Электромеханическая трансмиссия – Электрическая и электромеханическая трансмиссии.

Электрическая и электромеханическая трансмиссии.


Бесступенчатые трансмиссии

Электрические и электромеханические трансмиссии




В электрической трансмиссии механическая энергия двигателя преобразуется в генераторе в электрическую энергию, и затем снова преобразуется в механическую в тяговых электродвигателях.

Очевидно, что двойное преобразование энергии из одного вида в другой связано с определенными потерями, однако, эти потери зачастую ниже потерь в механической трансмиссии, а кроме того, применение электрической трансмиссии имеет ряд существенных достоинств.

В первую очередь – это, конечно же, провода. Безусловно, электрическую проводку для подвода энергии к электродвигателю, установленному в колесе автомобиля, подвести значительно проще, чем от силовой установки к ведущему колесу посредством различного рода механических передач.
Во-вторых, электрические двигатели имеют приближенную к идеальной характеристику изменения крутящего момента в зависимости от частоты вращения вала (якоря). При увеличении частоты вращения крутящий момент на валу уменьшается, а при уменьшении частоты вращения – крутящий момент увеличивается, при этом произведение частоты вращения вала на крутящий момент в каждый момент времени остается постоянным (в идеале), равным мощности двигателя.

Исходя из приведенных выше доводов, становится очевидным, что электродвигатель является почти идеальной автоматической трансмиссией, самостоятельно подстраивающей величину крутящего момента на колесах автомобиля в зависимости от условий движения – возросла нагрузка, скорость снизилась – крутящий момент автоматически вырос.

Однако широко применять электродвигатели в качестве силовой установки современных автомобилей пока не удается, поскольку нет возможности запасаться электроэнергией в достаточном количестве впрок. Привязав автомобиль проводами к какому-нибудь источнику электрической энергии, мы лишим его автономности, а значит, и название «автомобиль» для такого транспортного средства потеряет смысл.

Современные аккумуляторные батареи тоже не способны обеспечить электромобиль достаточным запасом энергии для передвижения.

Многократное преобразование: тепловая энергия топлива – механическая энергия ДВС – электрическая энергия генератора – механическая энергия трансмиссии – электрическая энергия тягового электродвигателя – механическая энергия движителя (колеса) сопряжено со значительными потерями энергии и снижением КПД. Кроме того, чтобы обеспечить движение автомобиля с электрической силовой установкой в широком интервале тяговых усилий без применения дополнительной механической трансмиссии, необходим очень мощный, дорогой и тяжелый электрический двигатель, который сведет на нет все достоинства электропривода с экономической точки зрения.

Тем не менее, электрическая трансмиссия в совокупности с механической нашла применение на современных грузовых автомобилях повышенной грузоподъемности.

Основными элементами электрической трансмиссии (рис. 1, а) являются генератор 2, приводимый в действие двигателем внутреннего сгорания 1, и электрические двигатели

3, расположенные непосредственно в ведущих колесах автомобиля.
Достоинством данного вида трансмиссии является то, что генератор и тяговые электродвигатели могут устанавливаться в любом месте, диктуемом компоновкой автомобиля, при этом связь между ними поддерживается с помощью электрических проводов, которые можно проложить как угодно и где угодно, без ущерба внутреннему объему автомобиля.




Тем не менее, в таком упрощенном виде электрическая трансмиссия применяется редко. Чаще для увеличения крутящего момента в трансмиссию вводятся элементы механической трансмиссии. В таких случаях применяется один тяговый двигатель, а мощность к ведущим колесам передается посредством механических элементов – карданных передач и ведущих мостов (

рис. 1, б).

При установке тяговых электродвигателей непосредственно в колесах автомобиля используют планетарные зубчатые редукторы с передаточным числом от 15 до 20. Колесо с электродвигателем и колесным редуктором называется электромотор-колесо.

Электромотор-колесо (рис. 2) является наиболее сложным элементом электромеханической трансмиссии, состоящим из следующих элементов: тягового электродвигателя 4, планетарного редуктора 1, ступицы 2 колеса с подшипниковыми узлами, фрикционного тормозного механизма 3, шины с ободом.
К конструкции электромотор-колесо могут также относиться отдельные узлы подвески, механизм переключения передач (при двухступенчатом редукторе) и некоторые другие элементы.

Электромеханические передачи нашли применение на автомобилях-самосвалах большой грузоподъемности. В частности, все самосвалы марки «БелАЗ» грузоподъемностью свыше 75 тонн оснащаются электромеханическими трансмиссиями.
В зарубежном автомобилестроении электромеханические трансмиссии также применяют на самосвалах большой грузоподъемности и на многозвенных автопоездах высокой проходимости. Перспективным считается применение электромеханических трансмиссий на многоприводных автомобилях высокой проходимости и автобусах большой вместимости.

***

Гидрообъемная трансмиссия



k-a-t.ru

Трансмиссии Tiger (P) — Demenz macht frei — LiveJournal

Какое-то время назад я написал статью с описанием двух вариантов трансмиссий Tiger P и Tiger P2. Из-за технических ограничений вики-страниц Вмыла пришлось разделить статью на две части, что неудобно. Я решил сделать её копию, объединив части в одну статью. Тем более и повод подходящий — день рождения Фердинанда Порше. Посмотрим на начинку его детища.

КДПВ — первый построенный Tiger (P) везут на показ к 20 апреля 1942 года:


Революция?
Первое, с чем сталкиваешься в процессе изучения истории VK 30.01 (P) и VK 45.01 (P) — это утверждения о якобы их революционности и уникальности. Вот каноничный пример:

Порше придумал революционную конструкцию. совершенно не типичную для танка. На VK3001(P) стояла электромеханическая трансмиссия, никогда ранее не использовавшаяся на сухопутной технике, зато обычная для подводных лодок.
Источник

Автора данной статьи придётся огорчить. То, что VK 30.01 (P) и VK 45.01 (P) существенно отличались от других немецких танков ещё не делает их революционными. Точно также они не становятся революционными от того, что автор безграмотен и не знает о других более ранних танках с электромеханическими трансмиссиями.

В действительности Фердинанд Порше создал автомобиль с электромеханической трансмиссией ещё в 1900 году. Что касается танков, то первыми электромеханчиескую трансмиссию на танке Сен-Шамон (Char Saint-Chamond) применили в годы Первой Мировой войны французы. Они же создали первый в мире танк Char 2C с двумя двигателями внутреннего сгорания, каждый из которых работал на свой генератор. Одним словом, с точки зрения устройства трансмиссии VK 30.01 (P) и VK 45.01 (P) не были революцией для мирового танкостроения.


Фердинанд Порше и Отто Цадник (справа)

Если углубиться в эту тему, то всплывают не менее интересные подробности. Вместе с Фердинандом Порше работал талантливый инженер Отто Цадник (Otto Zadnik), перешедший к нему в конструкторское бюро из фирмы Siemens. Именно Цадник разработал схемы трансмиссий для Tiger (P) и Maus. Так вот, Цадник запатентовал свою реализацию электромеханической трансмиссии ещё в 1926 году!

Смысл в применении
Если не верить авторам бредовых статей на слово и оглянуться вокруг, то вырисовывается совершенно другая картина. Во Франции работы над танками с электромеханическими трансмиссиями начались ещё в Первую Мировую войну и продолжались в межвоенное время. В США электромеханические трансмиссии опробовали на лёгком танке M2A3, среднем T23 и тяжёлом T1E1. В Англии построили, прости господи, TOG II. В СССР электромеханические трансмиссии неоднократно пытались ставить в тяжёлые танки. Даже в Чехословакии построили шасси лёгкого танка с радиальным двигателем и электромеханической трансмиссией.

Отсюда неизбежный вопрос: если электромеханические трансмиссии такие тяжёлые и требовательные к тоннам цветных металлов, почему в разных странах неоднократно возвращались к попыткам создания танков с их использованием?

Ответ заключён в уникальном сочетании характеристик.

Непрерывность и плавность изменения передаточного отношения
В обычных механических трансмиссиях вал двигателя механически связан с ведущими колёсами. Это не только нагружает двигатель и трансмиссию, но и приводит к тому, что для плавного изменения скорости приходится регулировать обороты двигателя, из-за чего он далеко не всегда работает в оптимальном режиме. Существенно изменить силу тяги и скорость можно лишь при помощи коробки передач, но это весьма грубый метод, с которым, однако, приходится мириться.

Электродвигатели обладают важным свойством: при увеличении сопротивления окружающей среды (например, танк съехал с хорошей дороги на вспаханное поле) скорость танка снижается, как и обороты вала электродвигателя, но при этом увеличивается сила тяги. А так как наибольшая сила тяги развивается при наименьших оборотах, танк получает хорошую проходимость и отличные тяговые характеристики. Например, Maus может тянуть за собой такой же танк, а это почти 380 тонн! Да, медленно и очень неспешно, но может.


Довольный Отто Цадник после вождения Мауса

Раз при использовании электромеханической трансмиссии первичные двигатели никак не связаны механически с ведущими колёсами, то они могут постоянно работать в оптимальном режиме, а тяговые электродвигатели позволяют плавно менять силу тяги и скорость при неизменной скорости вращения вала первичного двигателя внутреннего сгорания. Коробка передач позволяет менять скорость и силу тяги лишь ступенчато, что нередко приводит к неэффективному использованию мощности.

Чем тяжелее машина и чем мощнее его двигатель, тем большие нагрузки испытывают двигатель и трансмиссия и тем менее применимой становится обычная механическая трансмиссия. Именно поэтому на современных танках, а также грузовиках (БелАЗ-75710) и тракторах (ДЭТ-250) специального назначения используют электро- и гидромеханические трансмиссии.

Самоприспосабливаемость
Самоприспосабливаемость к дорожным условиям — другое важнейшее свойство электромеханической трансмиссии, которое гармонично сочетается с непрерывностью изменения скорости и тяги.

Во время движения танка электромеханическая трансмиссия не только плавно изменяет силу тяги и скорость, но и делает это автоматически. Когда танк съезжает с хорошей дороги на говна, то тяговые электродвигатели сами без участия водителя увеличат силу тяги и снизят скорость танка до оптимального уровня.

Это чрезвычайно облегчает управление танком. Водитель при помощи реостатов задаёт примерный диапазон скоростей, а точную подстройку под конкретные дорожные условия сделает сама трансмиссия.

