Лямбда зонд до катализатора: Зачем нужен лямбда-зонд | Часто задаваемые технические вопросы

Содержание

Лямбда регулирование, катализатор и ГБО

В связи с жесткой конкуренцией и ужесточением экологических норм автопроизводители вынуждены постоянно совершенствовать свои автомобили. Двигатели, оснащенные карбюратором, уже не обеспечивали желаемой экономичности, экологичности и мощности автомобиля. Это обусловлено невозможностью точной настройки карбюратора на различных режимах. Поэтому производителями при первой возможности была внедрена электронная система управления впрыском под управлением 8-ми битного микропроцессора с тактовой частотой 4 мгц в 1979г. Это произошло через 8 лет после появления первого в мире 4-х битного микропроцессора 4004. На данный момент, система управления двигателем является довольно сложной в плане количества датчиков и исполнительных механизмов, сложных математических моделей записанных в виде программы блока управления.

Переход на более точную систему управления стал возможным не только благодаря появлению микропроцессора. Пригодился и опыт построения автоматизированных систем на промышленных предприятиях накопленный десятилетиями. На тот момент в ВУЗах уже давно появился предмет, без которого уже немыслима автоматизация процессов — Теория автоматического управления (ТАУ). ТАУ — это наука, которая

позволяет просчитать уровень и скорость воздействия сразу на некоторое количество элементов управления для получения предсказуемо точного результата в отведенное время. На основании ТАУ для промышленности была создана и теория управления двигателем.

В процессе развития электронных систем управления двигателем улучшалась их точность, а вместе с ними и характеристики двигателей. Для того, что бы следовать все более жестким экономическим и экологическим параметрам, увеличивается количество узлов системы управления двигателем, улучшается точность их изготовления, увеличивается вычислительная мощность блоков управления двигателем для того, что бы использовать более точные и сложные модели управления и математику.

 

Так как механические элементы системы имеют допуски изготовления и свойство изнашиваться, то понадобился датчик, который мог бы прояснить реальную  картину по соотношению воздух — топливо. Так с конца 1970-х годов в автомобилях начали применять датчики кислорода (лямбда зонды).

Познавательная книга по теории управления.

Зачем нужен лямбда зонд? (датчик кислорода)

 Лямбда зонд позволяет постоянно отслеживать количество кислорода в выхлопных газах и вводить корректировку впрыска топлива для достижения лучшей экономичности и экологичности двигателя.

Циркониевый лямбда зонд 

Самый распространенный вариант — циркониевый лямбда зонд, который выдает сигнал о бедной или богатой смеси. Если смесь богатая — лямда зонд выдаст напряжение более 0,45В, если бедная — менее 0,45В. Понятие бедной и богатой смеси связано с соотношением массы всасываемого в цилиндры двигателя воздуха к массе топлива. Условно соотношение выражается числом лямбда (уровень избытка кислорода). Например, при числе λ (лямбда) = 1, соотношение массы воздуха к массе топлива составляет 14,7 кг воздуха / 1 кг топлива, что является наиболее экологичным соотношением. Такую пропорцию еще называют «стехиометрической смесью».

Таким образом, в простой системе управления с лямбда зондом, состав топливно-воздушной смеси постоянно колеблется возле λ = 1. Это происходит из-за того, что система управления пытается максимально приблизится к λ=1, а чувствительный элемент циркониевого лямбда зонда может показать только больше или меньше.

Циркониевый лямбда зонд обладает еще некоторыми важными параметрами, которые используются в более продвинутых системах управления с целью соответствия экологическим нормам евро-4 и выше. Например, по внутреннему сопротивлению чувствительного элемента, выходного напряжения и сопоставляя эти параметры с другими параметрами системы,  можно судить о концентрации вредных химических элементов в выхлопе (CH, CO, h3) и температуре чувствительного элемента датчика кислорода. Таким образом, системой управления могут быть предприняты меры по улучшению экологических показателей мотора.

Широкополосный лямбда зонд

Существуют 2 основных типа широкополосных лямбда зондов, которые отличаются по принципу считывания информации.

  1. 4-х проводный. Используется на автомобилях Toyota, Lexus, Subaru, Suzuki.
  2. 5-ти проводный (возможен 6-й провод для калибровочного резистора) имеет дополнительную камеру — кислородный насос. Используется обычно на немецких автомобилях.

У этих датчиков кислорода есть общая особенность — они не просто показывают бедную или богатую смесь, а способны измерить состав смеси в большом диапазоне. Это позволяет более точно удерживать требуемый состав смеси. Так же становится возможным удерживать состав смеси λ не равный 1. Это может потребоваться на переходных режимах или частичных нагрузках, что позволяет добиться лучшей экономичности и улучшить другие показатели.

Принцип работы этих датчиков подробно описан во многих источниках. Поэтому останавливаться на нем мы не будем.

Задний лямбда зонд (за катализатором)

Для того, что бы понять смысл заднего лямбда зонда, кратко остановимся на работе катализатора. Автомобильный катализатор — устройство, которое преобразовывает выхлопные газы до относительно безвредного состояния. Главным образом в катализаторе догорает недогоревшее в моторе топливо ( 2CO + O

2 → 2CO2) и разложение оксида азота (2NOX → XO2 + N2), который получается при температурах горения выше положенного и избытке кислорода. Реакции в нейтрализаторе возможны при его температуре примерно от 300 до 800 градусов. Так же на эффективность его работы и срок службы сильно влияет состав топливно — воздушной смеси, который удерживается передним лямбда зондом. Если горючая смесь будет богаче, то упадет эффективность нейтрализации СО и СН, если беднее — NOX.

В соответствии с нормами Евро-3 и выше, в выхлопную систему за катализатором внедрен контролирующий датчик, с помощью которого ЭБУ контроллирует эффективность катализатора. В случае проблемы, на панели приборов загорается индикатор Check engine, а мотор переходит в аварийный режим работы (на аварийные карты).

Для еще большей эффективности каталитической реакции, в автомобилях с нормами евро-4 и выше, используются и показания заднего лямбда зонда B1S2. В таких автомобилях показания используются не только для диагностики, но и для более точной коррекции топливной смеси для того, что бы увеличить эффективность нейтрализации газов. 

Работа заднего лямбда зонда

Катализатор производит разложение оксида азота на азот и кислород. Производится и связывание свободного кислорода с недогоревшим топливом (из СО получаем СО2). В катализаторе так же протекает множество других сложных реакций.

Как следует из описанного выше, содержание кислорода за катализатором заметно меньше, чем его содержание до катализатора. Способность катализатора накапливать и отдавать кислород определяет инерционность изменения содержания кислорода после катализатора. Поэтому основным показателем исправного катализатора является преобладание напряжения с заднего лямбда зонда более 0,6В даже если напряжение переднего лямбды значительное время держится на низком уровне. 

На современных автомобилях с нормами Евро-4 и выше, задний лямбда B1S2 влияет так же и на топливные коррекции с целью обеспечить максимально оптимальную смесь для работы катализатора. Поэтому, эффективность катализатора напрямую влияет на расход топлива. При снижении эффективности катализатора расход топлива растет. Это происходит из за того, что количество кислорода, который может использовать катализатор уменьшается, а система пытается удержать его содержание, добавляя топлива за катализатором.

Например, на современных автомобилях (например Subaru и некоторых других), старение или отсутствие катализатора вызывает существенное увеличение расхода топлива — вплоть до 30% (если не приняты никакие меры по решению проблемы с катализатором). Кроме того, с помощью лямбда измеряется температура выхлопных газов за катализатором и ЭБУ стремиться разогреть холодный катализатор управляя подачей топлива и EGR так как время разогрева катализатора тоже регламентировано ЕВРО нормами (Температура определяется путем измерения сопротивления подогревателя лямбды и импеданса ее чувствительного элемента).

Признаком нормальной работы катализатора с нормами евро-4 и выше явлется удержание напряжения на заднем лямбда зонде в районе 0,6 … 0,7 вольт на стабильных режимах работы. При этом, топливные коррекции по задним B1S2 и передним B1S1 лямбда зондам должны быть около 0%.  При неправильной работе катализатора топливные коррекции по задним и передним датчикам могут сильно отличаться от нуля. 

Но не только напряжение от лямбда зонда и его динамические характеристики влияют на работу системы управления современного двигателя. Так как показания лямбда зонда зависят от состава прочих компонентов в выхлопных газах — система управления может косвенно определять их концентрацию. Так же система может косвенно определять и температуру катализатора, которая примерно равна температуре лямбда зонда. От температуры лямбда зонда зависит внутренне сопротивление его чувствительного элемента и потолок формируемого напряжения. По верхней и нижней полке напряжения ЭБУ может косвенно судить о концентрациях других примесей. 

Исходя из вышеописанного, следует, что современные системы управления двигателем умеют не только удерживать концентрацию кислорода за катализатором. Дополнительно удерживается температура каталитического нейтрализатора в требуемом диапазоне, косвенно отслеживается и удерживается содержание других примесей за катализатором.

К сожалению, катализатор имеет ограниченный ресурс. И в тот момент, когда автовладелец сталкивается с проблемой катализатора, у него есть выбор — приобрести новый катализатор или решить проблему другим способом. Наш человек смотря на дымящиеся трубы заводов и стоимость катализатора, конечно же ищет альтернативный вариант. На современных автомобилях обмануть блок управления совсем не просто, так как в процессе участвует множество параметров с узким коридором. Поэтому народные методы в виде проставок и резисторов с конденсаторами уже не годятся. Даже если эти методы и работают не некоторых автомобилях, то неизбежно растет расход топлива. Ввиду этого, производители эмуляторов катализатора постоянно совершенствуют алгоритмы эмуляции для наиболее точного воссоздания всех требуемых параметров. В современном эмуляторе катализатора эмулируются около 10 различных параметров: напряжения на различных режимах, динамические параметры, количество запасенного кислорода, эффективность катализатора, внутреннее сопротивление датчика, импеданс, время отсечки, реакция на манипуляцию педали газа, температура катализатора, режим прогрева, скорость реакции чувствительного элемента, изменение эффективности катализатора при изменении нагрузки.

ГБО и катализатор

Мы все чаще сталкиваемся с проблемами катализаторов на автомобилях оборудованных газобалонным оборудованием.

