Геометрия турбины принцип работы – о турбине с изменяемой геометрией — DRIVE2

Содержание

о турбине с изменяемой геометрией — DRIVE2

Конструкция классической турбины
Упрощенно конструкцию классического турбонагнетателя можно представить в виде двух крыльчаток, соединенных вместе одной осью. Находятся эти крыльчатки в отдельных герметично разделенных камерах. На одну из крыльчаток подводятся выпускные газы работающего двигателя и заставляют ее вращаться. Это вращение передается через совместную ось на вторую крыльчатку, соединенную с подводом атмосферного воздуха. Захваченный крыльчаткой свежий воздух направляется к цилиндрам двигателя для сгорания.

классическая турбина


Дело в том, что мощность дизельного двигателя увеличивается за счет подачи большего количества топлива. Но в этом случае мы очень быстро столкнемся с проблемой: увеличив порцию топлива в очередной раз, мы определим, что все оно не сгорает — для его горения не хватает кислорода. Помните школьные уроки, на которых нам утверждали, что горение — это химическая реакция? Это правда. Окисление происходит с помощью кислорода и, если его мало, то нам не удастся сжечь (= окислить) все топливо. В этом случае достигается предел мощности.
Осознав задачу, инженеры разработали турбокомпрессор, который нагнетает дополнительный воздух в камеры сгорания. Есть дополнительный воздух, значит можно увеличить порцию впрыскиваемого топлива и увеличить мощность двигателя
Турбояма
Выпускные газы могут раскрутить крыльчатки турбины до скорости 150 000 — 210 000 об/мин! Если не учитывать геометрические особенности конструкции турбины, то можно вывести простую взаимосвязь: чем больше отработанных газов попадают в турбину, тем выше ее скорость вращения и тем больше свежего воздуха она нагнетает. Именно здесь классическую турбину подстерегает неприятность. Дело в том, что мы ожидаем от турбодвигателя ускорения в любой момент. Представьте себе, что автомобиль двигается с небольшой скоростью, а двигатель работает в нижнем диапазоне частоты вращения. В таком экономном режиме двигатель вырабатывает малое количество отработанных газов и, следовательно, скорость вращения турбины низкая.
Тут водитель решает обогнать автобус, резко нажимает на педаль акселератора и … ничего не происходит. Ожидаемого ускорения нет. Причиной является врожденная задержка турбины, называемая в народе «турбоямой»: сразу же после команды водителя скорость вращения турбины низкая, а двигатель сначала увеличивает впрыск, потом это топливо сгорает и только потом поступает к турбине в виде отработанных газов. Постепенно скорость турбины увеличивается, она нагнетает больше воздуха и вот оно долгожданное ускорение — можно обгонять, но тут на «встречке» вырисовывается другой автомобиль и маневр приходиться откладывать. Неприятно.
Решение пришло в виде турбины с изменяемой геометрией. Ее отличие от классической конструкции — наличие специальных направляющих лепестков в канале, через который на крыльчатку подводятся отработанные газы. Принцип работы умиляет своей простотой.
Принцип работы турбины с изменяемой геометрией

направляющие лопости


Принцип работы турбокомпрессора с изменяемой геометрией состоит в изменении сечения на входе колеса турбины с целью оптимизировать мощность турбины для заданной нагрузки.
При низких оборотах двигателя и поток отработанных газов является небольшим и он раскручивает турбину недостаточно сильно для резкого ускорения. В этот момент по сигналу блока управления направляющие лопатки смещаются и уменьшают расстояние между собой. Несмотря на то, что объем отработанных газов не увеличился, ему теперь приходиться «протискиваться» через узкий коридор, что заставляет отработанные газы двигаться быстрее.
В результате обороты турбины возрастают и увеличивается давление наддува. Таким образом, удается увеличить скорость вращения турбины без резкого увеличения объема отработанных газов.
На полной скорости работы двигателя и при высоком уровне газового потока турбокомпрессор развдвигает направляющие лепестки, защищая себя от превышения оборотов и поддерживая давление наддува на уровне необходимом двигателю.
Изменение площади сечения (расстояния между направляющими элементами) может управляться непосредственно давлением турбины с помощью привода, с помощью вакуумного регулятора или шагового электромотора
a. корпус турбины
b. крыльчатка для отработанных газов
c. корпус турбокомпрессора
e. ось рычага смещения регулируемого кольца
f. регулируемое кольцо
g. оси направляющих лепестков
h. направляющие лепестки

турбина в разрезе

www.drive2.ru

принцип работы, устройство, чистка (видео). Как проверить клапан управления, отрегулировать

Рассматривая принцип работы турбонаддува, мы затронули проблемы, ограничивающие эффективность газовых турбокомпрессоров. Турбина с изменяемой геометрией позволяет расширить зону действия турбонаддува и сделать двигатель более приемистым. Поговорим не только об устройстве системы, но и о симптомах неисправности клапана управления, чистке и регулировке VNT-турбонагнетателей.

Устройство VNT-турбины

На рисунке изображена турбина с изменяемой геометрией, устанавливаемая на автомобили Volkswagen, Skoda. Общее устройство турбокомпрессора и принцип нагнетания дополнительного воздуха не отличается от обычных турбокомпрессоров. Основная особенность в поворотных лопатках, механизме управления и вакуумном приводе.

Принцип работы

Поворотные лопатки вращаются на осях, установленных в опорном кольце. К оси каждой лопатки прикреплены тяги управления, которые при монтаже входят в зацепление с регулировочным кольцом. Направляющий рычаг соединяет регулировочное кольцо с рычагом тяги управления и осью вакуумного привода поворотных лопаток.

При изменении положения оси вакуумного привода регулировочное кольцо проворачивается на определенный угол. За счет этого происходит поворот оси лопаток в опорном кольце. Они синхронно меняют свое положение, изменяя тем самым сечение для потока выхлопных газов.

Принцип работы турбины с изменяемой геометрией основывается на регулировании потока отработавших газов, направляемых на колесо турбины. Регулировка позволяет подстраивать проходное сечение для потока отработавших газов под режим работы двигателя.

Как изменяется давление наддува?

Когда мы рассматривали принцип работы системы изменяемой геометрии впускного коллектора, то говорили о зависимости скорости потока газов от проходного сечения канала. При одинаковом давлении скорость потока газа будет выше в канале с суженым сечением.

Для быстрого выхода турбины в зону эффективной работы на низких оборотах двигателя необходимо высокое давление наддува. В таком режиме работы лопатки уменьшают сечение канала, по которому отработанные газы движутся к крыльчатке турбины. В итоге повышается давление наддува.

В зоне высоких оборотов двигателя увеличивается объем выхлопных газов. Небольшое сечение канал приведет к чрезмерному подпору выхлопных газов, что приведет к плохому наполнению цилиндров свежим зарядом ТПВС. Поэтому с повышением оборотов двигателя лопатки меняют свое положение, увеличивая сечение для прохождения выхлопных газов.

Принцип работы изменяемой геометрии позволяет отказаться от перепускного клапана (wastegate). Через крыльчатку «горячей» части проходит весь поток выхлопных газов. Предотвращение избыточного наддува осуществляется изменением положения поворотных лопаток.

Система в разрезе

  1. Лопатки расположены перпендикулярно радиальным линиям, что равняется узкому сечению для потока выхлопных газов. Обеспечивается быстрое нарастание наддува и прибавка крутящего момента в зоне низких оборотов двигателя.
  2. Ступенчатое расположение лопаток – большое сечение для потока выхлопных газов. Этот же режим используется в качестве аварийного, когда система самодиагностики регистрирует некорректную работу системы, отсутствует питание на электромагнитном клапане.

Управление геометрией

Изменение геометрии турбины осуществляется блоком управления двигателем. Принцип работы рассмотренной выше системы предполагает наличие электромагнитного клапана управления наддувом. Управляется клапан ШИМ-сигналом. Изменяя скважность сигнала, ЭБУ двигателя устанавливает необходимое разряжение в вакуумной среде привода поворотных лопаток. При таком управлении ЭБУ может плавно и точно управлять регулировочным кольцом, что обеспечивает эффективное сгорание ТПВС на всех режимах работы двигателя.

Когда электромагнитный клапан обесточен, в вакуумной среде атмосферное давление, лопатки установлены в ступенчатом положении. Для плавной регулировки давления наддува ЭБУ постоянно опрашивает датчиковую аппаратуру двигателя.