Простота устройства
Немаловажное достоинство схемы электромеханической трансмиссии с двумя тяговыми электродвигателями, каждый из который работает на свою гусеницу, заключается в том, что отпадает необходимость в главном фрикционе, коробке передач и механизме поворота. Водитель может задавать электродвигателям разные скорости вращения и танк совершит плавный поворот. Никакого специального механизма поворота не требуется.

Это приводит к значительному упрощению редукторной части (то есть валов и шестерней). В Tiger (P) вся редукторная часть трансмиссии состоит из соединения генераторов с бензиновыми двигателями и из двух планетарных передач, соединяющих электродвигатели с ведущими колёсами:

А вот для сравнения редукторная часть трансмиссии Tiger (H):

В этом и проблема обычных механических трансмиссий: хочешь выдающихся характеристик — городи огород из валов и шестерён.

Ложка дёгтя
Электромеханические трансмиссии обладают целым рядом весомых достоинств, поэтому в самых разных странах их неоднократно пытались применить на танках. И всё таки стандартом в танкостроении они не стали. Виной всему два существенных недостатка. Да, всего два, но очень существенных.

Во-первых, генераторы и электродвигатели очень много весят. Например, на Tiger (P) каждый блок из двигателя и спаренного с ним генератора весил полторы тонны, из которых тонна приходилась на генератор. Таким образом только генераторы в сумме весили 2 тонны, то есть как вся механическая танковая трансмиссия, а ведь есть ещё электродвигатели… Всего это около 4,6 тонн, так-то!

Во-вторых, генераторы и электродвигатели требуют много цветных металлов, которые могут стать дефицитными в военное время.

Так что электромеханическая трансмиссия от Tiger (P) очень интересна, ведь она стояла на Фердинандах, воевавших в годы Второй Мировой войны. Это не просто концепт, очередной эксперимент. В конце войны только у немцев и американцев были действительно практичные с точки зрения войсковой эксплуатации бронетанковые шасси с электромеханическими трансмиссиями. Многие пытались, но не у многих получилось.

Трансмиссия Typ 101
После рассуждений о предшественниках, достоинствах и недостатках посмотрим на конкретную реализацию.

Устройство
Tiger (P) задумывался в двух вариантах: Typ 101 с электромеханической и Typ 102 с гидромеханической трансмиссией. В этом разделе мы поговорим об электромеханике, а в следующем о трансмиссии фирмы Voith.

Двигатели и трансмиссия Tiger (P) располагались в кормовой части корпуса под съёмными бронелистами крыши, что значительно упрощало их демонтаж без необходимости снимать башню. Два бензиновых V-образных 10-цилиндровых 15-литровых двигателя воздушного охлаждения Porsche Typ 101 мощностью 320 л.с. при 2500 об/мин соединялись с генераторами, причём роторы генераторов служили одновременно маховиками. Каждый генератор Typ aGV 275/24 снимал до 374 л.с.

Двигатель Typ 101/2 со спаренным генератором и системой охлаждения:

Позади двигателей находились два тяговых электродвигателя Typ D1495a фирмы Siemens мощностью 313 л.с. каждый. Они соединялись бортовыми двухступенчатыми редукторами (передаточное число 15) с ведущими колёсами.

Тяговые электродвигатели в Фердинанде:

Под сиденьем механика-водителя находилась система управления. Она состояла из педалей подачи топлива (газа), тормоза, а также рычагов управления трансмиссией, при помощи которых мехвод задавал скорость и направление движения. Система управления тормозов была гидропневматической и не требовала больших физических усилий.

Работа при прямолинейном движении
Трансмиссия Tiger (P) рассчитана под максимальную скорость в 35 км/ч. Во время испытаний в СССР Фердинанд развил 35 км/ч по шоссе, при этом мощность бензиновых двигателей использовалась не полностью. Более лёгкий Tiger (P) тем более мог развивать максимальную скорость на хороших дорогах.

Во время прямолинейного движения оба генератора работают как генераторы, а электродвигатели как моторы. Электродвигатели соединялись последовательно, благодаря чему Tiger (P) был очень удобен в управлении и хорошо держал направление при езде по прямой: если одна гусеница крутилась быстрее другой, то напряжение на соответствующем электромоторе поднималось. Шунтовая обмотка ослабляла магнитное поле этого мотора, что приводило к уменьшению вращающегося момента и выравниванию движения всего танка.

Левая схема — работа трансмиссии при прямолинейном движении.

Работа при повороте
Теперь совершим поворот почти без потери скорости. Забегающая гусеница ускоряется, вместе с ней увеличивается скорость вращения соответствующего электромотора. Так как он требует больше мощности, оба генератора питают его энергией. Кроме того, второй электромотор тоже начинает работать как генератор (см. правую схему на иллюстрации выше).

На первый взгляд непрофессионалу это может показаться странным. С чего бы электродвигателю отстающей гусеницы работать в режиме генератора? На самом деле это совершенно естественно. Предположим, что поворот танка осуществляется путём отключения электродвигателя отстающей гусеницы. Генераторы питают только один электродвигатель, который вращает свою гусеницу. Но если вторую гусеницу не затормозить, то она тоже будет вращаться, пусть и медленнее (именно поэтому для крутых поворотов отстающую гусеницу не только отключают от двигателя, но и принудительно тормозят). Это значит, что электродвигатель вращает не одну гусеницу, а две, просто на одну гусеницу мощность идёт через бортовой редуктор, а на другую через землю. Если мы включим в сеть электродвигатель отстающей гусеницы как генератор, то он будет возвращать мощность от отстающей гусеницы обратно. Это явление называется циркуляцией мощности. Если подходить к нему с умом, то во время поворота можно экономить мощность. Это значит, что для совершения поворота нужно меньше мощности.

Оценка
Я принципиально не буду давать свою оценку, а ограничусь цитированием немецких и советских документов об испытаниях и применении Фердинандов. Надо сказать, что электромеханическая трансмиссия Фердинандов точно такая же, как у Tiger (P), поэтому нижесказанное во многом касается и Тигра Порше.

Из письма унтер-офицера Боэма из 653-го батальона генералу Хартманну от 19 июля 1943 года о боевом применении Фердинандов:

Электрический мотор работал безупречно, и водители и экипажи были приятно удивлены. Бензиновые двигатели имели незначительные повреждения, они признаны слабыми из-за большого тоннажа машины, а гусеницы немного узковаты.

Из доклада офицера 653-го батальона Хайнца Грёшила об эксплуатации Фердинандов, направленного 25 июля 1943 года Фердинанду Порше:

Генераторы и электромоторы. В Нойзейдле у нас было последнее повреждение генератора. Это опять было короткое замыкание в рубящем контакте. С тех пор устройства работают без дефектов. Все же нужно подчеркнуть, что сейчас преобладает сухая погода и эти агрегаты редко полностью охлаждаются.

Контроллер механика-водителя. Тоже не имел достойных упоминания поломок. У трёх машин заменены поворотные реостаты цепи возбуждения

Не менее интересен отчёт по результатам испытаний трофейного Фердинанда. Надо сказать, сам Фердинанд достался потрёпанным:

Испытанный экземпляр самоходной артустановки «Фердинанд» поступил с фронта в рабочем состоянии с сильным загрязнением всей силовой установки. При этом отсутствовали многие агрегаты и приборы, например, щиток со всеми контрольными приборами, один из двух генераторов зарядки батарей, компрессор пневмогидравлической системы торможения. Один из двигателей был полуразрушен, электропроводка низковольтная и силовая частично нарушена, два катка ходовой части подбиты и т. п.

Так что испытателям пришлось сперва отремонтировать Фердинанд при отсутствии документов и запчастей, а затем провести испытания:

В дальнейшем вся система в целом работала бесперебойно и надёжно. За время испытаний не было ни одного случая отказа или дефектов в работе каких-либо агрегатов по причине их несовершенства. Испытания электрической трансмиссии «Фердинанд» проводил совместно с заводом № 627 НКЭП при участии инженеров-специалистов по электротяге НИИ НКПО.

Движение по прямой:

Устойчивость движения по прямой.

Испытания на устойчивость прямолинейного движения СУ производились на 100-метровом участке просёлочной дороги.

Рычаги контроллеров находились при испытаниях в крайнем переднем положении.

При всех проведённых заездах на 100 метров машину практически не уводило в сторону. Во время пробега на 50 км при движении СУ по прямой на любых грунтах и скоростях до 25 км/ч электротрансмиссия обеспечивала устойчивость прямолинейного движения.

Устойчивость движения по прямой, несмотря на последовательное соединение тяговых электромоторов и сериосное их возбуждение, объясняется наличием на электромоторах шунтовой противовключенной обмотки. При случайном повышении скорости одной из гусениц и соответствующего повышения напряжения на электромоторе этой гусеницы, шунтовая обмотка ослабляет магнитное поле данного мотора, снижая тем самым его вращающий момент и соответственно его скорость и напряжение на клеммах.

Скорости движения.

Максимальная скорость движения СУ на горизонтальном участке сухой грунтовой дороги была получена 22 км/ч, при этом мощность, развиваемая первичными двигателями, была близкой к максимальной (полное открытие дроссельных заслонок при 2800–3000 об/мин).

Максимальная скорость движения на горизонтальном участке асфальтированной дороги (Можайское шоссе) достигла 35 км/час при неполном использовании мощности первичных двигателей.

Однако немцы, избегая перегрузки тяговых электромоторов по оборотам, имеющим номинальное число оборотов 1300 об/мин, рекомендуют механику-водителю (в спецтабличке-памятке) не допускать скорости движения более 20 км/ч.

Установленная немцами максимальная скорость движения СУ соответствует максимальной скорости движения по сухой грунтовой дороге при полном использовании мощности первичных двигателей. Получение больших скоростей движения в этих условиях лимитируется мощностью первичных двигателей.

На основании данных полного использования мощности первичных двигателей при движении СУ по просёлочной дороге со скоростью 20 км/ч и возможности полуторакратной перегрузки электромоторов по оборотам немцами принято передаточное число бортовой передачи 15.

Максимальная скорость движения СУ по шоссе лимитируется исключительно предельно-допустимыми оборотами тяговых электромоторов (2000 об/мин). Мощность первичных двигателей при этом используется не более 50 % от максимальной

Так как Tiger (P) очень любят ругать за якобы ненадёжную работу электромеханической трансмиссии (разумеется, не прилагая к этому никаких документов), особенно интересна часть отчёта о надёжности. Напомню, на Tiger (P) с электромеханической трансмиссией стояли те же генераторы и электродвигатели, что и на Фердинандах.

8. По надёжности работы.