Обычно проблема вызвана не катализатором, а самим газобалонным оборудованием. Обратите внимание — если автомобиль работает на бензине продолжительное время без проблем — обратите внимание на ГБО.

Наиболее часто встречаются 3 причины появления кодов неисправности по катализатору на автомобилях с газом:

  • Неправильная настройка ГБО. решение простое — настройте ГБО;
  • нестабильное давление газа в рампе форсунок. Обычно вызвано неспособностью редуктора удерживать требуемое давление. Ошибки обычно появляются, когда запас газа в баллоне заканчивается. Решение — заменить редуктор или чаще заправляться;
  • Часто встречающаяся проблема — нестабильность работы газовых форсунок. Обычными методами диагностировать невозможно.
  • Проблема с газовыми форсунками часто появляется из-за нестабильности их работы, разброса параметров. Наиболее часто встречается залипание форсунок и разброс в производительности. Все параметры определялись нами специальным тестером газовых форсунок.

Напомню, что современная система управления очень требовательна к параметрам всех звеньев, поэтому, даже незначительный разброс параметров форсунок ведет к непредсказуемым результатам. Из-за разброса параметров блок управления не может адекватно откорректировать топливные коррекции.

Наиболее эффективная работа двигателя, работающего на пропане возможна при более раннем угле зажигания и более бедной смеси с соотношением 15,5 : 1 для пропана по сравнению со смесью для бензина 14,7 : 1.  При снандартной схеме с ГБО 4-го и 5-го поколения управление смесью производится бензиновым блоком управления, газовый блок управления только вносит корректировки для управления газовыми форсунками. 

В связи с этим, смесь при работе на газу удерживается по бензиновым стандартам, что влечет за собой нештатную работу катализатора и более быстрое его разрушение.

Диагностика катализатора по второй лямбде

Прежде чем поговорить об устройстве, работе и диагностике лямбда- зонда, обратимся к некоторым особенностям работы топливной системы. Нам поможет в этом эксперт журнала, Федор Александрович Рязанов, диагност с большим стажем работы, руководитель курсов обучения диагностов в компании «ИнжКар».

Современный автомобилист хочет владеть мощным, но в тоже время экономичным автомобилем. У экологов другое требование – минимальное содержание вредных веществ в выхлопе машины. И в данных вопросах интересы автомобилистов и экологов в итоге совпадают. И вот почему.

Известно, что когда двигатель не сжигает все топливо, расход горючего возрастает, растут затраты и на эксплуатацию автомобиля. Мощность двигателя (или ДВС) в условиях неполного сгорания топлива неизбежно падает, а крутящий момент снижается. Одновременно с этим увеличивается уровень вредных веществ в выхлопе автомобиля.

В этой связи одной из основных задач современного автомобилестроения является максимально полное сжигание топливной смеси в двигателе.

На сжигание смеси прямым образом влияет ее состав. Идеальной ситуацией является стехиометрический состав топлива. Говоря более простым языком, должна быть соблюдена пропорция – на 14,7 кг воздуха должен приходиться 1 кг топлива. Именно такое соотношение позволяет оптимально использовать и то, и другое. Владелец автомобиля получает больший крутящий момент и, как следствие, – адекватное ускорение автомобиля, равномерную работу двигателя во всех режимах работы. Также падает расход топлива, и автомобиль перестает загрязнять окружающую среду.

Отклонения от правильного состава топливной смеси – богатая и бедная смесь. Богатая топливная смесь образуется, когда в цилиндрах мало кислорода, но много топлива, которое, конечно же, из-за недостатка кислорода, полностью сгореть не сможет. Следовательно, автомобиль, работающий на богатой смеси, будет больше расходовать топливо, а избыток несгоревшего топлива, в этом случае, охладит камеру сгорания, мощность двигателя при этом будет падать, несгоревшое топливо попадет в атмосферу, загрязняя ее.

Другая ситуация: двигатель получает обедненную топливную смесь. В этом случае топливо в цилиндрах будет сгорать не полностью из-за недостатка топлива. Об экономичности, ради которой и разрабатывались такие двигатели, в этом случае также придется забыть. Ведь бедная смесь плохо горит, и это автоматически приводит к падению крутящего момента. Водителю приходится больше нажимать на газ, что в свою очередь, ведет к перерасходу топлива.

Таким образом, понятно, что со всех аспектов только стехиометрия топливной смеси (пропорция 14,7/1) является самым оптимальным режимом работы двигателя. И, конечно же, автомобиль, который только-только сошел с конвейера, обычно, укладывается во все рамки этого критерия. Но и «заводская» настройка может отличаться от идеала. Более того, в процессе эксплуатации автомобиля неизбежно наступает износ некоторых компонентов, датчики, отвечающие за настройку топливной системы, могут терять точность настроек. В итоге состав топливной смеси все больше уходит от идеальных показателей.

В этом случае как раз и необходим лямбда- зонд, он фиксирует количество кислорода в выхлопе автомобиля. И если в выхлопе окажется большое количество кислорода, это «сигнализирует» о бедной топливной смеси и, наоборот, если в выхлопе нет кислорода, это указывает на то, что смесь стала богатой. А мы уже выяснили, что и в том, и в другом случае уменьшается мощность двигателя, растет расход топлива, снижается экологичность выхлопа. Задача лямбда-зонда как раз и заключается в том, чтобы скорректировать эти отклонения.

Возьмем в качестве примера такую ситуацию: в топливной системе засорились форсунки, их производительность снизилась, смесь стала обедненной. Лямба-зонд фиксирует этот факт, а блок управления топливной системой реагирует на эту информацию и «доливает» немного топлива в цилиндры. Так происходит корректировка возникающих отклонений с учетом показаний этого датчика.

Таким образом, основное назначение лямбда- зонда заключается в том, чтобы компенсировать неизбежно возникающие в процессе эксплуатации автомобиля отклонения в составе топливной смеси.

Однако нужно понимать, что лямбда-зонд как таковой не является панацеей от всех бед, он лишь позволяет вернуть состав топливной смеси в состояние стехиометрии. Но это не устранение дефектов, а только их компенсация.

Вернемся к нашим форсункам. При загрязненных форсунках нарушается эффективность распыления бензина, топливо распыляется крупными каплями, испаряются они с трудом. И система топливоподачи рассчитывает тот объем топлива, который необходим для достижения состояния стехиометрии, для этого фиксируются показания датчика расхода воздуха. Однако если бензин в системе выпрыскивается крупными каплями, его пары полностью не смешиваются с воздухом, часть паров сгорает, а часть капель бензина попросту вылетает в выхлопную трубу. Лямбда-зонд трактует такую ситуацию как бедную смесь, а датчик топливной системы, который «не видит» отдельные капли бензина, добавляет топлива, чтобы привести смесь в состояние стехиометрии. Но в этом случае, резко повышается расход топлива.

Поэтому для работы лямбда-зонда важен не фактор того, как система справляется с выводом смеси на стехиометрию, а фактор того, какой «ценой» ей удается это сделать.

Рассмотрим осциллограмму работы лямбда- зонда. Датчик сам по себе не может отличить состояние стехиометрии от состояния богатой топливной смеси, так как и в том, и в другом случае кислорода в выхлопе нет. При отсутствии кислорода в топливе блок управления (ЭБУ – электронный блок управления) немного уменьшает количество подаваемого в цилиндр топлива. Как следствие, в выхлопе появляется кислород.

И в этом случае показания лямбда-зонда находятся ниже отметки 0,4 В, что для датчика является признаком того, что топливная смесь обеднела (LEARN). При низких показателях лямбда-зонда (ниже 0,4 В), блок управления увеличивает подачу топлива на несколько процентов, смесь становится богатой и показания датчика достигают уровня выше 0,6В. ЭБУ воспринимает это как признак того, что в топливной системе находится богатая смесь (RICH). Подача топлива уменьшается, показания лябда-зонда падают, цикл повторяется – состав смеси начинает колебаться. В такт изменению состава смеси меняются показания лямбда-зонда. Такие колебания ЭБУ понимает как нормальное явление, указывающее на то, что состав топливной смеси находится в зоне стехиометрии.

Вспомним также, что в катализаторе автомобиля обязательно есть цирконий, этот металл способен накапливать кислород. И в фазе бедной смеси кислород запасается в катализаторе, а в фазе богатой смеси он расходуется. В результате на выходе топливной смеси катализатор дожигает все ее остатки.

На холостом ходу такие колебания возникают с частотой одно колебание примерно в одну секунду. Время такого переключения – еще один важный показатель для лямба-зонда. В нашем случае (см. осциллограмму, Рис. 1) время переключения составило 88 мс, при этом нормой является – 120 мс.

Если переключение длится долго, как в случае нашей осциллограммы (см. осциллограмму, Рис. 2) – 350 мс, да к тому же такая ситуация повторяется многократно, блок управления выдаст ошибку: «замедленная реакция лямбда-зонда».

Величины, при которых появляется эта ошибка, определяются, главным образом, настройками программного обеспечения блока управления.

Таким образом, для диагностики по лямбда-зонду необходимо изучить фазы переключения датчика. И если на осциллограмме появится хотя бы одно переключение с низкого показания на высокое (максимальное – 1В, минимальное – 0В), это значит, что лямбда-зонд работает исправно. Исправный датчик делает примерно одно переключение в секунду. Напомним, что в алгоритме работы блока управления о бедной смеси «сигналят» показания лямбда-зонда ниже 0,4В, а о богатой – выше 0,6 В. Поэтому оценить состояние топливной системы автомобиля можно и по работе датчика. В нашем случае (см. осциллограмму, Рис. 3) блоку управления удалось скомпенсировать все дефекты и вывести стехиометрию.

Вернемся к примеру с загрязненными форсунками. При обедненной смеси показания лямбда-зонда падают ниже 0,4В. Блок управления добавляет топлива до того момента, когда смесь станет богатой. Отметим, что в этом случае блок управления «самостоятельно» отклонился от установленных заводом-изготовителем в его карте параметров. Величину отклонения он записывает в своей памяти как топливную коррекцию (fuel trime). Предельно допустимые показатели топливной коррекции для большинства современных автомобилей составляют ±20-25%. Коррекция в «плюс» означает, что блоку пришлось добавлять топлива, коррекция в «минус» – наоборот, убавлять.