Принципиальное отличие

Автомобильные газовые турбины всех типов имеют 3 режима работы:

  • выход в рабочую зону. Раскручивающийся вал турбины создает сопротивление потоку выхлопных газов, что снижает наполняемость цилиндров и, как следствие, КПД двигателя. Именно с режимом раскручивания турбинного колеса водители связывают явление «турбоямы»;
  • зона эффективной работы. При достижении рабочей зоны скорость вращения компрессорного колеса позволяет нагнетать в цилиндры большее количество воздуха, что ощущается прибавкой в крутящем моменте;
  • зона оверспина (от англ. overspinning – избыточное вращение). Устройство турбокомпрессора предполагает зоны эффективности. Конструкция двигателя также рассчитывается на определенную величину наддува. Если скорость потока выхлопных газов превысит зону оптимальной эффективности и расчетную величину наддува, дальнейшее использование турбонаддува только снизит КПД двигателя. Также превышение расчетной скорости вращения крыльчатки ведет к срыву потока воздуха. Поэтому устройство большинства турбин предполагает наличие клапана Последний на определенных оборотах двигателя пускает поток выхлопных газов в обход турбинного колеса.

Устройство турбины с фиксированной геометрией – это всегда компромисс между скоростью выхода в зону эффективности, величиной наддува и границей пиковой мощности. На эти параметры влияет диаметр каналов для движения газов, соотношение площади индюсера и эксдюсера, Area/Radius хаузинга, конструкция клапана wastegate, blow-off. Но из-за того, что характеристики турбины закладываются еще на стадии проектирования, ее рабочая зона довольно узкая.

Преимущества

  • Активное изменение сечения канала «горячей» части турбины позволяет расширить зону ее эффективной работы. Авто с изменяемой геометрией турбонаддува могут выдавать большую мощность уже с самих низких оборотов.
  • Уменьшенный подпор выходу выхлопных газов на высоких оборотах. Из-за отсутствующего клапана wastegate в «горячей» части уменьшается количество разнонаправленных потоков газов, что улучшает прохождение газов через турбину.
  • Улучшение эластичности двигателя.
  • Снижение расхода топлива и количества вредных выбросов в атмосферу.

Возможные неисправности

Усложнение конструкции турбины неминуемо приводит к увеличению риска поломки. Но в случае с работой изменяемой геометрии ситуация не так плоха, как может показаться. У механизма лишь несколько основных проблем:

  • движение лопаток с подклиниванием. Происходит из-за критического износа трущихся пар и при нагарообразовании. Углеродистые и масляные отложения препятствуют плавному перемещению регулировочного кольца;
  • заклинивание лопаток в одном из положений. Из-за критического нагарообразования силы вакуума недостаточно для перемещения регулировочного кольца;
  • неисправность вакуумного привода поворотных лопаток, клапана управления давлением турбонаддува.

Среди основных симптомов поломки – подергивания при разгоне, потеря мощности двигателя, увеличение расхода топлива и появление на панели приборов индикации Check Engine.

autolirika.ru

Турбина двигателя с изменяемой геометрией (VNT)

Турбина с изменяемой геометрией

Содержание:

 

Турбокомпрессор используется для увеличения мощности двигателя, которая напрямую зависит от объема воздуха и топлива, подаваемого в цилиндр. Ведущими частями любого турбокомпрессора являются турбина и насос, которые соединены между собой жесткой осью. Турбина двигателя с изменяемой геометрией необходима для образования оптимальной мощности двигателя, имеет свойство изменять сечение турбинных колес в зависимости от общей нагрузки. Если двигатель работает на низких оборотах, то турбина может увеличить скорость отвода выхлопных газов. Это позволяет турбине вращаться быстрее, при этом количество топлива остается небольшим.

   

Как устроена турбина и как она работает

Турбина с измененной геометрией отличается от классических турбокомпрессоров тем, что имеет в своей конструкции кольцо и специальные лопасти с аэродинамической формой, которая способствует увеличению эффективности наддува. В автомобилях с двигателями небольшой мощности сечение регулируется посредством изменения ориентации этих лопастей. В двигателях большой мощности лопасти не вращаются, а покрываются специальным кожухом или перемещаются вдоль оси камеры.

Особенностью VNT турбины являются поворотные лопасти, механизм управления и вакуумный привод. Принцип работы основывается на регулировке потока отработавших газов, которые направляются на колесо турбины. Точная регулировка позволяет настроить проходное сечение для потока газов под режим работы двигателя. Если автомобиль двигается на небольшой скорости, то и турбина крутится медленнее, но при этом лепестки устанавливаются в такое положение, чтобы расстояние между ними было минимальным. Газу в малом объеме сложно преодолеть небольшое отверстие, поэтому он будет передвигаться с большей скоростью, за счет чего обороты турбины увеличиваются, увеличивая при этом давление наддува.

При помощи данных лопастей можно существенно увеличить скорость вращения турбины, не меняя объемы поступающих газов. На большой скорости компрессор раздвигает лопасти – это обеспечивает поддержание безопасного давления внутри системы и исключает перегревы. Принцип изменяемой геометрии позволяет не использовать перепускной клапан, так как весь объём выхлопных газов выходит через горячую часть крыльчатки. Изменение положения поворотных предотвращает избыточный наддув.


Преимущества турбины с изменяемой геометрией

  • Автомобили с такими турбинами развивают большую скорость с самых низких оборотов.
  • Существенно снижается объем необходимого топлива, а также количество вредных выбросов в атмосферу.
  • Улучшается прохождение газов через турбину из-за отсутствия клапана Wastegate и уменьшения количества разнонаправленных потоков газа.
  • Улучшается эластичность двигателя.

Возможные неисправности

Турбокомпрессор с изменяемой геометрией представляет собой сложный механизм, поэтому он больше подвержен различным поломкам. Однако, такие турбины сталкиваются лишь с несколькими проблемами:

  • Подклинивание лопастей в движении. Такая ситуация может сложиться из-за сильного износа трущихся пар и образовании нагара. Масляные, а также углеродистые отложения мешают плавному движению регулировочного кольца.
  • Заклинивание лопаток в одном положении. Это может происходить по причине критического нагарообразования, когда силы вакуума не хватает для движения регулировочного кольца.
  • Поломки вакуумного привода поворотных лопастей или клапана управления давлением.

Симптомами поломок считаются подергивание при разгонах, потеря мощности двигателя, увеличение расхода топлива, а также срабатывание индикатора на приборной панели Check Engine.

Как настроить и отрегулировать турбину

Правильная регулировка турбины с изменяемой геометрией крайне важна для эффективной работы, и для того, чтобы предотвратить быстрый износ деталей и снизить потребление топлива. Если отрегулировать турбину неправильно, то в дальнейшем это повлияет на работу всего автомобиля и удобство его управления.

Любой современный автовладелец немного разбирается в устройстве своего автомобиля и даже может устранить определенные небольшие поломки. Однако, чтобы сделать серьезный ремонт автомобиля, необходим специальный инструмент и оборудование, которого у обычного потребителя может и не быть.

Поэтому, если вы хотите, чтобы работа турбины была эффективной и качественной – обращайтесь за помощью к специалистам, которые правильно настроят механизм и расскажут, как лучше всего за ним ухаживать. Также, не стоит забывать о своевременных диагностиках и профилактике.

Как почистить турбину своими руками

Устройство турбины постоянно сталкивается с непрерывной нагрузкой, подвергается воздействиям продуктов горения масла и топлива, поэтому нуждается в регулярной чистке для профилактики различных поломок, которые могут быть с этим связаны. Зачастую, достаточно обработать турбину специальным средством и прогнать его через механизм для качественной очистки. Однако, иногда придется приложить побольше усилий для того, чтобы удалить все загрязнения с устройства. Также стоит помнить о том, что турбина не требует частой чистки, поэтому если она сильно загрязняется за короткое время, значит есть неполадки в ее работе или настройке.

Причинами сильных загрязнений могут выступать:

  • Увеличение нормы давления газов.
  • Износ лопастей турбины.
  • Превышение необходимого срока эксплуатации поршневого отсека.
  • Засора сапуна.
  • Износ прокладок.

Именно поэтому каждый автовладелец должен понимать, что сделать качественную чистку самостоятельно возможно, но далеко не всегда результат таких действий положительно влияет на работу механизма, а в некоторых случаях может и вовсе ухудшать ситуацию.