а) Все агрегаты силовой установки, особенно электротрансмиссия, во время испытаний работали надёжно.

б) Все элементы ходовой части работали надёжно.

Оценка электромеханической трансмиссии советскими специалистами:

9. По электрической трансмиссии.

Электрическая схема трансмиссии имеет следующие положительные данные:

а) Принципиальная простота и высокая надёжность в работе.

б) Обеспечение наиболее полного использования мощности первичных двигателей.

в) Возможность работы первичных двигателей в наиболее благоприятных режимах при различных условиях движения машины.

г) Возможность рекуперации энергии при поворотах. (имеется ввиду использование электромотора отстающей гусеницы как генератора — прим.ав.)

д) Бесступенчатость изменения движения машины, автоматичность изменения её зависимости от положения дроссельной заслонки и изменения сопротивления движению.

е) Устойчивость движения по прямой при ходе вперёд.

10. По удобству управления движением.

а) СУ «Фердинанд» вследствие применения в ней электрической трансмиссии по управлению является самой лёгкой по сравнению со всеми существующими ныне гусеничными машинами. Всё управление сводится к лёгкому нажатию ногой водителя на педаль акселератора и, в такой же степени, лёгкому перемещению водителем рычагов контроллеров.

б) Лёгкость управления не утомляет механика-водителя при длительном движении и позволяет ему больше уделять внимания наблюдению за местностью и полем боя.

11. По манёвренности.

СУ «Фердинанд», несмотря на сравнительно хорошую поворачиваемость, вследствие малых скоростей движения имеет плохую манёвренность, уступая в этом современным танкам, что делает её легко уязвимой от прицельного огня артиллерии.

Наконец, заключение:

1. Несмотря на лёгкость управления и удовлетворительную поворачиваемость, машина, в общем, имеет плохую манёвренность вследствие низких скоростей движения, что в значительной степени снижает её боевые качества, обусловленные её мощной пушкой и толстой бронёй.

2. Для отечественной промышленности представляет интерес тип подвески ходовой части, обеспечивающий надёжную амортизацию такой тяжёлой машины.

3. Осуществлённая в машине электротрансмиссия ввиду принципиальной простоты её схемы, высокой надёжности в работе и целому ряду других положительных качеств, выявленных испытаниями, представляет для нашей промышленности непосредственный интерес с точки зрения прямой целесообразности осуществления подобной схемы на отечественных тяжёлых танках

Полный текст отчёта можно найти в книге Максима Коломийца о Фердинанде.

Typ 102
Планы производства
С самого начала Tiger (P) планировался в двух вариантах: Typ 101 с электромеханической трансмиссией и Typ 102 с гидромеханической трансмиссией. Электромеханическую трансмиссию по схеме Цадника реализовала фирма Siemens, а гидромеханическую трансмиссию разработала и изготовила фирма Voith.

Первоначально планировалось, что в серии из 100 Tiger (P) 50 танков будут выпущены в варианте Typ 101, а остальная половина в варианте Typ 102. Позже программа по выпуску танков была пересмотрена: в варианте Typ 102 с гидромеханической трансмиссией планировалось изготовить только 10 танков, а лишние заготовленные корпуса переделывались под установку электромеханической трансмиссии. Закончилось же дело тем, что выпустили всего лишь один прототип Typ 102. К сожалению, пока не удалось найти документы, которые бы проливали свет на эти факты. Нет никакой достоверной информации по испытаниям Typ 102, равно как и нет ответа на вопрос о том, почему выпуск танков Tiger (P) с гидромеханической трансмиссией был фактически отменён.

Ситуация с трансмиссиями вообще очень загадочна. Всё было бы понятно, если бы собрали Typ 102, он бы провалил испытания и выпуск таких танков свернули. Но выпуск Typ 102 решили сократить до 10 танков в мае 1942 года, в октябре того же года в документах гидромеханическая трансмиссия фигурирует как альтернатива электромеханической трансмиссии на Typ 181, он же VK 45.02 (P) с задним расположением башни. Сообщение о построенном прототипе Typ 102 относится и вовсе к 1943 году…

Устройство гидромеханической трансмиссии
По конструкции танки VK 45.01 (P) Typ 102 были подобны базовому варианту Typ 101, отличаясь только другой трансмиссией и вентиляционными жалюзи.

Каждый двигатель Porsche Typ 101 соединялся с гидротрансформатором «NITA» фирмы Voith. Мощность от гидротрансформаторов поступала на карданный вал, который проходил между двигателей к коробке передач с двумя скоростями вперёд и одной назад. Коробка передач соединялась с механизмом поворота, от которого мощность шла к ведущим колёсам. Подобная необычная компоновка позволяла разместить двигатели в том же месте, что и при использовании электромеханической трансмиссии.

Управление танком осуществлялось с помощью рычагов, механических тяг и гидропневматической системы. Как и Typ 101, максимальная скорость Typ 102 рассчитывалась в 35 км/ч.

Нередко подчёркивают, что Фердинанд Порше предлагал для использования на танках электромеханические трансмиссии. При этом в тени оказывается тот факт, что не менее активно он предлагал и гидромеханические трансмиссии. У них есть целый ряд общих достоинств, делающих их применение на танках естественным:


  • Двигатель механически не связан с ведущими колёсами, гидротрансформатор разгружает двигатель и трансмиссию, увеличивая их срок службы.

  • Гидротрансформатор позволяет плавно и бесступенчато изменять скорость и силу тяги танка. Так как диапазон скоростей у него недостаточный, в состав трансмиссии включают коробку передач на 2-3 скорости.

  • Как и электродвигатель, гидротрансформатор без участия водителя самоподстраивается под условия окружающей среды, то есть трансмиссия работает как автоматическая.

При этом гидромеханическая трансмиссия имеет два весомых преимущества перед электромеханической: она меньше весит и не требует значительного количества цветных металлов. Именно поэтому версия об отмене серийного производства Tiger (P) из-за дефицита меди несостоятельна: Порше предлагал для него альтернативный вариант с гидромеханической трансмиссией, не требующий тонн цветных металлов.

В то же время гидротрансформатор в отличие от электродвигателей не может работать как механизм поворота, поэтому в дополнение к коробке передач приходится вводить механизм поворота, конструкция которого ограничивает поворотливость танка. Я не удивлюсь, если VK 45.01 (P) Typ 102 не мог поворачиваться строго на месте в отличие от своего электромеханического собрата. Правда, по имеющимся данным подтвердить или опровергнуть это невозможно, поскольку в свободном доступе нет чертежей и схем механической части трансмиссии от Typ 102.

В танкостроении гидромеханические трансмиссии в настоящий момент занимают золотую середину между дешёвыми и лёгкими, но малоэффективными механическими трансмиссиями и тяжёлыми и дорогими, но эффективными электромеханическими трансмиссиями. Так что можно без всякой натяжки сказать, что Фердинанд Порше был прав по поводу целесообразности применения гидромеханических трансмиссий на танках. Уже в конце Второй Мировой войны американцы применили M26 Pershing с гидромеханическими трансмиссиями, а в настоящее время это одно из типичных решений для тяжёлой гусеничной техники.

Источники


  • Thomas L. Jentz, Hilary L. Doyle — Panzerkampfwagen VI P (Sd.Kfz.181)

  • D 656/3 Panzerjaeger Tiger (P) vom 1.5.43

  • Karl Ludvigsen — Professor Porsche’s Wars: The Secret Life of Legendary Engineer Ferdinand Porsche Who Armed Two Belligerents Through Four Decades

  • Walter J. Spielberger — Der Panzer-Kampfwagen Tiger und seine Abarten (Band 7 der Reihe «Militarfahrzeuge»)

  • Walter J. Spielberger, Thomas L. Jentz, Hilary L. Doyle — Heavy Jagdpanzer: Development — Production — Operations

  • Максим Коломиец — «Элефант». Тяжелое штурмовое орудие Фердинанда Порше

  • Желтов И., Пашолок Ю. — Panzerkampfwagen Maus (Конструирование и производство)

kedoki.livejournal.com

Электрические трансмиссии для современных боевых машин

По сообщению сайта rosinform.ru, специалисты «Военно-промышленной компании» завершили разработку и испытания колесной машины на базе БТР-90 «Росток» в рамках выполнения НИР (шифр «Крымск»). Новинка использует гибридную энергоустановку и электротрансмиссию.Электрические трансмиссии для современных боевых машин

Конечно, стоит порадоваться успеху российских разработчиков. Однако стоит отметить, что проекты подобных машин с гибридным электрическим приводом уже создавались в западных странах, причем, некоторые из них появились более десяти лет назад.

Можно упомянуть машину с колесной формулой 8х8, которая использовала перспективный гибридный электропривод (AHED), бронированную пушечную систему Thunderbolt компании United Defense с гибридным электрическим приводом, боевую машину разведки, наблюдения и целеуказания (RST-V), англо-американскую программу по разведывательной машине будущего FSCS/TRACER и некоторые другие.

Практическое применение

Электрические приводы будут использовать и в гражданских, и в военных машинах. Технология электрического привода на колеса, которая, к примеру, позволяет сделать днище машины плоским и сплошным, обеспечивает явное конструкционное преимущество. Данная технология уже доказала свою эффективность и надежность при ежедневной эксплуатации. Намерения военных, в первую очередь, заключаются в переводе данной технологии на опытные образцы для использования в крупномасштабных программах. Таким образом, в американской программе – боевой системе будущего (FCS) – дизель-электрический комбинированный привод стал основной формой привода, превратившись в важнейшую конфигурацию всего семейства машин. В настоящий момент близкие к серийным опытные образцы машин, оснащенные электрическими приводами, проходят стадию испытаний.

Основная причина использования технологии электрического привода в военной технике – новые боевые характеристики и качества, которые могут быть достигнуты лишь подобным образом. В первую очередь, это касается надежности машины, ее защиты и тылового обеспечения. Это ключ для нового базового производства колесных машин.

При использовании данной технологии возможно создание модуля привода колеса, в котором электродвигатель полностью вмонтирован в его ступицу. Подвеска, привод, рулевое управление и амортизатор войдут в состав компактного стандартизированного модуля ходовой части. Тормоза также будут электрическими, в качестве дополнительного механического тормоза будет работать только стояночный тормоз.