Допустим, неисправность носит долговременный характер: блок управления уже дошел до предела топливной коррекции, загорается код ошибки – «Превышение пределов топливной коррекции». Стерев код, исправить такой дефект нельзя, а наличие этой неисправности повлечет за собой перерасход топлива. Стоит отметить, что уже на 15% топливной коррекции обнаруживаются проблемы: автомобиль почти не едет, но расходует большое количество топлива.

То есть важно помнить, что показатель топливной коррекции и работа лямбда-зонда – это комплексный параметр, он указывает на наличие дефекта, но не указывает конкретную причину, которую придется найти и устранить на автосервисе.

И немного об особенностях строения лямбда-зонда. Такой датчик имеет циркониевую колбочку, которая одной стороной помещена в выхлопные газы. Цирконий уникальный материал, так как сквозь него может проходить кислород. Ион кислорода, «прилипая» к атомам циркония, движется по ним, при этом на циркониевом колпачке возникает напряжение. И если все идет в штатном порядке, то диффузия ионов кислорода осуществляется равномерно, и напряжение на обкладках колбочки составляет 1В. Если в выхлопе появляется кислород, диффузия невозможна, и напряжение в этом случае равно 0В. Вместо циркония в лямбда-зондах может использоваться окись титана. Отличие циркониевого лямбда-зонда от титанового заключается в том, что первый вырабатывает напряжение, а другой – меняет свое сопротивление (в переделах от 0 до 5В), и ему нужна схема, которая переводит меняющееся сопротивление в напряжение.

Слой платины на колбочке поверх циркония позволяет снять с него напряжение, играет роль катализатора, дожигает бензин и несгоревший кислород. Все ухудшается при использовании некачественного топлива, а также топливных присадок, которые в прямом смысле закупоривают слой платины и циркония, и зонд выходит из строя. Однако в этом случае, если у зонда нет физических повреждений, обычная промывка вернет его в рабочее состояние. «Современный бич» – это добавки антидетонационных присадок в топливо. До недавнего времени в качестве присадки использовался ферроцент – опасное вещество, которое мы окрестили «красная смерть» за ее красный оттенок, а также за способность быстро выводить из строя свечи, лямбда-зонды и катализатор», – отмечает Федор Александрович. Зонд может «замерзнуть» в высоком или в низком положении, то есть или в фазе богатой, или в фазе бедной смеси. И в этом случае датчик достигнет пределов топливной коррекции и прекратит попытки выравнивать состав смеси до стехиометрии.

Диагностику состояния системы топливоподачи начинаем с подключения сканера к автомобилю. Отсутствие кода «Превышение пределов топливной коррекции» еще не говорит об отсутствии дефектов в системе топливоподачи. Необходимо в потоке данных (Data Stream) убедиться в наличии колебаний лямбда-зонда (стехиометрия достигнута), а также по величине топливной коррекции оценить, какой ценой она достигнута.

Подводя итог, еще раз отметим, что при проверке лямбда-зонда необходимо обращать внимание на колебания датчика, если они есть, датчик исправен; если же система лямбда регулирования не совершает колебаний, это может указывать или на неисправность лямбда-зонда или на бедную или богатую топливную смесь. То есть сначала надо проверить сами датчики. Для этого нужно принудительно обогатить или обеднить смесь, чтобы получить колебания лямбды и убедиться в том, что он исправен.

Рассмотренные выше лямбда-зонды носят название «скачковые». Т.е. они указывают на то, есть кислород в выхлопе или нет. Но все более ужесточающиеся требования к экологии заставили производителей разработать датчики, которые способны не только работать по принципу «Да-Нет», но и определять процент кисло- рода в выхлопе. Такие датчики получили название «широкополосные датчики кислорода».

Принципы их работы и особенности диагностики автомобиля по показаниям широкополосных лямбда-зондов будут рассмотрены в следующих публикациях.

МНЕНИЕ
Максим Пастухов, технический специалист компании «ДЕНСО Рус»: «Практика показывает, что основными причинами выхода из строя лямбда зондов являются: 1. Загрязнение лямбда-зонда продуктами сгорания топлива. Фактически это присадки, которые используются для повышения октанового числа бензина, устранения детонации или для других целей. Также на это влияет степень очистки топлива. Присадки, сера и парафины «закупоривают» проводящий слой лямбда-зонда, и он «слепнет». Блок управления переводит двигатель в аварийный режим, и мы видим на приборной панели значок «Проверьте двигатель». Кстати, от вышеописанных вещей страдают также свечи зажигания, клапаны, катализатор и др. компоненты двигателя. Имеет смысл комплексно подходить к ремонту, если лямбда-зонд вышел из строя. 2. Агрессивная смесь, которой посыпают наши дороги. Она разъедает изоляцию проводов и сами провода. Мы для защиты от этого используем двойную изоляцию проводов, а также прячем место сварки проводов с датчиком внутрь лямбда-зонда».

Написать комментарий

Ваш комментарий: Внимание: HTML не поддерживается! Используйте обычный текст.

Оценка: Плохо Хорошо

Введите код, указанный на картинке:

Чето скучно, видимо мне.
Эк меня поперло с бездарными постами 🙂

Теперь будем разбираться с катализаторами, лямбда-зондами (или, для краткости, лямбдами) и прочими скучными вещами.
У меня возникла мысль о создании такой темы довольно давно, еще после того, как меня на сервисе успешно развели на замену лямбд и пытались развести на замену катализаторов.
Если первое я еще проглотил, то второе меня сподвигло уже на изучение вопроса т.к. молча оплачивать такие счета было тяжело.
В результате пришлось разбираться со всей этой скучной мутатней, зато я избежал больших трат.

На жипе выпуск расположен с обоих сторон блока, с каждой из которых стоит свой катализатор и, на каждом из них, висит по 2 лямбды.
Т.е. всего на машине2 одинаковых катализатора и 4 лямбды трех видов.
Каждая лямбда стоит от 2.500р.
Каждый катализатор стоит от 35.000р
В случае замены, такое количество недешевых деталей не радует кошелек, поэтому имеет смысл понимать как они работают и как выглядят их неисправности, чтобы не кормить нечистоплотные автосервисы, предлагающие замену этих деталей тогда, когда этого делать совершенно не нужно.

Чуть теории
Если кто в этом во всем разбирается, то эту часть можно спокойно пропустить и листать до графиков.

Катализатор — это устройство, которое придумано и используется с одной единственной целью — уменьшить количество недогоревшего топлива, выбрасываемого в атмосферу.
Т.е. чистый происк зеленого движения, к функционированию автомобиля отношения не имеющий.
Даже больше — катализатор мешает мотору нормально дышать т.к. повышает сопротивление выпуска.

Бытует аналогичное мнение и про лямбды, как об абсолютно ненужных устройствах, но это не совсем так.
Одна из них, первая, установлена для того, чтобы обеспечивать максимально качественное смесеобразование в двигателе.
А вот вторая уже не нужна — она служит только для того, чтобы контролировать состояние катализатора.

Что такое катализатор?
Это устройство, которое сконструировано так, что задерживает пары топлива и, за счет специальных катализаторов окисления, дожигает несгоревшее топливо, обеспечивая его отсутствие в выхлопе автомобиля.
Материалы, которые используются в катализаторах, недешевы, поэтому катализаторы такие дорогие.
Из этого, кстати, следует такой вывод: дешевых катализаторов не бывает.
Если вы нашли где-то деталь, которая позиционируется как катализатор и при этом стоит в несколько рз дешевле оригинала, то, вероятнее всего, вас обманывают, подсовывая пустую трубу, которая назначение катализатора выполнять не будет.
В процессе своей жизни и выполнения своего назначения, материалы которые используются в катализаторе постепенно расходуются.
Т.е. неизбежно, рано или поздно, он перестанет функционировать.
Обычно срок жизни катализатора на бензиновом двигателе составляет от 100.000 до 200.000 километров пробега.
Некачественное топливо и разбалансированная система смесеобразования, которые способствуют скорейшему расходованию активных компонентов катализатора, приводят к значительному сокращению срока его жизни.
Т.е. убить катализатор равновероятно можно как некачественным бензином, так и настройками системы, которые регулярно переобогащают смесь.
Если есть желание продлить жизнь катализатора, то имеет смысл следить за настройками системы смесеобразования.
Если на качество заливаемого топлива повлиять практически невозможно, то содержать машину в исправном состоянии не так уж и сложно.

Что такое лямбда-зонд?
Это специальный датчик, который меняет свои характеристики в зависимости от того, какое количество кислорода, способного вступать в реакции окисления, находится в зоне его чувствительного элемента.
Т.е. это датчик, который измеряет количество кислорода, поэтому его так и называют: кислородный датчик.
Существует несколько различных конструкций таких датчиков, которые различаются рабочим напряжением, реакцией на изменение кислорода и конструктивными особенностями но, в общем, их конструкции одинаковы.
В особенности конструкций и различий вникать смысла особого нет.
С точки зрения рассматриваемой темы нужно запомнить всего одну простую вещь: этот датчик меряет количество кислорода и, если его больше, то его показания выше, если же в воздухе больше топлива, то его показания ниже.
Используемый в жипе датчик имеет рабочий диапазон измерений от 0.2 до 0.9 вольт.
Чем выше вольтаж, чем больше в воздухе кислорода и меньше топлива и наоборот.

Зачем нужна первая лямбда?
Задача любого двигателя внутреннего сгорания — перевести энергию сгорания топлива в механическую энергию.
Эффективность двигателя определяется тем, что количество бензина, который поступает в камеры сгорания ровно такое, какое даст максимальный эффект.
Т.е. его должно поступать ровно столько, сколько может сгореть.
Если его будет меньше, то выделится меньше энергии, если топлива будет больше, то оно не сгорит и впустую вылетит в выхлопную трубу.
Датчик кислорода используется мозгами автомобиля для контроля смесеобразования.
Они анализируют соотношение кислорода и топлива в газах выходящих из цилиндров.
Понятно, что если двигатель будет работать абсолютно идеально, то в выхлопных газах будет ровно ноль как кислорода так и топлива.
Т.е. сгорело абсолютно точно то количество топлива, которое могло сгореть, не больше и не меньше.
На практике, добиться такой эффективности невозможно, поэтому мозги постоянно контролируют состав смеси.
Контроль осуществляется иттерационно.
Подается какой-то объем топлива и воздуха, эта смесь сгорает, на основании результатов измерения лямбдой мозги видят в какую сторону надо скорректировать смесь, чтобы сгорание топлива было максимально эффективно.
Такая коррекция осуществляется непрерывно, каждый цикл впрыска топлива.

