перев.] Для самолетов биотопливо, скорее всего, — это единственное практическое решение до тех пор пока мы не изобретем что-то с гораздо большей плотностью энергии, чем литий-ионные аккумуляторы, возможно, перезаряжаемые металл-воздушные аккумуляторы. И хотя мы не сможем полностью заменить бензин и дизель на биотопливо, даже если полностью забудем об экономике (цифры по этому поводу см. на сайте www.withouthotair.com), если мы покроем 90% перевозок (в километрах, или тоннокилометрах) электричеством, мы можем производить достаточно биотоплива чтобы покрыть оставшиеся 10%, ПЛЮС все те другие виды транспорта, в которых в сейчас невозможно использовать аккумуляторы. Гораздо важнее избавиться от токсичных выхлопов в городах, чем на трассах, в море, или высоко над землей.

Очевидно, что использование водорода или электрохимии для уменьшения выбросов CO2 с целью получения жидких углеводородов значительно менее эффективно, чем сам водород [я не понимаю, что тут сказано — прим. перев.]. То же самое и с аммиаком, который кажется кому-то способом преодолеть некоторые недостатки водорода. Аммиак — ядовитый газ, и, опять же, производить его менее эффективно, чем водород. Мысль о заправке автомобилей аммиаком повергает меня в ужас, учитывая количество смертей, связанных с аммиаком в результате его использования в качестве хладагента и в сельском хозяйстве.

Так называемое «e-топливо» (e-fuel, power-to-liquid) — это, на самом деле, производная водородного топлива. Оно делается из углекислого газа, воды (продукт горения водорода), и электричества. При реверсе термодинамического процесса неизбежны потери. С учетом того, что потом мы используем это топливо в неэффективном ДВС, вся схема получается очень очень неэффективной.

Е-топливо — это способ использовать еще больше излишков энергии в тщетных попытках превратить водород в более эффективное (удобное) топливо. К сожалению, если мы не сможем производить достаточно биотоплива для того транспорта, в котором мы не можем использовать аккумуляторы, нам, возможно, придется сначала использовать топливные элементы, и только в самом крайнем случае — е-топливо. И мы будем горько плакать, глядя на его стоимость.

Настоящее будущее «зеленого» водорода

Сейчас более 96% водорода производится из ископаемого топлива либо целенаправленно (паровая или автотермальная конверсия метана), либо как побочный продукт при производстве нефти. Мы должны научиться производить водород очень эффективно из возобновляемого электричества, но не тратить его как автомобильное топливо, а использовать при производстве удобрений: аммиака и мочевины. Нам придется избавиться от гигантской инфраструктуры по производству и доставке углеводородов.

В продолжение темы, читайте мою статью: «Hydrogen from renewable energy — our future?» Или зеленый камуфляж?

Дисклеймер [от автора статьи, не переводчика]: все что я пишу в своих статьях — это мое личное мнение. Я пытаюсь всегда приводить ссылки на источники, когда могу. Скорее всего, в моих цифрах и рассуждениях есть ошибки. Я заранее извиняюсь за них. Если вы можете указать мне на них со ссылкой на хороший источник, я отвечу и исправлю текст. Мой работодатель, Zeton Inc., работает в совсем другой области, и не имеет ни интереса, ни даже позиции по поводу водорода. Мы проектируем и строим пилотные установки.

что это, как работает, схема, фото, безопасность,

Водородный автомобиль считается самым экологичным транспортом наряду с электрокарами. Заправка авто на водородном топливе занимает считанные минуты, а «горючего» хватит на 400 км и более. А баллон водорода после использования оставляет после себя полведра чистой воды.

Почему же автомобильные концерны неохотно переходят на этот альтернативный источник энергии? Вопрос в стоимости и производстве этого газа.

В автомобилях с водородным двигателем применяются специальные топливные ячейки. Называются такие авто FCEV, что расшифровывается как Fuel Cell Electric Vehicles — электрокары с топливным элементом вместе батареи. Самая известная модель – это Toyota Mirai. А вообще многие модели есть только в виде концепта, серийно пока выпускается немного экземпляров.

В статье расскажу что это такое — водородный автомобиль, принцип работы и устройство, что такое водородный двигатель, плюсы и минусы авто на водороде, список моделей, ждёт ли будущее эта технология. Обещаю, будет интересно!

Немного истории

Впервые двигатель внутреннего сгорания придумал Франсуа Исаак де Риваз в 1806 г. Этот изобретатель извлёк чистый водород при помощи такой технологии, как электролиз воды. Он изобрёл поршневой двигатель, который назвали в его честь — машина де Риваза. Через пару лет изобретатель сконструировал передвижное устройство с настоящим водородным двигателем. Таким образом, первый водородный автомобиль появился гораздо раньше, чем думают многие.

Риваз и его машина

А самые первые водородные топливные элементы создал в 1863 году английский учёный Вильям Гроув. При помощи опыта он выявил, что при разложении воды на кислород и водород высвобождается энергия. В дальнейшем он создал водородные ячейки, которые стали называть Fuel Cell. Их можно было объединить для получения необходимого количества энергии для автомобиля.

Во время блокады Ленинграда был высокий дефицит бензина, а вот водорода было немало. Техник Б. Шелищ предложил вместо стандартного топлива применять смесь воздуха и водорода для двигателей. Таким образом, в городе работало на водороде более 500 автомобилей ГАЗ-АА.

Первый водородный автомобиль на топливных ячейках создала компания General Motors в 1966, и назывался он GM Electrovan. Гораздо позже, в 1980-х годах, одновременно во многих развитых странах (Япония, США, Канада, Германия и СССР) запустили эксперимент по созданию автомобилей, которые использовали в качестве топлива водород, а также его смеси с бензином и природным газом.

Фото GM Electrovan

После этих экспериментов в 2000-х годах крупные автоконцерны стали разрабатывать коммерческие автомобили на водородном двигателе. Самым продвинутым и популярным автомобилем стал Toyota Mirai, в котором находится многоячеистый топливный генератор.

На данный момент создание автомобиля на водородном топливе – это дорогое удовольствие, поэтому многие производители ищут способы для снижения этих расходов.

А что значит водородное топливо на самом деле?

Что такое водородное топливо?

Водородное топливо поставляется на заправки в газообразном или жидком состоянии. Водород в этом виде уменьшается в объёме более чем в 800 раз. Примерное время одной заправки составляет не более 3-5 минут. Для сравнения – заправка бензином занимает примерно то же самое время.

На чём ездит водородный автомобиль? На водороде – экологически чистом источнике энергии.

Водород для топлива добывают следующими способами:

  1. Электролиз воды. Это выделение водорода из воды с помощью электричества. Такой метод применяется в тех регионах, где стоимость электроэнергии дешёвая, в том числе и в России. Чистота выхода водорода при помощи электролиза – около 100%! Но здесь присутствует повышенное загрязнение окружающей среды. Предсказывают, что когда-нибудь будут созданы множество солнечных и ветряных электростанций, которые будут производить топливо без отрицательного воздействия на окружающую среду.
  2. Паровая конверсия метана. Этот природный газ нагревают до температуры 1000 градусов по Цельсию и смешивают с катализатором. Этот метод будет работать до тех пор, пока метан не закончатся в недрах земли. Реформированный водород – самый популярный и дешёвый метод создания.
  3. Газификация биомассы. Это извлечение водорода в реакторе из отходов животных и сельского хозяйства, а также сточных вод. Сейчас существуют огромные территории с биомассой, потенциал которой не оценён и тратится впустую.

В чём преимущество этого альтернативного источника энергии?

  • Топливные элементы не выделяют вредных выбросов.
  • Огромный потенциал и возможные прибыли.
  • Моментальная заправка автомобилей (3 минуты).
  • Топливные ячейки на 80% эффективнее бензина, а также дёшево стоят.

Автомобиль на водороде не оставляет так называемого «углеродного следа», который загрязняет окружающую среду. Например, Toyota Mirai за 100 км пробега выделяет 5 л воды и больше ничего, никаких выбросов в атмосферу. Но, к сожалению, на Земле слишком не существует месторождений чистого водорода, а вот нефти и газа – хоть отбавляй. Зато водорода полным-полно в атмосфере, но в виде соединений, которые надо разрушить, чтобы извлечь желанный элемент. А для этого надо затратить немалую энергию, по сравнению с той, которую мы получим при прямом расходовании водорода.

Плюсы и минусы водородной установки для автомобиля

Расскажу про плюсы и минусы топлива, которым заправляют водородный автомобиль.

Недостатки водородного топлива:

  • Нет эффективного способа добычи газа, к тому же производство загрязняет окружающую среду.
  • Для создания сети водородных заправок требуются внушительные средства (около 2 млн. долл. на одну среднюю заправку). Поэтому очень сложно найти заправки, их практически нет.
  • Высокая стоимость автомобиля.
  • Передвигаться можно лишь в тех местах, где имеются заправки.
  • Стоимость заправки будет стоить столько же, как и бензин. В этом смысле электрокар гораздо выгоднее.
  • Водородный автомобиль тяжёлый из-за сложной конструкции: много топливных ячеек, аккумулятор, электропреобразователь, большие баллоны для водорода, где давление целых 700 атм. В электромобиле всё проще – требуется только место под большой АКБ.

Плюсы водородного топлива:

  • Нет вредных выбросов в атмосферу.
  • Водородные двигатели практически не шумят.
  • Быстрая заправка – менее 5 минут.
  • Есть большой потенциал для развития.
  • Водород даёт в 3 раза больше энергии, чем бензин.
  • Высокий крутящий момент при начале движения.
  • Водорода очень много на планете – 1% от массы Земли. При сгорании он просто превращается в воду, поэтому – это неиссякаемый источник энергии по сравнению с другим ископаемым топливом.
  • Водород безопаснее бензина, он воспламеняется в 15 раз меньше. Но если на водород попадёт искра, то он моментально воспламенится.
  • Хороший запас хода водородного авто – 400-1000 км.

Опасен ли водород для человека?