Электрические трансмиссии для современных боевых машин

Модуль привода колеса с вмонтированным в ступицу колеса электродвигателем

Электрические трансмиссии для современных боевых машин

Преимущество полезного пространства у колесной машины благодаря использованию электрического привода по сравнению с устаревшим жестким мостом (источник: магнит-двигатель)

Машина, использующая перспективный гибридный привод (AHED)

Машина с перспективным гибридным электрическим приводом (AHED) и колесной формулой 8х8 компании General Dynamics Land Systems (GDLS) может выступить в качестве актуального примера подобной техники. Впервые ее показали публике в 2002 году на ежегодной выставке AUSA в Вашингтоне.

Электрические трансмиссии для современных боевых машин
Электрические трансмиссии для современных боевых машин
Электрические трансмиссии для современных боевых машин

Машина с колесной формулой 8×8 и с перспективным гибридным электрическим приводом (AHED) фирмы GDLS с электрическим приводом в ступице колеса фирмы Magnet-Motor

Эта машина была оборудована электроприводом в ступице колеса фирмы Magnet-Motor GmbH (по заказу GDLS). На ней устанавливается дизель-генератор и аккумуляторные батареи. Приводы колеса компании ММ входят в состав колесного модуля, который установлен на все ведущие колеса. Первичную мощность вырабатывает генератор мощностью 200 кВт, который напрямую соединен с дизельным двигателем при помощи фланца. Дополнительные 200 кВт мощности обеспечиваются высокоэффективной аккумуляторной батареей. Таким образом, суммарная мощность привода составляет около 400 кВт. Для подзарядки аккумуляторов в процессе движения используется энергия торможения, а также избыточная первичная мощность. Данная комбинированная конфигурация обеспечивает дополнительные преимущества, в числе которых бесшумное наблюдение, управление и связь (silent watch), а также бесшумное движение (stealth mode). Кроме того, во внутренней части машины отсутствуют компоненты системы привода, а также «двойное дно» для размещения его механических деталей. По сравнению с моделями с традиционным приводом силуэт стал существенно ниже.

В колесных модулях присутствует гибкая «пуповина», которая обеспечивает все электрические функции сенсорного и мощностного трубопровода, а также подает охлаждающие средства.

Электрические трансмиссии для современных боевых машин

Конфигурация колесной машины с колесной формулой 8×8 с перспективным гибридным электрическим приводом (AHED)

Также стоит упомянуть элементы мощностной электроники, которые обеспечивают машину электрической энергией и объединяют высокоэффективные аккумуляторы в систему. Они расположены в передней части машины, несколько «приподнимая» ее.

Боевая машина разведки, целеуказания и наблюдения (RST-V)

Электрические трансмиссии для современных боевых машин

Боевая машина разведки, наблюдения и целеуказания (RST-V)

Еще одним заказом компании GDLS, реализованным компанией Magnet-Motor, стала электрическая система комбинированного привода, которая использовалась в четырех опытных образцах боевой машины разведки, целеуказания и наблюдения (RST-V). Они были построены по заказу морской пехоты США и Управления перспективного планирования МО (DARPA). В составе системы приводов также присутствуют ступичные приводы колес и питание от дизель-генератора и аккумуляторов. Использование электрических колесных модулей дало возможность установить на машину специальную подвижную и складную подвеску колеса, чтобы изменять ее клиренс. Кроме того, у машины высоко поднятое днище между задними и передними колесами. Это позволяет поместить ее в самолет Osprey V 22. Общая мощность привода составляет 210 кВт (110 кВт дизель-генератор и 100 кВт аккумуляторы), что позволяет 3.8-тонной машине разгоняться до 120 км/ч и преодолевать подъемы до 60%.

Опытные образцы машины прошли ряд успешных испытаний, подтвердивших соответствие характеристикам. В настоящее время ведутся работы над первой небольшой партией, которые предусматривают дальнейшее интенсивное тестирование.

Стоит отметить, что у всех приводов компании Magnet-Motor отсутствуют изнашиваемые части, а также есть минимум подвижных частей. Они практически не требуют технического обслуживания, обладают высокой надежностью, и, как следствие, требуют небольших расходов в процессе эксплуатации. Кроме того, в процессе разработки механизмов и электроники учитывалась необходимость сокращения расходов на персонал и обслуживание устройств и материалов, что улучшило материально-техническое обеспечение. На практике использование полностью автоматического и высокоэффективного привода разгружает водителя. Включение передач электрическое, а не механическое, колеса машины управляются порознь, что обеспечивает лучший разгон.

Даже ранние опытные образцы от компании Magnet-Motor могли обеспечивать электрической энергией из сети привода машины различные внешние потребители, к примеру, элементы освещения и разные механизмы. У обеих разработанных для GDLS систем приводов есть электронные элементы, которые напрямую встроены в электрическую систему привода. С их помощью можно подключить к электроснабжению командные пункты, радиолокационные установки, инженерные машины и т.д. Также электрическую сеть приводов можно использовать в качестве электрической системы первичного обеспечения для электрических боевых систем будущего, к примеру, электрических пушек, комбинированных пушек, лазерного и микроволнового оружия.

Thunderbolt – бронированная пушечная система

Электрические трансмиссии для современных боевых машин

Бронированная пушечная система Thunderbolt

Электрические трансмиссии для современных боевых машин

Бронированная пушечная система Thunderbolt фирмы United Defense с гибридным электрическим приводом ведет стрельбу из своей 120-мм танковой пушки.

Бронированную пушечную систему Thunderbolt разработали в сентябре 2003 года. Это модернизированная бронированная пушечная система М8 в составе 120-мм танковой пушки ХМ291 (вместо 105-мм пушки М35). Основное достоинство системы – экономия пространства за счет использования гибридного электропривода. В передней части корпуса появились два тяговых двигателя, а в одном из спонсонов – дизельный двигатель мощностью 300 л.с. Это освободило пространство, в котором раньше размещался 580-сильный дизельный силовой блок и бортовые передачи. Сейчас в нем могут разместиться четыре человека или дополнительный боекомплект. Разница в мощности компенсируется энергией блока из 24 свинцовых аккумуляторов.

В процессе разработки использовался демонстрационный макет ТТD – основное средство разработки привода HED. Использование дизельного двигателя John Deere (250 л.с. 187 кВт) и блока из 40 свинцовых аккумуляторных батарей (187 кВт) снизило расход топлива на 89% по сравнению со стандартным БТР М113А3, который оснащается двигателем Detroit Diesel (275 л.с.) и гидродинамической трансмиссией Х2000-4А компании Allison, при движении по пересеченной местности с изменениями высоты и дорогам.

Правда, отчасти это улучшение напрямую связано только с заменой двигателя, так как у силового агрегата Detroit Diesel довольно высокий удельный расход топлива.

Электрические трансмиссии приводных систем компании United Defense – это классические представители двухстороннего типа с двумя параллельными схемами, которые передают ток от генератора с приводом от двигателя машины к отдельным исполнительным двигателям для каждой гусеницы. Подобные двухсторонние системы использовались в других гусеничных машинах с электрическими приводами. Правда, если в трансмиссиях United Defense использовались асинхронные двигатели, то в них – электродвигатели с постоянным магнитом, которые были разработаны позднее.

Системы FCS-T и FCS-W с гибридным электрическим приводом

Также компания United Defense представила еще две платформы для боевых систем будущего. Первая, с обозначением FCS-T (гусеничная) – это платформа, изначально разработанная компанией UDLPдля консорциума Lancer в качестве возможной платформы, размещаемой в самолетах С-130, для свернутой в настоящий момент англо-американской программы разведывательной машины будущего FSCS/TRACER.

Электрические трансмиссии для современных боевых машин

FCS-T и FCS-W с гибридным электрическим приводом.

Платформа FCS-T использует гибридную систему с тремя режимами: гибридный, только от аккумуляторов и только от двигателя. При работе от аккумуляторов (маскировочный, бесшумный режим) машина может проехать около четырех километров, питаясь от блока литиевых аккумуляторов (167 кВт) при напряжении 600 вольт. Также этот режим используется, чтобы обеспечить длительное (до 6 часов при 2.5 кВт) бесшумное наблюдение, когда экипаж использует лишь электронные приборы обнаружения.

CERV – дизель-электрический гибридный автомобиль

Электрические трансмиссии для современных боевых машин

Дизель-электрический гибридный автомобиль CERV

Автомобиль для скрытного передвижения с увеличенной дальностью CERV – это легкая, дизель-электрическая машина с максимальной скоростью в 130 км/ч. Основное предназначение – проведение спецопераций поддержки, рекогносцировки и целеуказания. Главным достоинством машины является бесшумное движение и экологичность. В разработке автомобиля участвовала калифорнийская компания Quantum Fuel Systems Technologies Worldwide.

Полноприводную машину приводит в движение дизель-электрическая гибридная силовая установка Quantum Q-Force в составе 1.4-литрового дизельного двигателя, работающего в паре с 75 кВт генератором и литиево-ионными аккумуляторами. Она питает электрический двигатель постоянного тока (100 кВт). Уникальный легкий корпус, разработанный Quantum, снизил вес автомобиля до 2267 килограмм. В задней части автомобиля находится большая грузовая платформа.

В рамках работ над автомобилем было построено шесть прототипов. Данный автомобиль обладает крутящим моментом в 6800 Нм, что позволяет преодолевать водные преграды до 0.8 метра, а также подъемы до 60%.

Электрические трансмиссии для современных боевых машин

Использование гибридной трансмиссии Q-Force снижает расход топлива на 25% по сравнению с обычными машинами такого же веса и размера, а также существенно снижает тепловую заметность и выбросы углекислого газа.

При разработке CERV использовались новейшие технологии, которые улучшили производительность батарей, и, соответственно, повысили дальность.

Инженерная машина L-ATV компании Oshkosh Defense

По словам представителей компании Oshkosh Defense, их новая разработка уверенно доминирует в классе легких боевых инженерных машин, сочетая проверенные технологии и передовые системы защиты экипажа. Вполне возможно, что эта машина станет заменой для устаревшего колесного броневика Humvee.

Электрические трансмиссии для современных боевых машин

L-ATV

При разработке модели использовался опыт, полученный в ходе столкновений Афганистана и Ирака. Машина L-ATV призвана обеспечить высокую мобильность и защиту на уровне MRAP.

Бронеавтомобиль использует интеллектуальную, независимую подвеску нового поколения Oshkosh TAK-4i, которая обладает увеличенным на 505 мм ходом, что повышает эффективность при движении по неустойчивым покрытиям. В запатентованной технологии ТАК-4 используются 20-дюймовые колеса с независимым управлением.