Зачем нужна вторая лямбда?
Этот датчик анализирует количество кислорода после катализатора.
Из описания назначения катализатора понятно, что идеальная ситуация такая, когда все несгоревшее топливо будет полностью сожжено в катализаторе.
Т.е. вторая лямбда должна показывать полное отсутствие топлива после катализатора, т.е. выдавать высокие значения напряжения (топлива нет, а кислород есть).
По мере износа катализатора его эффективность падает.
В результате критического износа он может разрушаться различными способами.
В нем может оказаться дыра или он, наоборот, может сплавиться внутри.
Последствие таких разрушений могут быть довольно печальными для двигателя.
Мозги автомобиля контролируют взаимное изменение лямбд до и после катализатора для того, чтобы своевременно увидеть критическое падение эффективности катализатора и, в случае обнаружения такой ситуации, будет зафиксирована ошибка и на приборной панели загорится знак неисправности.

Несколько рассуждений про слухи
В интернете бытует множество мнений, слухов и утверждений о том, как должны себя вести катализатор и лямбды, на что они влияют и что с ними можно и нужно делать.
Часть этих мнений абсолютно не соответствуют действительности и следование им может причинить вред как автомобилю, так и карману владельца.
Прокомментирую тут некоторые из них.

Лямбды не нужны, их нужно выкинуть
Это абсолютно неверно.
Как можно понять из описания выше, одна из лямбд служит для правильного образования смеси, а вторая для контроля состояния катализатора.
Если хочется, чтобы мотор работал максимально эффективно и с наибольшей экономичностью, то первая лямбда должна быть исправна и нормально функционировать.
Удалять вторую лямбду можно, но строго вместе с удалением катализатора, иначе мозги двигателя не смогут контролировать его состояние и это может привести к его разрушению и фатальным последствиям для двигателя.

Катализаторы необходимо выбивать как можно быстрее
Мнение обосновано только на автомобилях, где не установлена вторая лямбда.
На таких машинах ничто не контролирует состояние катализатора и его кончину предсказать невозможно, поэтому она может наступить внезапно и даже чем-то навредить.
В случае если на автомобиле используется только одна лямбда, то катализатор можно безболезненно и просто ампутировать в любое время.
Если же на автомобиле установлены две лямбды, то ампутировать катализатор легко не получится.
При его удалении мозги тут же увидят его отсутствие а высветят ошибку на приборной панели.
Совместно с удалением катализатора, в обязательно порядке, необходимо либо произвести перепрограммирование (чип-тюнинг) автомобиля с исключением контроля состояния катализатора, либо устанавливать специальную электронную обманку, которая будет для мозгов делать вид, как будто катализатор жив и никуда не делся.
И то и другое действие требует денег, часто немалых, поэтому предпринимать их до тех пор пока катализатор не выйдет из строя абсолютно бессмысленно.

Катализатор нереально душит двигатель
Это мнение ошибочное — в исправном состоянии он оказывает незначительное отрицательное влияние на работу двигателя.
Значительно влиять на работу двигателя он начинает когда его ресурс подходит к концу.
За редкими исключениями в первую очередь снижается его пропускная способность и двигатель начинает задыхаться: теряется мощность, растет потребление топлива.
Если на автомобиле есть контроль за его состоянием и нет ошибок по его эффективности, то катализатор исправен.
В случае приближения его кончины, об этом сообщит лампа на приборной панели.
До этого момента мешать ему работать смысла нет.

Установка лямбд от ВАЗа — это ужасающий колхоз, надо ставить только оригинал!
Это мнение абсолютно неверное.
Принцип действия всех датчиков одинаковый, отличия только в особенностях реализации.
Если его конструктив, особенности работы и конструктив одинаковые, то независимо от того для какой марки автомобиля он предназначен исходя из надписи на коробке — он будет замечательно работать на любой машине с такой же схемой подключения.

Практика
Как обычно, я использую TorquePro для отображения и простейший Bluetooth ODBII передатчик для получения данных от датчиков автомобиля.

В интернете, как обычно, множество противоречивых данных о том как должны выглядеть «правильные» и «неправильные» данные лямбд и как их нужно интерпретировать.
Ситуацию осложняют конструктивные особенности лямбд.
Некоторые работают с инверсией, некоторые в другом диапазоне, в результате сориентироваться с непривычки сложно.
Приведу несколько графиков с комментариями, чтобы было понятнее.

Чуть подготовки.
На страничку вытаскиваем два датчика кислорода для одного банка (одной стороны), например для первого.
Называются они O1x1 и О1х2, т.е. первая (до катализатора) и вторая (после) соответственно в виде графиков в удобном размере.
Так же, обязательно, необходимо вывести показания температуры катализатора т.к. мозги начинают использовать данные от лямбд для коррекции смеси только после его прогрева.
Называется он, для первого банка, Cat B1S1.
На моих картинках выведены показания температуры для обоих.
Остальные датчики вытаскиваем по вкусу.
Я вытащил температуру двигателя хотя, в познавательных целях, было бы нагляднее установить количество оборотов двигателя в виде графика.
Ну да ладно.

Вот так должен выглядеть график с лямбд при исправном катализаторе на двигателе без нагрузки (например холостом ходу):

На левом графике лямбда до катализатора.
На ней видно итерации, которые осуществляют мозги двигателя для достижения максимального сгорания смеси в цилиндрах.
Они чуть обогащают смесь, контролируют результат и, на следующем цикле прапорционально ее обедняют.
В среднем, количество подаваемого воздуха и топлива в смеси получается идеальным — сгорает практически все топливо и двигатель работает максимально эффективно.
Такие колебания мозги осуществляют специально, чтобы, заодно, контролировать состояние лямбды.
Если бы смесь генерировалась всегда одинаковая и при этом лямбда выдавала одно и то же значение, то невозможно было бы уловить момент, когда она выйдет из строя и, значит, на ее показания уже нельзя полагаться.
Если лямбда выходит из строя она начинает с задержкой реагировать на изменение смеси или вовсе перестает менять свои показания.
В таком случае мозги записывают ее ошибку и высвечивают ее на приборной панели.
Дальнейшее смесеобразование осуществляется без учета ее показаний по встроенным в мозги таблицам.
Т.к. фактическая ситуация всегда отличается от табличной, то такое регулирование не может быть эффективным.
Возрастает количество потребляемого топлива, возможно значительно, и двигатель начинает работать менее эффективно.
В случае, если на машине используется катализатор, то первую лямбду всегда необходимо поддерживать в исправном состоянии т.к. пере обогащенная смесь, на которую как правило ориентированы внутренние таблицы, будет снижать ресурс катализатора.
Ему придется пережигать большее количество топлива, сильнее разогреваться и расходовать больше внутренних компонентов.

На правом графике мы видим показания второй лямбды, установленной после катализатора.
В данном случае она показывает практически ровню линию с незначительными колебаниями и средним высоким значением.
Это говорит о том, что все лишнее топливо было успешно дожжено в катализаторе и в смеси, которая вышла из него соотношение кислорода и топлива максимально в сторону кислорода.
Это свидетельствует о нормальной работе катализатора.
По величине напряжения можно судить об усталости катализатора.
Когда он начнет терять эффективность линия сохранит свою форму, но упадет количество кислорода.
Если катализатор в хорошем состоянии, то выдаваемое им напряжении будет составлять от 0.6 до 0.9 вольт.
Если линия значения будет абсолютно ровной — это может свидетельствовать о неисправности лямбды.
О замыкании внутри нее или, наоборот, пробое.
В таком случае величина напряжения будет неизменна во всех условиях.

Если удалить катализатор полностью или в нем образуется дыра и недожженные газы начнут прорываться насквозь, то график второй лямбды начнет в точности повторять график первой с небольшой задержкой по времени и уменьшением амплитуды сигнала в зависимости от величины отверстия.
Это и логично — топливо не сгорает, поэтому сколько его зашло в катализатор, столько и вышло, значит графики датчиков должны совпадать.

У меня есть много статей про катализатор, например, очень полезная — как его проверить. Там я использовал различные методики, однако все может оказаться гораздо проще. Сейчас на современных авто имеется два датчика кислорода (они же «лямбда-зонты») один перед этим «фильтром», другой после. Так вот – если грамотно считать с них показания, то можно примерно оценить состояние и износ каталитического нейтрализатора. В общем статья очень полезная, как обычно будет и видео версия в конце …

СОДЕРЖАНИЕ СТАТЬИ

  • ELM327 в помощь
  • Диагностика катализатора
  • Минусы такого метода
  • ВИДЕО ВЕРСИЯ

Сложность проверки катализатора заключается в том, что просто так его снять и посмотреть очень сложно! А тем более если машина у вас каталась хотя бы 50 – 70 000 км, то сделать это сложно вдвойне. Потому как болты прикипают, их чуть ли не срезать нужно.

Можно конечно залезть через «лямбду-зонт» например эндоскопом, но ее также нужно открутить, а с ней может быть аналогичная ситуация что и с креплениями.

Хотелось бы без разбора и прочих танцев с бубном — и знаете, такой метод есть.

ELM327 в помощь

Да – да, именно через него. Я вообще считаю, что он должен быть у каждого автовладельца, особенно современных авто, где куда датчиков и прочий электроники (у меня есть подробная статья, в ней я четко и по полкам рассказал, что и как настраивать)

Для тех, кому лень читать, немного расскажу – ELM327 это определенный сканер, который может читать показания различных датчиков и скидывать ошибки (в том числе и CHECK ENGINE).

Эти устройства есть как проводные, так и работающие без проводов (через Bluetooth или WIFI). Вам нужно установить его в специальный разъем на автомобиле обычно это OBD2 и подключить к своему смартфону или планшету.

Однако чтобы считать ошибки и показания, вам нужно установить на смартфон или планшет специальную программу, сейчас самая популярная это TORQUE.

Будем считать, что все мы это сделали, это элементарно. Но для тех, кто все же это не понимает, смотрим вот это видео, все расстановится на свои места.

Диагностика катализатора

Я буду считать, что все просмотрели это видео и сейчас все могут настраивать программу и наш сканер.

После того как мы наладили подключение с автомобилем, в программе, вам нужно добавить специальные окна. Я вам настоятельно рекомендую «графики»

Нажимаем и держим на пустом экране в открытой программе – далее «добавить прибор» — в списке ищем пункт – «НАПРЯЖЕНИЕ 1-ГО ДАТЧИКА 02 БАНКА 1» — затем повторяем все тоже самое, только добавляем «НАПРЯЖЕНИЕ 2-ГО ДАТЧИКА 02 БАНКА 1».

Второй набор датчиков «CAT B1S1» и «CAT B1S2» — они показывают температуру до катализатора и после.

Теперь запускаем двигатель, и ждем, чтобы машина прогрелась до рабочей температуры, летом хватит 5 – 7 минут.

И вот теперь начинаем считывать показания с первых датчиков по напряжению, важно чтобы обороты были холостые (газовать не нужно):

«НАПРЯЖЕНИЕ 1-ГО ДАТЧИКА 02 БАНКА 1» — это первый лямбда-зонт, его график будет идти то вверх, то вниз, это абсолютно нормально. Это говорит нам о том, что ЭБУ корректирует подачу воздушно-топливной смеси. То обогащая ее, то обедняя.

«НАПРЯЖЕНИЕ 2-ГО ДАТЧИКА 02 БАНКА 1» — вот это для нас самый интересный параметр. Нормальное его значение колеблется в районе 0,7 – 0,9. Причем желательно чтобы график был как можно прямее, без волн и скачков. О чем нам это говорит? Все просто – катализатор дожигает вредные газы, и через второй лямбда-зонт проходит большое количество кислорода. Значит он работает правильно.

Если график находится на уровне 0,5-0,6 или тем более 0,1-0,2 – то это плохо! Значит катализатор, уже плохо очищает отработанные газы (его поверхность износилась) и его скоро нужно будет менять

НАБОР «CAT B1S1» и «CAT B1S2» — первый показывает температуру до катализатора, второй после. Так вот у нормально работающего элемента, показанию до (CAT B1S1), будут выше, чем показания после (CAT B1S2), примерно на 10%. Происходит это потому что газы вырывающиеся из двигателя максимально разогреваются в катализаторе, но выходя из него немного остывают (на 7-10%).

Если показания и на первом датчике температуры и на втором одинаковые, то это говорит что скорее всего каталитический нейтрализатор посыпался. И газы идут напрямую. Нужно менять

Как видите все легко и просто. Не нужно ничего разбирать и откручивать все понятно и так.

Минусы такого метода

Конечно же есть и минусы (куда же без них). Начнем и программы – не всегда (не на всех автомобилях) отображаются показания первого лямбда-зонта. Конечно это не критично, все же нам важны показания со второго (а практически всегда отображается). Но хотелось бы иметь полную картину.

НУ и последнее, этот тест показывает износ, забитость и полностью разрушение катализатора. То есть если процесс у вас только начался (сыплется передняя часть), то его можно и не увидеть, тут только эндоскоп или полностью снятие.

Сейчас видео версия, там все разжевано «от и до».

На этом заканчиваю, думаю мои материалы были вам полезны. ИСКРЕННЕ ВАШ АВТОБЛОГГЕР

(15 голосов, средний: 4,60 из 5)

Похожие новости

Как проверить катализатор? Разберем рядовую машину + видео

Термолента для глушителя. Для чего нужно обматывать

Катализатор KIA RIO и CEED. Проблемы, удаление

Удаление катализаторов и адаптация работы лямбда зондов

Мы производим удаление катализаторов с адаптацией работы лямбда зондов для любой модели. Машина после этой процедуры работает корректно без ошибок. Если Вы уже удалили катализатор без решения вопроса задних лямбда зондов, и машина стала расходовать больше топлива и раздражает постоянной ошибкой Check Engine, обращайтесь к нам и Вы забудете эту проблему.

Как работает катализатор

Миллионы машин в мире – источники загрязнения окружающей среды. Особенно плохо обстоят дела в больших городах, где вредные выхлопы представляют реальную угрозу для жителей.

Если у Вашей машины вышел из строя катализатор, существуют 2 пути решения вопроса:

1.Покупка и установка нового катализатора

(путь дорогой — от 1000 евро за катализатор плюс работа — и экономически спорный, так как нет гарантии, что новый катализатор не умрет очень скоро из-за низкого качества топлива на заправках).

2.Удаление катализатора и установка пламегасителя с имитатором катализатора вместо него.

Стоимость работы и материалов: удаление катализатора 400-1000 грн. + снятие установка частей глушителя, на которых он установлен (от 300 грн. — зависит от модели), пламегаситель — в среднем 800-1000 грн., имитатор катализатора с установкой — от 1000 грн. Итого для автомобиля с двумя лямбда зондами проблема дефектного катализатора решается в простом случае за 3000 грн. Экономия по сравнению с покупкой нового катализатора очевидна, а срок службы много больше. Для автомобилей с 4-мя лямбда зондами суммы затрат и материалов удваиваются. Рассмотрим это решение проблемы подробнее. Пламегаситель берет на себя функцию катализатора по тепловой защите последующих частей глушителя. Кроме того, он сохраняет заводские шумовые параметры автомобиля. Сделать такую работу очень просто. Сложнее заставить двигатель правильно работать без катализатора, так как все автомобили, начиная где-то с 1998 года, имеют систему контроля состояния катализатора, которая без его наличия или в случае некорректной работы будет давать ошибку. Система представляет в простейшем случае два кислородных датчика (лямбда зонда), между которыми расположен катализатор. Блок управления двигателем, анализируя информацию с этих датчиков определяет исправность катализатора. При неисправном катализаторе двигатель переходит на аварийный режим, теряя мощность и расходуя больше топлива. Для корректной работы лямбда зондов можно установить устройство, имитирующее исправный катализатор. Это устройство еще называют эмулятором катализатора или обманкой.

3.Программное удаление лямбда зондов
Внешний вид лямбда зонда

 

Кислородный датчик (лямбда зонд) Трехкомпонентный каталитический нейтрализатор работает наиболее эффективно, если в двигатель подается смесь стехиометрического состава, то есть при соотношении воздуха и топлива 14,7 : 1 или коэффициента избытка воздуха, равного единице. Если воздуха в смеси слишком мало, то СН и СО не окисляются (сгорают) до безопасного побочного продукта. Если воздуха слишком много, то не может быть обеспечено разложение NOх на кислород и азот. Поэтому стали выпускать новые двигатели, в которых состав смеси регулировался постоянного для получения точного соответствия избытка воздуха альфа=1 с помощью датчика концентрации кислорода (лямбда зонда), встраиваемого в выпускную систему.

Этот датчик определяет количество кислорода в отработавших газах, а его электронный сигнал используется блоком управления двигателя, который соответственно изменяет количество впрыскиваемого топлива. Принцип действия датчика заключается в способности пропускать через себя ионы кислорода. Если содержание кислорода на активных поверхностях датчика (одна из которых контактирует с атмосферой, а другая с отработавшими газами) значительно отличается, происходит резкое изменение напряжения на выводах датчика. Сегодня часто устанавливаются два датчика концентрации кислорода: до и после катализатора.

Для того чтобы катализатор и датчик кислорода могли эффективно работать, ни должны быть прогреты до оптимальной температуры. Минимальная температура, при которой задерживается 90% всех вредных веществ, составляет порядка 300 градусов. Необходимо также избегать перегрева нейтрализатора, поскольку это может привести к повреждению наполнителя и частично блокировать выход газов. Если двигатель работает с перебоями, то несгоревшее топливо догорает в катализаторе, резко увеличивая его температуру. Иногда достаточно несколько минут работы с перебоями, чтобы повредить нейтрализатор. Вот почему электронные системы современных двигателей должны выявлять пропуски в работе и предотвращать их, а также предупреждать водителя о серьезности этой проблемы.

Для ускорения прогрева каталитической системы и выхода его на рабочий режим используется также способ вторичной подачи воздуха в выпускной коллектор с помощью специального электро приводного насоса.

Что такое обманка лямбда-зонда

Обманка лямбда-зонда — это устройство которое корректирует сигнал нижнего датчика кислорода если каталитический нейтрализатор на автомобиле вышел из строя или был удален. Она может быть механическая — в виде металлической проставки, или в электронная — в виде блока с платой (эмулятора). Так же иногда ее называют обманкой катализатора, мини-катализатором или эмулятором катализатора.

Для чего нужна обманка лямбда-зонда

В случае если катализатор на вашем автомобиле рассыпался, оплавился, забился или просто перестать очищать выхлопные газы от остатков топлива — ЭБУ выдаст ошибку «Check Engine» о его неэффективной работе. Последствиями ошибки в большинстве случаев является аварийный режим работы автомобиля, а вместе с ним увеличение расхода топлива, отключение вспомогательных систем и ограничение оборотов двигателя. Для устранения данных ошибок устанавливают обманку на нижний кислородный датчик.

Принцип работы лямбда-зонда

Большинство автомобилей, выпущенных с 1998 года оснащаются минимум двумя (некоторые, особенно с V-образным двигателем — четырьмя) кислородными датчиками. Это означает, что автомобиль соответствует экологическому классу ЕВРО-3, 4, 5 или 6. Верхний лямбда-зонд отслеживает остаток кислорода в выхлопных газах и корректируют подачу топливовоздушной смеси — он не участвует в работе катализатора. Второй датчик находится после катализатора и считывает показания выхлопных газов, прошедших через него. Электронный блок управления сравнивает егопоказания с первым датчиком и, если катализатор забился или его нет совсем, выдает соответствующую ошибку.

Сам же датчик представляет собой гальванический элемент с твердым электролитом в виде керамики из диоксида циркония (ZrO2). Один из электродов омывается горячими выхлопными газами, а второй — воздухом из атмосферы. Важно заметить, что элементы датчика начинают измерение состава отработавших газов после разогрева до 300—400 °C. Только в таких условиях циркониевый электролит приобретает проводимость, а гальваническая ячейка начинает работать. Именно поэтому внутри датчика установлен подогреватель, который на холостых оборотах помогает ему быстрее разогреться до нужно температуры и включиться в работу.