Отсутствие надлежащего опыта, проверенных чистящих средств, специальных инструментов – все это может негативно сказаться на результате вашей чистки, поэтому лучше всего обращаться в специализированные центры, где такой работой занимаются профессионалы.

Как сделать ремонт турбины?

Ремонт турбин гораздо проще предупредить посредством регулярного обслуживания и диагностики, чем потом пытаться исправить ситуацию самостоятельно. Процесс осложняется еще и тем, что многие автовладельцы боятся высоких цен на профессиональные услуги, забывая о том, что самостоятельное проведение ремонта отнимает также немало денег и времени. К тому же, не все получается с первого раза, и затраты на самостоятельный ремонт могут быть достаточно внушительными.

Поэтому мы настоятельно рекомендуем автовладельцам без опыта, знаний, навыков, а, самое главное, необходимого оборудования, не пытаться ремонтировать сложное устройство турбины самостоятельно, поскольку это может привести к еще более серьезным поломкам, устранить которые не сможет даже опытный специалист. При первых признаках поломки обращайтесь в наш сервисный центр, где наши мастера помогут вам восстановить картридж турбокомпрессора, а также устранить другие неисправности быстро и качественно.


www.proturbo66.ru

принцип работы, устройство, ремонт — RUUD

Содержание статьи:

С развитием турбин для ДВС производители пытаются повысить их согласованность с моторами и эффективность. Наиболее технически совершенным серийным решением является изменение геометрии впускной части. Далее рассмотрена конструкция турбин с изменяемой геометрией, принцип работы, особенности обслуживания.

Общие особенности

Рассматриваемые турбины отличаются от обычных возможностью адаптации к режиму работы двигателя путем изменения соотношения A/R, определяющего пропускную способность. Это геометрическая характеристика корпусов, представленная частным площади поперечного сечения канала и расстояния между центром тяжести данного сечения и центральной осью турбины.

Вам будет интересно:Твинскрольная турбина: описание конструкции, принцип действия, плюсы и минусы

Актуальность турбокомпрессоров с изменяемой геометрией обусловлена тем, что для высоких и низких оборотов оптимальные значения данного параметра существенно отличаются. Так, при малой величиние A/R поток имеет большую скорость, вследствие чего турбина быстро раскручивается, однако предельная пропускная способность невелика. Большие значения данного параметра, наоборот, определяют большую пропускную способность и малую скорость выхлопных газов.

Следовательно, при чрезмерно высоком показателе A/R турбина не сможет создать давление на низких оборотах, а при слишком низком задушит мотор на верхах (ввиду противодавления в выпускном коллекторе упадет производительность). Поэтому на турбокомпрессорах с фиксированной геометрией подбирают среднее значение A/R, позволяющее функционировать во всем диапазоне оборотов, в то время как принцип работы турбин с изменяемой геометрией основан на поддержании его оптимальной величины. Поэтому такие варианты при низком пороге наддува и минимальном лаге высокоэффективны на больших оборотах.

Помимо основного названия (турбины с изменяемой геометрией (VGT, VTG)) данные варианты известны как модели с изменяемым соплом (VNT), с изменяемой крыльчаткой (VVT), с турбинным соплом переменной площади (VATN).

Вам будет интересно:Лучший автомобильный шампунь: рейтинг, советы по выбору, отзывы о производителях

Турбина с изменяемой геометрией была разработана Garrett. Помимо нее, выпуском таких деталей занимаются прочие производители, в том числе MHI и BorgWarner. Основным производителем вариантов со скользящим кольцом является Cummins Turbo Technologies.

Несмотря на применение турбин с изменяемой геометрией преимущественно на дизельных двигателях, они весьма распространены и набирают популярность. Предполагается, что в 2020 г. такие модели будут занимать более 63 % мирового рынка турбин. Расширение использования этой технологии и ее развитие обусловлено, прежде всего, ужесточением экологических норм.

Конструкция

Устройство турбины с изменяемой геометрией от обычных моделей отличается наличием дополнительного механизма во входной части турбинного корпуса. Существует несколько вариантов его конструкции.

Наиболее распространенным типом является скользящее лопастное кольцо. Данное устройство представлено кольцом с рядом жестко закрепленных лопаток, расположенных вокруг ротора и движущихся относительно неподвижной пластины. Скользящий механизм служит для сужения/расширения прохода для потока газов.

Ввиду того, что лопастное кольцо скользит в осевом направлении, этот механизм весьма компактный, а минимальное количество слабых мест обеспечивает прочность. Данный вариант подходит для больших двигателей, поэтому применяется в основном на грузовиках и автобусах. Он характеризуется простотой, высокой производительностью на «низах», надежностью.

Второй вариант также предполагает наличие лопастного кольца. Однако в данном случае оно жестко закреплено на плоской пластине, а лопатки установлены на штифтах, обеспечивающих их вращение в осевом направлении, по другую ее сторону. Таким образом, геометрия турбины изменяется посредством лопастей. Этот вариант отличается лучшей эффективностью.

Вам будет интересно:Габаритные размеры снегоходов, обзор моделей

Однако ввиду большого количества подвижных элементов такая конструкция менее надежна, особенно в высокотемпературных условиях. Отмеченные проблемы обусловлены трением металлических деталей, которые при нагреве расширяются.

Еще один вариант — движущаяся стенка. Во многом он аналогичен технологии скользящего кольца, однако в данном случае неподвижные лопасти установлены на статичной пластине, а не на скользящем кольце.

Турбокомпрессор с переменной площадью (VAT) предполагает наличие лопаток, вращающихся вокруг точки установки. В отличие от схемы с поворотными лопастями они установлены не по окружности кольца, а в ряд. Ввиду того, что такой вариант требует сложной и дорогой механической системы, были разработаны упрощенные версии.

Одна из них — турбокомпрессор с переменным расходом (VFT) Aisin Seiki. Корпус турбины разделен на два канала неподвижной лопастью и оснащен заслонкой, распределяющей поток между ними. Еще несколько неподвижных лопаток установлены вокруг ротора. Они обеспечивают удержание и слияние потока.

Второй вариант, называемый схемой Switchblade, ближе к VAT, однако здесь вместо ряда лопаток используется одна лопасть, также вращающаяся вокруг точки установки. Существует два типа такой конструкции. Один из них предполагает установку лопасти в центральной части корпуса. Во втором случае она находится посреди канала и разделяет его на два отсека, как лопатка VFT.

Для управления турбиной с изменяемой геометрией применяются приводы: электрические, гидравлические, пневматические. Контроль турбокомпрессора осуществляет блок управления двигателем (ЭБУ, БУД).

Следует отметить, что для таких турбин не требуется перепускной клапан, так как благодаря точному контролю возможно замедлить поток выхлопных газов недекомпрессионным способом и пропустить избытки через турбину.

Принцип функционирования

Принцип работы турбин с изменяемой геометрией состоит в поддержании оптимального значения A/R и угла завихрения путем изменения площади поперечного сечения впускной части. Он основан на том, что скорость потока выхлопных газов связана обратной зависимостью с шириной канала. Поэтому на «низах» для быстрой раскрутки сечение входной части уменьшается. С ростом оборотов для увеличения потока оно постепенно расширяется.

Механизм изменения геометрии

Механизм осуществления данного процесса определяется конструкцией. В моделях с вращающимися лопастями это достигается путем изменения их положения: для обеспечения узкого сечения лопатки располагаются перпендикулярно радиальным линиям, а для расширения канала они переходят в ступенчатое положение.

У турбин со скользящими кольцом и подвижной стенкой происходит осевое перемещение кольца, что также меняет сечение канала.

Принцип функционирования VFT основан на разделении потока. Ускорение его на низких оборотах осуществляется путем перекрытия заслонкой внешнего отсека канала, вследствие чего газы идут к ротору кратчайшим путем. При росте нагрузки заслонка поднимается, пропуская поток через оба отсека для расширения пропускной способности.

Для VAT и моделей Switchblade изменение геометрии осуществляется посредством поворота лопасти: на низких оборотах она поднимается, сужая проход для ускорения потока, а на высоких прилегает к турбинному колесу, расширяя пропускную способность. Для турбин Switchblade второго типа характерен обратный порядок работы лопасти.

Так, на «низах» она прилегает к ротору, вследствие чего поток идет только вдоль внешней стенки корпуса. С ростом оборотов лопатка поднимается, открывая проход вокруг крыльчатки для повышения пропускной способности.

Привод

Вам будет интересно:Особенности конструкции и ремонта стартера ВАЗ-2114

Среди приводов наиболее распространены пневматические варианты, где управление механизмом осуществляется поршнем, перемещаемым внутри цилиндра воздухом.

Положение лопастей регулируется мембранным приводом, связанным штоком с лопастным кольцом управления, поэтому горловина может постоянно изменяться. Актуатор приводит шток в зависимости от уровня вакуума, противодействуя пружине. Модуляция вакуума контролирует электрический клапан, подающий линейный ток в зависимости от параметров вакуума. Вакуум может создаваться вакуумным насосом усилителя тормозов. Ток подается от аккумулятора и модулирует ЭБУ.

Основной недостаток таких приводов обусловлен сложно предсказуемым состоянием газа после сжатия, особенно при нагреве. Поэтому более совершенными являются гидравлические и электрические приводы.

Гидравлические приводы функционируют по тому же принципу, что и пневматические, но вместо воздуха в цилиндре используется жидкость, которая может быть представлена моторным маслом. К тому же она не сжимается, вследствие чего такая система обеспечивает лучший контроль.

Для перемещения кольца электромагнитный клапан использует давление масла и сигнал ЭБУ. Гидравлический поршень перемещает зубчато-реечный механизм, вращающий зубчатую шестерню, вследствие чего лопасти шарнирно соединяются. Для передачи положения лопасти БУД по кулачку ее привода перемещается аналоговый датчик положения. При малом давлении масла лопасти открыты и закрываются с его возрастанием.

Электрический привод является наиболее точным, так как напряжение может обеспечить очень тонкий контроль. Однако он требует дополнительного охлаждения, которое обеспечивают трубками с охлаждающей жидкостью (в пневматических и гидравлических вариантах для удаления тепла используется жидкость).

Для привода устройства изменения геометрии служит селекторный механизм.

В некоторых моделях турбин используется вращающийся электрический привод с прямым шаговым двигателем. В данном случае положение лопастей регулируется электронным клапаном обратной связи через механизм реечной передачи. Для обратной связи с БУД служит прикрепленный к шестерне кулачок с магниторезистивным датчиком.

При необходимости поворота лопаток ЭБУ обеспечивает подачу тока в определенном диапазоне для перехода их в заданное положение, после чего, получив сигнал от датчика, обесточивает клапан обратной связи.

Блок управления двигателем

Из вышесказанного следует, что принцип работы турбин с изменяемой геометрией основан на оптимальной координации дополнительного механизма в соответствии с режимом работы двигателя. Следовательно, требуется точное его позиционирование и постоянный контроль. Поэтому турбины с изменяемой геометрией контролируются блоками управления двигателем.

Они используют стратегии, направленные либо на максимальную производительность, либо на улучшение экологических показателей. Существует несколько принципов функционирования БУД.

Наиболее распространенный из них предполагает использование справочной информации, основанной на эмпирических данных и моделях двигателя. В данном случае контроллер прямой связи выбирает значения из таблицы и использует обратную связь для сокращения ошибок. Это универсальная технология, позволяющая применять различные стратегии управления.

Основной ее недостаток состоит в ограничениях при переходных процессах (резких ускорениях, переключениях передач). Для его устранения использовали многопараметрические, PD- и PID-контроллеры. Последние считают наиболее перспективными, однако они недостаточно точны во всем диапазоне нагрузок. Это решили путем применения нечеткой логики алгоритмов принятия решений с использованием MAS.

Существует две технологии предоставления справочной информации: модель двигателя средних значений и искусственные нейронные сети. Последняя включает две стратегии. Одна из них предполагает поддержание наддува на заданном уровне, другая — поддержание отрицательной разницы давления. Во втором случае достигаются лучшие экологические показатели, но наблюдается превышение скорости турбины.

Не многие производители занимаются разработкой БУД для турбокомпрессоров с изменяемой геометрией. Подавляющая их часть представлена продукцией автопроизводителей. Однако на рынке существуют некоторые сторонние высококлассные ЭБУ, рассчитанные на такие турбины.

Общие положения

Основные характеристики турбин представлены массовым расходом воздуха и скоростью потока. Площадь впускной части относится к ограничивающим производительность факторам. Варианты с изменяемой геометрией позволяют менять данную область. Так, эффективная площадь определяется высотой прохода и углом лопастей. Первый показатель изменяем в вариантах со скользящим кольцом, второй — в турбинах с поворотными лопатками.

Таким образом, турбокомпрессоры с изменяемой геометрией постоянно обеспечивают требуемый наддув. Благодаря этому оснащенные ими двигатели не имеют лагов, обусловленных временем раскрутки турбины, как с обычными большими турбонагнетателями, и не задыхаются на высоких оборотах, как с маленькими.

Наконец, следует отметить, что, несмотря на то, что турбокомпрессоры с изменяемой геометрией рассчитаны на работу без перепускного клапана, было установлено, что они обеспечивают прибавку производительности, прежде всего, на «низах», а на высоких оборотах при полностью открытых лопатках не в состоянии справиться с большим массовым расходом. Поэтому для предотвращения избыточного противодавления все же рекомендуется использовать вестгейт.

Достоинства и недостатки

Подстройка турбины под режим работы двигателя обеспечивает улучшение всех показателей в сравнении с вариантами с фиксированной геометрией:

  • лучшие отзывчивость и производительность во всем диапазоне оборотов;
  • более ровная кривая крутящего момента на средних оборотах;
  • возможность функционирования двигателя при частичной нагрузке на более эффективной обедненной топливо-воздушной смеси;
  • лучшая тепловая эффективность;
  • предотвращение чрезмерного наддува на высоких оборотах;
  • лучшие экологические показатели;
  • меньший расход топлива;
  • расширенный рабочий диапазон турбины.

Основным недостатком турбокомпрессоров с изменяемой геометрией является значительно усложненная конструкция. Ввиду наличия дополнительных движущихся элементов и приводов они менее надежны, а обслуживание и ремонт турбин такого типа сложнее. К тому же модификации для бензиновых моторов очень дороги (примерно в 3 раза дороже обычных). Наконец, данные турбины сложно совместить с не рассчитанными на них двигателями.

Следует отметить, что по пиковой производительности турбины с изменяемой геометрией нередко уступают обычным аналогам. Это объясняется потерями в корпусе и вокруг опор подвижных элементов. К тому же максимальная производительность резко падает при отходе от оптимального положения. Однако общая эффективность турбокомпрессоров такой конструкции выше, чем у вариантов с фиксированной геометрией, ввиду большего рабочего диапазона.

Применение и дополнительные функции

Сфера применения турбин с изменяемой геометрией определяется их типом. Так, на двигатели легковых и легких коммерческих автомобилей устанавливают варианты с вращающимися лопастями, а модификации со скользящими кольцом применяют в основном на грузовиках.

В целом чаще всего турбины с изменяемой геометрией используют на дизельных двигателях. Это объясняется невысокой температурой их выхлопных газов.

На легковых дизелях такие турбонагнетатели служат, прежде всего, для компенсации потери производительности от системы рециркуляции отработанных газов.

На грузовиках сами турбины могут улучшать экологичность путем контроля количества выхлопных газов, рециркулируемых к впускному отверстию двигателя. Так, с использованием турбокомпрессоров с изменяемой геометрией можно повысить давление в выпускном коллекторе до величины, большей, чем во впускном, с целью ускорения рециркуляции. Несмотря на то что избыточное противодавление отрицательно сказывается на эффективности использования топлива, оно способствует сокращению выбросов оксида азота.

К тому же механизм можно модифицировать с целью сокращения эффективности турбины в заданном положении. Это используется для повышения температуры выхлопных газов с целью продувки сажевого фильтра путем окисления застрявших углеродных частиц в результате нагрева.

Данные функции требуют наличия гидравлического или электрического привода.

Отмеченные преимущества турбин с изменяемой геометрией перед обычными определяют их как оптимальный вариант для спортивных моторов. Однако на бензиновых двигателях они встречаются крайне редко. Известно всего несколько оснащенных ими спорткаров (в настоящее время — Porsche 718, 911 Turbo и Suzuki Swift Sport). По словам одного из менеджеров BorgWarner, это объясняется очень высокой стоимостью производства таких турбин, обусловленной необходимостью применения специализированных термостойких материалов для взаимодействия с высокотемпературными выхлопными газами бензиновых моторов (выхлопные газы дизелей имеют гораздо меньшую температуру, поэтому турбины для них дешевле).