Также стоит отметить, инновационную, гибридную дизель-электрическую силовую установку Propulse, которая дает дополнительные 70 кВт мощности при движении машины, а также обеспечивает энергией для инженерных нужд при остановке. Энергия от дизель-генератора подается на 4 электрических двигателя для каждого ведущего колеса. Кроме того, силовая установка улучшила топливную эффективность и мощность, дала возможность практически бесшумно передвигаться на коротких дистанциях.

Предусмотрена возможность пакетного оснащения броней. Бронирование можно изменять в зависимости от поставленных задач. В днище автомобиля установлена специальная защита от осколков и взрывной волны противопехотных мин.

Улучшение живучести

Стоит отметить, что американские машины пока не используют еще одно преимущество электрического привода, а именно использование некоторых небольших дизельных двигателей с генераторами в качестве поставщиков мощности. Это значительно повышает живучесть – машина не теряет подвижность при повреждениях и все еще может вернуться обратно, избегая потери мобильности. Кроме того, это дает возможность глобального использования стандартных современных дизельных двигателей. Унифицированная конструкция позволит легко реагировать на модернизацию машин.

Электрические трансмиссии для современных боевых машин

Эскиз машины с колесной формулой 6×6 с электрическими приводами колес и сдвоенными элементами конструкции – дизельный двигатель – генератор

Полезный объем машины увеличивается, в сравнении с механическим приводом. Кроме того, снижение веса позволяет без проблем транспортировать ее по воздуху.

Как мы можем видеть, в западных странах создавались не просто макеты, а вполне готовые платформы с гибридным электрическим приводом.

Источники:
http://andrei-bt.livejournal.com/230406.html
http://btvt.narod.ru/1/electr/el_transm3.htm
http://btvt.narod.ru/1/electr4/el_transm.htm
http://weaponscollection.com/transport/1848-dizel-elektricheskiy-gibridnyy-avtomobil-cerv.html
http://www.engine-market.ua/news/l-atv-novaya-takticheskaya-inzhenernaya-mashina-ot-kompanii-oshkosh-defense/

topwar.ru

Электромеханические трансмиссии

Электромеханическая трансмиссия состоит из электрического генератора, тягового электродвигателя (или нескольких), электрической системы управления, соединительных кабелей. Основным достоинством электромеханических трансмиссий, является обеспечение наиболее широкого диапазона автоматического изменения крутящего момента и силы тяги, а так же, отсутствие жёсткой кинематической связи между агрегатами электротрансмиссии, что позволяет создать различные компоновочные схемы.

Недостатком, препятствующим широкому распространению электрических трансмиссий, являются относительно большие габариты, масса и стоимость (особенно если используются электрические машины постоянного тока), сниженный КПД (по сравнению с чисто механической). Однако, с развитием электротехнической промышленности, массовым распространением асинхронного, синхронного, вентильного, индукторного и др. видов электрического привода, открываются новые возможности для электромеханических трансмиссий.

Такие трансмиссии применяются в тепловозах, карьерных самосвалах, некоторых морских судах, тракторах, самоходных механизмах, военной технике (в свое время, на танках ЭКВ (СССР) и немецких военных машинах «Фердинанд» и «Мышонок»), автобусах (которые с таким видом трансмиссии, правильнее называются теплоэлектробус (например ЗиС-154)).

    1. Сцепление.

Сцепле́ние — механизм передачи вращения, который может быть плавно включён и выключен (выжат), обеспечивающий безрывковое трогание автомобиля с места и бесшумное переключение передач.

Обычно термин «сцепление» относится к компоненту трансмиссии транспортного средства с двигателем, предназначенному для подключения или отключения соединения двигателя с коробкой передач. Изобретение сцепления приписывают Карлу Бенцу.

Существует много различных типов сцепления, но большинство основано на одном или нескольких фрикционных дисках, плотно сжатых друг с другом или с маховиком пружинами. Фрикционный материал очень похож на используемый в тормозных колодках и раньше почти всегда содержал асбест, в последнее время используются безасбестовые материалы. Плавность включения и выключения передачи обеспечивается проскальзыванием постоянно вращающегося ведущего диска, присоединенного к валу двигателя, относительно ведомого диска, соединенного через шлиц с коробкой передач.

Усилие от педали сцепления передается на механизм путем гидравлического привода или троса. Выжимание педали сцепления разжимает диски сцепления, в итоге оставляя между ними свободное пространство, а отпускание педали приводит к плотному сжатию ведущего и ведомого дисков. Почти все стандартные типы сцепления содержат пружины демпфера крутильных колебаний (видны на снимке), служащие для выравнивания небольших постоянных колебаний момента, неизбежно возникающих при передаче его шестернями коробки передач.

    1. Коробка передач.

Коро́бка переда́ч (коробка перемены передач, коробка переключения передач, коробка скоростей, КП, КПП, англ. Gear box) — агрегат (как правило — шестерёнчатый) различных промышленных механизмов (например, станков) и трансмиссий механических транспортных средств.

КП транспортных средств предназначена для изменения частоты и крутящего момента в более широких пределах, чем это может обеспечить двигатель транспортного средства. Как правило, это относится к двигателям внутреннего сгорания (ДВС), которые имеют недостаточную приспособляемость. Транспортные средства с паровыми или электрическими (трамвай, троллейбус) двигателями, имеющими высокую приспособляемость и обеспечивающими изменение частоты вращения и крутящего момента в более широких пределах, чем ДВС, обычно выполняются без КП. Также КП предназначена для обеспечения движения транспортного средства задним ходом и длительного отключения двигателя от движителя при пуске двигателя и работе его на стоянках.

В металлорежущих и других станках КП применяют, в первую очередь, для обеспечения оптимальных режимов резания — частот вращения (скоростей перемещения) режущего инструмента или обрабатываемой детали (например, частота вращения шпинделя токарного или сверлильного станка).

studfile.net

Электрические передачи | Трансмиссия

В электрических передачах крутящий момент и мощность с ведущего звена (генератора) на ведомое звено (электромотор) передается электрическим током но проводам. Мощность N, кВт, в цепи постоянного тока определяется произведением напряжения U, В, и силы гока I, А:

N — UI/ 1 000.

Электрические передачи не обладают внутренним автоматизмом, для изменения передаточного числа требуется САУ. Однако для электрической передачи не нужен механизм реверса. Задний ход обеспечивается изменением направления вращения электромоторов. Обычно не нужна и муфта начала движения.

Схемы трансмиссий автомобилей с гидрообъемными или с электрическими передачами

Рис. Схемы трансмиссий автомобилей с гидрообъемными или с электрическими передачами:
а — при использовании мотор-колес; б — при использовании ведущего моста; Н — насос; ГМ — гидромотор; Г — генератор; ЭМ — электромотор

Электропередачи (как и гидрообъемные передачи) по сравнению с фрикционными и гидродинамическими имеют гораздо более широкие компоновочные возможности. Они могут быть частью комбинированной электромеханической коробки передач при последовательном или параллельном соединении с механическим редуктором. Такие конструкции из-за больших размеров электромашин на автомобилях не применяются. Они могут быть частью комбинированной электромеханической трансмиссии, когда электромотор установлен перед главной передачей — см. рис. б (сохранен ведущий мост с главной передачей, дифференциалом, полуосями) либо в двух или во всех колесах установлены электромоторы — см. рис. а (они дополнены редукторами, выполниюшими функции главной передачи). Из-за малых потерь энергии в проводах обычно считают целесообразным применение электрической трансмиссии при любых расстояниях между генератором и электромоторами.

Мотор-колесо карьерного автомобиля-самосвала большой грузоподъемности

Рис. Мотор-колесо карьерного автомобиля-самосвала большой грузоподъемности:
первая ступень колесного редуктора: 2 — вторая ступень колесного редуктора; 3 — электромотор; 4 — тормозной механизм

В настоящее время электрические трансмиссии с мотор-колесами применяются на карьерных самосвалах большой грузоподъемности (самосвалы БелАЗ грузоподъемностью 75 т и выше), а также на многозвенных автопоездах высокой проходимости с активными прицепами. Коэффициент приспособляемости по моменту у электродвигателя постоянного тока с последовательным возбуждением составляет 4…5, что позволяет обойтись без коробки передач. Широкое применение электрических передач сдерживается в основном их высокой стоимостью и недостаточно высоким КПД (80…85%), увеличенными габаритами и массой.

Электромобили в качестве источника энергии используют электрические аккумуляторные батареи. От них через систему управления электрический ток подводится к электромоторам по схеме, аналогичной рис. а или б. В настоящее время небольшие электромобили с обычными автомобильными аккумуляторами увеличенной емкости нашли применение для перевозки малых партий грузов в пешеходных зонах больших городов, на площадках для игры в гольф и т.п. Недостатки электромобилей в основном заключаются в малом запасе хода (обычно около 150 км), после чего требуется длительная подзарядка батарей, и в трудностях с обеспечением высоких скоростных свойств.

Силовой агрегат автомобиля «Приус» фирмы «Тойота» и его схема

Рис. Силовой агрегат автомобиля «Приус» фирмы «Тойота» (а) и его схема (б):
1 — двигатель; 2 — генератор; 3 — электромотор; 4 — главная передача с межколесным дифференциалом; 5 — дифференциал-распределитель; 6 — аккумуляторная батарея

Гибридный электропривод для легковых автомобилей разработан рядом зарубежных фирм и находит все большее распространение. На рис. а показан силовой агрегат автомобиля «Приус» фирмы «Тойота», а на рисунке, б — его схема. Агрегат состоит из бензинового двигателя 1, генератора 2, электромотора дифференциала-распределителя 5, главной передачи 4 с межколесным дифференциалом, а также из силовой аккумуляторной батареи 6 (не показана на рис. а). Сцепления и коробки передач нет. У дифференциала-распределителя солнечная шестерня соединена с валом генератора, коронная — с валом электромотора, на котором установлена ведущая шестерня главной передачи, водило — с валом двигателя.

На стоянке валы двигателя, генератора и электромотора неподвижны.

При трогании с места водитель нажимает на педаль подачи топлива, включая тем самым генератор, который, действуя как стартер, запускает двигатель. В это время дифференциал-распределитель работает как редуктор, поскольку коронная шестерня неподвижна. Затем генератор начинает не потреблять, а вырабатывать электроэнергию, которая поступает на электромотор, чей высокий крутящий момент и обеспечивает трогание автомобиля. Однако в случаях, когда для трогания с места и движения требуется небольшая мощность и двигателю пришлось бы работать в зоне больших удельных расходов топлива, система управления переводит электромотор на питание от аккумуляторной батареи.