Механические обманки лямбда-зонда

Механическая обманка по размерам сопоставима с самим датчиком. Ее корпус выполнен из качественной конструкционной углеродистой стали (марки 45), а внутрь запрессован каталитический элемент. Данные обманки универсальны и подходят на любые автомобили с резьбовым соединением лямбда-зонда. При ее выборе стоит учитывать экологический класс автомобиля (ЕВРО-3, 4 или 5). Если машина была ввезена из-за границы, тогда советуем подбирать проставку в зависимости от того для какой страны был произведен автомобиль:

Для внутреннего рынка США и Канады:

ЕВРО-3 — не подходят;
ЕВРО-4 — до 2003 г.в.;
ЕВРО-5 — с 2004 г.в.

Для внутреннего рынка Кореи:

ЕВРО-3 — не подходят;
ЕВРО-4 — до 2005 г.в.;
ЕВРО-5 — с 2006 г.в.

Для внутреннего рынка Европы, Японии и прочих стран:

ЕВРО-3 — до 2002 г.в.;
ЕВРО-4 — с 2003 по 2008 г.в.;
ЕВРО-5 — с 2009 г.в.

Механическая обманка по сути является обычным каталитическим нейтрализатором небольшого размера и «очищает» выхлопные газы непосредственно для датчика. Таким образом датчик кислорода получает отработавшие газы с необходимым уровнем CO, CHx и NOx. Так же бывают «пустые» обманки с небольшим отверстием 2-3 мм, но они подходят только на некоторые автомобилей с экологическим классом ЕВРО-3.

Установка механической обманки занимает не более 10 минут: выкручивается датчик, на его место вкручивается обманка и в нее обратно вкручивается датчик.

Срок эксплуатации обманки с мини-катализатором зависит в первую очередь от качества используемого топлива, так как присадки, содержащиеся в некачественном бензине, вступают в химическую реакцию с каталитическим элементом и могут значительно сократить срок его работы. В среднем они служат от 60 000 до 90 000 км.

Электронные обманки лямбда-зонда

Электронная обманка или эмулятор — это блок с микроконтроллером, который собой полностью заменяет нижний датчик кислорода. Так же существуют и упрощенный вариант исполнения — схема из конденсатора и резистора установленная в разрыв контактов кислородного датчика. Соответственно, чем лучше будет такой эмулятор делать свою работу, тем сложнее его микросхема, а значит больше вероятность получить проблемы с электроникой как самого блока, так и совместимости с конкретной машиной. Более подробное сравнение электронных и механических обманок можете прочитать здесь.

Прошивка ЭБУ автомобиля

При прошивке (перепрошивке) электронного блока управления (ECU) можно полностью отключить нижний лямбда-зонд, таким образом вообще не потребуется установка никаких обманок. Но у этого способа решения проблемы есть два весомых минуса. Во-первых, стоимость такой услуги варьируется в диапазоне 30000-60000 тг для бюджетных и распространенных моделей, но может доходить до 300 000 тг если у вас автомобиль класса «Люкс» или просто достаточно редкая модель. Во-вторых, всегда есть риск лишиться ЭБУ если в процессе прошивки что-то пойдет не так и блок «сгорит» или новая прошивка будет периодически «слетать».

Поэтому данный способ хоть и решает проблему ошибки по катализатору, но имеет смысл только если вместе с отключением кислородного датчика вы будете производить еще какие-то манипуляции с настройкой прошивки, скажем, для увеличения мощности двигателя. В противном же случае игра не стоит свеч.

Volkswagen Golf Руководство по обслуживанию и ремонту — Снятие и установка лямбда-зонда 1 перед каталитическим нейтрализатором -GX10-/лямбда-зонда 1 после каталитического нейтрализатора -GX7-

Лямбда-зонд 1 перед каталитическим нейтрализатором -GX10- состоит из
Нагреватель лямбда-зонда -Z19-
Лямбда-зонд 1 после катализатора -GX7- состоит из
Лямбда-зонд после катализатора -G130-
Нагреватель лямбда-зонда 1 после катализатора -Z29-
Специальные инструменты и оборудование для мастерских требуется
   
Набор накидных ключей для лямбда-зонда -3337-
 

–  Отсоедините соответствующий электрический разъем:
1 —  Для лямбда-зонда 1 перед катализатором -GX10-.
2 —  Для лямбда-зонда 1 после катализатора -GX7-.
 

–  Открутите соответствующий лямбда-зонд с помощью инструмента от Lambda набор накидных ключей для зонда -3337-.
1 —  Лямбда-зонд 1 после катализатора -GX7-
2 —  Лямбда-зонд 1 перед каталитическим нейтрализатором -GX10-
Установка осуществляется в обратном порядке; Обратите внимание далее:
Примечание
Новые лямбда-зонды покрыты монтажной пастой.Этот паста не должна попасть в пазы на корпусе лямбда-зонда.
В случае бывшего в употреблении лямбда-зонда смазывайте только резьбу с высокотемпературной пастой. Эта паста не должна попасть в прорези на корпусе лямбда-зонда. Паста высокотемпературная → Электронный каталог запчастей.
Во время установки электрический соединительный кабель Лямбда-зонды должны крепиться в тех же местах.Провод должен не касаться выхлопной трубы.
→ Глава «Обзор сборки — лямбда-зонд»
 

Обзор сборки — лямбда-зонд
Примечание Новые лямбда-зонды покрыты монтажной пастой. Этот паста не должна попасть в пазы на корпусе лямбда-зонда….

© 2016-2022 Copyright www.vwgolf.org

Лямбда-зонд и его важный вход в ЭБУ

В более ранней статье мы обсуждали работу ЭБУ, где уже стало понятно, что лямбда-зонд предоставляет ЭБУ жизненно важную информацию. Было бы слишком далеко вдаваться во все подробности, чтобы обсудить, как эта часть работает и как она взаимодействует с ECU. В этой статье мы объясним точное взаимодействие двух компонентов!

Какой датчик?

Правильно, лямбда-зонд.Среди автомобильных техников эту деталь иногда называют лямбда-зондом, датчиком кислорода или датчиком кислорода. Это название подразумевает функцию этой части. Короче говоря, этот датчик измеряет количество кислорода в выхлопе. У голландской организации сектора мобильности BOVAG есть очень красивое и краткое описание этой детали:

.

«Лямбда-зонд — это датчик в выхлопе вашего автомобиля, который измеряет количество кислорода в выхлопных газах. Если значение содержания кислорода меняется, система управления двигателем регулирует его автоматически.Таким образом, каталитический нейтрализатор работает оптимально, а выхлопные газы менее вредны для окружающей среды».

Сказав это, хорошо знать, что большинство современных автомобилей имеют два кислородных датчика. Один датчик измеряет газы, выходящие из двигателя, а второй датчик расположен за каталитическим нейтрализатором. Поскольку лямбда-зонд представляет собой полый керамический цилиндр, через него может проходить кислород. Датчик измеряет наличие кислорода и генерирует сигнал напряжения. Провода на датчике могут нагревать лямбда-зонд и передавать данные на ЭБУ.На основе этих данных блок управления двигателем определяет, насколько обедненной (мало выхлопных газов и много кислорода) или богатой (много выхлопных газов и мало кислорода) топливно-воздушной смеси. Нагрев датчика кислорода также имеет важное значение: это позволяет датчику быстро реагировать на холодный двигатель, что приводит к лучшему и более экономичному сгоранию!
Теперь, когда мы это знаем, профессионалу может быть интересно узнать краткую историю этой детали:

.

История лямбда-зонда

Чтобы немного рассказать об истории лямбда-зонда, мы хотим перенести вас в прошлое.Чтобы быть точным, для этого нам нужно отправиться в 1976 год. Небольшое исследование показывает, что это был особенный год. 1976 год – это год, когда Queen выпустили «Богемскую рапсодию», родилась «Панненка пенальти», был основан бренд Apple и вошел в обиход легендарный Concorde. Взглянув на книги по истории, можно увидеть, что 1976 год был особенным для Швеции. Шведская группа ABBA выпустила Dancing Queen в том же году (мы приносим свои извинения за то, что песня застряла у вас в голове прямо сейчас…), Бьорн Борг пробился к победе в Уимблдоне, и, в довершение всего, Швеция представила лямбда-зонд. .Настоящий забавный факт для именинников!

Ну, вернемся к датчику О2. В результате более строгих экологических норм и правил выбросов, введенных в Соединенных Штатах, Volvo стала первой маркой, которая в 1976 году оснастила этой новой технологией модели 240 и 260. Volvo так гордилась этим нововведением, что даже Эмблема «Лямбда Зонд» на решетке радиатора нескольких автомобилей.

После успешного внедрения Volvo еще больше укрепила партнерские отношения с Bosch, которая взяла на себя ответственность за производство цилиндрической детали.Вскоре в 1982 году последовали лямбда-зонды второго поколения. Большим преимуществом этого второго поколения было то, что этот датчик нагревался. За сорок лет, последовавших за появлением лямбда-зонда, компания Bosch произвела более 1 миллиарда таких деталей.

Что ЭБУ делает с информацией лямбда-зонда?

После этого экскурса в учебники истории пора вернуться к работе лямбда-зонда. Приведенное ранее определение этого датчика содержит очень важный элемент, заслуживающий более подробного объяснения.Это относится к следующему предложению: «Если значение содержания кислорода меняется, система управления двигателем регулирует это автоматически».

Главный вопрос, конечно, что и как регулирует система управления двигателем, или ЭБУ, исходя из содержания кислорода в выхлопных газах. Это основано на так называемом значении лямбда. ЭБУ постоянно сравнивает количество воздуха, которое измеряет кислородный датчик, с количеством впрыскиваемого топлива. Когда это значение падает ниже 1, в топливной смеси не хватает воздуха (богатая смесь).Если это значение выше 1, имеется избыток воздуха (бедная смесь). На основании этих данных блок управления двигателем принимает собственное решение. Самое очевидное решение для ЭБУ — это начать регулировать топливно-воздушную смесь так, чтобы пропорции совпадали. Этого можно добиться, например, регулировкой времени открытия форсунок. Однако, если значение отклоняется слишком сильно или если значение продолжает отклоняться после регулировки, загорится сигнальная лампа двигателя, и двигатель может перейти в аварийный режим.

Неисправный лямбда-зонд сильно влияет на ЭБУ

Теперь, когда было объяснено взаимодействие обоих компонентов, становится понятно, какое влияние эта деталь оказывает на функционирование ЭБУ. Поэтому неисправный лямбда-зонд необходимо быстро заменить. Продолжительное вождение с неисправным датчиком также может привести к повреждению каталитического нейтрализатора. Поскольку индикатор управления двигателем (индикатор MIR) часто загорается при неисправности лямбда-зонда, важно продолжить диагностику и выполнить различные тесты.

Проверка и измерение неисправных лямбда-зондов

Первый тест, который вы можете сделать, это увеличить число оборотов двигателя примерно до 1500–2000 об/мин. Важно как можно меньше двигать педалью акселератора. Если обороты нестабильны, у вас может быть первое указание на то, что лямбда-зонд может быть неисправен.

После того, как вы убедились в стабильных оборотах двигателя, вам необходимо взять омметр и измерить сопротивление нагревателя. Иногда для этого нужно снять тепловой экран с выпускного коллектора.Проведите это измерение при нормальной температуре двигателя (от 85 до 95°C) и используйте электрическую схему. Верно ли значение? Затем приступайте к измерению сигнала. Правильно функционирующий кислородный датчик дает значение от 0,1 до 0,9 Вольт. Если это не так, можно сделать вывод, что лямбда-зонд стал причиной включения лампочки управления двигателем! Вам нужно почистить лямбда-зонд, или вы можете заменить датчик.

Опыт учит, что лучше заменить лямбда-зонд на оригинал, а не выбирать неоригинальный датчик.Как только вы начнете искать «послепродажный лямбда-зонд» на различных автомобильных форумах, станет ясно, что мы подразумеваем под этим. Есть масса случаев, когда проблема не решается, а лампочка продолжает гореть.

ДЕНСО | Лямбда-зонды DENSO

С тех пор, как компания DENSO впервые начала производить лямбда-зонды в 1970-х годах, постоянные инновации DENSO помогли повысить эффективность двигателя для достижения более высокого расхода топлива на галлон и снижения выбросов, обеспечивая при этом долгосрочное качество для клиентов.

Лямбда-зонды являются одними из наиболее чувствительных и важных компонентов в системе управления двигателем автомобиля, контролируя состав воздушно-топливной смеси на холостом ходу, а также ограничивая ускорение и режим движения двигателя.

Компания DENSO впервые начала производить лямбда-зонды в 1977 году и в настоящее время является одним из ведущих мировых поставщиков с несколькими сотнями миллионов датчиков, измеряющих состав воздушно-топливной смеси в автомобилях по всему миру.

Лямбда-зонды малой грузоподъемности начали появляться на автомобилях с развитием систем впрыска топлива.А в начале 90-х годов датчик соотношения воздух/топливо DENSO стал первой в мире инновацией, поскольку производители транспортных средств повысили требования к более высоким стандартам выбросов, введенным начиная с ЕВРО 3.

В то время как в этих более ранних системах использовался один лямбда-зонд в выхлопной системе для обеспечения замкнутого контроля воздушно-топливной смеси, сегодняшние стандарты выбросов требуют, чтобы двигатели использовали до четырех датчиков, контролирующих содержание кислорода в выхлопных газах, а также каталитический нейтрализатор. эффективность.

Для правильного выполнения этих функций датчики должны полностью соответствовать стандартам оригинального оборудования.Например, неисправный или неправильно откалиброванный лямбда-зонд может отрицательно повлиять на управляемость, что приведет к дорогостоящему ремонту.

Лямбда-зонды DENSO качества OE, устанавливаемые впервые, предназначены для работы с системой впрыска топлива, каталитическим нейтрализатором и системой управления двигателем, чтобы помочь достичь минимально возможного уровня вредных для окружающей среды выбросов двигателя.

Транспортные средства, оснащенные лямбда-зондами, в настоящее время составляют более 68% европейского автопарка, и поскольку автомобильная промышленность продолжает ужесточать стандарты выбросов, эта цифра быстро растет.

Законодательство ЕС теперь требует сократить выбросы на 40% к 2030 году, а лямбда-зонды DENSO предлагают все передовые технологии для автомастерских, чтобы предоставить своим клиентам замену OEM-качества, а также позволяют им снизить выбросы и снизить расход топлива. при этом достигается оптимальная производительность двигателя.

Лямбда-зонды контролируют процентное содержание несгоревшего кислорода в выхлопных газах автомобиля. Если содержание кислорода слишком высокое или низкое, датчик передаст сигнал напряжения на ЭБУ.

Чтобы удовлетворить спрос на лямбда-зонды качества оригинального оборудования и продолжить их значительный рост, DENSO постоянно добавляет новые детали в свой ассортимент лямбда-зондов для вторичного рынка.

Штефан Верхуф, менеджер по продуктам лямбда-зондов DENSO Aftermarket, пояснил: «Линейка лямбда-зондов DENSO началась еще в 1977 году и сейчас составляет 68% европейского автомобильного парка. Широкий ассортимент гарантирует, что мастерские и дистрибьюторы могут быть уверены, что они предоставляют своим клиентам послепродажного обслуживания продукцию самого высокого качества, расширяя возможности для своего бизнеса.”

Узнать больше

Дополнительную информацию о линейке лямбда-зондов DENSO можно получить в Интернете на сайте www.denso-am.eu, в TecDoc или у местного торгового представителя DENSO Aftermarket.

Используется ли лямбда-зонд после каталитического нейтрализатора для контроля состава смеси в двигателе?

Споры о контроле подачи топлива сзади вызывали некоторый интерес на профессиональных форумах по ремонту автомобилей в прошлые годы, в основном на i-ATN. Стратегии управления подачей топлива сзади широко используются; это общепризнанный факт в отрасли.Для более доступного справочного источника; Bosch Automotive Handbook является хорошим справочником. В 5-м издании это страница 525.

Стратегии контроля топлива в управлении двигателем являются одними из самых тщательно охраняемых секретов. В документации мало подробностей о том, как это делается в той или иной системе. Это не означает, что у нас нет способов вообще узнать, как это делается. Одним из доказательств, которое у нас есть, является OBDII PID с маркировкой O2BxS2FT. PID корректировки подачи топлива для заднего датчика кислорода предполагает, что датчики после каталитического нейтрализатора действительно используются для управления подачей топлива.Эксперименты также могут показать, как разные OEM-производители используют датчики. Некоторые системы, например Subaru конца 1990-х годов, не могут поддерживать контроль смеси на уровне или близком к стециометрическому, когда датчик предварительного катализатора отключается. Другие без проблем поддерживают контроль топлива на обоих берегах, даже когда работает только один задний датчик (Lexus LS400 1990 года).

Стратегии контроля топлива менялись с годами. В 1970-х и начале 1980-х системные конструкции имели тенденцию к простой логике с прямой обратной связью.Датчик смеси посылает свой сигнал, контроллер регулирует смесь через изменения в форсунке вовремя, происходит сгорание, затем датчик считывает новую отрегулированную смесь, и так цикл обратной связи продолжается. Эта система работает, но является грубой по современным стандартам, поскольку она посредственна, когда речь идет об оптимальном управлении расходом топлива, и очень плоха в точном контроле смеси, необходимом катализатору для оптимального контроля выбросов. Это конструкция системы, широко известная и цитируемая техническими специалистами и на любительских интернет-форумах.Отсюда и миф о том, что задний датчик смеси проверяет только катализатор.

Новые модели значительно изменились. Этот логический тип был помечен как «упреждающая связь». Он использует логику обучения нейронной сети и запоминает предыдущие параметры реакции двигателя, чтобы добиться контроля подачи топлива, который обеспечивает чистую выхлопную трубу и лучшую мощность.
В этом методе используются датчики состава топливовоздушной смеси до кат. и стандартный датчик O2 после кат. Датчики AFR проверяют наличие пропусков зажигания, изменение смеси в цилиндрах и температуру выхлопных газов.Задний датчик проверяет среднюю смесь, температуру на выходе катализатора и в течение нескольких секунд, когда условия правильные, отслеживает состояние катализатора. Прямая обратная связь не используется, так как требуется значительное замедление, чтобы удерживать смесь в необходимом диапазоне.

Логика управления подачей топлива сильно различается в зависимости от года и производителя. Общие заявления о том, как это делается, вряд ли будут поддерживаться. Тем не менее, можно кое-что понять, как это делается на любом конкретном транспортном средстве, наблюдая за графическими данными датчика смеси во время расширенного тест-драйва.

Контроль лямбда-зонда на выходе, оптимизированный для топливной смеси

Текущие строгие нормы выбросов могут быть достигнуты автопроизводителями, использующими различные технологии. Одной из этих последних технологий является лямбда-зонд, расположенный ниже по потоку, для контроля накопления кислорода в каталитическом нейтрализаторе. Этот лямбда-зонд устанавливается после каталитического нейтрализатора, и его реакция представляет собой концентрацию кислорода в выхлопных газах после нейтрализатора по сравнению с окружающей средой. Это содержание кислорода коррелирует с количеством кислорода, хранящегося внутри каталитического нейтрализатора.Хранящийся кислород имеет большое значение для преобразования выбросов между углеводородами, монооксидами углерода и оксидами азота. Идеальный запас кислорода зависит от конкретного применения и условий работы двигателя. Кроме того, гибкие топливные приложения должны быть оптимизированы для контроля содержания кислорода в каталитическом нейтрализаторе в соответствии с топливной смесью в баке. Принимая во внимание различные свойства топливных смесей в отношении кислорода, образующегося в результате сгорания, в этой статье анализируются репрезентативные свойства топливных смесей, которые влияют на контроль хранимого кислорода в каталитическом нейтрализаторе для оптимизации эффективности преобразования в бразильских автомобилях с гибким топливом.

  • URL-адрес записи:
  • Наличие:
  • Дополнительные примечания:
    • Резюме перепечатано с разрешения SAE International.
  • Авторов:
  • Конференция:
  • Дата публикации: 2008-10-7

Язык

Информация о СМИ

Тема/Указатель Термины

Информация о подаче

  • Регистрационный номер: 01814327
  • Тип записи: Публикация
  • Источник агентства: SAE International
  • Номера отчетов/документов: 2008-36-0082
  • Файлы: ТРИС, SAE
  • Дата создания: 5 марта 2021 г., 16:51

Лямбда-зонд, датчик давления |Все о вашей выхлопной системе

Лямбда-зонд , датчик давления , так много терминов с различными значениями, в зависимости от степени ваших знаний в области механики.Одно можно сказать наверняка, ваш автомобиль теперь заполнен всевозможными датчиками и датчиками, отвечающими за измерение того, регулировку того, чтобы меньше загрязнять окружающую среду и меньше потреблять. Они также предупреждают вас о любых дефектах и ​​о необходимости срочно записаться на прием в ваш гараж. Таким образом, сегодняшние ожидания от автомобилей не могут обойтись без этих маленьких устройств, которые проводят измерения на каждом этапе движения и информируют водителя в режиме реального времени. Перечислять и описывать каждый датчик под капотом было бы долго и утомительно.Сегодня нас интересуют те, что на выхлопной магистрали: лямбда-зонд и датчик перепада давления .

Лямбда-зонд

Функция лямбда-зонда

Разработанный в 1976 году производителем Volvo, лямбда-зонд стал обязательным в 1993 году, с введением стандарта Евро 1.

Также известный как датчик кислорода , он оценивает состав газов от сгорания топлива. Расположенный между двигателем и каталитическим нейтрализатором датчик передает сигнал на компьютер, который регулирует топливно-воздушную смесь.Эта операция занимает всего несколько минут и выполняется без вашего ведома. Но почему именно? Конечно, меньше загрязнять и меньше потреблять!

Близость двигателя и создаваемые им высокие температуры не обходятся без последствий, так как в конечном итоге они повреждают лямбда-зонд. После этого он больше не может передавать достоверную информацию. Неправильно дозированная топливно-воздушная смесь приводит к повышенному расходу например.

Наконец, обратите внимание, что самые последние автомобили, начиная со стандарта Евро-3, если быть точным, также включают кислородный зонд после каталитического нейтрализатора.Этот выходной датчик используется для проверки правильной работы выхлопной линии и эффективности процесса.

Как распознать неисправный лямбда-зонд

Симптомы лямбда-зонда HS аналогичны тем, что наблюдаются при выходе из строя катализатора:

  • потеря мощности ;
  • нестабильный путь;
  • повышенный расход топлива ;
  • из выхлопной трубы идет густой черный дым ;
  • загорается лампочка двигателя.

Помимо этих подсказок, трудно обнаружить неисправность лямбда-зонда, если только вы не пойдете и не заглянете под машину! Вот почему мы советуем вам без колебаний менять его при замене каталитического нейтрализатора . Будьте уверены, кислородный датчик служит примерно 120 000 и 150 000 км пробега. В зависимости от вашего стиля вождения, качества используемого топлива и общего состояния вашего автомобиля он может прослужить даже дольше.

Несомненно, что неисправный лямбда-зонд обязательно повредит катализатор.После этого ущерб и затраты на ремонт уже не те же самые. Этого недостаточно, никогда не игнорирует индикатор двигателя !

Датчик перепада давления

Датчик, связанный с DPF

Две комнаты, две атмосферы. После нашего взгляда на каталитический нейтрализатор, вот DPFS. Возможно, две атмосферы, но цель остается неизменной: сделать так, чтобы ваш автомобиль загрязнял окружающую среду как можно меньше. Уступите место датчику перепада давления , также известному как датчик давления APF .

Эта небольшая коробка содержит электронную схему и два клапана, используемых для измерения давления на входе в DPF, а затем на выходе. Датчик перепада давления сообщает вам, забит ли ваш дизельный сажевый фильтр. Если ЭБУ определяет, что газы не проходят должным образом через сажевый фильтр, он инициирует принудительную регенерацию для сжигания сажи, засоряющей деталь.

Датчик неисправен = FAP в опасности

Датчик перепада давления является гарантом исправной работы вашего DPF.Этот регулярно злоупотребляет короткими городскими поездками. DPF нуждается в высоких температурах, чтобы сжечь мелкие частицы, которые проходят через него. Если температура неправильная, частицы накапливаются в монолите и в конечном итоге забивают его. Затем датчик вступает в действие, чтобы дать команду DPF повысить температуру и очистить себя.

Если вы хотите узнать больше о DPF, установленном на вашем автомобиле, мы отсылаем вас к нашей очень подробной статье по этому вопросу. Там вы узнаете все о и его работе .Тогда вы поймете, почему необходимо сделать все возможное, чтобы сохранить эту ключевую часть системы контроля загрязнения.

Теоретически датчик давления служит столько же, сколько и DPF. Как и в случае с лямбда-зондом, мы рекомендуем проверять и менять его при замене DPF. Если индикатор FAP призывает вас к порядку, этот датчик также следует проверить в первую очередь, перед самим FAP.

Вы вполне можете заменить этот датчик самостоятельно, если у вас есть время (2 часа, если вы немного попрактикуетесь в механике), нужные инструменты и безопасное рабочее место, так как вам придется работать под автомобилем.

Лямбда-зонд и датчик перепада давления – это лишь малая часть всех устройств, которыми оснащен ваш автомобиль. Здесь мы рассмотрели только те, которые связаны с выхлопной трубой и правильной работой DPF и каталитического нейтрализатора. Однако вы должны знать, что все они имеют очень специфическую функцию: регулирование температуры различных жидкостей, измерение смазки, помощь при вождении и этот список далеко не исчерпывающий! К их обслуживанию нужно относиться очень серьезно, так как они служат для обнаружения неисправностей и предупреждают вас о сбоях в работе основного органа.

Проблема лямбда-зонда на BMW X6

Последние автомобили все больше и больше оснащаются новыми технологиями, помимо удобства использования, которые они могут принести, технологии также имеют преимущество в экономии топлива или уменьшении загрязнения, выбрасываемого нашими автомобилями. Это как раз тема нашей страницы контента дня, мы собираемся посмотреть на проблемы лямбда-зонда на BMW X6 , этот датчик также называется кислородный датчик играет необходимую роль. Чтобы выяснить это, сначала мы выясним, для чего используется лямбда-зонд, а затем, какие проблемы с лямбда-зондом на BMW X6 и как их исправить.

Что такое лямбда-функция на BMW X6?

Итак начнем нашу статью с интерес лямбда-зонд на БМВ Х6 , сначала посмотрим какая функция у этого зонда а потом как он работает.

Роль лямбда-зонда в BMW X6

Впервые созданный Volvo в 1970-х годах, он начал появляться на наших автомобилях в 1990-х годах с первыми требованиями к выбросам ЕВРО-1. Так же называется кислородный датчик на БМВ Х6 , его задача регулировать количество кислорода в выхлопных газах, это позволит блоку двигателя адаптировать воздушно-топливную смесь к уменьшить загрязнение выбрасываемое автомобилем и снизить расход топлива автомобиля.

Работа лямбда-зонда на BMW X6

Прежде чем объяснять вам различные проблемы лямбда-зонда на BMW X6 , мы немного подробнее рассмотрим его работу, чтобы вы могли понять, как именно он работает, и, таким образом, рассмотреть более спокойное исправление проблемы, связанной с этим.
Как мы сообщали вам, лямбда-зонд выполняет функцию контроля количества кислорода, присутствующего в выхлопных газах . Можно было бы наивно подумать, что эти данные рассчитываются перед сгоранием, но, напротив, измерены на выходе из двигателя .Со стандартом EURO 1 перед катализатором требовался только один лямбда-зонд, но с появлением более строгих требований теперь 2 лямбда-зонда, один до и один после катализатора . Интерес состоит в том, чтобы получить более точные данные путем компиляции двух зондов. Эти данные отправляются в ЭБУ, который изменяет количество воздуха и бензина, впрыскиваемого в двигатель, для улучшения сгорания .

Проблема лямбда-зонда на BMW X6

.
Наконец, теперь мы собираемся атаковать часть, которая, безусловно, вызвала у вас наибольший энтузиазм в этой статье, что делать, если у вас есть проблема с лямбда-зондом на BMW X6 . На первом этапе мы узнаем , как найти лямбда-зонд HS , а на втором этапе, как его заменить.

Как узнать, является ли лямбда-зонд на BMW X6 HS

.
Необходимо знать, что у лямбда-зонда вообще говоря срок службы 150 000 км , эта статистика может варьироваться в зависимости от года вашего BMW X6, вашего вождения и хорошей работы вашего двигателя.Плохо обслуживаемый двигатель, который выпускает несгоревшие газы, может навсегда изменить ваш лямбда-зонд. Одной из подсказок, которая может предупредить вас о неисправном лямбда-зонде на BMW X6 , может быть включение индикатора блока двигателя. Если вы хотите выключить индикатор двигателя вашего BMW X6, не стесняйтесь обращаться к нашей специальной статье, чтобы увидеть процесс придерживаться. Единственный эффективный способ убедиться, что у вас проблема с лямбда-зондом на вашем BMW X6 , и довести ваш автомобиль до диагностического случая, для этого не стесняйтесь обращаться к нашему руководству, в котором объясняется, как читать код неисправности BMW X6 БМВ Х6.Обратите внимание, что если у вас есть проблемы с одним из ваших лямбда-зондов, единственным средством их решения будет замена неисправного датчика.

Как поменять лямбда-зонд на BMW X6?

И, наконец, мы сосредоточимся на исправлении проблем с лямбда-зондом на BMW X6 , описав, как заменить лямбда-зонд .

Замена лямбда-зонда довольно проста в выполнении, и вы сможете сделать это самостоятельно, используя минимум инструментов и опыт работы с механикой.Лямбда-зонд стоит от 25 до 50 € , лучше заменить 2 лямбда-зонда, установленных до и после вашего каталитического нейтрализатора, потому что, если один из них неисправен, второй рискует быстро вас бросить. Для его замены потребуется поставить свой BMW X6 на свечи и на уровне своего катализатора открутить свои щупы, отсоединить их, снова подключить и вкрутить новые . После повторного подключения у вас больше не должно быть проблем с лямбда-зондом на BMW X6.

Добавить комментарий

Ваш адрес email не будет опубликован.