Водород очень летуч, а также это легковоспламеняющийся газ, который хранить и перевозить следует предельно аккуратно. Сгорает он тоже довольно быстро. Например, газ в дирижабле «Гинденбург» полностью сгорел за полминуты, поэтому погибло только треть пассажиров.

Когда на дорогах появится большое количество водородных автомобилей, то надо будет ввести новые меры безопасности. Ведь при пробитии бака с водородом и наличием искр рядом газ может загореться. Поэтому в водородных автомобилях баки делают очень прочные, которые даже могут выдержать выстрел из крупнокалиберного пистолета. Поэтому при соблюдении правил безопасности, авто на водороде не опаснее бензиновых и дизельных моделей.

Чем водородные авто лучше электромобилей?

Этот вопрос не совсем правильный, поскольку автомобили на водородных ячейках и электробатарее считаются электромобилями. Всё зависит от того, чем заправляют машину – водородом или электричеством.

Водород в автомобиле применяют в двух вариантах: сжигание топлива в цилиндрах или подзарядка топливных элементов.

Главное отличие водородных топливных ячеек от батарей в том, что они служат очень много лет и не нуждаются в обслуживании. А батарея в электромобиле выходит из строя уже через 5 лет.

Как выглядит батарея в электрокаре

На холоде водородное транспортное средство включится без проблем, а аккумулятор электрического авто может полностью потерять заряд. Стоимость электрокаров дешевле, чем водородного: Toyota Mirai стоит 57 тыс. долл., а Tesla – от 45 тыс. долл. Водородные машины заправляются за считанные минуты, а электрокары – пару часов.

Теперь перейдём к устройству и принципу работы водородного авто, как он обеспечивает работу двигателя?

Как работает водородный автомобиль

Расскажу про то, как устроен автомобиль на примере популярной модели Toyota Mirai.

Не так давно, в 2013 году Тойота представила миру первый в мире серийный водородный автомобиль Mirai, который сам вырабатывает для себя электричество. В нём находится электрический двигатель, который имеет мощность 154 л. с. В Mirai находятся 370 топливных элементов, постоянный ток которых преобразуется в переменный, а напряжение при этом повышается до 650 В. Максимальная скорость Toyota Mirai 175 км/ч. Дополнительный аккумулятор собирает лишнюю энергию, который может при необходимости обеспечить питание небольшого дома. Запас хода этого автомобиля 500 км, а по факту – примерно 350 км. Для сравнения — электрокар Tesla Model S может пройти на одном заряде целых 540 км, но, к сожалению, зарядка занимает целых 1,5 часа.

За несколько км пробега автомобиль Mirai вырабатывает стакан дистиллированной воды, которая вполне пригодна к употреблению (она с лёгким привкусом пластика).

А как работает топливный элемент, простыми словами? Автомобиль заправляется водородом. Он смешивается с платиновым катализатором и кислородом в электрохимической системе. В результате этой реакции вырабатывается электрический ток, который питает двигатель и аккумуляторную батарею. В результате реакции образуется вода или пар.

 

Топливные ячейки с протонообменными мембранами сразу же производят энергию, обеспечивают очень высокую мощность и мало нагреваются. Максимальный срок службы водородных ячеек 250 тыс. км пробега, которые при необходимости можно заменить.

А какое устройство и принцип работы водородного двигателя? Для работы применяют роторные ДВС, потому что стандартные поршневые двигатели быстро выходят из строя из-за влияния водорода на смазку и детали ДВС. Из-за высокой разницы между бензином и водородом перевести обычный двигатель непросто, особенно если это делать своими руками. Водород при горении вызывает перегрев клапанов, масла, поршней. Если нагрузку сделать очень высокую, то возникает детонация.

Решили эту задачу заменой чистого водорода на его смесь с бензином. Подача газа уменьшается при повышении крутящего момента, чтобы предотвратить перегрев деталей силового агрегата. Это применяется в таких моделях, как Mazda RX-8 Hydrogen RE и BMW Hydrogen 7, который был выпущен всего в 100 экземплярах. Здесь переключение между 2 типами топлива происходит автоматически. Но, несмотря на успешность эксперимента, всё равно имелись проблемы: сильно падала мощность авто, запаса водорода хватало всего на 200 км, а также из-за наличия бензина автомобиль не был признан экологически чистым.

Mazda RX-8 Hydrogen RE

Зачем в водородных автомобилях платина? Этот дорогой металл использовался в качестве катализатора, цена которого очень высока, что не может не отражаться на стоимости автомобиля. Хотя американские учёные уже создали катализатор на основе углеродных трубок, который стоит в 650 дешевле платины.

Таким образом, механизм работы водородного автомобиля похож на работу электромобилей. Всё дело только в источнике энергии.

Где заправляют водородные автомобили?

К сожалению, заправочных водородных станций в мире совсем мало. В 2018 г. их около 300, половина которых находится в Северной Америке, а другие – в Японии, Германии и Китае.

Кроме этого, существуют домашние и мобильные заправки. Они могут производить около тонны чистого водорода в год. Этого вполне хватит для заправки нескольких автомобилей в день. Топливо производится при помощи гидролиза воды, установку запускают только ночью, чтобы не нагружать электрическую сеть.

Автозаправки бывают 3 типов:

  1. Малые. Они производят около 20 кг водорода в 24 часа. Хватит для полной заправки 5 легковых автомобилей.
  2. Средние. Вырабатывают от 50 до 1250 кг топлива в сутки. Могут в день заправлять 250 стандартных машин или 25 грузовиков.
  3. Промышленные. Производят более 2500 кг чистого водорода. Могут заправлять больше 500 легковушек в сутки.

Заправка состоит из компрессора, диспенсера, системы очистки, электрического лизёра, система хранения водорода. Топливо может производиться как при помощи электролиза воды, так и с помощью паровой конверсии метана.

Для того, чтобы заменить большую сеть бензиновых заправок на водородные, понадобится примерно 1,5 трлн. долларов. А стоимость одной водородной станции обойдётся в 2-3 млн. долл., но окупаемость её быстрее, чем для электрической станции из-за быстрой зарядки.

Список автомобилей на водородном топливе

Существует ли автомобиль на водородном топливе? Да, причём их количество не такое уж и малое. Расскажу про самые популярные модели.

Honda Clarity

Автомобиль продавали в Японии и Калифорнии до 2014 года. Запас хода около 600 км, что больше, чем у любого электрокара. Заправляется Honda Clarity за считанные минуты.

Затем автоконцерн Honda выпустил конкурента Toyota Mirai, цена которого 72 тыс. долл. под названием Clarity Fuel Cell. На полной заправке можно было проехать до 700 км. Мотор имеет мощность 174 л.с. Автомобиль 5-местный.

Toyota Mirai

Это японский автомобиль, который создали после несколько десятков лет разработок. Автомобиль сначала выпустили для японского рынка, а затем и для американского.

Запас хода автомобиля на одной заправке 502 км, максимальная скорость – 178 км/ч., мощность – 153 л.с. В авто встроена система, которая видит препятствия и автоматически включает тормоз. В машине есть сенсорные экраны, при помощи которых осуществляется управление навигацией и микроклиматом.

Ford Airstream

Это гибридный автомобиль с электрическим мотором и водородными ячейками. Поэтому кроме водорода автомобиль может применять для движения аккумуляторы, которые подзаряжаются от водородных элементов.

На аккумуляторе Ford Airstream может проехать около 40 км (это половина заряда), а затем активируется водородное топливо. Запас хода чуть более 450 км, а максимальная скорость — 135 км/ч.

Mercedes-Benz GLC F-CELL

Это первый серийный автомобиль, который сочетает в себе аккумулятор и водородные топливные ячейки. На электричестве он может проехать 50 км, а на водороде – около 430 км. Отмечу, что аккумулятор можно зарядить от обычной электрической розетки.

Автомобиль можно использовать как в качестве электрокара на небольшие расстояния, так и в качестве водородного авто для длительных поездок.

Pininfarina h3 Speed

Это итальянский автомобиль, который способен разгоняться до 100 км/ч всего за 3,4 секунд. Максимально автомобиль может разгоняться до 299 км/ч. Запасы чистого водорода в баке – чуть более 6 кг. Кроме этого Pininfarina имеет мощный аккумулятор и электромоторы. Цена этого продвинутого автомобиля составляет 2,5 млн. долл.

BMW Hydrogen 7

Авто создано на базе стандартной BMW 7. Он работает как на бензине, так и на жидком водороде. В BMW Hydrogen 7 имеется бензиновый бак на 74 литра и большой водородный баллон весом целых 8 кг. Таким образом, максимальный запас хода в этой машине 780 км.

Автомобиль автоматически переключается между двумя типами топлива. Мощность двигателя на водороде – 228 л.с., а на бензине – больше на 32 л.с. Максимальная скорость 229 км/ч, разгон до 100 км/ч осуществляется чуть меньше, чем за 10 секунд.

Hyundai Nexo

Этот автомобильный концерн также стал одним из первых производить серийные водородные автомобили. Мощность двигателя Hyundai Nexo составляет 161 л.с., запас хода – 600 км. Разгоняется авто до 100 км/ч за 10 секунд. Цена автомобиля от 70 тыс. долл.

Grove Obsidian

Это водородный китайский автомобиль нового поколения, у которого запас хода составляет впечатляющие 1000 км. Он экономно расходует топливо за счёт облегчённого корпуса из углеродного материала и невысокому аэродинамическому сопротивлению. Заправка бака происходит всего за 3 минуты, а сам топливный бак очень прочен. А если бак будет повреждён, то водород из него вытечет в жидком виде и сгорит менее чем за 2 минуты.

Серийно автомобили станут выпускать с 2020 года, а к 2030 планируется создать 1 миллион экземпляров.

Другие авто

Ограниченно выпускают:

  • Audi A7 h-tron quattro;
  • Hyundai Tucson FCEV;
  • Mazda RX-8 Hydrogen RE;
  • Автобус Ford E-450;
  • Низкопольные автобусы MAN Lion City Bus.

Испытывают:

  • Focus FCV;
  • Honda FCX;
  • Nissan X-TRAIL FCV;
  • Toyota Highlander FCHV;
  • Volkswagen — space up!;
  • Mercedes-Benz A-Class и Mercedes-Benz Citaro;
  • Irisbus;
  • Toyota FCHV-BUS;
  • единичные модели в Чехии, Китае и Бразилии.