На режиме разгона автомобиля скорость вращения всех трех валов дифференциала-распределителя возрастает. Двигатель работает в зоне малых удельных расходов топлива. Электромотор получает энергию от генератора, который одновременно подзаряжает аккумуляторную батарею, а при интенсивном разгоне — еще и от аккумуляторной батареи.

На режиме равномерного движения двигатель работает в экономичной зоне. Часть его мощности идет к ведущим колесам, часть — на подзарядку аккумуляторной батареи через электромотор, работающий в режиме генератора. Этот же режим электромотора используется при торможении (энергия торможения идет на подзарядку аккумуляторной батареи), а при интенсивном торможении автоматически, с помощью электронного блока управления, включается рабочая тормозная система.

При остановке автомобиля двигатель автоматически перестает работать.

Таким образом, «Приус», в отличие от электромобилей, передвигаясь по городу на энергии аккумуляторной батареи, не нуждается во внешних подзарядиых устройствах. Имея такую же полную массу (около 1500 кг), как и у модели «Королла», и мощность двигателя на 30% меньшую, «Приус» имеет такую же максимальную скорость (160 км/ч), вдвое меньший расход топлива в городском цикле (3,5 л/100 км) и суммарные вредные выбросы, уменьшенные более чем в 10 раз.

ustroistvo-avtomobilya.ru

Электромеханическая трансмиссия

Изобретение относится к области электрических тяговых систем с машинами переменного тока. Электромеханическая трансмиссия содержит тепловой двигатель, тяговое устройство, две реактивные индукторные машины, электронный коммутатор, силовые электрические шины, накопитель электрической энергии, блок управления. Каждая индукторная машина содержит ротор, на валу которого закреплен зубчатый магнитопровод, статор с полюсами и фазными обмотками. Накопитель энергии содержит пленочный конденсатор. Трансмиссия дополнительно снабжена вторым накопителем энергии, подключенным к первому накопителю энергии и второй силовой шине. Первые выводы фазных обмоток второй индукторной машины соединены с электронным коммутатором, а вторые выводы обмоток первой и второй индукторных машин подключены к точке соединения первого и второго накопителей энергии. Электронный коммутатор содержит цепи, в каждой из которых управляемый ключ соединен с фазной обмоткой первой индукторной машиной и катодом диода и с первой силовой шиной. Достигается улучшение характеристик трансмиссии. 2 ил.

 

Изобретение относится к области электрических тяговых систем с машинами переменного тока транспортных средств с питанием от собственных источников энергоснабжения и может быть использовано в тяговых трансмиссиях гусеничных машин.

Известен автономный тяговый электропривод (Патент РФ на изобретение №2093378 С1 МПК6 B60L 11/08, 1995), содержащий генератор переменного тока, ротор которого, несущий обмотку возбуждения, кинематически связан с первичным двигателем, трехфазный электродвигатель переменного тока, статорные обмотки которого подключены через преобразователь частоты к статорным обмоткам генератора переменного тока, преобразователь частоты выполнен с тремя парами встречно-параллельно включенных однофазных тиристорных мостов, выходы которых соединены в замкнутую кольцевую схему, при этом начала и концы каждой статорной обмотки генератора переменного тока соединены со входами обоих мостов соответствующей пары, фазные выводы включенных в звезду статорных обмоток электродвигателя подключены к узловым выводам образованной кольцевой схемы.

Недостатком устройства является сложность силовой схемы, наличие обмоток на роторе синхронного генератора и двигателя, низкий кпд.

Наиболее близкой по технической сущности к заявляемому техническому решению, принятой за прототип, является электромеханическая трансмиссия (патент РФ №2376158 С2 МПК В60К 17/00 (2006.01), Н02Р 8/00 (2006.01), содержащая как минимум один тепловой двигатель, как минимум одно тяговое устройство, как минимум две реактивные индукторные машины, как минимум два электронных коммутатора, силовые электрические шины, как минимум один накопитель электрической энергии, блок управления, причем как минимум одна реактивная индукторная машина кинематически соединена с как минимум одним тепловым двигателем, как минимум одна реактивная индукторная машина кинематически соединена с как минимум одним тяговым устройством, блок управления подключен к электронным коммутаторам, накопитель электрической энергии подключен к силовым шинам, кроме того, каждая реактивная индукторная машина содержит ротор, на валу которого закреплен зубчатый магнитопровод, статор с полюсами и фазными обмотками, выполненными в виде сосредоточенных катушек, размещенных на полюсах статора, причем как минимум одна реактивная индукторная машина выполнена таким образом, что результат произведения числа зубцов ротора на число фаз статора машины равен или более 24, а накопитель электрической энергии содержит как минимум один пленочный конденсатор, при этом электронные коммутаторы подключают фазные обмотки электрических реактивных индукторных машин к силовым шинам, введены датчики положения ротора реактивных индукторных машин, которые подключены к блоку управления.

Недостатками данной электромеханической трансмиссии являются:

— относительно высокая стоимость, обусловленная тем, что электромеханическая трансмиссия содержит два электронных коммутатора, каждый из которых содержит большое количество дорогостоящих управляемых ключей и диодов;

— относительно низкий кпд, обусловленный тем, что электромеханическая трансмиссия содержит два и более электронных коммутатора, в каждом из которых образуются потери в электронных ключах и других силовых элементах, что снижает общий кпд трансмиссии;

высокие массо-габаритные показатели, обусловленные тем, что электромеханическая трансмиссия содержит два и более электронных коммутатора, каждый из которых занимает определенный объем и увеличивает массу трансмиссии.

Задачей, решаемой изобретением, является создание более простой электромеханической трансмиссии, обеспечивающей снижение стоимости, повышение кпд, снижение массо-габаритных показателей при сохранении возможности регулирования тягового усилия в широком диапазоне значений.

Для решения поставленной задачи электромеханическая трансмиссия содержит как минимум один тепловой двигатель, как минимум одно тяговое устройство, как минимум две реактивные индукторные машины, электронный коммутатор, силовые электрические шины, накопитель электрической энергии, блок управления, причем как минимум одна реактивная индукторная машина кинематически соединена с как минимум одним тепловым двигателем, как минимум одна реактивная индукторная машина кинематически соединена с как минимум одним тяговым устройством, блок управления подключен к электронному коммутатору, первый вывод накопителя электрической энергии подключен к первой силовой шине, причем каждая реактивная индукторная машина содержит ротор, на валу которого закреплен зубчатый магнитопровод, статор с полюсами и фазными обмотками, выполненными в виде сосредоточенных катушек, размещенных на полюсах статора, причем как минимум одна реактивная индукторная машина выполнена таким образом, что результат произведения числа зубцов ротора на число фаз статора машины равен или более 24, а накопитель электрической энергии содержит как минимум один пленочный конденсатор, датчики положения ротора реактивных индукторных машин подключены к блоку управления.

Электромеханическая трансмиссия имеет отличия от прототипа: она снабжена вторым накопителем энергии, который подключен ко второму выводу первого накопителя энергии и второй силовой шине, причем первые выводы фазных обмоток второй реактивной индукторной машины соединены с электронным коммутатором, а вторые выводы фазных обмоток первой и второй реактивных индукторных машин подключены к точке соединения первого и второго накопителей энергии, кроме того, электронный коммутатор содержит цепи, в каждой из которых управляемый электронный ключ одним выводом соединен с фазной обмоткой первой реактивной индукторной машины и катодом диода, а вторым выводом — с силовой шиной, имеющей положительный потенциал, а анод диода соединен со второй силовой шиной, имеющей отрицательный потенциал, а также она содержит цепи, в каждой из которых управляемый электронный ключ одним выводом соединен с фазной обмоткой второй реактивной индукторной машины и анодом диода, а вторым выводом — с силовой шиной, имеющей отрицательный потенциал, а катод диода соединен с первой силовой шиной, имеющей положительный потенциал.

Техническим результатом предлагаемого изобретения является снижение стоимости, повышение кпд, снижение массо-габаритных показателей.

Снижение стоимости электромеханической трансмиссии достигается тем, что в результате упрощения устройства за счет введения дополнительного накопителя энергии и изменения связей между элементами устройства, уменьшено количество электронных коммутаторов, а следовательно, и количество дорогостоящих силовых элементов, значительно превышающих стоимость введенного в устройство накопителя энергии. Например, для тягового привода с реактивными индукторными машинами применяется полумостовая схема электронного коммутатора, содержащая в каждой фазе два управляемых ключа, соединенных последовательно с фазной обмоткой реактивной индукторной машины и подключенных к силовым шинам, два обратных диода, шунтирующих фазную обмотку и соответствующие управляемые ключи. (Тяговые двигатели электровозов. В.И.Бочаров, В.И.Захаров, Л.Ф.Коломейцев и др. Под общей редакцией В.Г.Щербакова. Агентство Наутилус. Новочеркасск, 1998. с.667, на с.379). Предлагаемое устройство выгодно отличается от известного тем, что на одну фазу реактивной индукторной машины приходится один управляемый ключ и один диод.

Повышение кпд трансмиссии достигается за счет уменьшения потерь мощности в силовых элементах электронного коммутатора. В известном устройстве потери образуются в двух управляемых ключах и двух диодах каждой фазы. В предлагаемом устройстве — в одном управляемом ключе и одном диоде. Так как токовая загрузка силовых элементов в обоих устройствах примерно одинакова во всех режимах работы электрических машин, то потери мощности в силовых элементах в предлагаемом устройстве примерно в два раза меньше, чем в известном устройстве.

Улучшение массо-габаритных показателей достигается созданием более компактной облегченной конструкции электронного коммутатора за счет уменьшения количества силовых элементов и снижения мощности потерь.

На фигуре 1 показана схема электромеханической трансмиссии. Схема содержит тепловой двигатель 1, кинематически соединенный с первой многофазной реактивной индукторной машиной 2, снабженной датчиком положения ротора 3, тяговое устройство 4, кинематически соединенное со второй многофазной реактивной индукторной машиной 5, снабженной датчиком положения ротора 6, первые выводы фазных обмоток реактивных индукторных машин 2 и 5 подключены к электронному коммутатору 7, а вторые выводы фазных обмоток подключены к точке соединения выводов накопителей энергии 8 и 9, вторые выводы которых подключены к электронному коммутатору 7 через силовые шины 10. Блок управления 11 соединен с датчиками положения ротора 3, 6 и подключен к электронному коммутатору 7.