Вам будет интересно:Бандитские машины 90-х годов: список. Популярные машины 90-х

Первые VGT, используемые на бензиновых двигателях, были сделаны из обычных материалов, поэтому для обеспечения приемлемого срока эксплуатации приходилось использовать сложные системы охлаждения. Так, на Honda Legend 1988 г. такую турбину совместили с интеркуллером водяного охлаждения. К тому же для двигателей данного типа более обширен диапазон пропускной способности выхлопных газов, следовательно, требуется возможность обработки большего диапазона массового расхода.

Производители достигают требуемых показателей производительности, отзывчивости, эффективности и экологичности наиболее дешевыми методами. Исключение составляют единичные случаи, когда конечная стоимость не приоритетна. В данном контексте это, например, достижение рекордных показателей на Koenigsegg One: 1 или адаптация Porsche 911 Turbo к гражданской эксплуатации.

В целом подавляющее большинство турбированных автомобилей оснащают турбокомпрессорами обычной конструкции. Для высокопроизводительных спортивных двигателей нередко используют твинскрольные варианты. Хотя такие турбокомпрессоры уступают VGT, они обладают теми же преимуществами перед обычными турбинами, только в меньшей степени, и при этом имеют почти такую же простую конструкцию, как и последние. Что касается тюнинга, здесь использование турбокомпрессоров с изменяемой геометрией, помимо высокой стоимости, ограничено сложностью их настройки.

Для бензиновых двигателей в исследовании H. Ishihara, K. Adachi и S. Kono в качестве наиболее оптимальной среди VGT была отмечена турбина с переменным расходом (VFT). Благодаря только одному движущемуся элементу сокращены затраты на производство и повышена температурная устойчивость. К тому же такая турбина действует по простому алгоритму БУД, аналогичному вариантам с фиксированной геометрией, оснащенным перепускным клапаном. Особенно хорошие результаты были получены при совмещении такой турбины с iVTEC. Однако для систем принудительной индукции наблюдается повышение температуры выхлопных газов на 50-100 °C, что сказывается на экологических показателях. Данную проблему решили использованием алюминиевого коллектора с водяным охлаждением.

Решением BorgWarner для бензиновых двигателей стало совмещение твинскрольной технологии и конструкции с изменяемой геометрией в твинскрольной турбине с изменяемой геометрией, представленной на SEMA 2015 г. Ее конструкция аналогична твинскрольной турбине: данный турбокомпрессор имеет двойную входную часть и сдвоенное монолитное турбинное колесо и совмещен с твинскрольным коллектором, учитывающим последовательность работы цилиндров для устранения пульсации выхлопных газов с целью создания более плотного потока.

Отличие состоит в наличии во входной части заслонки, которая в зависимости от нагрузки распределяет поток по крыльчаткам. На низких оборотах все отработанные газу идут на маленькую часть ротора, а большая перекрыта, что обеспечивает еще более быструю раскрутку, чем у обычной твинскрольной турбины. С ростом нагрузки заслонка постепенно переходит в среднее положение и равномерно распределяет поток на высоких оборотах, как в стандартной твинскрольной конструкции. То есть по устройству механизма изменения геометрии такая турбина близка к VFT.

Таким образом, данная технология, как и технология с изменяемой геометрией, обеспечивает изменение соотношения A/R в зависимости от нагрузки, подстраивая турбину под режим работы двигателя, что расширяет рабочий диапазон. При этом рассматриваемая конструкция значительно проще и дешевле, так как здесь используется только один движущийся элемент, работающий по простому алгоритму, и не требуется применение термостойких материалов. Последнее обусловлено снижением температуры за счет потери тепла на стенках двойного корпуса турбины. Следует отметить, что подобные решения встречались и ранее (например, quick spool valve), однако эта технология по каким-то причинам не обрела распространения.

Обслуживание и ремонт

Основной операцией обслуживания турбин является чистка. Необходимость в ней обусловлена их взаимодействием с выхлопными газами, представленными продуктами горения топлива и масел. Однако чистка требуется весьма редко. Интенсивное загрязнение свидетельствует о нарушениях режима функционирования, что может быть вызвано чрезмерным давлением, износом прокладок либо втулок крыльчаток, а также поршневого отсека, засорением сапуна.

Турбины с изменяемой геометрией более чувствительны к загрязнению, чем обычные. Это обусловлено тем, что накопление нагара в направляющем аппарате устройства изменения геометрии приводит к его подклиниванию или утрате подвижности. В результате нарушается функционирование турбокомпрессора.

В простейшем случае чистку осуществляют путем использования специальной жидкости, однако нередко требуются ручные работы. Предварительно необходимо разобрать турбину. При отсоединении механизма изменения геометрии следует соблюдать осторожность во избежание обрезания крепежных болтов. Последующее высверливание их обломков может привести к повреждению отверстий. Таким образом, чистка турбины с изменяемой геометрией несколько осложнена.

К тому же нужно учитывать, что при неосторожном обращении с картриджем можно повредить либо деформировать лопасти ротора. В случае его разборки по завершении чистки потребуется балансировка, однако внутри картриджа чистку обычно не делают.

Масляный нагар на колесах свидетельствует о износе поршневых колец либо клапанной группы, а также уплотнений ротора в картридже. Чистка без устранения данных неисправностей двигателя или ремонта турбины нецелесообразна.

После замены картриджа для турбокомпрессоров рассматриваемого типа требуется настройка геометрии. Для этого служат упорный и шершавый регулировочные винты. Следует отметить, что некоторые модели первого поколения изначально не настроены производителями, вследствие чего у них снижена производительность на «низах» на 15-25 %. В частности, это актуально для турбин Garrett. В Интернете можно найти инструкции, как отрегулировать турбину с изменяемой геометрией.

Резюме

Турбокомпрессоры с изменяемой геометрией представляют высшую ступень развития серийных турбин для ДВС. Дополнительный механизм во впускной части обеспечивает адаптацию турбины к режиму работы двигателя путем регулировки конфигурации. Это улучшает показатели производительности, экономичности и экологичности. Однако конутрукция VGT сложна, а модели для бензиновых моторов очень дороги.

Источник

ruud.ru

устройство и принцип работы. — Турбобаланс

Обычная турбина представляет собой 2 крыльчатки, соединенные осью. Располагаются крыльчатки в разных камерах. Одну крыльчатку вращают выхлопные газы, а вторая вращается за счет первой, тем самым подводя новый воздух в систему.

Общее устройство турбины с изменяемой геометрией ( турбокомпрессора )крыльчатки и принцип нагнетания дополнительного воздуха не отличается от обычных турбокомпрессоров. Основная особенность в поворотных лопатках, механизме управления и вакуумном приводе.

Принцип работы турбины с изменяемой геометрией крыльчатки основывается на регулировании потока отработавших газов, направляемых на колесо турбины. Регулировка позволяет подстраивать проходное сечение для потока отработавших газов под режим работы двигателя.

При движении на маленькой скорости, турбина крутится медленно. Однако блок управления выставляет лепестки так, чтобы расстояние между ними было минимальным. При малом объеме, газу тяжело поступить через маленькое отверстие, что вынуждает его передвигаться с большей скоростью. В ходе перекрывания, обороты турбины увеличиваются, а значит повышается давление наддува.

 

С помощью таких лепестков, можно поднять скорость вращения турбины не изменяя объем поступающих газов. На высокой скорости компрессор наоборот раздвигает лепестки. Это предусмотрено для поддержания безопасного давления внутри системы и исключения перегрева.

Принцип работы изменяемой геометрии позволяет отказаться от перепускного клапана (wastegate). Через крыльчатку «горячей» части проходит весь поток выхлопных газов. Предотвращение избыточного наддува осуществляется изменением положения поворотных лопаток.

Изменение расстояния между направляющими элементами, в зависимости от типа и модели турбодвигателя управляться как давлением компрессора (или его отсутствием), так и вакуумным приводом, а в некоторых случаях — шаговым электромотором  

Преимущества данной турбины можно выделить следующие:

  • авто с изменяемой геометрией турбонаддува могут выдавать большую мощность уже с самих низких оборотов.
  • снижение расхода топлива и количества вредных выбросов в атмосферу
  • из-за отсутствующего клапана wastegate в «горячей» части уменьшается количество разнонаправленных потоков газов, что улучшает прохождение газов через турбину.
  • улучшение эластичности двигателя

Настройка и регулировка турбины с изменяемой геометрией.

Эфективная и правильная настройка и регулировка турбины важна и для эффективности ее работы, и для снижения темпа износа деталей всего механизма, и даже для экономии денег на топливе.

Связано это с тем, что неправильные параметры настройки работы или неправильное (несвоевременное) проведение регулировки турбины непосредственно влияют на весь автомобиль и удобство его управления.

В то время как о некоторых действиях, обычно упоминаемых в инструкции к обслуживанию авто и его механизмов, владелец способен позаботиться самостоятельно, даже без специальных инструментов, опыта и знаний — для большинства из них потребуется внимание профессионала  

Каждый разумный и заботливый автовладелец должен помнить о таких принципах как: своевременная профилактика и обслуживание, а также уклонение от вреда своими действиями. Это верно и для бензинового двигателя, и для дизельного.

turbobalans.ru

Турбина с изменяемой геометрией: принцип работы, устройство, ремонт

С развитием турбин для ДВС производители пытаются повысить их согласованность с моторами и эффективность. Наиболее технически совершенным серийным решением является изменение геометрии впускной части. Далее рассмотрена конструкция турбин с изменяемой геометрией, принцип работы, особенности обслуживания.

Общие особенности

Рассматриваемые турбины отличаются от обычных возможностью адаптации к режиму работы двигателя путем изменения соотношения A/R, определяющего пропускную способность. Это геометрическая характеристика корпусов, представленная частным площади поперечного сечения канала и расстояния между центром тяжести данного сечения и центральной осью турбины.

Актуальность турбокомпрессоров с изменяемой геометрией обусловлена тем, что для высоких и низких оборотов оптимальные значения данного параметра существенно отличаются. Так, при малой величиние A/R поток имеет большую скорость, вследствие чего турбина быстро раскручивается, однако предельная пропускная способность невелика. Большие значения данного параметра, наоборот, определяют большую пропускную способность и малую скорость выхлопных газов.

Следовательно, при чрезмерно высоком показателе A/R турбина не сможет создать давление на низких оборотах, а при слишком низком задушит мотор на верхах (ввиду противодавления в выпускном коллекторе упадет производительность). Поэтому на турбокомпрессорах с фиксированной геометрией подбирают среднее значение A/R, позволяющее функционировать во всем диапазоне оборотов, в то время как принцип работы турбин с изменяемой геометрией основан на поддержании его оптимальной величины. Поэтому такие варианты при низком пороге наддува и минимальном лаге высокоэффективны на больших оборотах.

Помимо основного названия (турбины с изменяемой геометрией (VGT, VTG)) данные варианты известны как модели с изменяемым соплом (VNT), с изменяемой крыльчаткой (VVT), с турбинным соплом переменной площади (VATN).

Турбина с изменяемой геометрией была разработана Garrett. Помимо нее, выпуском таких деталей занимаются прочие производители, в том числе MHI и BorgWarner. Основным производителем вариантов со скользящим кольцом является Cummins Turbo Technologies.

Несмотря на применение турбин с изменяемой геометрией преимущественно на дизельных двигателях, они весьма распространены и набирают популярность. Предполагается, что в 2020 г. такие модели будут занимать более 63 % мирового рынка турбин. Расширение использования этой технологии и ее развитие обусловлено, прежде всего, ужесточением экологических норм.

Конструкция

Устройство турбины с изменяемой геометрией от обычных моделей отличается наличием дополнительного механизма во входной части турбинного корпуса. Существует несколько вариантов его конструкции.

Наиболее распространенным типом является скользящее лопастное кольцо. Данное устройство представлено кольцом с рядом жестко закрепленных лопаток, расположенных вокруг ротора и движущихся относительно неподвижной пластины. Скользящий механизм служит для сужения/расширения прохода для потока газов.

Ввиду того, что лопастное кольцо скользит в осевом направлении, этот механизм весьма компактный, а минимальное количество слабых мест обеспечивает прочность. Данный вариант подходит для больших двигателей, поэтому применяется в основном на грузовиках и автобусах. Он характеризуется простотой, высокой производительностью на «низах», надежностью.

Второй вариант также предполагает наличие лопастного кольца. Однако в данном случае оно жестко закреплено на плоской пластине, а лопатки установлены на штифтах, обеспечивающих их вращение в осевом направлении, по другую ее сторону. Таким образом, геометрия турбины изменяется посредством лопастей. Этот вариант отличается лучшей эффективностью.

Однако ввиду большого количества подвижных элементов такая конструкция менее надежна, особенно в высокотемпературных условиях. Отмеченные проблемы обусловлены трением металлических деталей, которые при нагреве расширяются.

Еще один вариант — движущаяся стенка. Во многом он аналогичен технологии скользящего кольца, однако в данном случае неподвижные лопасти установлены на статичной пластине, а не на скользящем кольце.

Турбокомпрессор с переменной площадью (VAT) предполагает наличие лопаток, вращающихся вокруг точки установки. В отличие от схемы с поворотными лопастями они установлены не по окружности кольца, а в ряд. Ввиду того, что такой вариант требует сложной и дорогой механической системы, были разработаны упрощенные версии.

Одна из них — турбокомпрессор с переменным расходом (VFT) Aisin Seiki. Корпус турбины разделен на два канала неподвижной лопастью и оснащен заслонкой, распределяющей поток между ними. Еще несколько неподвижных лопаток установлены вокруг ротора. Они обеспечивают удержание и слияние потока.

Второй вариант, называемый схемой Switchblade, ближе к VAT, однако здесь вместо ряда лопаток используется одна лопасть, также вращающаяся вокруг точки установки. Существует два типа такой конструкции. Один из них предполагает установку лопасти в центральной части корпуса. Во втором случае она находится посреди канала и разделяет его на два отсека, как лопатка VFT.

Для управления турбиной с изменяемой геометрией применяются приводы: электрические, гидравлические, пневматические. Контроль турбокомпрессора осуществляет блок управления двигателем (ЭБУ, БУД).

Следует отметить, что для таких турбин не требуется перепускной клапан, так как благодаря точному контролю возможно замедлить поток выхлопных газов недекомпрессионным способом и пропустить избытки через турбину.

Принцип функционирования

Принцип работы турбин с изменяемой геометрией состоит в поддержании оптимального значения A/R и угла завихрения путем изменения площади поперечного сечения впускной части. Он основан на том, что скорость потока выхлопных газов связана обратной зависимостью с шириной канала. Поэтому на «низах» для быстрой раскрутки сечение входной части уменьшается. С ростом оборотов для увеличения потока оно постепенно расширяется.

Механизм изменения геометрии

Механизм осуществления данного процесса определяется конструкцией. В моделях с вращающимися лопастями это достигается путем изменения их положения: для обеспечения узкого сечения лопатки располагаются перпендикулярно радиальным линиям, а для расширения канала они переходят в ступенчатое положение.

У турбин со скользящими кольцом и подвижной стенкой происходит осевое перемещение кольца, что также меняет сечение канала.

Принцип функционирования VFT основан на разделении потока. Ускорение его на низких оборотах осуществляется путем перекрытия заслонкой внешнего отсека канала, вследствие чего газы идут к ротору кратчайшим путем. При росте нагрузки заслонка поднимается, пропуская поток через оба отсека для расширения пропускной способности.

Для VAT и моделей Switchblade изменение геометрии осуществляется посредством поворота лопасти: на низких оборотах она поднимается, сужая проход для ускорения потока, а на высоких прилегает к турбинному колесу, расширяя пропускную способность. Для турбин Switchblade второго типа характерен обратный порядок работы лопасти.

Так, на «низах» она прилегает к ротору, вследствие чего поток идет только вдоль внешней стенки корпуса. С ростом оборотов лопатка поднимается, открывая проход вокруг крыльчатки для повышения пропускной способности.

Привод

Среди приводов наиболее распространены пневматические варианты, где управление механизмом осуществляется поршнем, перемещаемым внутри цилиндра воздухом.

Положение лопастей регулируется мембранным приводом, связанным штоком с лопастным кольцом управления, поэтому горловина может постоянно изменяться. Актуатор приводит шток в зависимости от уровня вакуума, противодействуя пружине. Модуляция вакуума контролирует электрический клапан, подающий линейный ток в зависимости от параметров вакуума. Вакуум может создаваться вакуумным насосом усилителя тормозов. Ток подается от аккумулятора и модулирует ЭБУ.

Основной недостаток таких приводов обусловлен сложно предсказуемым состоянием газа после сжатия, особенно при нагреве. Поэтому более совершенными являются гидравлические и электрические приводы.

Гидравлические приводы функционируют по тому же принципу, что и пневматические, но вместо воздуха в цилиндре используется жидкость, которая может быть представлена моторным маслом. К тому же она не сжимается, вследствие чего такая система обеспечивает лучший контроль.

Для перемещения кольца электромагнитный клапан использует давление масла и сигнал ЭБУ. Гидравлический поршень перемещает зубчато-реечный механизм, вращающий зубчатую шестерню, вследствие чего лопасти шарнирно соединяются. Для передачи положения лопасти БУД по кулачку ее привода перемещается аналоговый датчик положения. При малом давлении масла лопасти открыты и закрываются с его возрастанием.

Электрический привод является наиболее точным, так как напряжение может обеспечить очень тонкий контроль. Однако он требует дополнительного охлаждения, которое обеспечивают трубками с охлаждающей жидкостью (в пневматических и гидравлических вариантах для удаления тепла используется жидкость).

Для привода устройства изменения геометрии служит селекторный механизм.

В некоторых моделях турбин используется вращающийся электрический привод с прямым шаговым двигателем. В данном случае положение лопастей регулируется электронным клапаном обратной связи через механизм реечной передачи. Для обратной связи с БУД служит прикрепленный к шестерне кулачок с магниторезистивным датчиком.

При необходимости поворота лопаток ЭБУ обеспечивает подачу тока в определенном диапазоне для перехода их в заданное положение, после чего, получив сигнал от датчика, обесточивает клапан обратной связи.

Блок управления двигателем

Из вышесказанного следует, что принцип работы турбин с изменяемой геометрией основан на оптимальной координации дополнительного механизма в соответствии с режимом работы двигателя. Следовательно, требуется точное его позиционирование и постоянный контроль. Поэтому турбины с изменяемой геометрией контролируются блоками управления двигателем.

Они используют стратегии, направленные либо на максимальную производительность, либо на улучшение экологических показателей. Существует несколько принципов функционирования БУД.

Наиболее распространенный из них предполагает использование справочной информации, основанной на эмпирических данных и моделях двигателя. В данном случае контроллер прямой связи выбирает значения из таблицы и использует обратную связь для сокращения ошибок. Это универсальная технология, позволяющая применять различные стратегии управления.

Основной ее недостаток состоит в ограничениях при переходных процессах (резких ускорениях, переключениях передач). Для его устранения использовали многопараметрические, PD- и PID-контроллеры. Последние считают наиболее перспективными, однако они недостаточно точны во всем диапазоне нагрузок. Это решили путем применения нечеткой логики алгоритмов принятия решений с использованием MAS.

Существует две технологии предоставления справочной информации: модель двигателя средних значений и искусственные нейронные сети. Последняя включает две стратегии. Одна из них предполагает поддержание наддува на заданном уровне, другая — поддержание отрицательной разницы давления. Во втором случае достигаются лучшие экологические показатели, но наблюдается превышение скорости турбины.

Не многие производители занимаются разработкой БУД для турбокомпрессоров с изменяемой геометрией. Подавляющая их часть представлена продукцией автопроизводителей. Однако на рынке существуют некоторые сторонние высококлассные ЭБУ, рассчитанные на такие турбины.

Общие положения

Основные характеристики турбин представлены массовым расходом воздуха и скоростью потока. Площадь впускной части относится к ограничивающим производительность факторам. Варианты с изменяемой геометрией позволяют менять данную область. Так, эффективная площадь определяется высотой прохода и углом лопастей. Первый показатель изменяем в вариантах со скользящим кольцом, второй — в турбинах с поворотными лопатками.

Таким образом, турбокомпрессоры с изменяемой геометрией постоянно обеспечивают требуемый наддув. Благодаря этому оснащенные ими двигатели не имеют лагов, обусловленных временем раскрутки турбины, как с обычными большими турбонагнетателями, и не задыхаются на высоких оборотах, как с маленькими.

Наконец, следует отметить, что, несмотря на то, что турбокомпрессоры с изменяемой геометрией рассчитаны на работу без перепускного клапана, было установлено, что они обеспечивают прибавку производительности, прежде всего, на «низах», а на высоких оборотах при полностью открытых лопатках не в состоянии справиться с большим массовым расходом. Поэтому для предотвращения избыточного противодавления все же рекомендуется использовать вестгейт.

Достоинства и недостатки

Подстройка турбины под режим работы двигателя обеспечивает улучшение всех показателей в сравнении с вариантами с фиксированной геометрией:

  • лучшие отзывчивость и производительность во всем диапазоне оборотов;
  • более ровная кривая крутящего момента на средних оборотах;
  • возможность функционирования двигателя при частичной нагрузке на более эффективной обедненной топливо-воздушной смеси;
  • лучшая тепловая эффективность;
  • предотвращение чрезмерного наддува на высоких оборотах;
  • лучшие экологические показатели;
  • меньший расход топлива;
  • расширенный рабочий диапазон турбины.

Основным недостатком турбокомпрессоров с изменяемой геометрией является значительно усложненная конструкция. Ввиду наличия дополнительных движущихся элементов и приводов они менее надежны, а обслуживание и ремонт турбин такого типа сложнее. К тому же модификации для бензиновых моторов очень дороги (примерно в 3 раза дороже обычных). Наконец, данные турбины сложно совместить с не рассчитанными на них двигателями.

Следует отметить, что по пиковой производительности турбины с изменяемой геометрией нередко уступают обычным аналогам. Это объясняется потерями в корпусе и вокруг опор подвижных элементов. К тому же максимальная производительность резко падает при отходе от оптимального положения. Однако общая эффективность турбокомпрессоров такой конструкции выше, чем у вариантов с фиксированной геометрией, ввиду большего рабочего диапазона.

Применение и дополнительные функции

Сфера применения турбин с изменяемой геометрией определяется их типом. Так, на двигатели легковых и легких коммерческих автомобилей устанавливают варианты с вращающимися лопастями, а модификации со скользящими кольцом применяют в основном на грузовиках.

В целом чаще всего турбины с изменяемой геометрией используют на дизельных двигателях. Это объясняется невысокой температурой их выхлопных газов.

На легковых дизелях такие турбонагнетатели служат, прежде всего, для компенсации потери производительности от системы рециркуляции отработанных газов.

На грузовиках сами турбины могут улучшать экологичность путем контроля количества выхлопных газов, рециркулируемых к впускному отверстию двигателя. Так, с использованием турбокомпрессоров с изменяемой геометрией можно повысить давление в выпускном коллекторе до величины, большей, чем во впускном, с целью ускорения рециркуляции. Несмотря на то что избыточное противодавление отрицательно сказывается на эффективности использования топлива, оно способствует сокращению выбросов оксида азота.

К тому же механизм можно модифицировать с целью сокращения эффективности турбины в заданном положении. Это используется для повышения температуры выхлопных газов с целью продувки сажевого фильтра путем окисления застрявших углеродных частиц в результате нагрева.

Данные функции требуют наличия гидравлического или электрического привода.

Отмеченные преимущества турбин с изменяемой геометрией перед обычными определяют их как оптимальный вариант для спортивных моторов. Однако на бензиновых двигателях они встречаются крайне редко. Известно всего несколько оснащенных ими спорткаров (в настоящее время — Porsche 718, 911 Turbo и Suzuki Swift Sport). По словам одного из менеджеров BorgWarner, это объясняется очень высокой стоимостью производства таких турбин, обусловленной необходимостью применения специализированных термостойких материалов для взаимодействия с высокотемпературными выхлопными газами бензиновых моторов (выхлопные газы дизелей имеют гораздо меньшую температуру, поэтому турбины для них дешевле).

Первые VGT, используемые на бензиновых двигателях, были сделаны из обычных материалов, поэтому для обеспечения приемлемого срока эксплуатации приходилось использовать сложные системы охлаждения. Так, на Honda Legend 1988 г. такую турбину совместили с интеркуллером водяного охлаждения. К тому же для двигателей данного типа более обширен диапазон пропускной способности выхлопных газов, следовательно, требуется возможность обработки большего диапазона массового расхода.

Производители достигают требуемых показателей производительности, отзывчивости, эффективности и экологичности наиболее дешевыми методами. Исключение составляют единичные случаи, когда конечная стоимость не приоритетна. В данном контексте это, например, достижение рекордных показателей на Koenigsegg One: 1 или адаптация Porsche 911 Turbo к гражданской эксплуатации.

В целом подавляющее большинство турбированных автомобилей оснащают турбокомпрессорами обычной конструкции. Для высокопроизводительных спортивных двигателей нередко используют твинскрольные варианты. Хотя такие турбокомпрессоры уступают VGT, они обладают теми же преимуществами перед обычными турбинами, только в меньшей степени, и при этом имеют почти такую же простую конструкцию, как и последние. Что касается тюнинга, здесь использование турбокомпрессоров с изменяемой геометрией, помимо высокой стоимости, ограничено сложностью их настройки.

Для бензиновых двигателей в исследовании H. Ishihara, K. Adachi и S. Kono в качестве наиболее оптимальной среди VGT была отмечена турбина с переменным расходом (VFT). Благодаря только одному движущемуся элементу сокращены затраты на производство и повышена температурная устойчивость. К тому же такая турбина действует по простому алгоритму БУД, аналогичному вариантам с фиксированной геометрией, оснащенным перепускным клапаном. Особенно хорошие результаты были получены при совмещении такой турбины с iVTEC. Однако для систем принудительной индукции наблюдается повышение температуры выхлопных газов на 50-100 °C, что сказывается на экологических показателях. Данную проблему решили использованием алюминиевого коллектора с водяным охлаждением.

Решением BorgWarner для бензиновых двигателей стало совмещение твинскрольной технологии и конструкции с изменяемой геометрией в твинскрольной турбине с изменяемой геометрией, представленной на SEMA 2015 г. Ее конструкция аналогична твинскрольной турбине: данный турбокомпрессор имеет двойную входную часть и сдвоенное монолитное турбинное колесо и совмещен с твинскрольным коллектором, учитывающим последовательность работы цилиндров для устранения пульсации выхлопных газов с целью создания более плотного потока.

Отличие состоит в наличии во входной части заслонки, которая в зависимости от нагрузки распределяет поток по крыльчаткам. На низких оборотах все отработанные газу идут на маленькую часть ротора, а большая перекрыта, что обеспечивает еще более быструю раскрутку, чем у обычной твинскрольной турбины. С ростом нагрузки заслонка постепенно переходит в среднее положение и равномерно распределяет поток на высоких оборотах, как в стандартной твинскрольной конструкции. То есть по устройству механизма изменения геометрии такая турбина близка к VFT.

Таким образом, данная технология, как и технология с изменяемой геометрией, обеспечивает изменение соотношения A/R в зависимости от нагрузки, подстраивая турбину под режим работы двигателя, что расширяет рабочий диапазон. При этом рассматриваемая конструкция значительно проще и дешевле, так как здесь используется только один движущийся элемент, работающий по простому алгоритму, и не требуется применение термостойких материалов. Последнее обусловлено снижением температуры за счет потери тепла на стенках двойного корпуса турбины. Следует отметить, что подобные решения встречались и ранее (например, quick spool valve), однако эта технология по каким-то причинам не обрела распространения.

Обслуживание и ремонт

Основной операцией обслуживания турбин является чистка. Необходимость в ней обусловлена их взаимодействием с выхлопными газами, представленными продуктами горения топлива и масел. Однако чистка требуется весьма редко. Интенсивное загрязнение свидетельствует о нарушениях режима функционирования, что может быть вызвано чрезмерным давлением, износом прокладок либо втулок крыльчаток, а также поршневого отсека, засорением сапуна.

Турбины с изменяемой геометрией более чувствительны к загрязнению, чем обычные. Это обусловлено тем, что накопление нагара в направляющем аппарате устройства изменения геометрии приводит к его подклиниванию или утрате подвижности. В результате нарушается функционирование турбокомпрессора.

В простейшем случае чистку осуществляют путем использования специальной жидкости, однако нередко требуются ручные работы. Предварительно необходимо разобрать турбину. При отсоединении механизма изменения геометрии следует соблюдать осторожность во избежание обрезания крепежных болтов. Последующее высверливание их обломков может привести к повреждению отверстий. Таким образом, чистка турбины с изменяемой геометрией несколько осложнена.

К тому же нужно учитывать, что при неосторожном обращении с картриджем можно повредить либо деформировать лопасти ротора. В случае его разборки по завершении чистки потребуется балансировка, однако внутри картриджа чистку обычно не делают.

Масляный нагар на колесах свидетельствует о износе поршневых колец либо клапанной группы, а также уплотнений ротора в картридже. Чистка без устранения данных неисправностей двигателя или ремонта турбины нецелесообразна.

После замены картриджа для турбокомпрессоров рассматриваемого типа требуется настройка геометрии. Для этого служат упорный и шершавый регулировочные винты. Следует отметить, что некоторые модели первого поколения изначально не настроены производителями, вследствие чего у них снижена производительность на «низах» на 15-25 %. В частности, это актуально для турбин Garrett. В Интернете можно найти инструкции, как отрегулировать турбину с изменяемой геометрией.

Резюме

Турбокомпрессоры с изменяемой геометрией представляют высшую ступень развития серийных турбин для ДВС. Дополнительный механизм во впускной части обеспечивает адаптацию турбины к режиму работы двигателя путем регулировки конфигурации. Это улучшает показатели производительности, экономичности и экологичности. Однако конутрукция VGT сложна, а модели для бензиновых моторов очень дороги.

fb.ru

Настройка геометрии турбины. Настройка регулировочных винтов ! — DRIVE2

Добрый день уважаемые коллеги,
Сегодня пойдёт речь о правильной настройке геометрии турбины :

Настройка регулировочных винтов : упорного и шершавого

Часто данная настройка необходима после замены картриджа турбины. И самое интересное в том что 99% турбин с изменяемой геометрией первого поколения с вакуумными актуаторами с завода идут НЕ НАСТРОЕННЫМИ, т.е. они ПЛОХО ДУЮТ С НИЗОВ !

Эту информацию мне сообщий бывший инженер фирмы Garrett в личной переписке…
Оказывается что при производстве турбин с целью экономии геометрию турбин вообще не настраивают !
Правильная настройка геометрии КАЖДОЙ ТУРБИНЫ должна производится на специальном стенде и занимает грубо 15мин времени.
Honeywell (фирма купившая Garrett) решила съэкономить на этой операции, и просто применяет калиброванные проставки для настройки геометрии. Проблема в том что КПД турбины на низах при такой «настройке» снижается на 15-25% и соответственно мощность мотора на низах…

Но, как говорится не всё потеряно

Можно восстановить ПРАВИЛЬНУЮ настройку турбины использую другие методы НЕ СНИМАЯ турбины !

Итак немного теории :
В турбине с регулируемоей геометрией есть две регулировки :
1. Oптимальный угол раскрытия лопаток геометрии
2. Ограничение максимального наддува, оптимальная длинна штока актуатора !

Регулировка упорного винта турбины

Упорный винт турбины

поднимаем и удерживаем обороты до 1300, смотрим на скважность N75, должна оставатся 85% не ниже.
Затем выкручиваем на нет упорный винт,

постепенно вкручиваем до касания лапки штока, и от этого места +2 оборота. Это начальное положение, затем по шнурку крутим упорный +/- 0,5оборотов смотрим максимальный наддув в 3й группе.

Регулировка длинны штока актуатора

Гайка регулировки длинны штока актуатора

Снимаeм лог по 1-10-11 группах при разгоне полный газ на 3й и на 4й передаче с 1000 до 4000об, АКПП в режиме типтроник.

как снимать логи
www.audi-club.ru/index.ph…frovka-log-fajlov.115582/

Сравниваем реальный наддув турбины с заданным по логам, если он меньше, раскручиваем контрогайку шершавого винта штока актуатора и круча его уменьшаем длинну штока, и наоборот при передуве

Хороший отчёт по регулировке длинны штока актуатора приведён здесь
P.S. www.drive2.ru/l/5758621/

www.drive2.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о