Есть ли будущее у автомобилей на водородном топливе

В настоящее время имеется множество препятствий для того, чтобы перевести большую часть автомобилей на водородное топливо:

Высокая цена водорода. Примерная цена 9 долларов на 100 км пробега. Гибридный автомобиль (Toyota Prius) проедет те же сто км за 2,8 долларов, а Tesla Model S – за 3 бакса. А снижение цены на водород до уровня цен на бензин не прогнозируют даже сами производители автомобилей. Поэтому здесь не получится никакой экономии как при покупке транспорта, так и при заправках.

Производство водорода — вредно для экологии. Сейчас водород производится при помощи паровой конверсии метана, либо частичного окисления. После производства чистого водорода в атмосферу оксид углерода (углекислый газ, CO2), против которого борются многие страны при помощи альтернативных источников энергии для автомобилей. Поэтому здесь получается замкнутый круг.

Отсутствие развития водородных заправок. Для открытия средней водородной заправочной станции требуется не очень большие средства. Все станции можно пересчитать по пальцам, поэтому на водородном автомобиле далеко не уедешь. Придётся осуществлять поездки только в тех местах, где имеются эти самые водородные станции.

Высокая цена на водородные автомобили. Цена на Toyota Mirai на данный момент составляет от 58 тыс. долларов, а на самом деле его продают почти по себестоимости. Из-за таких цен многие не спешат с покупкой таких автомобилей.

Отсутствие преимуществ перед электрокарами. Запас хода, цена заправки, безопасность, мощность и разгон – везде выигрывают электрические автомобили по сравнению с водородными машинами. Единственный плюс у водородных авто – это очень быстрая заправка – 3-5 минут, тогда как электромобили заправляются за 30 минут и более. В любом случае можно в электрокарах можно быстро поменять батарею и через пару минут ехать на «полном баке». Да и когда изобретут более быстрый метод заправок электрических автомобилей, то водородные авто отойдут на 2 план.

Для чего тогда автоконцерны производят и разрабатывают автомобили? Во-первых, это вложение, вдруг через несколько лет именно эта технология окажется наиболее перспективной. Во-вторых, между фирмами идёт соперничество. В-третьих, в некоторых штатах законодательство так поменялось, что сделать водородное авто в 5 раз выгоднее, чем электрокар, плюс государство даёт постоянные гранты и вливания на развитие заправок. Если появится большое количество заводов по производству водорода, то цена автомобилей и водорода будет более интересная.

Видео: Автогиганты бьют по ТЕСЛА: ВОДОРОДНЫЕ автомобили будущего!

Водородный автомобиль – это авто будущего, к переходу на которые могут перейти в недалёком будущем. Сейчас самый популярный авто на водороде – это Toyota Mirai, стоимость которого сравнима с ценой электрокаров. Обеспечивается работа автомобилей при помощи специальных топливных ячеек или элементов, число которых достигает несколько сотен.

Если бы цена на газ была меньше, а заправок было бы больше, то авто с водородными двигателями получили бы не меньшую популярность, чем электромобили. Посмотрим, что покажет будущее.

Уже попробовал

0%

Проголосовало: 2

Водородные Автомобили в России. ᐈ Каталог авто на водородном топливе| Электромобили.Ру

Эффективное, но дорогое топливо

Публика уже привыкла к борьбе за популярность гибридов, машин с ДВС или электрокаров. Последние пока что занимают самую выгодную позицию, а может ли появиться еще кто-то эффективнее и экологичнее? Тогда стоит вспомнить о транспорте на водородном топливе. Такие машины очень похожи на электрические авто отсутствием вредных выхлопов, однако главное достоинство в заправке — для наполнения баллона водородом до отказа нужно около 10 минут, а хватит горючего на дистанцию в 500 км. Кажется, намного выгоднее, чем электромобиль, однако так ли это на самом деле?

История водородных автомобилей

Еще в 1990-х годах производители углубились в разработку транспортных средств, которые передвигаются на топливных элементах. Основная причина поиска альтернативного горючего — введение новых стандартов выбросов CO2 и энергетический кризис. Единственные экологически чистые автомобили того времени — электрокары, имели несколько ограничений: длительная зарядка аккумулятора, небольшой запас хода, дорогостоящие комплектующие. В итоге компании начали искать другой способ привести машину в действие.

В качестве основного топливного элемента выбрали водород. Химические свойства, экологичность и распространенность в окружающей среде подтолкнули инженеров к мысли, что работа с этим веществом может принести доход и внушительные перспективы. Водородные машины должны были проезжать такие же дистанции, как и бензиновые аналоги, с той же мощностью и скоростью. Однако основная сложность была в другом — как изготовить необходимый двигатель и направить энергию топливного элемента в правильное русло?

Оказывается, первый ДВС на водороде был придуман еще в позапрошлом веке. Большинство экспертов склоняются к исследованиям французского естествоиспытателя Франсуа де Риваз, который в начале XIX века получал водород электролизом воды. В современном мире крупные производители почти одновременно выпустили водородные автомобили с похожей базовой технической “начинкой”.

Принцип работы автомобилей на водородных элементах

Механизм работы и типы моторов очень похожи на деятельность электромобилей, но главное отличие в способе создания энергии. Машины на топливных элементах тоже используют электричество для движения, но получают его не от заряда розеткой. Энергия вырабатывается в процессе физико-химических реакций, которые происходят в самом агрегате. Принцип работы состоит в следующем:

  • автомобиль заправляется водородом, который контактирует с кислородом и катализатором. В результате вырабатывается электрический ток, который насыщает энергией двигатель и батарею.

Подобный транспорт заправляют на специальных станциях, которые самостоятельно вырабатывают водород с помощью электролиза воды. Обслуживание автомобиля означает замену водородных элементов, которые исчерпали свой ресурс. Обычно заменяют катализаторную мембрану, которая помогает вырабатывать электричество.

Преимущества использования автомобилей на водородном двигателе

  • Расширение продукции. Разработка и производство прототипа может обойтись в 1 млн долларов. Если создавать концепт для автовыставки, то такое транспортное средство не обязательно должно ездить. Для крупных автомобильных концернов эта сумма небольшая, но какой может быть результат. Вполне возможно, что через пару лет водородные технологии будут на высоте.
  • Неисчерпаемость. Мировой океан содержит 1,2×1013 тонн водорода, при этом суммарная масса элемента — 1% от общей массы планеты. Однако самое главное достоинство водорода в том, что при сгорании он превращается в воду. Происходит круговорот веществ в природе.
  • Экологичность. Когда водород используется в качестве топлива, то не происходит парниковый эффект (в результате выделяется вода). Водород быстро улетучивается и не создает никаких застойных зон.
  • Безопасность. Весовая теплотворная способность элемента в 2,8 раза выше, чем у бензина. А это значит, что водород воспламеняется в 15 раз меньше, чем углеводородное горючее.

Недостатки владения водородными автомобилями

Рассмотреть минусы транспорта на топливных элементах можно на примере первого массового водородного авто Toyota Mirai. Как оказалось, у машин подобной модификации, есть и темная сторона.

  • Стоимость. Сегодня японский автомобиль на водороде продается почти за 70 000$ в среднем, а это цена базовой версии Tesla Model S в США. Toyota Mirai дороже Chevrolet Volt или Toyota Prius в 2-3 раза. При этом компания еще и теряет доход, поскольку инсайд-информация указывает на реальную стоимость автомобиля в 100 000$. Еще один водородный автомобиль Hyundai Tucson (iX35) Fuel Cell вышел совсем недавно лимитированной серией. Модель оценили в 144 000$.
  • Заправка. Сегодня 1 кг водорода стоит почти 8$, а если брать расход 1-1,3 кг на дистанцию в 100 км, то стоимость поездки можно сравнить с движением на бензиновом автомобиле. Гибридный или дизельный агрегат будет даже выгоднее. В это время на 100 км на электромобиле можно потратить меньше 2$. При этом водород труднодоступен. Даже в мегаполисах не так легко найти подходящую заправочную станцию. Все потому, что этот бизнес и не очень выгодный. Для строительства небольшой водородной АЗС необходимо почти 300 000$, а для станции среднего размера — 2 000 000$. Небольшая заправка может заправить за сутки около 30 машин, а на большая почти 250 агрегатов. Это небольшие цифры при затратах на содержание подобных станций. Еще существуют и крупные АЗС, но они могут обойтись в 10 000 000$. Такие предприятия строятся рядом с заводами по выработке водорода, или же на станции должно быть большое хранилище. Все это сложное и дорогое строительство.
  • Габариты и вес. Модель на топливных элементах Toyota Mirai имеют длину 4900 мм и вес в 1850 кг, вместимость до 4 пассажиров и багажное отделение в 361 л. Параметры указывают на то, что водородное авто тяжелое и не особо просторное. Лишний вес образуется из-за сложной конструкции: топливные ячейки, электрический преобразователь и дополнительный аккумулятор. Небольшой салон получается из-за массивных баллонов для водорода. Ситуация с электромобилем немного легче — хотя и присутствует крупная АКБ, зато конструкция проще.

Каковы будущие перспективы FCEV?

Идея использовать двигатели на топливных элементах потихоньку развивается не только в умах производителей, но и на деле. Особенно радужные перспективы применения водородных моторов для общественного транспорта. В Германии ездят сотни городских и туристических автобусов на водороде. В 2017 году был анонсирован выпуск первого поезда на водородном топливе, который сможет заменить дизельные составы.

Однако многие эксперты считают, что когда будет придуман способ быстрой зарядки электромобиля, то водородные машины могут отойти на второй, или даже третий план. Все дело в том, что решение всех проблем, связанных с транспортом на водороде займет намного больше времени, чем строительство сверхбыстрых станций. Первая такая “заправочная” станция появилась в США в 2017 году, а в 2018 году несколько предприятий должны открыться в Европе. Но пока станции для электрокаров не так быстро распространяются, водородные автомобили набирают популярность.

Мировой переход на электромобили: могут ли стать весомой альтернативой автомобили на водороде?

Переход на автомобили, приводимые в движение электроэнергией (электромобилям), идёт все более высокими темпами. Уже в 2022 году электромобили, как ожидается, превзойдут по продаваемому количеству машины с гибридной силовой установкой. Японские автопроизводители с переходом на электромобили отстают, но в их распоряжении имеется козырь, которым они намерены воспользоваться по мере развития перехода к электромобилям. Это автомобили, работающие на водороде (водородные автомобили). Рассмотрим стратегию компании Toyota, которая в конце 2020 года выпустила в продажу модель на топливных элементах «Мирай» второго поколения, а также занимается разработкой автомобилей с водородным двигателем.

Лидерство Японии в области водородных автомобилей

В условиях, когда страны и регионы мира демонстрируют стремление свести к фактическому нулю объемы эмиссий парниковых газов или, иначе говоря, берут курс на так называемую «углеродную нейтральность», ожидается, что активное использование получат «машины на водороде». Переход к электромобилям за рубежом ускоряется, однако водородные автомобили, которые точно так же, как электромобили, не выделяют при движении двуокиси углерода, являются областью, в которой Япония может продемонстрировать лидерство своего технологического потенциала.

Компания Toyota повысила функциональные качества своей модели на топливных элементах «Мирай» и стала предлагать технологию сторонним компаниям. Вместе с тем она изучает потенциал автомобилей на водородном двигателе с использованием уже существующих двигателей – с применением водорода, произведенного как в стране, так и за рубежом. При всем обилии требующих решения задач – снижения стоимости производства водорода, создания инфраструктуры для его транспортировки и сетей заправок и т. п., во многом успех или неуспех будет зависеть от того, удастся ли расширить использование водорода за счет создания «круга единомышленников», выходящего за отраслевые рамки.

На летних Олимпийских и Паралимпийских играх 2020 года в Токио, отложенных на год из-за пандемии коронавируса, само проведение которых было под вопросом, компания Toyota, выступающая в роли спонсора самого высокого уровня – «Мирового партнера» – была вынуждена отложить трансляцию своей рекламы.

С учетом того, какой резонанс вызвал во всем мире неординарный поступок Кавамуры Такаси, мэра города Нагоя, который попробовал на зуб золотую медаль участницы женской олимпийской команды по софтболу, связанной с компанией Toyota, совершенно очевидно, что в числе прочего не могло не стать предметом широкого обсуждения и происшествие в паралимпийской деревне, в ходе которого беспилотный автобус e-Palette, созданный Toyota, задел спортсмена-дзюдоиста с нарушением зрения – событие, из-за которого пришлось временно прекратить движение таких машин.

Тем не менее, конечным итогом Игр стало то, что Япония завоевала самое большое в своей истории количество олимпийских медалей (58), а также второе в истории после Игр 2004 года в Афинах число паралимпийских медалей (51).

Помимо результатов состязаний, еще один большой рекорд установила компания Toyota. Этим рекордом стало сокращение эмиссий углекислого газа, к которому так стремится весь мир. «Быть может, объем эмиссий нынешних Игр станет самым низким в сравнении с играми прошлого», – с гордостью сообщал непосредственно перед открытием Ито Масааки, начальник Олимпийского и Паралимпийского отдела Toyota.

Компания поставила 3.340 автомобилей для использования в спортивной деревне, где проживали участники, а также в местах проведения состязаний. Помимо 90% электромобилей, в числе этих транспортных средств дебютировали 475 автомобилей марки «Мирай».

Со вторым поколением «Мирай» снят вопрос низкого потенциалом производства

Автомобили на топливных элементах вырабатывают электроэнергию за счет химической реакции с участием водорода, которым заправляются топливные элементы, а в движение их приводят электродвигатели. В Японии правительство премьер-министра Суга Ёсихидэ заявило о намерении в 2035 году прийти к стопроцентной доле электромобилей в продажах новых автотранспортных средств, а в 2050 году реализовать цель по достижению углеродно-нейтрального общества. В этих планах водороду отводится положение «ключевой технологии», и ставится цель довести его использование в 2030 году до 3 млн тонн, а в 2050 году до 20 млн тонн, а количество водородных станций увеличить к 2030 году с нынешних примерно 150-ти до тысячи.

Несмотря на то, что поступившая в продажу в 2014 году модель «Мирай» первого поколения заслужила прозвище «сверхэкологичный автомобиль» и привлекла большое внимание, по всему миру было реализовано всего около 11 тыс. таких машин. Утверждают, что препятствием для распространения стали высокая цена в 7 млн 410 тыс. йен, а также нехватка водородных заправочных станций, стоимость строительства которых значительно выше в сравнении с бензоколонками, однако коренной причиной был низкий производственный потенциал, позволявший выпускать всего лишь 3 тыс. таких автомобилей в год.

В декабре 2020 года Toyota выпустила в продажу модель «Мирай» второго поколения, в которую были внесены конструктивные изменения. В числе прочего, уменьшилось количество базовых комплектующих – топливных элементов, составляющих «сердце» этого автомобиля, на треть сократились издержки, а производственный потенциал был увеличен десятикратно – до 30 тыс. единиц в год.

Пробег с одной заправки водорода был увеличен более чем в 1,3 раза – до 850 километров. Что касается дизайна, был понижен центр тяжести, длина увеличилась на 85 мм, а ширина на 70 мм. При этом вместимость увеличили с 4 до 5 человек.

Цены несколько снизилась по сравнению с машинами первого поколения – теперь они начинаются с 7 млн 100 тыс. йен. Конечно, это не делает автомобиль массовым и доступным, но то, как он бесшумно и плавно набирает ход, напоминает самые продвинутые и дорогостоящие седаны.

«Как легковой автомобиль он выполнен на очень хорошем уровне», – уверенно комментирует главный инженер-разработчик Ёсикадзу Танака. Главный технолог Toyota Маэда Масахито тоже отмечает: «На эту машину возложена миссия служить отправной точкой полномасштабного распространения водорода».

В апреле 2021 года в продажу поступила модель, оснащенная функцией высокого уровня помощи водителю, способная поддерживать дистанцию, менять полосу движения и выполнять ряд других задач на скоростных автомагистралях, а также снабженная функцией автоматического обновления программного обеспечения.

Работа с партнерами в технологии нового поколения

Компания Toyota также приступила к продаже сторонним компаниям системы, используемой в модели «Мирай». При этом она облегчила задачу по внедрению и снизила издержки по установке, объединив генерирующий и другие основные компоненты в едином пакетном решении. Цель состоит в том, чтобы расширить круг пользователей-единомышленников за счет использования системы в грузовиках, автобусах и других коммерческих автотранспортных средствах, а также на железнодорожном и морском транспорте.

В марте 2021 года компания объявила о финансовом партнерстве для сотрудничества в сфере нового поколения, именуемой CASE, сочетающей автоматизированное вождение, переход на электричество и ряд других направлений, с автомобилестроительной компанией Isuzu. В апреле три компании – Isuzu, Toyota, а также их дочернее предприятие Hino учредили новую фирму. С учетом бизнеса еще одного дочернего предприятия Toyota – компании Daihatsu, имеется вероятность, что использование топливных элементов будет развернуто по всему спектру коммерческого автотранспорта – от крупногабаритных машин до компакт-каров.

С одной стороны, провозглашая цель довести в 2030 году продажи своих новых автомобилей по всему миру до 8 млн единиц, 2 млн из которых составят электромобили и автомобили на топливных элементах, компания Toyota наряду с этими усилиями ввела в автоспорт автомобиль с водородным двигателем – «водородную Короллу».

В проходивших 22 и 23 мая на трассе «Фудзи спидвей» (город Ояма, преф. Сидзуока) 24-часовых гонках на выживание эта машина использовала водород, произведенный в городе Намиэ префектуры Фукусима на специализированном объекте «Фукусимская площадка исследований водородной энергетики». Президент Toyota Тоёда Акио принял личное участие в мероприятии, полностью проехав трассу.

Машины с водородным двигателем движутся, сжигая водород вместо бензина. Большим преимуществом здесь выступает возможность переоборудования большинства уже существующих двигателей. Поскольку двигатель сильно нагревается, предстоит решить ряд задач, связанных с мощностью и снижением нагрева, и массовое производство таких автомобилей затруднительно, но тем не менее, он не только позволяет чувствовать биение и звук «автомобильного сердца» – двигателя внутреннего сгорания – но еще и может стать «спасителем» в деле сохранения трудовой занятости на предприятиях, связанных с производством двигателей и комплектующих, которые неизбежно окажутся не у дел при переходе на электромобили.

Для двигателя «водородной Короллы» за основу взят бензиновый двигатель для модели GR Yaris, причем в нем задействованы отнюдь не только собственные технологии Toyota. Впускные клапаны этого автомобиля – продукт совместной разработки с компанией Denso. Мобильная временная водородная заправочная станция предоставлена компанией, созданной при совместном участии в капитале фирм Toyota Tsusho, Iwatani Corporation и Taiyo Nippon Sanso.

В ходе гонок на трассе «Автополис» (город Хита, преф. Оита) 31 июля и 1 августа использовался водород, предоставленный демонстрационно-промышленным предприятием, которое является частью плана по снабжению промышленных предприятий и других потребителей водородом, выработанным первым в Японии производством, получающим водород с использованием энергии геотермальной электростанции.

Турбины этой электростанции вращает водяной пар температурой 150 градусов Цельсия, которой образуется под землей на глубине около 700 метров, а вырабатываемая электроэнергия используется для получения водорода путем электролиза воды. Использование энергии возобновляемых источников сопряжено с нестабильностью энергообеспечения, однако Obayashi Corporation ставит целью снабдить водородными станциями весь регион Кюсю и реализовать принцип «местное производство – местное потребление».

Первый в мире практический эксперимент с использованием танкера для сжиженного водорода

Сжиженный водород, используемый «Короллой» с водородным двигателем, не является предметом исключительно японского производства. На гонках 18 и 19 сентября на трассе Судзука (г. Судзука, преф. Миэ) решено использовать недорогой водород, полученный из добываемого в Австралии дешевого бурого угля.

Этот водород получен в рамках практического эксперимента с участием компаний Kawasaki Heavy Industries, J-POWER, Iwatani Corporation и др. На сентябрьских гонках решено использовать водород, доставленный самолетом в баллонах, однако уже во второй половине 2021 финансового года (которая начинается с октября) планируется начать практический эксперимент с использованием первого в мире танкера для перевозки сжиженного водорода «Суйсо фронтиа», разработанного компанией Kawasaki Heavy Industries.

Длина судна-перевозчика составляет 116 метров, водоизмещение – около 8 тыс. тонн. Использование позволит осуществлять перевозку больших объемов водорода, сжижаемого охлаждением до минус 253 градусов Цельсия со сжатием до одной восьмисотой объема, занимаемого водородом в газообразном состоянии. К коммерческой эксплуатации планируется приступить в 2030 году. Ожидается, что этот шаг послужит большим вкладом на пути к созданию водородной транспортной инфраструктуры.

Доставляемый судном газ относится к так называемому «серому» водороду, на этапе производства которого возникает углекислый газ. В целом по цветовой градации, помимо «серого», существуют так называемый «зеленый» водород, добываемый электролизом воды с применением электроэнергии, получаемой из возобновляемых источников – при таком способе производства углекислый газ не образуется, а также «голубой» водород, на этапе производства которого ведется сбор всего образовавшегося углекислого газа.

В очередности убывания экологичности они выстраиваются в порядке «зеленый» – «голубой» – «серый», но эффективность для достижения углеродной нейтральности сопряжена с высокими производственными издержками. Мировые предприятия, связанные с использованием водорода, намереваются на первом этапе формировать рынок, добиваясь расширения спроса с использованием как «серого», так и «голубого» водорода.

Европейский Союз демонстрирует курс, предусматривающий запрет в 2035 году продаж новых автомобилей на бензиновом и прочем ископаемом топливе, включая гибридные автомобили, и такие зарубежные производители как немецкая компания Mercedes-Benz или шведская Volvo один за другим выражают намерение сосредоточиться на выпуске электромобилей.

Компания Toyota и другие японские автопроизводители, занимающие сильные позиции в области гибридных автомобилей, сталкиваются с необходимостью скорректировать свою стратегию, при этом руководство ведущих предприятий, спокойно признавая: «В отсутствие иной альтернативы, кроме перехода на электромобили, автопроизводители будут вынуждены перейти на электромобили», вместе с тем уверены в преимущественном положении японских компаний, располагающих технологиями широкого спектра, в том числе водородного.

В условиях, когда в бизнес по выпуску электромобилей вступают все больше предприятий прочих направлений деятельности, таких, как компании сферы информационных технологий, водород обращает на себя внимание как своего рода «козырная карта» – сильная позиция, дающая японским производителям автомобилей шанс выжить в жесткой конкуренции и продемонстрировать весомость своего технологического потенциала.

Фотография к заголовку: седан на топливных элементах «Мирай», который компания Toyota после всесторонних усовершенствований выпустила в продажу в декабре 2020 года (© «Кёдо цусин»)

Центр данных по альтернативным видам топлива: электромобили на топливных элементах

Электромобили на топливных элементах (FCEV) работают на водороде. Они более эффективны, чем обычные автомобили с двигателем внутреннего сгорания, и не производят выхлопных газов — они выделяют только водяной пар и теплый воздух. FCEV и водородная инфраструктура для их питания находятся на ранних стадиях внедрения. Министерство энергетики США возглавляет исследования, направленные на то, чтобы сделать водородные автомобили доступным, экологически чистым и безопасным транспортным средством.Водород считается альтернативным топливом в соответствии с Законом об энергетической политике 1992 года и имеет право на налоговые льготы на альтернативные виды топлива для транспортных средств.

Что такое электромобиль на топливных элементах?

FCEV используют силовую установку, аналогичную той, что используется в электромобилях, где энергия, хранящаяся в виде водорода, преобразуется в электричество топливным элементом. В отличие от обычных автомобилей с двигателем внутреннего сгорания, эти автомобили не производят вредных выхлопных газов. Другие преимущества включают повышение энергетической устойчивости США за счет разнообразия и укрепления экономики.

FCEV заправляется чистым газообразным водородом, хранящимся в баке на транспортном средстве. Подобно обычным автомобилям с двигателем внутреннего сгорания, они могут заправляться менее чем за 4 минуты и имеют запас хода более 300 миль. FCEV оснащены другими передовыми технологиями для повышения эффективности, такими как системы рекуперативного торможения, которые улавливают энергию, потерянную во время торможения, и сохраняют ее в аккумуляторе. Крупные производители автомобилей предлагают ограниченное, но растущее количество серийных FCEV для населения на определенных рынках, в соответствии с тем, что может поддерживать развивающаяся инфраструктура.

Как работают топливные элементы

Наиболее распространенным типом топливных элементов для транспортных средств является топливный элемент с мембраной из полимерного электролита (PEM). В топливном элементе PEM мембрана электролита зажата между положительным электродом (катодом) и отрицательным электродом (анодом). К аноду вводится водород, а к катоду — кислород (из воздуха). Молекулы водорода распадаются на протоны и электроны из-за электрохимической реакции в катализаторе топливного элемента.Затем протоны проходят через мембрану к катоду.

Электроны вынуждены проходить через внешнюю цепь, чтобы выполнять работу (обеспечивая питание электромобиля), а затем рекомбинировать с протонами на стороне катода, где протоны, электроны и молекулы кислорода объединяются, образуя воду. См. инфографику об электромобиле на топливных элементах (FCEV), чтобы узнать больше об этом процессе.

Связанная информация

Доступность Выбросы Законы и стимулы

Toyota и Yamaha тестируют V-8, работающий на водороде

Toyota и Yamaha разрабатывают водородный V-8, чтобы продемонстрировать, как двигатели внутреннего сгорания могут выжить в мире без ископаемого топлива.

В отличие от трансмиссии на водородных топливных элементах, используемой в Toyota Mirai, в которой водород используется для выработки электроэнергии, этот прототип двигателя просто сжигает водород вместо бензина, оставляя воду в качестве единственных выбросов.

Основанный на 5,0-литровом V-8, используемом в Lexus RC F, водородный двигатель развивает мощность 449 л.с. и крутящий момент 398 фунт-фут, по данным Yamaha. Это недалеко от обычной бензиновой версии с 472 л.с. и 395 фунт-фут крутящего момента.

Lexus RC F Fuji Speedway Edition 2022

Проект водородного двигателя следует совместному соглашению Toyota, Yamaha, Subaru, Mazda и Kawasaki о расширении использования альтернативных топливных технологий.Партнеры планируют экспериментировать с биодизельным и синтетическим топливом, а также с водородом.

Yamaha также сотрудничала с Toyota в разработке водородного гоночного двигателя, используемого в хэтчбеке Corolla Sport, который в прошлом году участвовал в японской серии Super Taikyu. Отношения между двумя компаниями уходят корнями в далекое прошлое, поскольку Yamaha также разработала 4,8-литровый двигатель V-10, используемый в Lexus LFA.

Сжигание водорода в двигателе внутреннего сгорания — не новая идея. В начале 2000-х BMW выпустила Hydrogen 7, седан 7-й серии с водородным двигателем V-12.Но в последнее время эта идея, кажется, вызывает больший интерес.

Гоночный автомобиль Toyota с водородным двигателем

Китайский автопроизводитель GAC объявил в конце 2021 года, что тестирует водородный двигатель внутреннего сгорания, хотя и не подтвердил производственных планов. В дополнение к своему гоночному автомобилю Corolla Sport Toyota также недавно продемонстрировала концепт GR Yaris с водородным двигателем.

Toyota надеется, что водород поможет решить проблему воздействия двигателей внутреннего сгорания на климат и сохранить их для любителей вождения, тем более что старые двигатели внутреннего сгорания можно переоборудовать для работы на водороде.Но у водорода есть много потенциальных проблем, в том числе отсутствие инфраструктуры для заправки и выбросы, связанные с производством и распределением. Двигатели внутреннего сгорания на водороде также могут оказаться менее эффективными, чем топливные элементы, которые, в свою очередь, менее эффективно используют энергию, чем батареи.

Может ли водород поддерживать двигатель внутреннего сгорания?

Все более строгие правила выбросов мешают автопроизводителям продолжать предлагать автомобили с двигателями внутреннего сгорания, а некоторые страны, такие как Великобритания, даже предпринимают шаги по полному запрету двигателей.

Интересно, что водород, помимо всего прочего, может оказаться спасителем двигателя внутреннего сгорания.

Ряд автопроизводителей предложили преобразовать водород, полученный из возобновляемых источников, в углеродно-нейтральное синтетическое топливо. Компания Porsche и ее партнеры даже построили пилотный завод, способный производить синтетическое топливо в промышленных масштабах.

В настоящее время Toyota тестирует другое, гораздо более старое решение, связанное с водородом: сжигание вещества непосредственно в двигателе внутреннего сгорания.

На прошлой неделе автопроизводитель представил гоночный автомобиль с рядным 3-цилиндровым двигателем, предназначенным для работы на чистом водороде. Гоночный автомобиль все еще проходит испытания, но в мае этого года он примет участие в этапе гоночной серии Super Taikyu Series 2021 года в Японии.

Как уже упоминалось, это решение не ново. Компания BMW представила прототип 7-й серии, двигатель V-12 которого может работать на водороде. Это было еще в 2006 году. Основные необходимые модификации связаны с топливным баком и топливными форсунками.

При сжигании водорода выбросы CO2 нулевые.Однако технология не лишена недостатков. При сжигании водорода в двигателе внутреннего сгорания образуются вредные оксиды азота. Однако есть способы свести это к минимуму, например, с помощью селективного каталитического восстановления на основе мочевины, как в современных дизельных двигателях.

Более серьезная проблема, как мы выяснили ранее, — это низкая эффективность. Энергия уже тратится впустую при производстве водорода из возобновляемых источников энергии, и к тому времени, когда водород сгорает в двигателе и мощность передается на трансмиссию и, в конечном итоге, на колеса, фактически передается только около 25% энергетической ценности водорода.

Вот почему электрические автомобили на топливных элементах, такие как Toyota Mirai, имеют больше смысла при использовании водорода в качестве топлива. Здесь водород соединяется с кислородом воздуха для выработки электричества, которое затем приводит в действие электродвигатель, который может напрямую приводить в движение колеса. Здесь КПД приближается к 50%. А также отсутствуют вредные выбросы. Только вода.

Еще один недостаток водорода? Нет никакой инфраструктуры для чистого источника сырья и поставки его клиентам. Вот почему аккумуляторные электромобили, которые могут использовать существующую электрическую сеть, вероятно, станут основным источником личного транспорта в будущем, хотя водород все еще может использоваться в дальнемагистральных перевозках.

Эксперименты Toyota GR Yaris с водородным двигателем внутреннего сгорания

Популярность автомобилей, работающих на альтернативном топливе, растет. В то время как гибриды и электромобили побеждают в этой конкретной гонке, водородные автомобили остаются в конце списка. В 2014 году Toyota захватила рынок с Mirai — электромобилем, который заряжается с помощью водородного топливного элемента, — но в последние годы водород просто не завоевал такой популярности, как электромобили.

Toyota хочет это изменить.Японский автопроизводитель работает над улучшением своей водородной технологии, раздвигая границы, чтобы найти, как это универсальное топливо можно использовать для питания автомобилей завтрашнего дня. В новейших тестах Toyota исследуется использование водорода в двигателе внутреннего сгорания вместо традиционного топлива, такого как бензин или дизельное топливо. Toyota, после многих лет испытаний этого довольно неортодоксального источника энергии, поместила свою водородную технологию в свой шумный горячий хэтчбек GR Yaris.

Автопроизводитель начал свои эксперименты с водородным двигателем внутреннего сгорания в 2017 году.Но только недавно она дала общественности представление о перспективах двигателя, когда использовала двигатель в качестве сердца своего гоночного автомобиля Corolla Sport Super Taikyu. В мае Toyota отправила Corolla для участия в 24-часовой гонке на выносливость, где на водородном топливе она преодолела более 930 миль.

[См.: Следующий Defender Land Rover будет работать на водороде ]

Теперь для Yaris автопроизводитель модернизировал заводской 1,6-литровый 3-цилиндровый двигатель с турбонаддувом, изменив его топливную систему и систему зажигания для поддержки использования водорода.Это означает, что двигатель по-прежнему работает аналогично бензиновому двигателю, перекачивая топливо в цилиндр двигателя и полагаясь на процесс сгорания для создания мощности.

Хотя Toyota не раскрыла технические характеристики двигателя, она утверждает, что двигатель более отзывчив из-за более быстрого сгорания водорода по сравнению с бензином.

Автомобили с водородным двигателем в целом все еще довольно новы, и Toyota заявляет, что эта технология сгорания еще не готова для массового внедрения.Но потребители уже могут купить у автопроизводителя автомобиль с батарейным питанием, оснащенный водородным топливным элементом, который заряжает аккумулятор на ходу.

В водородном электромобиле на топливных элементах (FCEV) водород не обеспечивает прямую мощность для колес. Вместо этого топливный элемент действует как генератор, заставляя водород и кислород вступать в химическую реакцию, производя только электричество и воду — без загрязнения выхлопной трубы. Затем бортовая батарея накапливает электроэнергию и, подобно современному аккумуляторному электромобилю (BEV), энергия используется для питания бортовых электродвигателей.Преимущество FCEV по сравнению с традиционным BEV заключается в том, что для полной заправки автомобиля требуется время. В зависимости от зарядного устройства, автомобилю с батарейным питанием может потребоваться несколько часов, чтобы полностью заполнить разряженную батарею, в то время как баки FCEV с водородным двигателем можно заправить за считанные минуты на водородной заправочной станции.

[См.: Как это работает: Toyota Mirai ]

Однако у испытательного стенда

Toyota GR Yaris есть обратная сторона по сравнению с FCEV. Сжигание водорода — значительно менее эффективный процесс получения энергии по сравнению с автомобилем, оснащенным топливными элементами, и еще менее эффективный по сравнению со сжиганием бензина.Toyota не сообщила подробностей о выходной мощности или эффективности Yaris; тем не менее, двигатели внутреннего сгорания на водороде исторически были сложными для компоновки по сравнению с бензиновыми двигателями, учитывая необходимость большего рабочего объема для производства аналогичной мощности.

Двигатель внутреннего сгорания на водороде также не такой экологичный, как водородный топливный элемент. Toyota заявляет, что Yaris производит «почти нулевые выбросы выхлопных газов», а это означает, что углекислый газ и другие газы все еще могут выделяться в процессе сгорания при сжигании масла, используемого для смазки двигателя.

Но место для этой технологии вполне может быть. Враг Toyota — не электрические или бензиновые автомобили, а выбросы. Выбросы водородного двигателя внутреннего сгорания незначительны по сравнению с традиционным автомобилем с бензиновым двигателем. И хотя технология еще не готова для массового покупателя автомобилей, Toyota работает над тем, чтобы выяснить, может ли она когда-нибудь стать осуществимой. И даже если эта технология не станет дорожным горючим топливом, она может найти свое место в гонках, наряду с синтетическим топливом, чтобы сохранить звук и дух двигателя внутреннего сгорания.

Создание и будущее водородного двигателя

После нескольких лет обещаний, что водород — это чистое топливо будущего, только для того, чтобы ничего не произошло, теперь кажется, что будущее, наконец, может быть почти на нас.

Производители автомобилей, в том числе Mazda и Toyota, в настоящее время разрабатывают водородные двигатели для своих автомобилей, и эти двигатели однажды могут заменить не только технологию водородных топливных элементов и традиционные двигатели внутреннего сгорания, но, возможно, даже электромобили (EV).

Однако, в то время как рынок электромобилей стремительно развивается, использование технологии водородных двигателей в коммерческих транспортных средствах все еще находится на начальной стадии, и возможность применения газообразного водорода в качестве полезной и практической альтернативы еще предстоит доказать.

Что такое водородный двигатель?

Источник: Тим Моссхолдер/Unsplash

Водородный двигатель — это усовершенствованная версия традиционных двигателей внутреннего сгорания, в которой вместо бензина в качестве топлива используется жидкий водород. Автомобиль, работающий на водородных двигателях, называется транспортным средством с водородным двигателем внутреннего сгорания (HICEV).Они отличаются от электрифицированных транспортных средств на водородных топливных элементах (FCEV), таких как Toyota Mirai или Hyundai Tucson, в которых используется топливный элемент, в котором водород вступает в химическую реакцию с кислородом воздуха для производства электроэнергии, питающей электродвигатель.

Водородные двигатели вырабатывают энергию за счет сжигания водорода и используют системы подачи и впрыска топлива, которые являются модифицированными версиями тех, которые используются в бензиновых двигателях. За исключением сгорания небольшого количества моторного масла, что также имеет место в бензиновых двигателях, водородные двигатели не выделяют CO2 при использовании.

Источник: onurdongel/iStock

Водородные двигатели выбрасывают в основном воду или водяной пар в качестве побочного продукта, но процесс производства водородного топлива может вызывать выбросы парниковых газов. Однако одно исследование показало, что даже если водород извлекается самым неэффективным способом, он, вероятно, сократит выбросы CO2 более чем на 30% по сравнению с бензином.

Разница между HICEV и FCEV

Основное различие между HICEV и FCEV заключается в способе использования водорода в этих транспортных средствах.Первый включает в себя сжигание водорода, а второй выполняет электрохимическую реакцию и использует жидкий водород для выработки энергии для своего электродвигателя.

Источник: Global Market Insights

Технология водородных двигателей внутреннего сгорания (HICE) все еще находится на ранней стадии разработки. Между тем, мировой рынок электромобилей на топливных элементах уже перешагнул отметку в 1 миллиард долларов США, и ожидается, что в ближайшие годы он будет демонстрировать ежегодный рост примерно на 38%.

Происхождение и эволюция водородного двигателя

Источник: Sam Loyd/Unsplash

В 1806 году Франсуа Исаак де Рива создал экспериментальный двигатель внутреннего сгорания, в котором в качестве топлива использовалась смесь водорода и кислорода. Двигатель De Rivaz считается первым в мире двигателем, работающим на водороде.

Двигатель Де Риваза Источник: Mobility Head

Вскоре после этого, в 1820 году, преподобный У. Сесил написал статью для Кембриджского философского общества под названием  «О применении газообразного водорода для получения движущей силы в машинах».”  В этой статье описывается двигатель, работающий на вакуумном принципе, в котором вакуум создается за счет сжигания газообразного водорода.

Примерно 150 лет спустя Пол Дигес запатентовал модификацию двигателя внутреннего сгорания, которая могла работать как на бензине, так и на водороде. Конечно, к тому времени автомобили, работающие на бензине, были нормой, и немногие производители видели необходимость в разработке транспортных средств, работающих на водороде.

В последующие годы стали широко признаваться вредные последствия использования ископаемого топлива для увеличения загрязнения воздуха, здоровья, глобального потепления, кислотных дождей и других областей в транспортных средствах и промышленности, а также их последствия.Ученые, активисты, лидеры и исследователи начали выражать обеспокоенность по поводу увеличения выбросов CO2 и экологических рисков, связанных с добычей и использованием ископаемого топлива.

Растущие экологические проблемы и спрос на экологически чистые альтернативы энергии заставили многие автомобильные компании сосредоточиться сначала на разработке топлива с низким содержанием свинца, а затем на водороде и электромобилях.

В начале 2000-х японский автопроизводитель Mazda начал устанавливать двигатели Ванкеля на свою модель RX-8.Двигатель Ванкеля — это тип двигателя внутреннего сгорания, в котором используется эксцентриковая роторная конструкция для преобразования давления во вращательное движение. При заданной мощности они более компактны и весят меньше, чем двигатель внутреннего сгорания. Их также можно легко преобразовать для работы на водороде.

Совсем недавно они обновили конструкцию, разработав водородный роторный двигатель RENESIS, в котором используется инжектор газообразного водорода с электронным управлением и который может быть адаптирован для работы в качестве гибрида бензин-водород.

BMW Hydrogen 7 Источник: More Cars/Wikimedia Commons

Работа по разработке эффективного водородного двигателя на этом не остановилась.Примерно в 2006 году BMW разработала двухтопливный водородно-бензиновый двигатель внутреннего сгорания для своего ограниченного производства Hydrogen 7, который был разработан, чтобы продемонстрировать, что водород может работать в качестве топлива. Во время испытаний автомобиль смог развить скорость 187 миль в час (301 км/ч), и компания также заявила, что их водородный автомобиль достиг нулевого уровня выбросов CO2.

Однако претензии BMW были позже отклонены Агентством по охране окружающей среды США (EPA), которое указало, что автомобиль по-прежнему выделяет углерод в результате испарения моторного масла.Кроме того, эффективность автомобиля при работе на водороде была чрезвычайно низкой, возвращая в среднем около 5,6 миль на галлон (50 л/100 км). В основном это было связано с разницей в плотности энергии между бензином и водородом.

Преимущества водородных двигателей

Источник: NASA/Unsplash

Существуют различные важные причины, по которым водородные двигатели рассматриваются некоторыми как будущее автомобильной промышленности, и почему производители транспортных средств тратят миллионы долларов на их создание. экономичные гидродвигатели.

Энергетические эксперты и компании считают, что водород может служить бесконечным и относительно низкоуглеродным источником энергии. Это также может представлять собой жизнеспособную альтернативу использованию тяжелых металлов в батареях, которые наносят ущерб окружающей среде и могут стать очень дорогими в ближайшие годы с ростом электромобилей.

Источник: Global Market Insights

Низкая энергия воспламенения и высокая эффективность

Водородный ДВС имеет низкую энергию воспламенения по сравнению с обычными бензиновыми двигателями, поскольку при сгорании водорода в этих двигателях используются более низкие температуры пламени и более низкая теплопередача.Это позволяет двигателю работать на очень бедных смесях и при этом быстро сгорать. Кроме того, из-за высокой диффузионной способности (водород смешивается с воздухом быстрее, чем бензин) использование водорода снижает опасность, связанную с возможными утечками.

Безуглеродные выбросы

Считается, что водородные двигатели обеспечивают более широкие возможности повышения энергетической безопасности и сокращения углеродного следа. Это связано с тем, что углеродные соединения не выделяются в качестве побочных продуктов, когда эти автомобили работают на водороде.

Быстрая заправка 

Поскольку водород имеет низкую объемную плотность энергии, его необходимо хранить в виде сжатого газа, чтобы обеспечить запас хода обычных транспортных средств. Это требует использования резервуаров высокого давления, способных хранить водород с давлением 5000 или 10000 фунтов на квадратный дюйм (psi). Розничные колонки, которые устанавливаются на автозаправочных станциях, могут заполнить эти баки примерно за 5 минут. Это намного быстрее, чем время, необходимое для перезарядки электромобилей, даже с быстрой зарядкой.Хотя, конечно, электромобили тоже можно заряжать дома, а водородные — нет. Другие технологии хранения находятся в стадии разработки, включая химическое связывание водорода с таким материалом, как гидрид металла или низкотемпературные сорбирующие материалы.

Альтернативный источник энергии

Поскольку двигатели внутреннего сгорания могут быть приспособлены для сжигания водорода вместо бензина или в дополнение к нему, ряд стран работают над инициативой по увеличению производства водорода для использования в качестве топлива в самолетах. , корабли и даже для производства электроэнергии.Если водород будет производиться с использованием альтернативной энергии, это может стать рентабельным способом быстрого сокращения использования ископаемого топлива в ряде областей.

Недостатки двигателей, работающих на водороде

Источник: Tramino/iStock

Несмотря на многочисленные достоинства их использования, водородные двигатели до сих пор не получили широкого распространения, и существуют многочисленные сложности, связанные с водородным топливом. Рост эффективных транспортных средств с батарейным питанием и FCEV также привел к потере интереса производителей автомобилей и новаторов к разработке HICE.Помимо этого, существует ряд серьезных проблем, которые необходимо решить, прежде чем это станет практической альтернативой электромобилям.

Дорогая технология

Процесс извлечения водорода является дорогостоящим и энергоемким. Хотя FCEV, работающий на водороде, считается транспортным средством с нулевым уровнем выбросов, извлечение самого водорода не является нулевым уровнем выбросов. В настоящее время большая часть водорода извлекается с помощью парового риформинга, при котором высокотемпературный пар сочетается с природным газом для извлечения водорода.

Водород также можно получать из воды с помощью электролиза. Это более энергоемко, но может быть сделано с использованием возобновляемых источников энергии, что устранит большую часть выбросов. Тем не менее, стоимость производства водорода по-прежнему выше, чем у бензина (или электричества), поэтому потребуется немного снизить его, прежде чем водородные двигатели станут рентабельными в больших масштабах.

Низкая плотность энергии

Водород не такой энергоплотный, как другие виды топлива, а это означает, что вам нужно больше его для выполнения заданного объема работы.Соедините это с присущей поршневым двигателям неэффективностью, и водородные двигатели в целом не дают значительного энергетического преимущества.

Загрязнение

Несмотря на то, что водородные двигатели не выделяют углерод, из-за тепла, выделяемого в камере сгорания, оксид азота может образовываться как побочный продукт. Это соединение вредно для окружающей среды, а это означает, что, хотя водородные двигатели имеют нулевые выбросы углерода, они не являются свободными от выбросов.

Соображения безопасности

Транспортные средства, работающие на водородных двигателях внутреннего сгорания, оснащены топливными баками с водородом под давлением.Эти резервуары спроектированы так, чтобы быть очень безопасными, но в случае утечки легковоспламеняющаяся природа водорода может нанести серьезный ущерб. Решением может быть установка в транспортном средстве специальных датчиков для обнаружения любых таких утечек, что обходится дорого.

Большой размер и уменьшенная выходная мощность

Для водородных двигателей внутреннего сгорания стехиометрическое соотношение воздух/топливо составляет 34:1. Это означает, что водородный двигатель использует вдвое больше воздуха для полного сгорания.

Однако это также приводит к снижению выходной мощности, и, следовательно, водородный двигатель, как правило, обеспечивает только половину мощности по сравнению с бензиновым двигателем того же размера.Чтобы компенсировать эту потерю мощности, водородные двигатели имеют большие размеры и часто оснащены турбокомпрессором.

Будущее, факты и тенденции, связанные с водородной энергетикой

Чистое производство водорода Источник: Ballard Power
  • Audi больше не работает над разработкой HICEV, вместо этого сосредоточившись на электромобилях.Другие автопроизводители, в том числе Toyota, Renault и Hyundai, более оптимистичны в отношении автомобилей на водородном топливе, и ожидается, что они продолжат разработку водородных двигателей. Автомобиль Toyota Mirai HFCV был представлен в 2014 году, и с декабря 2019 года было продано 10 300 автомобилей по всему миру, а южнокорейская компания Hyundai производит внедорожник Nexo с водородным двигателем.
  • Чтобы ускорить производство водорода, Европейский Союз поставил цель установить электролизеры мощностью 40 гигаватт по всему континенту.Испания уже объявила о плане потратить 10,5 миллиардов долларов (8,9 миллиардов евро) на строительство водородных электролизеров мощностью 4 гигаватт (ГВт). Другие страны, в том числе Дания, строят заводы для увеличения производства водорода путем электролиза на основе электричества. Даже лидер ОПЕК Саудовская Аравия строит завод по производству зеленого водорода.

  • Корпорация Microsoft тестирует использование водородных топливных элементов для замены дизельных генераторов в качестве резервного источника питания.ZeroAvia, американский стартап, планирует к 2024 году создать самолет с водородным двигателем.  
  • Израильский производитель двигателей Aquarius Engines разработал новый водородный двигатель массой 10 кг, в котором используется утверждает, что это легкая, экономичная и безопасная для окружающей среды альтернатива традиционным двигателям внутреннего сгорания.

  • Азиатский центр возобновляемых источников энергии — это масштабный проект по устойчивой энергетике в Австралии, который в настоящее время находится в стадии реализации.Когда он полностью заработает, планируется вырабатывать более 50 ТВтч электроэнергии за счет солнечной и ветровой энергии. Большая часть этой электроэнергии будет использована для производства аммиака и чистого водорода.
  • В настоящее время в США и Великобритании доступны только три автомобиля с водородным двигателем: Honda Clarity, Toyota Mirai и Hyundai Nexo. Однако ожидается, что в ближайшие годы их число вырастет, поскольку во всем мире происходят многообещающие разработки в области водородной энергетики и технологий двигателей.

Несмотря на то, что водородные двигатели по-прежнему сталкиваются с рядом проблем, ожидается, что рынок водорода как зеленого источника энергии будет быстро расти в ближайшие годы, и, по некоторым оценкам, к 2030 году он достигнет 70 миллиардов долларов. Согласно Bloomberg New Energy Finance, в разработке находится более 90 миллиардов долларов «зеленых» водородных проектов на сумму более 90 миллиардов долларов. Что бы ни случилось с транспортными средствами HICE, использование возобновляемого водорода в качестве источника энергии будет продолжать расти.

MAZDA: автомобили на водороде | Экологические технологии

Роторный двигатель на водороде чрезвычайно безопасен для окружающей среды и идеально подходит для общества, в котором люди могут продолжать наслаждаться вождением в режиме Zoom-Zoom, заботясь о Земле

 

Роторный водородный двигатель

Водородный роторный двигатель Mazda, основанный на нашей уникальной технологии роторного двигателя, но приспособленный для использования водорода в качестве топлива, не выделяет CO2 и обладает превосходными экологическими характеристиками.
Поскольку роторному двигателю потребовалось лишь несколько конструктивных изменений, чтобы он мог работать на водороде, Mazda смогла построить автомобили с роторным двигателем на водородном топливе по низкой цене. Кроме того, двухтопливная система позволяет автомобилю работать как на бензине, так и на водороде. Водителю не нужно беспокоиться о том, что водород закончится, что делает автомобиль удобным, поскольку он может преодолевать большие расстояния в районы, где нет водородных станций.

Технологии водородного роторного двигателя RENESIS


В водородном роторном двигателе RENESIS используется непосредственный впрыск с инжектором газообразного водорода с электронным управлением.Эта система всасывает воздух через боковое отверстие и впрыскивает водород непосредственно во впускную камеру с помощью инжектора газообразного водорода с электронным управлением, установленного в верхней части корпуса ротора. Технология, показанная ниже, в полной мере использует преимущества роторного двигателя для сжигания водорода.

Схема водородного роторного двигателя RENESIS

 

Посмотреть видео, показывающее движение водородного роторного двигателя

1 Характеристики RE, подходящие для сжигания водорода — естественное подавление обратного воспламенения –

При практическом применении водородных двигателей внутреннего сгорания основной проблемой является предотвращение так называемого обратного воспламенения (преждевременного воспламенения).Обратное воспламенение – это воспламенение, вызванное контактом топлива с горячими деталями двигателя в процессе впуска. В поршневых двигателях процессы впуска, сжатия, сгорания и выхлопа происходят в одном и том же месте — внутри цилиндров. В результате свечи зажигания и выпускные клапаны достигают высокой температуры из-за тепла сгорания, и процесс впуска становится склонным к обратному воспламенению.

Напротив, конструкция RE не имеет впускных и выпускных клапанов, а низкотемпературная впускная камера и высокотемпературная камера сгорания разделены.Это обеспечивает хорошее сгорание и помогает избежать обратного воспламенения.

Кроме того, RE способствует тщательному смешиванию водорода и воздуха, поскольку продолжительность процесса впуска больше, чем в поршневых двигателях.

2 Комбинированное использование прямого впрыска и предварительного смешивания

Для достижения высокой производительности в режиме водородного топлива применяется система прямого впрыска путем установки форсунки газообразного водорода с электронным управлением в верхней части корпуса ротора.Конструктивно RE имеет значительную свободу расположения форсунок, поэтому он хорошо подходит для прямого впрыска.

Кроме того, на впускной трубе установлена ​​газовая форсунка для предварительного смешивания, что позволяет использовать комбинированное использование прямого впрыска и предварительного смешивания в зависимости от условий движения. Это обеспечивает оптимальное сгорание водорода.

В режиме бензинового топлива топливо подается из той же бензиновой форсунки, что и в стандартном бензиновом двигателе.

3 Переход на обедненную смесь и EGR

Сжигание на обедненной смеси и рециркуляция отработавших газов (EGR) используются для снижения выбросов оксидов азота (NOx).NOx в основном снижается за счет сжигания обедненной смеси при низких оборотах двигателя, а также за счет рециркуляции отработавших газов и трехкомпонентного каталитического нейтрализатора при высоких оборотах двигателя. Трехкомпонентный катализатор такой же, как и в базовой модели. Оптимальное и надлежащее использование обедненной смеси и системы рециркуляции отработавших газов удовлетворяет требованиям как высокой производительности, так и низкого уровня выбросов.

4 Двухтопливная система

Когда в системе заканчивается водородное топливо, она автоматически переключается на бензин. Для большего удобства водитель также может вручную переключать топливо с водорода на бензин одним нажатием кнопки.

Транспортные средства с водородным роторным двигателем

 

Premacy Hydrogen RE Hybrid/
Подключаемый модуль Hydrogen RE

Premacy Hydrogen RE Hybrid сочетает в себе водородный роторный двигатель Mazda с гибридной системой для значительного повышения производительности и практичности

Premacy Hydrogen RE Hybrid унаследовал двухтопливную систему от Mazda RX-8 Hydrogen RE и сочетает ее с недавно разработанной гибридной системой для значительного улучшения ходовых качеств и практичности.Premacy Hydrogen RE Hybrid сдается в аренду государственным органам и компаниям Японии с марта 2009 года.

Компоновка Premacy Hydrogen RE Hybrid

Усовершенствованная водородная силовая установка RE реализует волнение и мощь Zoom-Zoom!

Premacy Hydrogen RE Hybrid производит примерно на 40 процентов больше мощности, чем Mazda RX-8 Hydrogen RE, что приводит к значительному ускорению.Это также улучшает экономию топлива. Сердце транспортного средства, водородный роторный двигатель, переведено с продольного на поперечное расположение. Пониженное сопротивление впуска/выпуска двигателя и улучшенная эффективность сгорания обеспечивают высокую выходную мощность в широком диапазоне оборотов двигателя.
Гибридная система эффективно преобразует энергию сгорания водорода в электричество, которое приводит в движение колеса с помощью электродвигателя. Эта установка чрезвычайно энергоэффективна и обеспечивает исключительную реакцию автомобиля.В результате водители наслаждаются низким расходом топлива, а также прямым ощущением и мощной ездой, а также запасом хода до 200 километров на водородном топливе. Для еще большего запаса хода модель оснащена двухтопливной системой Mazda, которая позволяет автомобилю работать как на бензине, так и на водороде. Будучи Premacy, он также более удобен в использовании, чем RX-8 Hydrogen RE, предлагая больше грузового пространства и места для пяти взрослых.

Посмотрите видео, показывающее, как работает водородный роторный автомобиль

 

«Mazda Premacy Hydrogen RE Range Extender EV» на основе «Mazda Premacy Hydrogen RE Hybrid».Он адаптирует подключаемую систему, большую высоковольтную батарею и двигатель с улучшенным тепловым КПД.

RX-8 Водород RE
Идеальный «зеленый» автомобиль, обеспечивающий непревзойденный баланс удовольствия от вождения и экологичности

Mazda RX-8 Hydrogen RE, разработанная и выпущенная на рынок Mazda, является первым в мире практическим воплощением транспортного средства с водородным роторным двигателем. Без ущерба для ощущения крутящего момента и ускорения, а также звука выхлопа, характерного для двигателей внутреннего сгорания, он не выделяет CO2 и почти не выделяет NOx, что делает его идеальным «зеленым» автомобилем.В Японии автомобиль предлагается в аренду местным органам власти и предприятиям с 2006 года, а в 2008 году Mazda начала участвовать в норвежском проекте водородной магистрали «HyNor».

Упаковка

Вместимость четырех взрослых пассажиров сохранена от базового автомобиля, в багажнике установлены два водородных баллона. Резервуары находятся под давлением до 35 МПа, что является действующим национальным стандартом для водородных заправочных станций. Клапан заполнения водородом обычно используется в автомобилях на топливных элементах и ​​расположен на противоположной стороне от клапана заполнения бензином на базовом автомобиле.

Компоновка автомобиля

Toyota поручает Yamaha Motor разработать водородный двигатель

Yamaha Motor Co., водородный двигатель V8, представленный в Японии, в субботу, 13 ноября 2021 г.

Тору Ханай | Блумберг | Getty Images

Toyota поручила Yamaha Motor разработать двигатель на водородном топливе, причем президент последнего заявил, что его компания привержена двигателю внутреннего сгорания.

В объявлении, сделанном в конце прошлой недели, Yamaha сообщила, что 5.0-литровый двигатель V8 будет разработан для автомобилей и основан на том, что используется в купе Lexus RC F, с изменениями, среди прочего, в его головках цилиндров и форсунках.

По заявлению Yamaha, агрегат способен выдавать до 450 лошадиных сил при 6800 оборотах в минуту. Компания заявила, что работает над водородным двигателем для автомобилей примерно пять лет.

Президент Yamaha Motor Ёсихиро Хидака сказал, что, хотя его компания стремилась достичь углеродной нейтральности к 2050 году, у нее также была «сильная страсть и уровень приверженности двигателю внутреннего сгорания.

«Водородные двигатели обладают потенциалом быть углеродно-нейтральными, в то же время сохраняя нашу страсть к двигателю внутреннего сгорания», — продолжил Хидака. Motor, Kawasaki Heavy Industries, Toyota, Subaru и Mazda обнародовали детали того, что они описали как «задачу по расширению вариантов топлива для использования двигателей внутреннего сгорания».

Узнайте больше об электромобилях от CNBC Pro

Идея питания двигателя внутреннего сгорания водородом не нова. Toyota уже разработала GR Yaris с 1,6-литровым ДВС и использует водород в качестве топлива.

По данным компании, GR Yaris использует тот же силовой агрегат, что и Corolla Sport с водородным двигателем. Фирма назвала оба этих автомобиля «экспериментальными».

Такие фирмы, как BMW, также производили такие автомобили, как BMW Hydrogen 7.По словам немецкого автопроизводителя, Hydrogen 7 использовал двигатель внутреннего сгорания и мог работать на бензине или жидком водороде. Производство автомобиля началось в 2006 году и было выпущено ограниченным тиражом.

Использование водорода для питания двигателя внутреннего сгорания отличается от технологии водородных топливных элементов, при которой газ из баллона смешивается с кислородом, производя электричество. Как отмечает Центр данных по альтернативным видам топлива Министерства энергетики США, автомобили на топливных элементах выделяют «только водяной пар и теплый воздух.

Напротив, водородные ДВС производят выбросы. «Водородные двигатели выделяют почти нулевые выбросы CO2, следовые количества … но могут производить оксиды азота или NOx», — говорит производитель двигателей Cummins.

Водородные ДВС также «меньше эффективности» по сравнению с электромобилями на топливных элементах, по данным Центра данных по альтернативным видам топлива. в отрасли придерживаются иного мнения.

В июне 2020 года генеральный директор Tesla Илон Маск написал в Твиттере: «Топливные элементы = дурацкие продажи», добавив в июле того же года: «Водородные дурацкие продажи не имеют смысла».

В феврале 2021 года генеральный директор немецкой Volkswagen Group также высказался по этому поводу. «Политикам пора принять науку», — написал в Твиттере Герберт Дисс.

«Зеленый водород необходим для производства стали, химии, аэрокосмической промышленности… и он не должен попадать в автомобили.

Добавить комментарий

Ваш адрес email не будет опубликован.