На фигуре 2 показана схема подключения цепей электронного коммутатора 7 к силовым цепям схемы на примере применения трехфазных реактивных индукторных машин. Электронный коммутатор 7 содержит цепи, в каждой из которых управляемые электронные ключи 7.1-7.3, соединенные с первыми выводами фазных обмоток реактивной индукторной машины 2 и катодами диодов 7.7-7.9, вторые выводы электронных ключей 7.1-7.3 подключены к силовой шине 10.1, имеющей положительный потенциал, а аноды диодов 7.7-7.9 подключены к силовой шине 10.2, имеющей отрицательный потенциал, а также цепи, в каждой из которых управляемые электронные ключи 7.10-7.12, соединенные с первыми выводами фазных обмоток второй реактивной индукторной машины 5 и анодами диодов 7.4-7.6, причем, вторые выводы электронных ключей 7.10-7.12 подключены к силовой шине 10.2, имеющей отрицательный потенциал, а катоды диодов 7.4-7.6 подключены к силовой шине 10.1, имеющей положительный потенциал. К силовым шинам 10.1, 10.2 подключена цепь из последовательно включенных накопителей энергии 8 и 9, а вторые выводы фазных обмоток реактивных индукторных машин 2 и 5 подключены к точке соединения накопителей энергии 8 и 9.

Предлагаемая электромеханическая трансмиссия в тяговом режиме работает следующим образом.

Тепловой двигатель 1 приводит во вращение вал реактивной индукторной машины 2. Блок управления 11, в соответствии с сигналами, поступающими от датчиков положения ротора 3 и 6 реактивных индукторных машин 2 и 5, вырабатывает сигналы управления и подает их на управляемые ключи электронного коммутатора 7 таким образом, что при замыкании ключей 7.1-7.3 фазные обмотки реактивной индукторной машины 2 подключаются через силовую шину 10.1 к накопителю энергии 8 и потребляют от него энергию, необходимую для возбуждения реактивной индукторной машины 2. При размыкании ключей 7.1-7.3 в фазных обмотках реактивной индукторной машины 2 генерируется электрическая энергия, которая передается через диоды 7.7-7.9 и шину 10.2 в накопитель энергии 9, а при замыкании ключей 7.10-7.12 фазные обмотки реактивной индукторной машины 5, кинематически соединенной с тяговым устройством 4, подключаются к накопителю энергии 9 и потребляют от него электрическую энергию, преобразуя ее в механическую энергию, которая передается на тяговое устройство 4. При размыкании ключей 7.10-7.12 энергия, запасенная в фазных контурах реактивной индукторной машины 5, передается в накопитель энергии 8 через диоды 7.4-7.6 и силовую шину 10.1 и в следующем цикле работы устройства она снова используется для возбуждения реактивной индукторной машины 2.

Положительный эффект от использования предлагаемого изобретения заключается в том, что создана более простая электромеханическая трансмиссия, обеспечивающая снижение стоимости, повышение кпд, снижение массо-габаритных показателей при сохранении возможности регулирования тягового усилия в широком диапазоне значений.

Электромеханическая трансмиссия, содержащая как минимум один тепловой двигатель, как минимум одно тяговое устройство, как минимум две реактивные индукторные машины, электронный коммутатор, силовые электрические шины, накопитель электрической энергии, блок управления, причем как минимум одна реактивная индукторная машина кинематически соединена с как минимум одним тепловым двигателем, как минимум одна реактивная индукторная машина кинематически соединена с как минимум одним тяговым устройством, блок управления подключен к электронному коммутатору, первый вывод накопителя электрической энергии подключен к первой силовой шине, причем, каждая реактивная индукторная машина содержит ротор, на валу которого закреплен зубчатый магнитопровод, статор с полюсами и фазными обмотками, выполненными в виде сосредоточенных катушек, размещенных на полюсах статора, причем как минимум одна реактивная индукторная машина выполнена таким образом, что результат произведения числа зубцов ротора на число фаз статора машины равен или более 24, а накопитель электрической энергии содержит как минимум один пленочный конденсатор, датчики положения ротора реактивных индукторных машин подключены к блоку управления, отличающаяся тем, что электромеханическая трансмиссия дополнительно снабжена вторым накопителем энергии, который подключен ко второму выводу первого накопителя энергии и второй силовой шине, первые выводы фазных обмоток второй реактивной индукторной машины соединены с электронным коммутатором, а вторые выводы фазных обмоток первой и второй реактивных индукторных машин подключены к точке соединения первого и второго накопителей энергии, кроме того, электронный коммутатор содержит цепи, в каждой из которых управляемый ключ одним выводом соединен с фазной обмоткой первой реактивной индукторной машиной и катодом диода, а вторым выводом — с первой силовой шиной, имеющей положительный потенциал, а анод диода соединен со второй силовой шиной, имеющей отрицательный потенциал, а также содержит цепи, в каждой из которых управляемый электронный ключ одним выводом соединен с фазной обмоткой второй реактивной индукторной машины и анодом диода, а вторым выводом — со второй силовой шиной, имеющей отрицательный потенциал, причем катод диода соединен с первой силовой шиной, имеющей положительный потенциал.

findpatent.ru

Трансмиссия электромеханическая — Энциклопедия по машиностроению XXL

Гидромеханические (с гидротрансформатором вместо муфты сцепления) и электромеханические трансмиссии применяют, в основном, в приводах карьерных самосвалов особо большой грузоподъемности. В последнее время в приводах тяжелых грузовых автомобилей и тягачей стали применять гидрообъемные трансмиссии с мотор-колесами.  [c.111]

Для привода тракторов применяют дизели, реже — карбюраторные двигатели с механической, гидромеханической и электромеханической трансмиссиями. В тракторах, используемых для навески строительного рабочего оборудования, широкое применение получили первые два вида трансмиссий. Гусеничные тракторы с передним расположением двигателя (рис. 5.8, а) и колесные тракторы с передними управляемыми колесами (рис. 5.8, в) имеют сходные кинематические схемы механических трансмиссий (см. рис. 3.4). Для поворота колесного трактора одно из его колес затормаживают, но направление передвижения при повороте определяется текущим углом поворота управляемых колес. При этом неизбежно проскальзывание одного или обоих колес, что снижает долговечность шин.  [c.119]


В гидромеханических передачах вслед за двигателем устанавливают гидротрансформатор (вместо муфты сцепления), автоматически изменяющий скорость движения трактора в зависимости от внешней нагрузки. В гусеничных тракторах с электромеханической трансмиссией движение ведущим звездочкам гусениц сообщается тяговым электродвигателем постоянного тока, питаемым от приводимого двигателем трактора генератора, через бортовые фрикционы и редукторы. Система привода дизель-генера-тор-электродвигатель упрощает кинематическую схему передачи и обеспечивает бесступенчатое регулирование скорости передвижения в широких пределах. Гидромеханическая и электрическая силовые передачи наиболее полно отвечают режиму работы тракторов с прицепным и навесным оборудованием строительных машин.  [c.119]

Машины такого типа имеют механическую, гидромеханическую или электромеханическую трансмиссию. В последнем случае механизмы винтового питателя, ковшового и ленточного конвейеров, а также гусениц или колесных осей приводятся индивидуальными электродвигателями, питаемыми от генератора трехфазного тока, приводимого ДВС. Известны также машины, питаемые электроэнергией от внешней электросети. Производительность многоковшовых погрузчиков составляет обычно от 40 до 160 mV4.  [c.137]

Ручные перфораторы применяют, главным образом, для образования отверстий в различных материалах. Некоторые модели могут работать в режимах молотка и сверлильной машины. Перфораторы являются импульсно-силовыми машинами со сложным движением рабочего органа — бура, для чего в трансмиссии перфоратора имеются ударный и вращательный механизмы, иногда конструктивно совмещенные. Основными параметрами перфораторов являются энергия и частота ударов. По назначению различают перфораторы для образования неглубоких отверстий (300. .. 500 мм) в материалах с прочностью 40. .. 50 МПа и глубоких отверстий (2000. .. 4000 мм и более) в материалах практически любой прочности (200 МПа и более). По типу привода перфораторы подразделяют на машины с электрическим (электромеханическим и электромагнитным), пневматическим приводом и от двигателей внутреннего сгорания.  [c.343]

Трансмиссии разделяют на механические, гидрообъемные, электрические и комбинированные (гидромеханические, электромеханические).  [c.130]

Электромеханический способ восстановления изношенных валов трансмиссии автомобилей нашел широкое применение в ремонтном производстве. Этот способ позволяет решать две задачи восстанавливать размеры изношенных деталей и улучшить механические свойства поверхностных слоев.  [c.346]


Автомобильные трансмиссии могут быть механическими, гидромеханическими и электромеханическими.  [c.269]

Для работы электромеханической трансмиссии используют электрическую энергию. В электромагнитном сцеплении крутящий момент от ведущих деталей к ведомым передает находящийся между ними мелкий железный порошок. Сцепление, установленное на маховике 1 (рис. 124), имеет ведущий элемент 2 с обмоткой  [c.275]

К недостаткам электромеханической трансмиссии следует отнести большую ее массу и малый к. п. д.  [c.276]

Рис. 125. Автомобиль с электромеханической трансмиссией Рис. 125. Автомобиль с электромеханической трансмиссией
На автомобилях (БелАЗ) с электромеханической трансмиссией дизельный двигатель приводит во  [c.178]

Для тракторов с гидромеханической и электромеханической трансмиссиями средняя скорость рабочего хода  [c.155]

Основное удельное сопротивление при движении локомотива или моторвагонного подвижного состава без тока выше, чем при движении под током. Это объясняется тем, что сопротивление от трения в зубчатых передачах, моторно-осевых подшипниках, в звеньях силовых трансмиссий (в дизель-поездах) и механические потери в двигателях учтены в электромеханических характеристиках, тогда как при движении локомотива или моторвагонного состава без тока они входят в основное удельное сопротивление.  [c.276]

Чтобы не усложнять механическую трансмиссию, иногда применяют электромеханическую передачу. При этом двигатель внутреннего сгорания (обычно дизель) приводит в действие генератор, питающий электродвигатели каждого механизма крана.  [c.75]

Бесступенчатые трансмиссии с каждым годом находят все более широкое применение на автомобилях и разделяются на электромеханические, гидромеханические, гидростатические и гидрообъемные.  [c.151]

В электромеханических трансмиссиях крутящий момент к ведущим колесам подводится от электродвигателей через механические (планетарные) редукторы. Электродвигатели получают энергию от ди-зель-генераторной установки, размещенной на раме автомобиля.  [c.151]

В электромеханических трансмиссиях сцепление, коробка передач, а иногда и остальные агрегаты трансмиссии заменяются генератором и электродвигателем (или несколькими электродвигателями).  [c.156]

Электромеханические трансмиссии могут работать на постоянном или переменном токе. Трансмиссии на переменном токе более компактны и легче, но не обеспечивают бесступенчатого регулирования изменения крутящего момента. Поэтому электромеханические трансмиссии выполняются на постоянном токе. В свою очередь, эти трансмиссии бывают с одним тяговым электродвигателем и несколькими электродвигателями, расположенными в каждом ведущем колесе.  [c.156]

Наиболее рациональной компоновкой электромеханических трансмиссий является размещение электродвигателей непосредственно в ве-  [c.156]


Автомобили с электромеханической трансмиссией.  [c.7]

Способ электромеханической обработки применяют при ремонте различных деталей, например при ремонте толкателей двигателей, валов трансмиссии автомобиля, у которых восстанавливают посадочные места под подшипники, шестерни и др. На рис. 52 представлена схема восстановления размера изношенного вала. Вначале поверхность вала обрабатывают инструментом 2. Нагретый в зоне контакта металл детали выдавливают твердой пластиной инструмента (продольная подача инструмента примерно в три раза больше ширины поверхности контакта). Образуются выступы по винтовой линии и диаметр вала с Рг увеличивается до размера /)]. Затем поверхность обрабатывают инструментом 3, которым сглаживают ее до необходимого размера Ло При этом подачу устанавливают значительно меньше ширины контакта пластины 3. Данным способом восстанавливают шейки валов, имеющие износ не более 0,25 мм. При большем износе осуществляют введение дополнительного металла в виде стальной проволоки (рис. 53), которая предварительно очищается. Процесс восстановления включает три этапа. Вначале изношенную поверхность детали 3 высаживают пластиной 2. Затем в образовавшуюся спиральную канавку приваривают проволоку. Для этого стальную проволоку 4 помещают между поверхностью детали и роликом 5. Пропускают электрический ток большой силы (1400—2000 А) и низкого напряжения (4—6 В). В результате происходит интенсивный разогрев (до 1000—1200° С) металла и проволоки в месте контакта и последняя приваривается. Затем включают станок, и при частоте вращения детали 0,4—1,0 м/мин и давлении ролика 500—600 Н (50—60 кгс) осу-  [c.70]

Экскаватор ЭТР-253 имеет смешанную трансмиссию (рис. 76). Ротор и транспортер приводятся через электромеханическую трансмиссию трансмиссия транспортного хода — механическая, рабочего хода — гидромеханическая.  [c.77]

Для тракторов с гидромеханической и электромеханической трансмиссиями Vp — = 1,7ч-2,5 км/ч для тракторов с механической трансмиссией Ор = (0,6-н0,7) Ин, где  [c.116]

У автомобилей с гидромеханической трансмиссией крутящий момент, передаваемый от двигателя к колесам, преобразуется гидравлическим, и механическим способами, а у автомобилей с электромеханической трансмиссией— механическим и электрическим способами. Гидравлическая и электрическая части этих трансмиссий позволяют осуществить бесступенчатое изменение передаточного числа.  [c.180]

Трансмиссия передает вращающий момент от двигателя к движителю (колесам). Она может быть механической, электромеханической и гидромеханической. Наиболее распространена механическая трансмиссия (рис. 5.2), обычно состоящая из сцепления / коробки передач 2 карданной передачи 3 и 4 главной передачи, дифференциала и полуосей, смонтированных в одном корпусе и образующих ведущий мост 6. Сцепление представляет собой нормально замкнутую дисковую фрикционную муфту, с помощью которой кратковременно разъединяют и плавно соединяют двигатель с последующими элементами трансмиссии. Коробка передач обычно со ступенчатым регулированием скоростей, включая заднюю скорость. Карданная передача представляет собой два телескопически (на шлицах с возможностью взаимного осевого перемещения) соединенных вала с универсальными щарнирами для соединения с коробкой передач и главной передачей ведущего моста. Благодаря такой конструкции карданная передача может передавать вращение при непрерывных линейных и угловых смещениях ведомой части (главной передачи) относительно ведущей части (коробки передач). Главная передача представляет собой конический зубчатый редуктор. Дифференциал обеспечивает вращение полуосей с колесами без проскальзывания последних вне зависимости от дорожного рельефа и конфигурации трассы передвижения.  [c.111]

Трансмиссии по способу передачи крутящего момента разделяют на механические, гидравлические, электрические и комбинированные (гидромеханические, электромеханические). На отечественных автомобилях наиболее распространены механические трансмиссии, в которых передаточные механизмы состоят из жестких недеформируемых элементов (металлических валов и шестерен). На автобусах Ликинского и Львовского заводов, а также на большегрузных автомобилях БелАЗ применяют гидромеханические трансмиссии с автоматизированным переключением передач. Часть большегрузных автомобилей БелАЗ имеют электромеханическую трансмиссию с мотор-колесами.  [c.177]

Среднее время остановки после рабочего хода с учетом выглубления зубьев на ходу 4—6 сек при механической трансмиссии базового трактора и 1,5—2 сек при гидромеханической и электромеханической трансмиссии, а после обратного хода с учетом опускания зубьев соответственно 6—8 и 2—3 сек.  [c.156]

Гусеничныс тракторы разделяют по типу двигателя (дизели, карбюраторны,), трансмиссии (механическая, гидро.механическая и электромеханическая), подвески гусениц (полужесткая, с Оалан-сирными каретками, эластичная) и общей компоновке (с передним, задним и средним расположением кабины и соответственно с задним, передним и средним размещением двигателя).  [c.83]

Схема электромеханической трансмиссии с Одним тяговым электродвигателем представлена на рис. 93, а. Двигатель 2 внутреннего сгорания приводит к действие генератор 1 постоянного тока. Генератор преобразует механическую энергию в электрическую и передает ее тяговому электродвигателю 5. Крутящий момент от электродвигателя передается на ведущие колеса так же, как у механической трансмиссии, т. е. через ларданную 4 и главную 3 передачи, дифференциал и полуоси. Управление двигателем внутреннего сгорания осуществляется педалью, которая действует на дроссельную заслонку карбюратора, изменяя частоту вращения генератора и величину вырабатываемого им тока.  [c.156]

В зависимости от способа преобразования крутящего момента трансмиссии делятся на механическую, гидромеханическую и электромеханическую, а 110 способу изменения момента они мог т быть ступенчатыми, бесступенчатыми и комбинированным и. Схемы механических трансмиссий, используемые (В современном автомобилестроении, показаны на рис. 89. По схеме а (колесная формула 4X2) выполнена трансмиссия автомоб11ля МАЗ-500, по схеме (4X4) — ГАЗ-66, УАЗ-469, по схеме б (6×6) Урал-3″5 , а по схеме (6X4) — КрАЗ-257.  [c.162]

Электромеханическая трансмиссия (рис. 5.1, б) включает в себя электрическую и механическую передачи. Механическая энергия от двигателя 7 внутреннего сгорания поступает к электрическому генератору 2. Далее электрическая энергия по силовым кабелям 3 подается к тяговому электродвигателю 4, где она вновь преобразуется в механическую, и, проходя через задний мост 6, поступает к ведущим звездочкам 7. Этот тип трансмиссии используется на тракторе ДЭТ-250, некоторых автомобилях семейства БелАЗ иМоАЗ. Преимущества такой трансмиссии — дистанционность передачи энергии и бесступенчатость регулирования. Недостатки — относительно низкий КПД, повышенные масса и стоимость.  [c.246]

По конструктивным признакам гусеничные тракторы разделяют по типу двигателя (дизели, карбюраторные, газовые), трансмиссии (с механической, гидромеханической и электромеханической), подвески гусениц (полужесткой, с балансирными каретками, эластичной) и общей компоновке (с передним, задним и средним расположением кабины и, соответственно, с задним, передним и средним размещением двигателя). Наиболее распространены гусеничные тракторы с дизелем, полужесткой и с балансирными подвесками гусениц и задним расположением кабины (рис. 258).  [c.257]

В состав щасси входят несущая конструкция, ходовая часть (упругая подвеска и движитель), электромеханический привод (электродвигатель и трансмиссия), механизм разблокировки, комплект измерительных датчиков, блок автоматики щасси.  [c.418]

На начальной стадии изучения процесса движения троллейбуса рассматривают только его полезное перемещение, используя при этом номинальные характеристики установивщихся режимов его работы и систем электроснабжения. Однако в процессе реализации тяги и торможения проявляется совокупность сложных механических, электромеханических и электромагнитных процессов, происходящих в системе контактная сеть — подвижной состав — тяговая подстанция. Поэтому тяговые и тормозные свойства подвижного состава отличаются от номинальных расчетных и в ряде случаев значительно отклоняются от приведенных в технических паспортах, соответствующих идеальным установивщимся режимам работы. При движении троллейбуса на процесс реализации сил тяги и торможения оказывает влияние изменение нагрузок его узлов. Это прежде всего вызвано случайными и периодическими колебаниями троллейбуса как электромеханической системы со многими степенями свободы. Динамические нагрузки, возникающие вследствие этих колебаний, вызывают появление изменяющихся во времени механических напряжений прежде всего в опорной поверхности (дороге), ходовой системе (движителе, подвеске), трансмиссии, тяговых двигателях и электрооборудовании. Взаимодействие троллейбуса и дороги заметно осложняется в весенне-осенние и зимние периоды года, когда на дороге появляются гололед и снежный покров. Именно в эти периоды происходит наибольшее число повреждений и отказов оборудования троллейбуса и контактной сети.  [c.33]

Управление муфтой включения осуществляется из кабины летчика посредством специального рычага или электромеханически. Во избежание резких включений несущего винта конструкции трансмиссии многих вертолетов имеют специальные центробежные автоматы, которые обеспечивают плавное включение после достижения двигателем определенного числа оборотов.  [c.50]

Разработаны электромагниты следящего действия для привода дроссельной заслонки в системах ограничения скорости автомобиля и автоматического управления приводом сцепления [1]. Примером совместного применения электромеханического и электро магнитного исполнительных устройств для создания автоматизи рованной трансмиссии легкового автомобиля является система Рено -автоматик (рис. 3). Исполнительный электромагнит этой системы соединяет ползуны коробки передач с электродвигатель ньм  [c.5]


mash-xxl.info

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *