Гидротрансформатор в разрезе: Страница не найдена

Содержание

Гидротрансформатор акпп, его устройство и принцип работы

Одним из важных и непонятных для простых водителей механизмов АКПП является гидротрансформатор акпп. Когда-то, основываясь на его внешних визуальных признаках, с легкой руки, а точнее языка мастеров гидротрансформатор получил название бублик акпп. Действительное сходство с большим бубликом не позволяет усомниться в важности роли, которую выполняет гидротрансформатор акпп.

Гидротрансформатор акпп в разрезе

 

На самом деле трансформатор является усовершенствованной гидромуфтой. Если простая гидромуфта выполняет простейшую задачу по передаче вращения, то бублик акпп еще и увеличивает вращающий момент в 2 – раза. Поэтому и называется по научному – гидротрансформатор.

 

Устанавливается трансформатор, как и положено по логике вещей между двигателем, который производит вращающий момент, на трансмиссию, которая преобразует вращающий момент двигателя во вращение ведущих колес в конечном итоге. В данном материале мы не будем вдаваться в подробности, где и каким образом устанавливается гидротрансформатор АКПП. Эти моменты мы рассмотрим в следующих материалах. Здесь мы рассмотрим общие

Бублик акпп в разрезанной коробке

принципы.

 

Если посмотреть на бублик в разрезе, то видна сложность его устройства. По краям располагаются насосные и турбинные колеса, а между ними встроен так называемый реактор. В функции реактора входит направление движения трансмиссионной жидкости, а вращающий момент передается вращением жидкости, на лопатки ведомого колеса, которым является турбинное колесо. Для увеличения коэффициента передачи момента конструкция турбинного колеса имеет сложный профиль, позволяющий распределять энергию трансмиссионной жидкости от центра к периферии. За счет такого распределения увеличивается КПД. Следует отметить, что производство всех составляющих деталей требует особой точности. В разделе ремонт гидротрансформатора остановимся на моменте точности.

Бублик акпп устройство

 

Переднее насосное колесо, которое жестко соединено с валом двигателя захватывает трансмиссионную жидкость и начинает ее продавливать через реактор на лопатки турбинного колеса. Реактор в своем составе имеет обгонную муфту, которая при больших оборотах как бы выводит из работы реактор, блокируя его вращение. Получается аналог прямой передачи. Кинематика движения жидкости в описанном процессе достаточно сложная, поэтому мы рассмотрим ее только в случае необходимости.

 

Гидротрансформатор выполняет также демпфирующие функции при передаче крутящего момента. Однако возникающие потери эффективности при практически постоянной разнице в скорости вращения ведущего и ведомого колес привели к необходимости встроить в ступицу турбинного колеса автоматическую блокировочную муфту. При достижении автомобилем скорости около70 км, происходит блокировка, и теперь

Гидротрансформатор акпп в разрезе

вращающий момент передается через демпфирующие пружины (на рисунке эти пружины хорошо видны). Получается, что блокировочная муфта выполняет полезную работу по предотвращению повышения расхода топлива. В момент выравнивания частоты вращения колес в действие вступает нажимной диск, соединенный с поршнем муфты, который прижимается к фрикционной накладке. Странно, но в некоторых форумах можно набрести на высказывания знатоков о том, что в бублике нет фрикционов, однако откуда тогда берутся абразивные крошки, которые разносятся по всей системе трансмиссионной жидкостью (помимо крошек, которые образуются дальше в самой коробке).  Мы еще будем говорить о принципах ремонта гидротрансформаторов, почему их надо ремонтировать, в каких случаях и где. Это все важные вопросы, впрямую влияющие на качество работы акпп и длительность ее безремонтного пробега.

 

Если у вас появились вопросы, то позвоните прямо сейчас и задайте их

Виктору Павловичу                          +7 928 11 800 22

или Андрею                           +7 928 11 800 33

Если вам необходим ремонт, то лучше созвониться и ехать по адресу:

г. Ростов-на-Дону, ул. В.Черевичкина, 106/2

Удачи вам всем и безремонтной езды!

Гидротрансформатор — это… Что такое Гидротрансформатор?

Модель гидротрансформатора в разрезе

Гидротрансформатор (турботрансформатор) или конвертор крутящего момента (англ. torque converter) — устройство, служащее для передачи и преобразования, в отличие от гидромуфты, крутящего момента от двигателя внутреннего сгорания к коробке передач и, следовательно, позволяющее автоматически бесступенчато изменять крутящий момент и частоту вращения, передаваемые коробке передач. Чаще всего используется с АКПП или вариаторами. В СССР, а позднее в СНГ использовались и частью еще используются в гидродинамических трансмиссиях автомобилей «Волга», «Чайка» и ЗИЛ, многоцелевых тягачах МЗКТ и КЗКТ, семействе БелАЗ, автобусах ЛАЗ-695Ж и ЛиАЗ-677, на тракторах ДТ-175С и Т-330 и на ряде тепловозов маневровых (ТГМ3, ТГМ6, ТГК2) и магистральных — ТГ102, ТГ16, ТГ22. Кроме того, в СССР гидротрансформаторы использовались в трансмиссиях некоторых типов экскаваторов с канатным приводом рабочих органов.

В мировой практике нашли гораздо более широкое применение. Они широко используются на специальных грузовых шасси, предназначенных для изготовления коммунальной спецтехники, на городских автобусах, на вилочных погрузчиках и легковых автомобилях. Чаще всего работают с планетарными коробками передач, хотя встречаются и сочетания с обычными двух- и трехвальными конструкциями. Популярность снабженных гидротрансформатором машин в зависимости от региона может очень сильно различаться. Так, на конец ХХ века в Западной Европе около 20 % легковых автомобилей имели гидротрансформатор. Подавляющее большинство гидротрансмиссий средней и большой мощности в Европе разработано и строится фирмой Voith в Германии.

В то же время в США их доля составляла порядка 80 %. В последние годы из легкового автомобилестроения гидротрансформаторы вытесняются автоматизированными или «роботизированными» механическими коробками передач.

Устройство и принцип действия

Состоит из насосного колеса, статора (реактора), турбинного колеса и механизма блокировки. Все детали собраны в общем корпусе, расположенном на маховике двигателя автомобиля. Гидротрансформатор наполнен маслом, которое активно перемешивается при его работе.

Принципиальная схема гидротрансформатора

Насосное колесо жёстко связано с корпусом гидротрансформатора, при вращении вала двигателя оно создает внутри гидротрансформатора поток масла, который вращает колесо статора (реактора) и турбину.

Конструктивным отличием гидротрансформатора от гидромуфты является наличие реактора.

Статор (реактор) связан с насосным колесом через обгонную муфту. При значительной разнице оборотов насоса и турбины, статор (реактор) автоматически блокируется и передает на насосное колесо больший объём жидкости. Благодаря статору (реактору) происходит увеличение крутящего момента до трёх раз[1] при старте с места.

Турбина жёстко связана с валом АКПП.

Благодаря тому, что передача крутящего момента внутри гидротрансформатора происходит без жесткой кинематической связи, исключаются ударные нагрузки на трансмиссию и автомобиль приобретает большую плавность хода. Негативным эффектом гидротрансформатора является «проскальзывание» турбинного колеса по отношению к насосному — это приводит к повышенному выделению тепла (в некоторых режимах гидротрансформатор может выделять больше тепла, чем сам двигатель) и увеличению расхода топлива.

Моменты вращения на насосном и турбинном колёсах в подавляющем большинстве режимов не равны друг другу, в отличие от гидромуфты, у которой моменты вращения всегда можно считать равными.

Для повышения топливной экономичности, в конструкцию современных гидротрансформаторов вводится механизм блокировки, позволяющий жёстко связать насос и турбину. Блокировка включается автоматически при достижении достаточной скорости (как правило, более 70 км/ч). Однако, в электронно-управляемых АКПП момент включения блокировки определяет компьютер, поэтому она может быть включена практически в любой момент, согласно управляющей программе. Благодаря механизму блокировки при движении по шоссе расход топлива автомобилей, оснащённых АКПП, не превышает аналогичного для моделей с МКПП. Также блокировка гидротрансформатора применяется, подобно МКПП, для торможения двигателем и экономии топлива. В этом случае впрыск топлива прекращается на время блокировки. На тракторах блокировка гидротрансформатора используется для запуска двигателя трактора «с толкача», либо когда трактор работает в стационарном режиме.

См. также

Примечания

Литература

1. Гидравлика, гидромашины и гидроприводы: Учебник для машиностроительных вузов/ Т. М. Башта, С. С. Руднев, Б. Б. Некрасов и др. — 2-е изд., перераб. — М.: Машиностроение, 1982.

2. Гейер В. Г., Дулин В. С., Заря А. Н. Гидравлика и гидропривод: Учеб для вузов. — 3-е изд., перераб. и доп. — М.: Недра, 1991.

3. Лепешкин А. В., Михайлин А. А., Шейпак А. А. Гидравлика и гидропневмопривод: Учебник, ч.2. Гидравлические машины и гидропневмопривод. / под ред. А. А. Шейпака. — М.: МГИУ, 2003. — 352 страниц

Ссылки

Турбины и механизмы с турбинами в составе

 

Гидротрансформатор АКПП «Бублик»- Устройство. Принцип работы. Основные проблемы


Гидротрансформатор выполняет важную роль в автоматической коробке передач, он занимает пространство между корпусом силового агрегата и трансмиссией авто. Гидротрансформатор в АКПП работает, как муфта сцепления – передает вращение от работающего мотора непосредственно на автомат. Внешнее сходство гидротрансформатора АКПП с характерной формой тора позволяет называть данное устройство бубликом. Гидротрансформатор автоматической коробки передач – составная часть гидросистемы трансмиссии. Управление его работой осуществляется при помощи специального гидроблока.

Устройство гидротрансформатора коробки-автомат

Основное предназначение гидротрансформатора АКПП – это обеспечение плавного и своевременного перехода автоматической трансмиссии с одной передачи на другую. Первые образцы гидротрансформаторов для КПП были созданы в ХХ веке. С целью модернизации устройства ГТР, применялись новые технологии. Гидротрансформаторы АКПП становились более сложными по конструкции.

Помимо обеспечения плавности перехода на различные передачи, новые гидротрансформаторынаделены дополнительной функцией сцепления. При этом в момент переключения скоростей (понижающей либо повышающей) гидротрансформатор размыкает непосредственную связь двигателя внутреннего сгорания с коробкой передач. Гидротрансформатор АКПП частично принимает на себя силу крутящего момента. Именно это обеспечивает уникальную плавность при переключении скоростей.

В отличие от механической КПП, в автомате передача крутящего момента осуществляется не под воздействием механического трения между фрикционными дисками гидротрансформатора АКПП. Соединение двигателя и автоматической коробки передач происходит, благодаря давлению трансмиссионной жидкости. Срабатывает эффект вращения мельницы от ветра.Устройство гидротрансформатора обеспечивает сохранение целостности автоматической коробки и защиту от механических повреждений за счет важной функции – амортизации.

Фрикционные диски гидротрансформатора АКПП образуют сборный пакет, состоящий из деталей мобильного и неподвижного типов. При включении передачи в магистралях создается необходимое давление. При помощи специального устройства – гидравлического толкателяфрикционы гидротрансформатора АКПП взаимно сжимаются, включается заданная скорость.

Достоинства и недостатки

Прежде чем мы начнем изучать устройство гидротрансформаторов, давайте разберемся, почему их вообще стали применять. Трансмиссия с жестким соединением первичного вала с двигателем имеет серьезный недостаток: в определенных режимах работы двигателя на трансмиссию приходятся сильные нагрузки, которые становятся причиной ускоренного износа деталей. Трансформатор решил эту проблему. Но у него есть и другие достоинства. Среди них:

  • Обеспечение плавного троганья с места;
  • Потенциальная возможность увеличения крутящего момента от автомобильного двигателя;
  • Устройство практически не нуждается в обслуживании.

Где есть достоинства, там есть и недостатки. Главная особенность гидротрансфортматора – передача момента посредством движения жидкости – является и его главным недостатком. Вот почему автоконцерны продолжают работать над его улучшением:

  • Устройство имеет относительно невысокий КПД;
  • Оно пагубно сказывается на динамике автомобиля;
  • Стоимость устройства довольно высока.

Так как на раскручивание жидкости в гидротрансформаторе требуется время и мощность, динамика автомобиля может пострадать. Кроме того, проектирование и сборка гидротрансформатора требует больших экспертных мощностей и денежных трат. Автомобиль, оснащенный АКПП с трансформатором стоит дороже моделей с наиболее простой механической трансмиссией. Но с учетом того, что устройтсво не только делает работу трансмиссии более плавной, но и увеличивает ее эксплуатационный ресурс, денежные траты окупаются.

Как действует гидротрансформатор АКПП

Современный гидротрансформатор блокируется при сравнивании скоростей оборотов валов – входного и выходного. На практике это случается после развития скорости транспортного средства, равной более 70 км/час. Тормозная накладка поршня гидротрансформатора замедляет вращение масляной жидкости. Валы двигателя внутреннего сгорания и коробки передач взаимно фиксируются. Силовой агрегат и трансмиссия образуют единое целое, происходит синхронное вращение валов.

Когда гидротрансформатор полностью передает вращение на АКПП от силового агрегата, потери мощности равны нулю. Данная функция гидротрансформатора напоминает действие педали механизма сцепления на коробке перемены передач механического типа.

Во время работы гидротрансформатора кинетическая энергия двигателя расходуется на движение масла, которое разогревается от трения. При взаимном касании фрикциона со стальным диском происходит интенсивное истирание накладки, фрагменты износа в виде пыли попадают в масляный состав гидротрансформатора. Стабильность работы автоматической трансмиссии и ходовой части находится в прямой зависимости от степени износа фрикционных накладок и смазочного материала.

Режимы автоматической трансмиссии

«P»

— parking. В этом режиме все передачи выключены, выходной вал КПП и «ветка» трансмиссии, связанная с ведущими колёсами, заторможены блокирующим механизмом коробки. При работающем двигателе ограничитель частоты вращения коленчатого вала срабатывает гораздо раньше, чем при разгоне. Такая «защита от дурака» не позволяет «перекручивать» мотор и без толку перелопачивать трансмиссионную жидкость.

«R»

— reverse, по-русски — задний ход.

«N»

— нейтраль. В этом режиме двигатель и ведущие колёса не связаны. Автомобиль может двигаться накатом, его можно также буксировать без вывешивания ведущей оси.

Режим «D»

или
«Drive»
разрешает движение. В этом режиме смена передач осуществляется автоматически.

«S»

,
«Sport»
,
«PWR»
,
«Power»
или
«Shift»
— спортивный режим. Самый динамичный и самый расточительный. При разгонах двигатель «загоняется» в режим максимальной мощности. Скорость перехода с одной передачи на другую (в зависимости от конструкции и программы) может быть увеличена. Двигатель в этом случае всегда находится в тонусе, как правило, работая на оборотах, которые не ниже тех, на которых развивается максимальный крутящий момент. Забудьте об экономичности.

«Kick-down»

— режим, в котором осуществляется переход на пониженную передачу для осуществления интенсивного ускорения, например, при обгоне. Резкий подхват происходит за счёт того что двигатель выводится в режим максимальной отдачи, и за счёт большего передаточного отношения понижающей передачи. Чтобы трансмиссия перешла в этот режим, по педали газа нужно хорошенько топнуть. В трансмиссиях более старшего поколения для срабатывания «кикдауна» нужно было обязательно нажать педаль газа, что называется, «в пол» до характерного щелчка.

При работе в режиме «Overdrive»

или
«O/D»
повышающая передача будет включаться чаще, переводя двигатель на пониженные обороты. «Овердрайв» обеспечивает экономичное передвижение, но его активация может привести к существенной потере в динамике.

«Norm»

реализует наиболее сбалансированный режим движения. Переключения на повышающие передачи, как правило, происходят по достижении средних оборотов и на оборотах несколько выше средних.

Если поставить селектор напротив «1»

(
L
,
Low
),
«2»
или
«3»
, ваша коробка не будет переходить выше выбранной передачи. Режимы востребованы в тяжёлых дорожных условиях, например, при движении по горным дорогам, при буксировке прицепа или другого автомобиля. В этом случае двигатель может работать в области средних и высоких нагрузок без перехода на повышающую передачу.

«W»

,
«Winter»
,
«Snow»
— так называемый «зимний» режим работы АКПП. В целях предотвращения пробуксовки ведущих колёс трогание с места осуществляется со второй передачи. Дабы не спровоцировать лишние проскальзывания, переход с одной передачи на другую в этом случае тоже может осуществляться более мягко и при более низких оборотах. Разгон при этом может быть не слишком динамичным.

Наличие значков «+»

и
«-»
определяет совсем не полюсность, а возможность ручного переключения передач. Разные передачи позволяют по-разному: селектором управления АКПП, кнопками на руле или подрулевыми переключателями… В этом режиме электроника не позволит перейти на те передачи, которые, по её мнению, неуместны в данный момент. При работе со знаками «сложения» и «вычитания» скорость смены ступеней не будет выше той, что определена программой в режиме «Sport». Достоинство ручного режима — возможность действовать на опережение.

Принцип работы гидротрансформатора

Работа «бублика» осуществляется по замкнутому циклу. Смазочное вещество является главным рабочим материалом гидротрансформатора. Его вязкостные характеристики существенно отличаются от свойств масла, используемого в МКПП. При работе гидротрансформатора АКПП смазочное вещество под воздействием насосного колеса принудительно подается на лопатки реактора и турбины. Лопатки создают дополнительные завихрения и ускоряют движение масла,скорость вращения рабочих колес гидротрансформатора существенно падает, момент соответственно возрастает.

Ускорение вращения коленвала способствует выравниванию скоростей колеса насоса и турбины гидротрансформатора. При большой скорости автомобиля гидротрансформатор только передает крутящий момент по аналогии с работой гидромуфты. При блокировке ГТР вращение передается напрямую от силового агрегата на АКПП.

При переходе на другую передачу элементы гидротрансформатора разъединяются. Процесс сглаживания угловых скоростей возобновляется до окончательного выравнивания вращенияработающих турбин.

Функционирование гидротрансформатора происходит под постоянным контролем электронного блока управления ЭБУ. Датчики, установленные на гидротрансформаторе, подают сигналы на ЭБУ. Исходя из поступающих данных, формируются выходные управляющие команды. Если электронные приборы сообщают об ошибке, это означает, что возникли какие-то проблемы с ГТР.

Важно: Признаки неисправностей гидротрансформатора АКПП могут проявляться как в механической, так и электронной частях механизма. При экстренной остановке коробки-автомата необходимо провести тщательную диагностику с последующим ремонтом элементов гидротрансформатора.

На представленной схеме показано в разрезе, из чего состоит гидротрансформатор автоматической коробки перемены передач.

Спираль справа – схематическое изображение траектории движения масла внутри корпуса гидротрансформатора.

Здесь изображен принцип работы гидротрансформатора в различных режимах.

История появления

Впоследствии модернизированные гидромуфты стали использоваться на лондонских автобусах и первых дизельных локомотивах в целях обеспечить их плавное трогание с места. А еще позже гидромуфты облегчили жизнь и водителям автомобилей. Первый серийный автомобиль с гидротрансформатором, Oldsmobile Custom 8 Cruiser, сошел с конвейера завода General Motors в 1939 году.Впервые принцип передачи крутящего момента посредством рециркуляции жидкости между двумя лопастными колесами без жесткой связи был запатентован немецким инженером Германом Феттингером в 1905 году. Устройства, работающие на основе данного принципа, получили название гидромуфта. В то время развитие судостроения требовало от конструкторов найти способ постепенной передачи крутящего момента от парового двигателя к огромным судовым винтам, находящимся в воде. При жесткой связи вода тормозила резкий ход лопастей при запуске, создавая чрезмерную обратную нагрузку на двигатель, валы и их соединения.

Признаки неисправности гидротрансформаторов АКПП

Гидротрансформатор занимает лидирующие позиции по надежности среди различных узлов и деталей АКПП. Он полностью вырабатывает заявленный эксплуатационный срок. Однако, это не означает, что ГТР вечен. С помощью характерных симптомов опытные водители могут определить место возможных поломок в гидротрансформаторе и автоматической коробке передач.

Признаки неисправности гидротрансформатора:

  1. Возникновение характерного звука (шуршащего, механического) при переключении скоростей. Этот малозаметный звук уходит, когда увеличиваются обороты, и машина ускоряется. Данный симптом указывает на деформации опорных игольчатых подшипников гидротрансформатора.
  2. При громком стуке металла нужно проверить состояние лопастей и колеса гидротрансформатора в сборе.
  3. Вибрации коробки передач на скорости 60 – 90 км/час (причина – неравномерное истирание фрикционов системы блокировки).
  4. Загрязнение масла (запах гари, темный оттенок, густая консистенция).
  5. Перегрев гидротрансформатора.
  6. Засорение клапана гидроблока.
  7. Снижение уровня трансмиссионного масла.
  8. Проблемы с динамикой машины (обгонная муфта нуждается в замене).
  9. Неожиданная остановка транспортного средства означает, что повреждены шлицы на турбинном колесе гидротрансформатора. При этом требуется установить новые шлицы или полностью менять деформированное колесо на новый механизм.
  10. Глохнет двигатель при переходе на другую передачу. Здесь виновата управляющая автоматика.

Чем чревата езда без блокировки гидротрансформатора

Принцип работы и устройство современного автомобильного генератора
Срок службы гидротрансформаторов на АКПП рассчитан производителем от 200 тысяч до 300 тысяч километров пробега. Например, на мерседесах старых моделей, неисправности гидротрансформатора могут не проявляться в течение 500 тысяч километров пробега. АКПП Тойоты Марк 2 тоже не склонно быстро выходить из строя.

Читать

Как самостоятельно промыть АКПП в домашних условиях

Эксперты советуют: «Если автомобиль начал дергаться во время разгона, плавно не переключает скорости – его необходимо сразу везти на технический осмотр». В нем износились накладки. А это значит, что блокировка уже не будет включаться вовремя.

Если засорился соленоид блокировки гидротрансформатора, который отвечает за силу прижатия, АКПП будет толкаться и пинаться. Транспортное средство будет потреблять большое количество топлива.

Продукты износа продолжат распространение по всей АКПП. Это приведет к загрязнению насоса, смазывающего средства. В итоге продукты износа будут действовать как абразивное средство на зубья фрикционов. Масло соответственно из-за сильного трения будет перегреваться. Как итог АКПП нужно будет заменить.

Бывает, что быстрее изнашивается насосное колесо или турбина в гидротрансформаторе. О том, как проверить, что повреждено в гидротрансформаторе, и неисправность ли в ГДТ причина всех проблем – в следующем блоке.

Ремонт ГТР

Для многих автовладельцев ремонт гидротрансформатора АКПП является сложной процедурой.Не все люди обладают необходимыми знаниями, свободным временем, желанием, чтобы качественно восстановить функции гидротрансформатора своими руками. Самая большая сложность в ремонте гидротрансформатора состоит в его демонтаже с автомобиля. Профессиональные механики обладают набором специальных инструментов и приспособлений, чтобы благополучно снять гидротрансформатор с коробки передач.

Непосредственный ремонт гидротрансформатора АКПП начинается с механического разрезания корпуса на токарном станке и внимательной диагностики состояния каждого механизма. В процессе ремонта гидротрансформатора необходимо заменить следующие элементы:

  • корпус бублика;
  • сальники;
  • уплотнительные кольца.

Перед разрезанием и диагностикой демонтированного гидротрансформатора рекомендуется слить масло в подготовленный тазик, а также тщательно промыть фрикционы и другие составляющие устройства.

Важно: Кольца и уплотнительные сальники гидротрансформатора необходимо менять на новые детали, даже при кажущемся удовлетворительном их состоянии. Во избежание протечек смазочного материала, устанавливать старые уплотнения категорически не рекомендуется.

Замена гидротрансформатора – лучшее решение. Однако, подавляющее большинство владельцев авто склоняются к тому, чтобы не покупать новый корпус или гидротрансформатор АКПП в сборе. В этом случае производится сваривание частей корпусной детали. При этом соблюдается главное условие: обеспечение абсолютной герметичности сварного шва корпуса гидротрансформатора. После установки отремонтированного устройства на автоматическую коробку передач производится балансировка этого бублика в сборе.

Рекомендации по обслуживанию и эксплуатации ГДТ

Применение «бублика» в трансмиссии упрощает и облегчает управление автомобилем даже в тяжелых условиях. Однако, АКПП с гидротрансформатором при сравнении с МКПП проигрывает по параметрам:

  • низкий КПД без применения блокировки;
  • расход топлива на 10% выше;
  • малый диапазон изменения крутящего момента «бублика» и необходимость установки планетарного редуктора;
  • сложность конструкции и обслуживания;
  • высокая стоимость.

Чтобы стать постоянным клиентом мастерской по ремонту гидротрансформатора АКПП, нужно соблюдать два правила:

  • как можно чаще вжимать педали газа и тормоза в пол, чтобы быстрее истереть фрикцион муфты блокировки в абразивную пудру, загрязнить масло и ускорить износ автомата;
  • никогда не менять жидкость, особенно, если она черная, горячая, а уровень выше или ниже нормы.

Если серьезно, то ГДТ выходит из строя медленно и незаметно для водителя. Явный сигнал неисправности — течь масла в месте соединения гидротрансформатора и двигателя. Другие признаки неполадки могут проявляться уже на стадии распространения «заболевания» по все АКПП. Поэтому, если автомобиль ведет себя странно: медленно разгоняется, увеличил расход топлива, при движении появляется вибрация — нужно отправить машину на проверку.

Перед самостоятельным осмотром коробки нужно изучить устройство и особенности конкретной модели АКПП. Чтобы добраться до гидротрансформатора, придется снимать всю коробку. Без распила и разборки отремонтировать «бублик» не получится. Промывка гидротрансформатора растворителями может повредить колесам и «разъесть» сальники.

После ремонта и сборки АКПП необходима балансировка гидротрансформатора. Не все сервисы проводят эту операцию, поскольку она трудоемка и проблематична. ГДТ работает на высоких оборотах — дисбаланс или нарушение соосности валов выведут из строя не только «бублик», но и всю АКПП.

Срок службы современного гидротрансформатора АКПП составляет 150 — 200 000 км. Ресурс сократится до 100 000, если менять масло. Фрикционы истираются к 120 — 150 000 км и тоже требуют замены. После 200 000 км «бублику» с регулируемым проскальзыванием прописан плановый капремонт.

Что в гидротрансформаторах ломается чаще и быстрее всего

Износ тормозной прокладки фрикциона – наиболее часто является причиной, приводящей к ремонту гидротрансформатора:

  1. Изношенная прокладка удаляется.
  2. Место ее расположения тщательно очищается от засохшего клеевого состава.
  3. Наносится новый клеевой состав.
  4. Устанавливается новая фрикционная прокладка.

Замена прокладки гидротрансформатора необходима для обеспечения герметичности системы и предотвращения утечек трансмиссионного масла. Если ее не заменить вовремя, возникают неприятные последствия:

  • элементы износа в виде мелких кусочков заполняют масляные каналы в гидроплите;
  • масляное голодание гидротрансформатора;
  • рост температуры;
  • повышенный износ сальников, втулок;
  • проскальзывание стертой муфты блокирования;
  • выход из строя электромагнитных соленоидов и электронных приборов;
  • деформации фрикционных накладок гидротрансформатора;
  • преждевременное разрушение сопряженных металлических узлов и деталей вследствие
  • вибрационных колебаний изношенных муфт (старение железа).

Как продлить жизнь гидромуфте Автоматической КПП

Соблюдение определенных правил позволит увеличить ресурс работы гидротрансформатора.

Основные рекомендации для продления эксплуатационного периода бублика:

  • при отрицательной температуре внешней среды необходимо прогревать АКПП в холостом режиме в течение 7-10 минут для достижения рабочей температуры трансмиссионного масла и, как следствие, улучшения свойств рабочей жидкости;
  • при буксировании транспортного средства или езде по скользким поверхностям необходимо правильно выбирать режим для снижения вероятности проскальзывания бублика;
  • регулярная проверка уровня рабочей жидкости и ее состояния;
  • своевременно менять трансмиссионную жидкость, выбирая качественную и соответствующую типу АКПП;
  • плавный выбор ступеней с задержкой в 2-3 секунды;
  • замена масляного фильтра АКПП по мере необходимости;
  • своевременная замена прокладок и сальников бублика при пробеге свыше 150000 километров или агрессивной манере езды с повышенной нагрузкой на гидротрансформатор.

Несмотря на простоту узла и его надежность, гидротрансформатор подвержен ряду поломок с характерными для них признаками.

Для увеличения эксплуатационного периода бублика необходимо своевременно проводить диагностику и ремонт узла при появлении даже малейших симптомов неисправностей и придерживаться некоторых рекомендаций, способных заметно продлить жизнь гидротрансформатору.

Прочие поломки гидротрансформаторов АКПП

Автомеханики сервисных компаний в процессе диагностики ГТР часто выявляют дополнительные дефекты в гидротрансформаторах автоматических коробок передач:

  1. Деформации и поломка лопастей гидротрансформатора.
  2. Износ ступицы вследствие работы при повышенных температурах.
  3. Нарушение блокировки, заклинивание муфты обгона.
  4. Разрушение подшипников.
  5. Прогорание корпуса гидротрансформатора АКПП.

Почти все перечисленные дефекты выявляются только при вскрытии корпусной детали гидротрансформатора. После определения поломок производится их замена на новые рабочие элементы.

Если ремонт гидротрансформатора производится в условиях специализированных мастерских, оснащенных современным оборудованием, технологическими приспособлениями, оригинальными запчастями, восстановленный гидротрансформатор будет служить в течение длительного срока. Время эксплуатации отремонтированного механизма составляет около 80% от первоначального ресурса. Частичная либо полная замена трансмиссионного масла также входит в перечень ремонтных услуг. Длительность ремонта гидротрансформатора автоматической коробки передач в среднем занимает три рабочих дня.

Причины неисправности

Гидротрансформатор — устройство не очень сложное, однако в процессе эксплуатации автоматической трансмиссии он изнашивается и постепенно выходит из строя. Перечислим, какие именно системы могут поломаться, и по каким причинам.

Фрикционные пары

Внутри гидротрансформатора есть так называемая блокировка, которая, по сути является элементом автоматического сцепления. Механически работает она схоже с классическим сцеплением МКПП. Соответственно, имеет место износ фрикционных дисков, их отдельных пар, либо всего комплекта. Кроме этого, элементы износа фрикционных дисков (металлическая пыль) загрязняют трансмиссионную жидкость, из-за чего могут забиться каналы, по которым проходит жидкость. Из-за этого падает давление в системе, а также страдают другие элементы автоматической трансмиссии — гидроблок, радиатор охлаждения и прочие.

Лопатки лопастей

Металлические лопатки под воздействием высоких температур и наличия в трансмиссионной жидкости абразива также со временем изнашиваются, и добавляют в масло еще больше металлической пыли. Из-за этого снижается эффективность работы гидротрансформатора, снижается общее давление жидкости в системе трансмиссии, ну а из-за грязной жидкости растет перегрев системы, изнашивается гидроблок, увеличивается нагрузка на всю систему. В самых худших случаях возможна полная поломка одной или нескольких лопастей на крыльчатке.

Разрушение сальников

Под воздействием горячей и загрязненной жидкости АТФ увеличивается нагрузка на резиновые (пластмассовые) сальники-уплотнители. Из-за этого страдает герметичность системы, и возможна утечка трансмиссионной жидкости.

Блокировка гидротрансформаторов

На старых коробках-автомат блокировка (сцепление), у которых управление им было механическое, непосредственно блокировка срабатывала реже, только на высших передачах. Поэтому ресурс таких коробок был выше, а интервал по замене трансмиссионной жидкости — больше.

На современных же машинах блокировка срабатывает, то есть, гидротрансформатор блокируется на всех передачах, а специальный клапан регулирует силу его прижатия. Так, при плавном разгоне блокировка включается частично, а при резком — она включается практически сразу. Делается это для снижения потребления топлива, а также для увеличения динамических характеристик машины.

Одна другая сторона медали в данном случае заключается в том, что в таком режиме работы значительно возрастает износ закладок блокировки. В том числе быстро изнашивается (загрязняется) трансмиссионная жидкость, в ней появляется много мусора. С увеличением пробега плавность блокировки падает, а при разгоне или при обычной езде машина начнет немного дергаться. Соответственно, масло в АКПП нужно менять примерно на 60 тысячах километров пробега, поскольку в зону риска попадает уже вся система автоматической трансмиссии.

Износ подшипников

В частности, опорных и промежуточных, между турбиной и насосом. При этом обычно слышится хруст или свист, издаваемый непосредственно упомянутыми подшипниками. Особенно хрустящие звуки слышны при наборе скорости, однако при выходе машины на стабильную скорость и нагрузку звуки обычно пропадают, если подшипники не изношены до критического состояния.

Потеря свойств трансмиссионной жидкости

Если жидкость ATF находится в системе трансмиссии уже давно, то она чернеет, густеет, в ее составе появляется много мусора, в частности, металлической крошки. Из-за этого страдает и гидротрансформатор. Особенно критична ситуация, когда жидкость не только теряет свои свойства, но и падает ее общий уровень (количество в системе). В таком режиме гидротрансформатор будет работать в критическом режиме, при критических температурах, что значительно снижает его общий ресурс.

Обрыв соединения с валом АКПП

Это критическая поломка, которая, правда, случается крайне редко. Заключается она в том, что происходит механический обрыв шлицевого соединения турбинного колеса с валом коробки-автомат. В этом случае движение автомобиля в принципе невозможно, поскольку от двигателя на АКПП крутящий момент не передается. Ремонтные работы заключаются в замене вала, восстановлении шлицевого соединения либо же полной замене гидротрансформатора в критических случаях.

Поломка обгонной муфты

Внешним признаком поломки обгонной муфты АКПП будет ухудшение динамических характеристик машины, то есть, она будет хуже разгоняться. Однако без дополнительной диагностики невозможно точно установить, что виновата в этом именно обгонная муфта.

Звуки, вибрация

Как самостоятельно определить признаки неисправности гидротрансформатора АКПП? В первую очередь, нужно прислушаться к работе самой коробки. Так, при переключении передач может возникать механический звук (шуршание). Поначалу он едва заметен. А при увеличении оборотов двигателя и вовсе пропадает. О чем это говорит? Такие признаки неисправности гидротрансформатора АКПП свидетельствуют о проблеме с упорными подшипниками игольчатого типа. Элемент располагается между крышкой гидротрансформатора и турбинным (либо реакторным) колесом.


Если при переключении передач возникает громкий металлический стук, это говорит о деформации лопаток турбинного колеса. Ремонту такой элемент уже не подлежит.

Если при скоростях 60-90 километров в час возникает легкая вибрация, это говорит о забитом масляном фильтре. Также подобные симптомы происходят из-за некачественной или старой АТФ-жидкости. Решение проблемы – замена фильтра и масла. В большинстве случаев ремонт на этом заканчивается.

Многие применяют частичную замену масла – сливают часть старого и доливают новое, повторяя этапы 2-3 раза. Но специалисты рекомендуют не экономить на полной замене АТФ-жидкости. Она производится на стенде под давлением.


В чем плюс такой процедуры? Замена масла будет произведена на 100 процентов, а грязь из коробки полностью вымоется. Повторить это в условиях гаража невозможно – только при наличии стенда.

Устройство и принцип работы гидротрансформатора

Многие из Вас наверняка знают элементарные вещи об устройстве механической коробки передач — Вы знаете, что двигатель подключен к передаче путём сцепления, ведь без этой связи автомобиль не сможет прийти к полной остановке, разумеется, не убив двигатель. Но автомобили с автоматической коробкой передач не имеют сцепления, которое отключало бы трансмиссию от двигателя. Вместо этого в них используется удивительное устройство под названием

гидротрансформатор. Может быть, его устройство Вам покажется несколько сложным, но то, что он делает и какое удобство доставляет, просто очень интересно!

В этой статье мы узнаем, почему автоматическая коробка передач автомобиля так нуждается в гидротрансформаторе, как работает гидротрансформатор и его некоторые недостатки.

Основы гидротрансформатора

Так же, как и в случае с ручной трансмиссией, автомобилю с автоматической коробкой передач необходимо найти способ, чтобы одновременно держать двигатель работающим (крутящимся коленчатым валом), а колеса и шестерни в коробке передач остановленными.Автомобили с МКПП используют для этого сцепление, которое полностью отключает двигатель от коробки передач, а вот автоматическая коробка передач использует гидротрансформатор.

Гидротрансформатор является одним из видов гидромуфты, которая позволяет двигателю вращаться независимо от трансмиссии. Если двигатель вращается медленно, например, когда автомобиль работает на холостом ходу на красном сигнале светофора, количество крутящего момента, который передаётся через гидротрансформатор, очень мало, и его достаточно, чтобы удержать автомобиль на месте путём лишь лёгкого давления на тормозную педаль.

Если бы Вы надавили на педаль газа в то время как автомобиль остановился, Вам пришлось бы также нажать сильнее на тормоза, чтобы удержать машину от перемещения. Это происходит потому, что при нажатии на газ двигатель ускоряется, и насос из-за этого ускорения подаёт больше жидкости в гидротрансформатор, вызывая больший крутящий момент, который, в свою очередь передаётся на колеса.

Типовые неисправности гидротрансформатора

Рассмотрев принцип работы гидротрансформатора, каждый мог понять, что данный механизм нагружен лишь при разгоне машины до некоторой скорости. В эти моменты гидромеханическое устройство потребляет получаемую энергию от мотора на раскручивание регулирующих лопастей, тем самым снижая КПД его работы до 80-85 %! Именно в этот момент своего функционирования, элементы гидротрансформатора испытывают колоссальные нагрузки и быстро изнашиваются.

Условно, поломки гидромеханического механизма можно разделить на две большие группы:

  • Износ и выход из строя составляющих самого гидротрансформатора;
  • Неисправности контактирующей с ним гидроблочной плиты.

Стоит отметить, что гидротрансформатор в отличие от гидроблока является неразборным узлом и, соответственно, неремонтируемым. Несмотря на это, в авторемонтной сфере принято просто срезать сварочный шов, соединяющий две половины механизма, ремонтировать его и проводить обратную сварку. Зачастую с гидротрансформатором случается одна из следующих неисправностей:

  • Износ фрикционов;
  • Расшатывание или износ входных и выходных валов;
  • Забивание или износ каналов подачи масла, что провоцирует перегрев устройства.

Реже встречаются проблемы с более мелкими составляющими устройства (накладками, сальниками, уплотнителями), которые особых сложностей в ремонт гидротрансформатора АКПП не вносят.

Помимо этого, в работе всей автоматической коробки передач, в частности и в функционировании гидротрансформатора, немаловажен гидроблок. Гидравлическая плита чаще всего имеет поломки по типу:

  • Забитости гидрофильтра или каналов подачи масла;
  • Неисправности соленоидов и датчиков, ответственных за подачу смазки в гидротрансформатор;
  • Некорректной работы масляного насоса.

Любые неисправности гидротрансформатора АКПП и гидроблока проявляются в виде трёх основных симптомов: перегрев данных узлов, вибрация и некорректная работа коробки. Появление таких признаков требует от автомобилиста принятия некоторых мер, так как в ремонте быстро убиваемого автомата важна скорость, и медлить при его организации нельзя.

Режим блокировки

Устройство гидротрансформатора с блокировкой

Для того, чтобы справиться с основными недостатками гидротраснформатора (низкий КПД и плохая динамика автомобиля), был разработан механизм блокировки. Принцип его работы схож с классическим сцеплением. Механизм состоит из блокировочной плиты, которая связана с турбинным колесом (а следовательно, с первичным валом КПП) через пружины демпфера крутильных колебаний. Плита на своей поверхности имеет фрикционную накладку. По команде блока управления трансмиссией, плита прижимается накладкой к внутренней поверхности корпуса гидротрансформатора при помощи давления жидкости. Крутящий момент начинает передаваться напрямую от двигателя к коробке передач без участия жидкости. Таким образом достигается снижение потерь и более высокий КПД. Блокировка может быть включена на любой передаче.

Читайте также:  Устройство и принцип работы классической АКПП

Как работает гидротрансформатор?

Как показано на рисунке выше, существуют четыре компонента внутри очень крепкого корпуса гидротрансформатора:

  1. Насос
  2. Турбина
  3. Статор
  4. Трансмиссионное масло

Корпус гидротрансформатора крепится болтами к маховику двигателя, то есть корпус всегда крутится с той же скоростью, с какой крутится коленвал двигателя. Плавники, которые составляют насос гидротрансформатора, крепятся к корпусу, поэтому они также вращаются с одинаковой скоростью, что и двигатель. Гидротрансформатор в разрезе на рисунке ниже показывает, как всё это связано внутри гидротрансформатора.

Насос внутри гидротрансформатора является одним из видов центробежных насосов. В то время как он вращается, жидкость движется направленно от центра к краям, примерно как вращающийся барабан стиральной машины во время отжима бросает воду и одежду по своим стенкам. В то же время, так как жидкость устремляется от центра, в это центре создаётся вакуум, который привлекает ещё больше жидкости.

Затем жидкость поступает в лопасти турбины, которая связана с передачей. Именно турбина заставляет передачу крутиться, что в основном и приводит в движение Ваш автомобиль. Так как же жидкость (точнее, масло) поступает из насоса к турбине?! Дело в том, что в то время, как жидкость эта устремляется от центра к краям насоса, она встречает на своём пути лопасти насоса, которые направлены таким образом, что жидкость рикошетит о них и направляется уже вдоль оси вращения насоса прочь от него — к турбине, которая как раз и расположена напротив насоса.

Лопасти турбины также немного искривлены. Это означает, что жидкость, которая поступает в турбину снаружи, должна изменить своё направление, переместившись в центр турбины. Именно это направленное изменение вызывает вращение турбины.

Чтобы ещё проще представить принцип работы гидротрансформатора, представим ситуацию с расположенными друг напротив друга на небольшом расстоянии (допустим, около одного метра) комнатными вентиляторами и направленными друг напротив друга — если включить один из вентиляторов, то он за счёт своих искривлённых лопастей погонит воздух от себя к вентилятору, который стоит напротив него, а тот, в свою очередь, начнёт вращаться, потому как его лопасти также искривлены и поток воздуха толкает их все в какую-либо одну сторону (именно в ту сторону, в какую и начнёт вращаться вал вентилятора).

Но мы всё ещё двигаемся далее: жидкость выходит из турбины в её центре, двигаясь опять же в другом — противоположном направлении, чем то, в котором она когда-то вошла в турбину — то есть снова по направлению к насосу. И вот здесь заключается большая проблема — дело в том, что по своей конструкции (точнее, по конструкции своих лопастей, насос и турбина вращаются в противоположные стороны, и, если жидкости будет разрешено попасть обратно в насос, то это будет сильно замедлять двигатель. Вот почему гидротрансформатор имеет статор, который, благодаря своей конструкции, изменяет направление движения масла, и, таким образом, остаточная энергия, которая возвращается от турбины к насосу, идёт в дело — немного помогая двигателю раскручивать насос. 

Важно отметить, что скорость вращения турбины никогда не будет равной скорости вращения насоса, а КПД в гидротрансформаторе даже близко не будет стоять к механическим шестерёнчатым механизмам, передающим крутящий момент. Именно поэтому у автомобиля с АКПП значительно более высокий расход топлива. Для борьбы с этим эффектом, большинство автомобилей имеет гидротрансформатор, снабжённый блокировочной муфтой . Когда требуется, чтобы две половинки гидротрансформатора (насос и турбина) вращались с одинаковой скоростью (это происходит, например, когда автомобиль движется на высокой скорости), блокировочная муфта блокирует их вместе намертво, что исключает проскальзывание насоса относительно турбины и, таким образом, повышает эффективность расхода топлива.

Ремонт гидротрансформатора и гидроблока

Как было выяснено выше, неисправности гидротрансформатора могут спровоцировать как ремонт именно этого механизма, так и починку гидроблока АКПП. Сразу отметим, что данные процедуры желательно доверить профессионалам, но если конкретно у вас имеется желание отремонтировать коробку своей машины собственноручно, то делать это нужно с умом. Как минимум, при ремонте трансформатора следует придерживаться следующего порядка:

  1. В первую очередь, нужно осуществить диагностику и, при необходимости, ремонт гидроблока АКПП. Для этого достаточно:
    1. Демонтировать гидроблочную плиту с коробки;
    2. Разобрать её;
    3. Продуть все каналы;
    4. Проверить целостность составляющих гидроблока;
    5. «Прозвонить» все соленоиды.

    Неисправности не выявлены? Тогда придётся разрезать гидротрансформатор. В ином случае все неполадки с гидроблоком следует устранить и проверить, нормализуется ли работа АКПП или нет. Если ответ отрицательный, то приступаем к следующему шагу;

  2. Допустим, разборка и промывка гидроблока АКПП ничего не дала. Что делать дальше? Естественно, проводить ремонт гидротрансформатора. Для этого придётся:
    • Отсоединить механизм от коробки;
    • Снять его с автомобиля;
    • Аккуратно, неглубоко разрезать сварочный шов между половинками гидротрансформатора;
    • Разобрать внутреннюю конструкцию механизма;
    • Проверить состояние всех элементов гидротрансформатора, если требуется – заменить;
    • Продуть все каналы подачи масла и проверить стабильность кручения фрикционов валов.

    После этого проводится сбор устройства в единое целое и обратная сварка половинок.

Если эффекта собственноручный ремонт не принёс, то стоит задуматься об обращении к профессионалам или поискать поломки в других составляющих АКПП. В любом случае, при решении чинить коробку «автомат» своими руками следует:

  • Подготовить весь необходимый инструмент и место для ремонта;
  • Слить всё масло с коробки и дать ей остыть после работы;
  • Приобрести требуемые запчасти.

Не забывайте, что реально эффективный ремонт гидротрансформатора или гидроблока возможен только при грамотном подходе к проведению данной операции, поэтому в организации ремонтных работы важно подходить с должным уровнем ответственности и неплохим уровнем знаний.

Пожалуй, на этом повествование об устройстве и ремонте гидротрансформатора можно заканчивать. Надеемся, сегодняшняя статья была для вас полезна и дала ответы на интересующие вопросы. Удачи в ремонте авто и на дорогах!

Режим проскальзывания

Блокировка гидротрансформатора может также быть неполной и работать в так называемом «режиме проскальзывания». Блокировочная плита не полностью прижимается к рабочей поверхности, тем самым обеспечивается частичное проскальзывание фрикционной накладки. Крутящий момент предается одновременно через блокировочную плиту и циркулирующую жидкость. Благодаря применению данного режима у автомобиля значительно повышаются динамические качества, но при этом сохраняется плавность движения. Электроника обеспечивает включение муфты блокировки как можно раньше при разгоне, а выключение – максимально позже при понижении скорости.

Однако режим регулируемого проскальзывания имеет существенный недостаток, связанный с истиранием поверхностей фрикционов, которые к тому же подвергаются сильнейшим температурным воздействиям. Продукты износа попадают в масло, ухудшая его рабочие свойства. Режим проскальзывания позволяет сделать гидротрансформатор максимально эффективным, но при этом существенно сокращает срок его службы.

Гидротрансформатор АКПП «Бублик»- Устройство. Принцип работы. Основные проблемы


Гидротрансформатор выполняет важную роль в автоматической коробке передач, он занимает пространство между корпусом силового агрегата и трансмиссией авто. Гидротрансформатор в АКПП работает, как муфта сцепления – передает вращение от работающего мотора непосредственно на автомат. Внешнее сходство гидротрансформатора АКПП с характерной формой тора позволяет называть данное устройство бубликом. Гидротрансформатор автоматической коробки передач – составная часть гидросистемы трансмиссии. Управление его работой осуществляется при помощи специального гидроблока.

Устройство гидротрансформатора коробки-автомат

Основное предназначение гидротрансформатора АКПП – это обеспечение плавного и своевременного перехода автоматической трансмиссии с одной передачи на другую. Первые образцы гидротрансформаторов для КПП были созданы в ХХ веке. С целью модернизации устройства ГТР, применялись новые технологии. Гидротрансформаторы АКПП становились более сложными по конструкции.

Помимо обеспечения плавности перехода на различные передачи, новые гидротрансформаторынаделены дополнительной функцией сцепления. При этом в момент переключения скоростей (понижающей либо повышающей) гидротрансформатор размыкает непосредственную связь двигателя внутреннего сгорания с коробкой передач. Гидротрансформатор АКПП частично принимает на себя силу крутящего момента. Именно это обеспечивает уникальную плавность при переключении скоростей.

В отличие от механической КПП, в автомате передача крутящего момента осуществляется не под воздействием механического трения между фрикционными дисками гидротрансформатора АКПП. Соединение двигателя и автоматической коробки передач происходит, благодаря давлению трансмиссионной жидкости. Срабатывает эффект вращения мельницы от ветра.Устройство гидротрансформатора обеспечивает сохранение целостности автоматической коробки и защиту от механических повреждений за счет важной функции – амортизации.

Фрикционные диски гидротрансформатора АКПП образуют сборный пакет, состоящий из деталей мобильного и неподвижного типов. При включении передачи в магистралях создается необходимое давление. При помощи специального устройства – гидравлического толкателяфрикционы гидротрансформатора АКПП взаимно сжимаются, включается заданная скорость.

Что это такое

Гидротрансформатор (сокращенно – ГДТ) представляет собой дискообразный внешний узел, относящийся к автоматической трансмиссии. Его работа заключается в передаче крутящего момента от двигателя к коробке передач. Многие водителя называют этот элемент гидромуфтой из-за принципа работы, которых схож с работой муфты. Включение гидротрансформатора происходит при блокировке при помощи фрикциона. Это позволяет передавать крутящий момент без значительных потерь. В простонародье его называют «бубликом».

Перед ремонтом нужно ознакомиться с устройством

Несмотря на то, что гидротрансформатор расположен за пределами АКПП, он все равно является ее частью. Это объясняется активным воздействием данного устройства на ресурс всей коробки передач, в том числе гидроблока и маслонасоса. К тому же управление гидротрансформатором осуществляется системой гидравлики и компьютером трансмиссии.



Как действует гидротрансформатор АКПП

Современный гидротрансформатор блокируется при сравнивании скоростей оборотов валов – входного и выходного. На практике это случается после развития скорости транспортного средства, равной более 70 км/час. Тормозная накладка поршня гидротрансформатора замедляет вращение масляной жидкости. Валы двигателя внутреннего сгорания и коробки передач взаимно фиксируются. Силовой агрегат и трансмиссия образуют единое целое, происходит синхронное вращение валов.

Когда гидротрансформатор полностью передает вращение на АКПП от силового агрегата, потери мощности равны нулю. Данная функция гидротрансформатора напоминает действие педали механизма сцепления на коробке перемены передач механического типа.

Во время работы гидротрансформатора кинетическая энергия двигателя расходуется на движение масла, которое разогревается от трения. При взаимном касании фрикциона со стальным диском происходит интенсивное истирание накладки, фрагменты износа в виде пыли попадают в масляный состав гидротрансформатора. Стабильность работы автоматической трансмиссии и ходовой части находится в прямой зависимости от степени износа фрикционных накладок и смазочного материала.



Причины неисправности

Гидротрансформатор — устройство не очень сложное, однако в процессе эксплуатации автоматической трансмиссии он изнашивается и постепенно выходит из строя. Перечислим, какие именно системы могут поломаться, и по каким причинам.

Фрикционные пары

Внутри гидротрансформатора есть так называемая блокировка, которая, по сути является элементом автоматического сцепления. Механически работает она схоже с классическим сцеплением МКПП. Соответственно, имеет место износ фрикционных дисков, их отдельных пар, либо всего комплекта. Кроме этого, элементы износа фрикционных дисков (металлическая пыль) загрязняют трансмиссионную жидкость, из-за чего могут забиться каналы, по которым проходит жидкость. Из-за этого падает давление в системе, а также страдают другие элементы автоматической трансмиссии — гидроблок, радиатор охлаждения и прочие.

Лопатки лопастей

Металлические лопатки под воздействием высоких температур и наличия в трансмиссионной жидкости абразива также со временем изнашиваются, и добавляют в масло еще больше металлической пыли. Из-за этого снижается эффективность работы гидротрансформатора, снижается общее давление жидкости в системе трансмиссии, ну а из-за грязной жидкости растет перегрев системы, изнашивается гидроблок, увеличивается нагрузка на всю систему. В самых худших случаях возможна полная поломка одной или нескольких лопастей на крыльчатке.

Принцип работы гидротрансформатора

Работа «бублика» осуществляется по замкнутому циклу. Смазочное вещество является главным рабочим материалом гидротрансформатора. Его вязкостные характеристики существенно отличаются от свойств масла, используемого в МКПП. При работе гидротрансформатора АКПП смазочное вещество под воздействием насосного колеса принудительно подается на лопатки реактора и турбины. Лопатки создают дополнительные завихрения и ускоряют движение масла,скорость вращения рабочих колес гидротрансформатора существенно падает, момент соответственно возрастает.

Ускорение вращения коленвала способствует выравниванию скоростей колеса насоса и турбины гидротрансформатора. При большой скорости автомобиля гидротрансформатор только передает крутящий момент по аналогии с работой гидромуфты. При блокировке ГТР вращение передается напрямую от силового агрегата на АКПП.

При переходе на другую передачу элементы гидротрансформатора разъединяются. Процесс сглаживания угловых скоростей возобновляется до окончательного выравнивания вращенияработающих турбин.

Функционирование гидротрансформатора происходит под постоянным контролем электронного блока управления ЭБУ. Датчики, установленные на гидротрансформаторе, подают сигналы на ЭБУ. Исходя из поступающих данных, формируются выходные управляющие команды. Если электронные приборы сообщают об ошибке, это означает, что возникли какие-то проблемы с ГТР.

Важно: Признаки неисправностей гидротрансформатора АКПП могут проявляться как в механической, так и электронной частях механизма. При экстренной остановке коробки-автомата необходимо провести тщательную диагностику с последующим ремонтом элементов гидротрансформатора.

На представленной схеме показано в разрезе, из чего состоит гидротрансформатор автоматической коробки перемены передач.

Спираль справа – схематическое изображение траектории движения масла внутри корпуса гидротрансформатора.

Здесь изображен принцип работы гидротрансформатора в различных режимах.

Режим блокировки


Устройство гидротрансформатора с блокировкой
Для того, чтобы справиться с основными недостатками гидротраснформатора (низкий КПД и плохая динамика автомобиля), был разработан механизм блокировки. Принцип его работы схож с классическим сцеплением. Механизм состоит из блокировочной плиты, которая связана с турбинным колесом (а следовательно, с первичным валом КПП) через пружины демпфера крутильных колебаний. Плита на своей поверхности имеет фрикционную накладку. По команде блока управления трансмиссией, плита прижимается накладкой к внутренней поверхности корпуса гидротрансформатора при помощи давления жидкости. Крутящий момент начинает передаваться напрямую от двигателя к коробке передач без участия жидкости. Таким образом достигается снижение потерь и более высокий КПД. Блокировка может быть включена на любой передаче.

Признаки неисправности гидротрансформаторов АКПП

Гидротрансформатор занимает лидирующие позиции по надежности среди различных узлов и деталей АКПП. Он полностью вырабатывает заявленный эксплуатационный срок. Однако, это не означает, что ГТР вечен. С помощью характерных симптомов опытные водители могут определить место возможных поломок в гидротрансформаторе и автоматической коробке передач.

Признаки неисправности гидротрансформатора:

  1. Возникновение характерного звука (шуршащего, механического) при переключении скоростей. Этот малозаметный звук уходит, когда увеличиваются обороты, и машина ускоряется. Данный симптом указывает на деформации опорных игольчатых подшипников гидротрансформатора.
  2. При громком стуке металла нужно проверить состояние лопастей и колеса гидротрансформатора в сборе.
  3. Вибрации коробки передач на скорости 60 – 90 км/час (причина – неравномерное истирание фрикционов системы блокировки).
  4. Загрязнение масла (запах гари, темный оттенок, густая консистенция).
  5. Перегрев гидротрансформатора.
  6. Засорение клапана гидроблока.
  7. Снижение уровня трансмиссионного масла.
  8. Проблемы с динамикой машины (обгонная муфта нуждается в замене).
  9. Неожиданная остановка транспортного средства означает, что повреждены шлицы на турбинном колесе гидротрансформатора. При этом требуется установить новые шлицы или полностью менять деформированное колесо на новый механизм.
  10. Глохнет двигатель при переходе на другую передачу. Здесь виновата управляющая автоматика.

Как определить поломку?

Выяснить, какой именно элемент вышел из строя, без демонтажа коробки и ее разбора довольно трудно. Однако предугадать серьезный ремонт можно по нескольким признакам. Так, если наблюдаются неисправности гидротрансформатора АКПП или тормозной ленты, коробка будет «пинаться» при переключении режимов. Машина начинает дергаться, если вы ставите ручку с одного режима на другой (причем когда нога находится на педали тормоза). Также коробка входит сама в аварийный режим. Машина двигается только на трех передачах. Это говорит о том, что коробке нужна серьезная диагностика.

Что касается замены гидротрансформатора, она выполняется при полном демонтаже коробки (отсоединяются приводные валы, «колокол» и прочие детали). Этот элемент – самая дорогая составляющая любой АКПП. Цена на новый ГДТ начинается от 600 долларов для бюджетных моделей авто. Поэтому важно знать, как правильно использовать коробку, чтобы максимально отсрочить ремонт.

Ремонт ГТР

Для многих автовладельцев ремонт гидротрансформатора АКПП является сложной процедурой.Не все люди обладают необходимыми знаниями, свободным временем, желанием, чтобы качественно восстановить функции гидротрансформатора своими руками. Самая большая сложность в ремонте гидротрансформатора состоит в его демонтаже с автомобиля. Профессиональные механики обладают набором специальных инструментов и приспособлений, чтобы благополучно снять гидротрансформатор с коробки передач.

Непосредственный ремонт гидротрансформатора АКПП начинается с механического разрезания корпуса на токарном станке и внимательной диагностики состояния каждого механизма. В процессе ремонта гидротрансформатора необходимо заменить следующие элементы:

  • корпус бублика;
  • сальники;
  • уплотнительные кольца.

Перед разрезанием и диагностикой демонтированного гидротрансформатора рекомендуется слить масло в подготовленный тазик, а также тщательно промыть фрикционы и другие составляющие устройства.

Важно: Кольца и уплотнительные сальники гидротрансформатора необходимо менять на новые детали, даже при кажущемся удовлетворительном их состоянии. Во избежание протечек смазочного материала, устанавливать старые уплотнения категорически не рекомендуется.

Замена гидротрансформатора – лучшее решение. Однако, подавляющее большинство владельцев авто склоняются к тому, чтобы не покупать новый корпус или гидротрансформатор АКПП в сборе. В этом случае производится сваривание частей корпусной детали. При этом соблюдается главное условие: обеспечение абсолютной герметичности сварного шва корпуса гидротрансформатора. После установки отремонтированного устройства на автоматическую коробку передач производится балансировка этого бублика в сборе.

Рекомендации по обслуживанию и эксплуатации ГДТ

Применение «бублика» в трансмиссии упрощает и облегчает управление автомобилем даже в тяжелых условиях. Однако, АКПП с гидротрансформатором при сравнении с МКПП проигрывает по параметрам:

  • низкий КПД без применения блокировки;
  • расход топлива на 10% выше;
  • малый диапазон изменения крутящего момента «бублика» и необходимость установки планетарного редуктора;
  • сложность конструкции и обслуживания;
  • высокая стоимость.

Чтобы стать постоянным клиентом мастерской по ремонту гидротрансформатора АКПП, нужно соблюдать два правила:

  • как можно чаще вжимать педали газа и тормоза в пол, чтобы быстрее истереть фрикцион муфты блокировки в абразивную пудру, загрязнить масло и ускорить износ автомата;
  • никогда не менять жидкость, особенно, если она черная, горячая, а уровень выше или ниже нормы.

Если серьезно, то ГДТ выходит из строя медленно и незаметно для водителя. Явный сигнал неисправности — течь масла в месте соединения гидротрансформатора и двигателя. Другие признаки неполадки могут проявляться уже на стадии распространения «заболевания» по все АКПП. Поэтому, если автомобиль ведет себя странно: медленно разгоняется, увеличил расход топлива, при движении появляется вибрация — нужно отправить машину на проверку.

Перед самостоятельным осмотром коробки нужно изучить устройство и особенности конкретной модели АКПП. Чтобы добраться до гидротрансформатора, придется снимать всю коробку. Без распила и разборки отремонтировать «бублик» не получится. Промывка гидротрансформатора растворителями может повредить колесам и «разъесть» сальники.

После ремонта и сборки АКПП необходима балансировка гидротрансформатора. Не все сервисы проводят эту операцию, поскольку она трудоемка и проблематична. ГДТ работает на высоких оборотах — дисбаланс или нарушение соосности валов выведут из строя не только «бублик», но и всю АКПП.

Срок службы современного гидротрансформатора АКПП составляет 150 — 200 000 км. Ресурс сократится до 100 000, если менять масло. Фрикционы истираются к 120 — 150 000 км и тоже требуют замены. После 200 000 км «бублику» с регулируемым проскальзыванием прописан плановый капремонт.

Что в гидротрансформаторах ломается чаще и быстрее всего

Износ тормозной прокладки фрикциона – наиболее часто является причиной, приводящей к ремонту гидротрансформатора:

  1. Изношенная прокладка удаляется.
  2. Место ее расположения тщательно очищается от засохшего клеевого состава.
  3. Наносится новый клеевой состав.
  4. Устанавливается новая фрикционная прокладка.

Замена прокладки гидротрансформатора необходима для обеспечения герметичности системы и предотвращения утечек трансмиссионного масла. Если ее не заменить вовремя, возникают неприятные последствия:

  • элементы износа в виде мелких кусочков заполняют масляные каналы в гидроплите;
  • масляное голодание гидротрансформатора;
  • рост температуры;
  • повышенный износ сальников, втулок;
  • проскальзывание стертой муфты блокирования;
  • выход из строя электромагнитных соленоидов и электронных приборов;
  • деформации фрикционных накладок гидротрансформатора;
  • преждевременное разрушение сопряженных металлических узлов и деталей вследствие
  • вибрационных колебаний изношенных муфт (старение железа).

Прочие поломки гидротрансформаторов АКПП

Автомеханики сервисных компаний в процессе диагностики ГТР часто выявляют дополнительные дефекты в гидротрансформаторах автоматических коробок передач:

  1. Деформации и поломка лопастей гидротрансформатора.
  2. Износ ступицы вследствие работы при повышенных температурах.
  3. Нарушение блокировки, заклинивание муфты обгона.
  4. Разрушение подшипников.
  5. Прогорание корпуса гидротрансформатора АКПП.

Почти все перечисленные дефекты выявляются только при вскрытии корпусной детали гидротрансформатора. После определения поломок производится их замена на новые рабочие элементы.

Если ремонт гидротрансформатора производится в условиях специализированных мастерских, оснащенных современным оборудованием, технологическими приспособлениями, оригинальными запчастями, восстановленный гидротрансформатор будет служить в течение длительного срока. Время эксплуатации отремонтированного механизма составляет около 80% от первоначального ресурса. Частичная либо полная замена трансмиссионного масла также входит в перечень ремонтных услуг. Длительность ремонта гидротрансформатора автоматической коробки передач в среднем занимает три рабочих дня.

Как сохранить КПП?

Считается, что ресурс у данной трансмиссии на порядок ниже, чем у механики. Однако специалисты отмечают, что при должном обслуживании узла вам не потребуется ремонт или замена гидротрансформатора АКПП. Так, первая рекомендация – это своевременная замена масла. Регламент – 60 тысяч километров. И если на МКПП масло залито на весь срок эксплуатации, то в «автомате» оно является рабочей жидкостью. Если смазка черная или имеет запах гари, ее нужно срочно заменить.

Вторая рекомендация касается соблюдения температурных режимов. Не стоит слишком рано начинать движение – температура масла коробки должна быть не ниже 40 градусов. Для этого переведите рычаг по всем режимам с задержкой в 5-10 секунд. Так вы прогреете коробку и подготовите ее к эксплуатации. На холодном масле ездить нежелательно, так же как и на сильно горячем. В последнем случае жидкость будет буквально гореть (при замене вы услышите запах гари). АКПП не подходит для дрифта и жесткой эксплуатации. Также не стоит на ходу включать нейтральную передачу, а затем снова включать «драйв». Так вы сломаете тормозную ленту и ряд других важных элементов в коробке.

Пробуксовывает гидротрансформатор АКПП: почему возникает проскальзывание гидротрансформатора

23.09.2021

Реклама наших партнеров

Как известно, подавляющее большинство так называемых «классических» гидромеханических АКПП отличаются высокой надежностью и имеют большой ресурс (при условии соблюдения ряда правил эксплуатации и обслуживания коробки автомат). Однако, гидротрансформатор или «бублик» АКПП, который является неотъемлемой частью данного агрегата и часто считается самой коробкой автомат, может выходить из строя намного раньше, чем сама автоматическая трансмиссия.

На практике, если говорить о многих современных автоматах, АКПП может пройти 200-250 тыс. км. и более, в то время как ГДТ нуждается в ремонте или замене уже к 120-150 тыс. км. При этом важно обращать внимание на признаки, которые указывают, что с гидротрансформатором АКПП возникли проблемы. В противном случае «бублик» может вывести из строя и коробку, что значительно усложняет ремонт и увеличивает расходы.

Зачастую, одним из важных симптомов, которые говорят о неисправности ГДТ, является пробуксовка гидротрансформатора. В этой статье мы поговорим о том, почему возникает пробуксовка гидротрансформатора, что это такое, а также как понять, что буксует гидротрансформатор во время диагностики АКПП.

 

Проскальзывание гидротрансформатора: почему происходит и основные признаки

Итак, гидротрансформатор или гидромуфта АКПП представляет собой сцепление автоматической коробки передач. При этом данное устройство сильно отличается от привычного механического сцепления, которое устанавливается на МКПП и большом количестве роботизированных КПП с одним сцеплением.

Чтобы было понятно, принцип работы гидротрансформатора заключается в том, что корпус гидротрансформатора через особую переходную пластину прикреплен к маховику двигателя. Вращение корпуса происходит вместе с маховиком. Кстати, сам ГДТ герметичен, внутри корпуса «бублика» АКПП находится трансмиссионная жидкость ATF.

Так вот, маховик раскручивает специальное насосное колесо, расположенное внутри гидротрансформатора. В результате масло проходит через реактор гидротрансформатора, затем попадает на турбину (турбинное колесо), заставляя ее вращаться. Турбина передает энергию на первичный вал АКПП. Как видно, гидротрансформатор играет роль сцепления между двигателем и коробкой, однако жесткой связи нет, так как энергия передается через масло.

Такое решение позволяет не только передавать, но и дополнительно преобразовывать крутящий момент от двигателя, что позволяет оптимизировать усилие, добиться мягкого включения передач АКПП, снизить вибрации, ударные нагрузки и т.д.  Также в современных ГДТ активно используется блокировка гидротрансформатора.

Блокировка ГДТ необходима для минимизации потерь, неизбежно возникающих по причине отсутствия жесткой связи и передачи момента через жидкость внутри гидротрансформатора. Также к снижению КПД приводит и то, что рабочая жидкость (масло ATF) сильно разогревается.  В двух словах, в определенных режимах внутри ГДТ срабатывает механическая блокировка, которая по своему принципу напоминает механическое сцепление. 

Блокировка «бублика» позволяет передавать крутящий момент от двигателя напрямую, а не через жидкость, что обеспечивает повышение КПД, лучшую топливную экономичность, более интенсивный разгон автомобиля и т.д.

  • Как видно, устройство данного элемента достаточно сложное, а также работает ГДТ под нагрузками. Вполне очевидно, что часто возникают поломки и преждевременный износ. Зачастую, первые признаки неисправности гидротрансформатора выглядят так, что машина теряет в динамике, хуже реагирует на нажатие педали газа, увеличивается расход топлива и т.д.

Ранний признак проблем с ГДТ, когда обороты ДВС немного повышены при езде, то есть, например, если в норме на третьей передаче и скорости 60 км/ч было 2500 или 3000 об/мин при движении по ровной дороге, то стало 3500 и больше при движении в точно таких же условиях с той же скоростью (третья передача, ровная дорога, отсутствие дополнительной загрузки и т.д.).

Также среди начальных признаков можно выделить проскальзывание гидротрансформатора (пробуксовку гидротрансформатора). Если буксует гидротрансформатор или проскальзывает, это проявляется так, что, например, при езде на той или иной передаче и разгоне на ней обороты двигателя растут не плавно, а резко увеличиваются (подскакивают на 500-600 об/мин и выше).

  • Более серьезными симптомами является то, что в сочетании с описанными выше признаками при включении режимов D или R появляется гул или вой в области коробки, причем шумы пропадают в режиме N или P, а также усиливаются при росте оборотов мотора во время движения автомобиля. Также водитель может заметить, что коробка «жестко» переключает передачи, заметны толчки, появилась вибрация, обороты двигателя сильно плавают при езде и т.д.

Если, например, автомобиль с АКПП стал плохо разгоняться, пропала динамика и коробка работает шумно, частой причиной является неисправность обгонной муфты реактора внутри ГДТ. Также нужно обратить внимание на симптом, когда при включении R или D не едет машина, причем водитель жмет на газ и обороты мотора явно повышаются, однако мотор крутится немного «тяжелее», чем при нажатии на газ на нейтральной передаче N.

В таком случае высока вероятность того, что шлицы турбины гидротрансформатора срезало. Если же двигатель глохнет при включении D на АКПП или обороты мотора падают или скачут, проблема может быть связана с блокировкой гидротрансформатора. Данная неисправность на многих авто диагностируется путем подключения сканера.

Если определяется ошибка типа «муфта блокировки гидротрансформатора, нет передачи крутящего момента», это указывает на то, что буксует гидротрансформатор. Причины могут быть разными, хотя часто виновником оказывается клапан (соленоид) блокировки ГДТ, который «залипает» или полностью не работает.  В любом случае, такая неисправность приводит к тому, что блокировка не срабатывает, передача момента не осуществляется напрямую, возникают потери в ГДТ, падает динамика разгона и т.д.

 

Дефектовка и ремонт гидротрансформатора

В случае появления признаков поломки «бублика», не следует сразу спешить менять ГДТ на новый или контрактный гидротрансформатор. С учетом высокой стоимости данного устройства, оптимально выполнить его переборку. Другими словами, нужно знать, где ремонтируют гидротрансформаторы с гарантией, а также продают отдельные детали (например, крышка гидротрансформатора, сальники и другие составные элементы).

Также без должного опыта не рекомендуется пытаться снять или установить гидротрансформатор на машину своими руками. Операция не сильно сложная, однако ряд ошибок при снятии и обратной сборке может привести к поломкам не только ГДТ, но и АКПП или даже ДВС.  Лучше всего комплексно выполнять все работы в сервисе, который специализируется на ремонте АКПП.

При этом важно понимать, что во многих сервисах осуществляется только снятие гидротрансформатора и последующая установка, причем для ремонта «бублик» передается в другое место. Это значит, что если напрямую выйти на сервис, который сам ремонтирует гидротрансформаторы «под ключ», зачастую можно сэкономить до 15-25% на общей стоимости ремонта.

Также не следует приобретать новый гидротрансформатор по низкой цене. Для справки, новое устройство для самых простых АКПП стоит минимум 900-1000 у.е. Если же якобы новый «бублик» АКПП отдают заметно дешевле, под видом нового реализуется так называемый восстановленный б/у гидротрансформатор, который перед продажей попросту окрашен свежей краской.

  • Сам ремонт гидротрансформатора является сложным процессом, в рамках которого герметичный корпус ГДТ сначала разрезается, после чего осуществляется мойка внутренних деталей и производится дефектовка. Затем изношенные и поврежденные элементы меняются на новые, восстанавливаются накладки блокировки гидротрансформатора, осуществляется замена сальников, уплотнительных колец и т.д.

Если же изначально проблемой была течь гидротрансформатора, в этом случае дефект заваривают или «пересыпают» внутренности в новый корпус. Так или иначе, важно правильно заварить все разрезы и дефекты для полного восстановления герметичности.

При этом просто заварить корпус недостаточно, так как необходимо выполнять тщательную балансировку гидротрансформатора перед установкой на авто, чтобы исключить биение.

 

Что в итоге

С учетом приведенной выше информации становится понятно, что «бублик» АКПП (гидротрансформатор) является важнейшим элементом в устройстве коробок передач данного типа. Данное устройство не просто связывает между собой мотор и коробку подобно сцеплению, но и является преобразователем крутящего момента.

Более того, современные ГДТ имеют систему блокировки под управлением электроники, что также заметно усложняет общее устройство гидротрансформатора. Так или иначе, необходимо понимать, что любые проблемы с ГДТ заметно сокращают ресурс и самой АКПП. Грязь и мусор из «бублика» попадает в масло, проскальзывание и пробуксовка гидротрансформатора приводят к толчкам АКПП, масло ATF перегревается при неработающей блокировке и т.д.

При этом оптимальным решением является своевременная диагностика, после чего выполняется ремонт гидротрансформатора коробки автомат, который позволяет полностью восстановить работоспособность устройства по цене до 30-35% от общей стоимости нового ГДТ.

Как правило, после качественного ремонта гидротрансформатор имеет ресурс около 60-70% по сравнению с новым. Главное, все работы должны выполнять опытные специалисты, которые имеют необходимое специализированное оборудование и предоставляют расширенную гарантию.

 

 

Источник: krutimotor.ru

Реклама наших партнеров

Акционные товары

назначение, устройство и принцип работы

Чем дальше мы изучаем устройство автомобиля, тем больше возникает вопросов. Сегодня у нас на очереди гидротрансформатор. В этой статье мы разберемся что это, его основное предназначение, устройство и принцип работы. Погнали…

Назначение гидротрансформатора

Большинство современных коробок «автоматов» совмещены с гидротрансформатором, основное назначение которого передать вращение вала двигателя на вал коробки. Гидротрансформатор является самостоятельным агрегатом, но АКПП не способна работать без него. Цель разработки этого узла — сделать вождение более простым и комфортным за счет отсутствия необходимости пользоваться педалью сцепления. Устройство и принцип работы понять не сложно благодаря простоте конструкции.

Расположение гидротрансформатора

Гидравлический трансформатор в коробке «автомат» является аналогом сцепления, работающим автоматически.

Этот узел нужен для:

  1. Увеличения и передачи крутящего момента с двигателя на коробку.
  2. Защиты автомата при резком увеличении/снижении оборотов.
  3. Нормализации передачи вращения во время разгона (гашения двойного увеличения вращения).
  4. Прерывания связи между двигателем и трансмиссией при смене передачи (трансформатор забирает часть крутящего момента на себя).

Из-за характерного внешнего вида автомеханики этот агрегат часто называю «бубликом». Он тесно связан с коробкой, из которой получает трансмиссионную жидкость, необходимую для работы.

Устройство гидротрансформатора

Гидротрансформаторы устанавливаются на легковые и грузовые машины, автобусы, тракторы, спецтехнику вместе с коробкой автомат (реже с вариаторной коробкой). По конструкции это гидравлическая муфта со статором.

Устройство гидротрансформатора: 1 — блокировочная муфта; 2 — турбинное колесо; 3 — насосное колесо; 4 — реакторное колесо; 5 — механизм свободного хода.

Гидротрансформатор состоит из:

  • корпуса;
  • реакторного колеса (статора) на муфте;
  • насосного (центробежного) колеса;
  • турбинного колеса;
  • механизма блокировки.

Устройство лучше всего рассматривать в разрезе, так как в собранном виде корпус запаян. По краям располагаются турбинное и насосное колесо, между ними реакторное (реактивное). Турбинное колесо связано с валом коробки, насосное с коленвалом двигателя. Реакторное колесо с лопастями особой геометрии установлено на муфту, которая вращается лишь в одном направлении. Трансформатор заполнен трансмиссионной жидкостью, которая во время работы активно циркулирует.

Принцип работы гидротрансформатора

Принцип работы сравнительно простой, и наглядно показан на видео-уроке, ниже.

  1. Крутящий момент от двигателя через насосное колесо и трансмиссионную жидкость АТФ (без жесткой связи) передается на турбинное колесо, которое в свою очередь жорстко связано с коробкой передач. То есть поток создает насосное колесо, после попадания жидкости на турбинное колесо оно начинает вращаться.
  2. При увеличении оборотов двигателя сила потока тоже увеличивается. Масло, отбиваясь от турбинного колеса, попадает обратно на насосное, только уже через реактивное колесо, которое в свою очередь усиливает поток жидкости. Таким образом происходит увеличение крутящего момента (трансформация) — от этого и названия агрегата.
  3. Трансформация происходит до тех пор, пока скорость вращения насосного и турбинного колеса не сравняются. В этом случае реакторное колесо начинает крутится свободно, не увеличивая поток жидкости. В итоге гидротрансформатор начинает работать в режиме гидромуфты. Собственно в этом и их отличие — гидромуфта не трансформирует крутящий момент.

Блокировка гидротрансформатора (ГДТ)

Гидротрансформатор важен для коробки до достижения определенного показателя скорости, при которой насосное и турбинное колесо вращаются с одинаковой скоростью, вращение реактора обеспечивает муфта. В результате все колеса вращаются вместе, крутящий момент перестает увеличиваться. В этом случае передача крутящего момента через жидкость не целесообразна. В этом случае, на современных гидротрансформаторах электроника соединяет входной и выходной валы ГДТ, блокирует бублик, и для передачи момента включается жесткая сцепка. При такой блокировке существенно экономится расход топлива.

Устройство гидротрансформатора с муфтой блокировки

Также на современных авто, блокировка включается на любых передачах и даже для торможения двигателем. Делается это для эффективного и динамичного разгона и торможения автомобиля. Схема блокирующего устройства простая. На входном и выходном валах есть система фрикционных дисков, которые в определенный момент, после команды блока управления, специальный клапан прижимает их друг к другу. Крутящий момент начинает передаваться без участия жидкости.

Неисправности гидротрансформатора, их причины

Гидротрансформатор считается неразъемным узлом, но в мастерских сварочный шов срезают, после ремонта «бублик» сваривают. ГДТ устроен так, что все поломки условно можно разделить на 2 группы:

  1. Неисправности трансформатора (износ валов и соединений между ними, засорение или износ клапанов, подающих масло).
  2. Неисправности блочной плиты (сбои в работе масляного насоса, выход из строя датчиков, отвечающих за подачу масла, засорение каналов и фильтров системы подачи масла).

Признаков неисправности много:

  1. Автомобиль немного пробуксовывает в начале движения.
  2. Во время движение слышится жужжание, стуки.
  3. При смене передачи ощущаются толчки, мотор глохнет.
  4. Замедленный разгон, сопровождающийся шуршанием.
  5. Перегрев бублика.
  6. Появление запаха горения пластмассы.
  7. Вибрация трансформатора.
  8. Недостаточный уровень трансмиссионной жидкости.

Причины проявления симптомов:

  1. Механический шум во время холостого хода появляется при износе подшипников.
  2. При появлении вибраций необходимо проверить качество трансмиссионной жидкости и степень загрязненности фильтра (вибрация исчезает после очистки фильтра и замены жидкости).
  3. Характеристики разгона меняются из-за износа муфты, на которой закреплен статор (деталь нужно заменить).
  4. Скрежет, стук во время движения появляется при разрушении лопастей колес (бублик чаще всего меняется из-за нецелесообразности ремонта).
  5. Расплавленной пластмассой пахнет при засорении системы охлаждения коробки или уменьшении объема трансмиссионной жидкости.
  6. Автомобиль глохнет при смене передачи, если вышла из строя электроника, блокирующая трансформатор, требуется профессиональная диагностика.
  7. Авто самопроизвольно останавливается при выходе из строя электроники, срезании шлиц, засорении клапана блокировки, бублик необходимо поменять.
  8. Уровень трансмиссионной жидкости снижается, если нарушена герметичность корпуса, агрегат чаще всего меняется.

В автомастерскую следует обращаться при проявлении любого из симптомов. После диагностики будет проведен ремонт, если восстановление невозможно, ГДТ заменят. В противном случае не исключена вероятность выхода из строя коробки. Самостоятельно провести ремонт гидротрансформатора сложно из-за герметичного корпуса. Чтобы заменить детали, его необходимо разрезать, потом запаять, что в бытовых условиях сделать практически невозможно.

Преимущества и недостатки гидротрансформатора

На автомобилях с гидротрансформаторами устанавливаются менее мощные двигатели, что позволяет сэкономить при покупке и на топливе. Но как и все агрегаты ГДТ имеет свои плюсы и минусы.

К преимуществам можно отнести:

  1. Плавное троганье с места, в том числе на сыпучем грунте и подъеме.
  2. Ход без рывков.
  3. Удобство управления в городе, в том числе в пробках.
  4. Снижение нагрузок и вибраций на трансмиссию при неравномерной работе двигателя.
  5. Избавление от прогорания сцепления.
  6. Отсутствие пробуксовываний.
  7. Гидротрансформатор предотвращает возникновение условий, способствующих изгибанию валов, поэтому на них можно ставить подшипники меньших размеров.
  8. ГДТ небольшие, поэтому узел с коробкой компактный.

Недостатки гидравлических трансформаторов:

  1. Низкий КПД из-за проскальзывания турбинного и насосного колес.
  2. Снижение динамики из-за затрат мощности на создание движения потока жидкости.
  3. Высокая стоимость узла.
  4. Дорогое обслуживание (жидкость стоит дорого, ее нужно много, причем охлажденной при помощи специальной системы, масло и фильтр необходимо часто менять).
  5. На грузовиках узлы коробок объемные из-за больших размеров колес.
  6. Дорогой ремонт и замена.

Заключение

Исходя из устройства и принципа работы гидротрансформатора можно сделать вывод, что срок службы можно продлить, если использовать качественную трансмиссионную жидкость, своевременно менять не только ее, но и сальники, прокладки, фильтр. Свое назначение этот узел выполняет дольше при регулярной диагностике и обслуживании.

Общие сведения о гидротрансформаторах — Banks Power

Гидротрансформатор — одна из самых непонятых — или, возможно, непонятых — частей силового агрегата.

Гидротрансформатор — одна из самых непонятых — или, возможно, непонятых — частей силового агрегата. Преобразователи крутящего момента являются герметичными узлами; их внутренности редко выходят на свет, а когда и появляются, их все еще довольно сложно понять! Эта статья познакомит вас с гидротрансформатором спереди назад (ну, технически, мы пойдем сзади наперед) и поможет вам понять, как детали работают вместе.

Начнем с небольшой теории. Преобразователь крутящего момента в автоматической коробке передач служит той же цели, что и сцепление в механической коробке передач. Двигатель должен быть подключен к задним колесам, чтобы автомобиль мог двигаться, и отсоединен, чтобы двигатель мог продолжать работать, когда автомобиль остановлен. Один из способов сделать это — использовать устройство, которое физически соединяет и разъединяет двигатель и трансмиссию — сцепление. Другой метод заключается в использовании гидромуфты какого-либо типа, например гидротрансформатора.

Представьте, что у вас есть два вентилятора, обращенные друг к другу. Включите один вентилятор, и он будет обдувать лопасти второго вентилятора, заставляя его вращаться. Но если вы держите второй вентилятор неподвижно, первый вентилятор будет продолжать вращаться.

Именно так работает гидротрансформатор. Один «вентилятор», называемый крыльчаткой, соединен с двигателем (вместе с передней крышкой он образует внешнюю оболочку преобразователя). Другой вентилятор, турбина, соединен с входным валом трансмиссии.Если трансмиссия не находится в нейтральном или парковочном положении, любое движение турбины приведет к движению автомобиля.

Вместо воздуха в гидротрансформаторе используется жидкая среда, которую нельзя сжать – масло, иначе называемое трансмиссионной жидкостью. Вращающаяся крыльчатка толкает масло на турбину, заставляя ее вращаться. Но если турбину удерживать неподвижно (автомобиль останавливается с включенными тормозами), крыльчатка может продолжать вращаться. Отпустите тормоза, и турбина сможет свободно вращаться. Нажмите на педаль акселератора, и крыльчатка начнет вращаться быстрее, выталкивая больше масла на лопасти турбины и заставляя ее вращаться быстрее.

После того, как масло попало на лопасти турбины, оно должно вернуться к рабочему колесу, чтобы его можно было использовать снова. (В отличие от нашей аналогии с вентилятором, где у нас есть комната, наполненная воздухом, трансмиссия представляет собой герметичный сосуд, в котором содержится только определенное количество масла.) Вот тут-то и появляется статор.

Статор представляет собой небольшое ребристое колесо, которое находится между крыльчаткой и турбиной. Статор не прикреплен ни к турбине, ни к рабочему колесу — он вращается на выбеге, но только в том же направлении, что и другие части преобразователя (обгонная муфта гарантирует, что он может вращаться только в одном направлении).Когда крыльчатка вращается, движущееся масло давит на ребра статора. Обгонная муфта удерживает статор неподвижно, а ребра направляют масло обратно к крыльчатке. По мере того, как турбина разгоняется, масло начинает само по себе возвращаться к рабочему колесу (сочетание конструкции турбины и центробежной силы). Теперь масло давит на ребра статора с обратной стороны, а обгонная муфта позволяет ему вращаться. Теперь работа сделана, статор вращается свободно и не влияет на поток масла.

Поскольку в гидротрансформаторе нет прямой связи, крыльчатка всегда будет вращаться быстрее, чем турбина — фактор, известный как «пробуксовка».«Пробуксовку необходимо контролировать, иначе автомобиль может никогда не сдвинуться с места. Вот тут-то и возникает скорость сваливания. Допустим, у гидротрансформатора скорость сваливания составляет 2500 об/мин. Если транспортное средство не движется к тому времени, когда двигатель (и, следовательно, крыльчатка) достигает 2500 об/мин, произойдет одно из двух: либо транспортное средство начнет двигаться, либо обороты двигателя перестанут увеличиваться. (Если автомобиль не тронется с места к тому времени, когда преобразователь достигнет скорости сваливания, либо он перегружен, либо водитель удерживает его тормозами.)

Скорость сваливания является ключевым фактором, поскольку она определяет, как и когда мощность будет подаваться на трансмиссию при любых условиях. Двигатели для дрэг-рейсинга развивают мощность при высоких оборотах, поэтому дрэг-рейсеры часто используют преобразователь с высокой скоростью сваливания, который будет проскальзывать до тех пор, пока двигатель не достигнет максимальной мощности. Дизельные грузовики вырабатывают большую часть своей мощности при низких оборотах, поэтому гидротрансформатор с низкой скоростью сваливания — лучший способ начать движение с тяжелым грузом. (Для получения дополнительной информации см. «Понимание скорости сваливания» в другом месте на этом сайте.)

А теперь мы подошли к одному из самых сокровенных секретов производительности: изменив конструкцию гидротрансформатора, можно настроить скорость сваливания в соответствии с кривой мощности двигателя. Преобразователь крутящего момента заготовок Бэнкса настроен на обеспечение скорости сваливания, оптимальной для систем Бэнкс Пауэр.

Проскальзывание гидротрансформатора важно при разгоне, но становится помехой, когда автомобиль достигает крейсерской скорости. Вот почему практически во всех современных гидротрансформаторах используется муфта блокировки.

Блокировочная муфта предназначена для прямого соединения двигателя и трансмиссии, когда проскальзывание больше не требуется. Когда муфта блокировки включена, пластина, прикрепленная к турбине, гидравлически прижимается к передней крышке (которая, как вы помните, соединена с крыльчаткой), создавая прочную связь между двигателем и трансмиссией. Прямое соединение двигателя и трансмиссии снижает частоту вращения двигателя для заданной скорости автомобиля, что увеличивает экономию топлива.

Если транспортное средство имеет достаточно большую нагрузку, муфта блокировки может пробуксовывать, что может привести к чрезмерному нагреву и износу. Как предотвратить пробуксовку сцепления? Поскольку муфта гидротрансформатора удерживается на месте давлением масла, можно увеличить давление для более надежной блокировки, хотя слишком большое давление может повредить сальники трансмиссии. Другой способ заключается в использовании многоэлементного сцепления, в котором дополнительный слой фрикционного материала помещается между диском сцепления и передней крышкой.Третий метод заключается в использовании лучшего материала на поверхности сцепления, а четвертый — в увеличении поверхности сцепления. Преобразователь крутящего момента заготовок Бэнкса использует два последних метода там, где это применимо. Его поверхность сцепления покрыта углеродно-керамическим материалом, который тонко выгравирован, чтобы масло могло стекать во время блокировки. Это улучшает удерживающую способность муфты блокировки. В приложениях Dodge общая площадь сцепления также увеличена на 33%.

Какие еще существуют способы улучшения гидротрансформатора? Мы уже обсуждали использование настроенной скорости сваливания и более надежной муфты блокировки.Еще одна область, которую можно улучшить, — это передняя крышка, которая представляет собой сторону преобразователя, которая обращена (и прикреплена) к маховику двигателя или гибкой пластине.

Поскольку передняя крышка соединяется непосредственно с двигателем, она подвергается невероятной нагрузке. Во многих стандартных гидротрансформаторах используется передняя крышка из штампованной стали, потому что они стоят дешевле, но при высоких мощностных нагрузках они могут погнуться или деформироваться. Решение состоит в использовании передней крышки заготовки.

С технической точки зрения заготовка — это то, что выточено из цельного куска материала.Некоторые производители гидротрансформаторов используют сплошной диск и приваривают его к боковой стенке, в то время как другие просто приваривают усиливающее кольцо к стандартной крышке из штампованной стали. Это снижает прочность покрытия и может привести к его деформации под нагрузкой. Самые прочные крышки изготавливаются с высокой точностью из цельного куска кованой стали, который затем приваривается к рабочему колесу, образуя внешнюю оболочку.

Итак, как видите, гидротрансформатор — это не просто «маленький черный ящик». Это сложное устройство, которое при правильной настройке может оказать огромное влияние на производительность, экономичность и долговечность вашего автомобиля, а также превратить вашу автоматическую коробку передач в электростанцию!

Преобразователи крутящего момента 101

Если вы хоть немного разбираетесь в автомобилях, то знаете, что двигатель соединен с коробкой передач посредством сцепления.Без сцепления автомобиль будет глохнуть при каждой полной остановке. Однако автомобили с автоматической коробкой передач не имеют сцепления. Вместо этого они используют гидротрансформатор.

Общеизвестно, что в механических коробках передач используется сцепление, а в автоматических коробках передач используется преобразователь крутящего момента, но мало кто знает науку о том, как работает преобразователь крутящего момента. Гидротрансформатор может быть небольшим компонентом вашего автомобиля или грузовика, но внутри него происходят удивительные вещи.

Основные сведения о гидротрансформаторе

Преобразователи крутящего момента

изначально создавались в качестве опции для роскошных автомобилей в конце 1940-х годов. Первоначально представленная в 1948 году в Buick с двухступенчатой ​​трансмиссией Dyna Flow Transmission, она позволила автомобилям стать полностью автоматическими. С тех пор множество исследований и разработок способствовали развитию гидротрансформатора. Сегодня высокопроизводительные гидротрансформаторы, подобные тем, которые установлены на RevMax, дают замечательные результаты, увеличивая общее ускорение и экономию топлива.

Гидротрансформатор служит двум целям. Он служит автоматическим сцеплением и увеличивает крутящий момент при ускорении автомобиля. Что делает гидротрансформаторы уникальными, так это передача мощности от двигателя к трансмиссии, при этом жидкость является единственным связующим фактором.

Действуя как автоматическое сцепление, гидротрансформатор позволяет двигателю вращаться, в то время как колеса и шестерни в трансмиссии останавливаются. Например, когда ваш легковой или грузовой автомобиль стоит на светофоре, двигатель вращается медленно, и крутящий момент, проходящий через гидротрансформатор, очень мал.Это позволяет удерживать автомобиль на месте, слегка нажимая на педаль тормоза. По мере того, как двигатель набирает обороты во время разгона, он перекачивает больше жидкости в гидротрансформатор, который затем передает крутящий момент на коробку передач.

Наряду с предотвращением остановки двигателя, гидротрансформатор также повышает производительность, почти удваивая крутящий момент двигателя, что улучшает ускорение. Поскольку для передачи мощности в нем используется только жидкость, он работает плавно и не подвержен сильным ударам, которые иногда встречаются в стандартных коробках передач и сцеплениях.Преобразователи крутящего момента, такие как 4L60E LSX Stage 5 2600 Stall Torque Converter от RevMax, могут создать достаточное ускорение и крутящий момент, чтобы отправить их на заднюю часть вашего сиденья.

Внутри гидротрансформатора

Гидротрансформатор состоит из четырех компонентов, которые хранятся внутри корпуса. Корпус блока установлен на маховике двигателя и вращается с той же скоростью, что и двигатель. Вместе четыре компонента составляют гидродинамическую единицу, передающую мощность за счет динамического движения жидкости.

  • Насос  – закрепленный на корпусе и расположенный внутри гидротрансформатора, насос всасывает жидкость внутрь. Когда преобразователь вращается, жидкость выбрасывается наружу и создается вакуум, который притягивает жидкость к центру блока.
  • Турбина  – Жидкость, всасываемая насосом, попадает на лопасти турбины, которая соединена с трансмиссией, и заставляет ее вращаться. Лопасти турбины изогнуты, что заставляет жидкость менять направление, прежде чем она выйдет из центра турбины.Это то, что заставляет турбину вращаться.
  • Статор — Статор управляет вихревым движением внутри гидротрансформатора. С помощью своих лопастей, расположенных под агрессивным углом, статор перенаправляет жидкость, возвращающуюся из турбины, прежде чем она снова попадет в насос. Это почти полностью меняет направление движения жидкости. При скорости около 40 миль в час насос и турбина начинают вращаться примерно с одинаковой скоростью, заставляя жидкость двигаться в том же направлении, что и насос, что устраняет необходимость в статоре.
  • Муфта гидротрансформатора – Для создания однозначной связи между выходом двигателя и входом трансмиссии используется муфта гидротрансформатора. Он увеличивает расход бензина и снижает температуру трансмиссионной жидкости, блокируя вал турбины внутри корпуса гидротрансформатора.

Преобразователи крутящего момента выполняют большую работу и имеют решающее влияние на производительность вашего автомобиля или грузовика. Преобразователи крутящего момента RevMax Performance созданы с учетом характеристик вашего автомобиля.Мы можем увеличить крутящий момент вашего двигателя в два-три раза!

Чтобы узнать больше о гидротрансформаторах RevMax с высокими эксплуатационными характеристиками, посетите наш интернет-магазин. В спорте, где успех измеряется тысячной долей секунды, преобразователи производительности RevMax могут превратить вашу машину с нуля в героя!

Основы гидротрансформатора – ASNU

Чтобы изменить направление движущегося объекта, вы должны приложить силу к этому объекту – не имеет значения, является ли этот объект автомобилем или каплей жидкости.И все, что прикладывает силу, заставляющую объект поворачиваться, должно также ощущать эту силу, но в противоположном направлении. Так как турбина заставляет жидкость менять направление, жидкость заставляет турбину вращаться.

Жидкость выходит из турбины в центре, двигаясь в другом направлении, чем при входе. Если вы посмотрите на стрелки на рисунке выше, вы увидите, что жидкость выходит из турбины, двигаясь в направлении, противоположном вращению насоса (и двигателя). Если бы жидкость попала в насос, это замедлило бы работу двигателя, что привело бы к потере мощности.Вот почему преобразователь крутящего момента имеет статор.

Статор направляет жидкость, возвращающуюся из турбины в насос. Это повышает эффективность гидротрансформатора. Обратите внимание на шлиц, который соединен с односторонней муфтой внутри статора.

Статор находится в самом центре гидротрансформатора. Его работа заключается в перенаправлении жидкости, возвращающейся из турбины, до того, как она снова попадет в насос. Это значительно повышает эффективность гидротрансформатора.

Статор имеет очень агрессивную конструкцию лопастей, которая почти полностью меняет направление потока жидкости.Обгонная муфта (внутри статора) соединяет статор с неподвижным валом в трансмиссии (направление, в котором муфта позволяет статору вращаться, показано на рисунке выше). Из-за такого расположения статор не может вращаться вместе с жидкостью — он может вращаться только в противоположном направлении, заставляя жидкость менять направление при попадании на лопасти статора.

Что-то немного сложное происходит, когда машина движется. Существует точка, около 40 миль в час (64 км/ч), в которой и насос, и турбина вращаются почти с одинаковой скоростью (насос всегда вращается немного быстрее).В этот момент жидкость возвращается из турбины, входя в насос, уже двигаясь в том же направлении, что и насос, поэтому статор не нужен.

Диагностика проблем блокировки конвертера GM

Распространенной проблемой на многих автомобилях General Motors является то, что муфта гидротрансформатора не срабатывает и заставляет автомобиль глохнуть, когда он останавливается. В большинстве случаев это заклинивший соленоид муфты гидротрансформатора (TCC), но это не единственная причина этой проблемы. General Motors выпустила несколько бюллетеней технического обслуживания (TSB), касающихся этой проблемы.Существует также специальная диагностическая процедура для определения точной причины проблемы TCC. Прежде чем мы углубимся в эту процедуру, давайте поговорим о компонентах, что они из себя представляют и что они делают.

Гидротрансформатор

Преобразователь крутящего момента преобразует гидравлическое давление в трансмиссии в механический крутящий момент, который приводит в движение приводные валы и, в конечном счете, колеса.

Когда автомобиль находится на пониженной, второй и задней передачах, преобразователь работает в гидравлическом или мягком приводе.В гидравлическом приводе преобразователь работает как автоматическая муфта, не позволяющая автомобилю заглохнуть во время остановки.

Поток энергии:

  • Двигатель механически приводит в движение рабочее колесо.
  • Рабочее колесо приводит в движение турбину гидравлически.
  • Турбина приводит в движение трубчатый входной вал для входа в зубчатую передачу.

Рабочее колесо приводит в движение трансмиссионную жидкость. Внутри корпуса крыльчатки находится множество изогнутых лопастей, а также внутреннее кольцо, образующее каналы для прохождения жидкости.Вращающееся рабочее колесо действует как центробежный насос. Жидкость подается системой гидравлического управления и поступает в каналы между лопатками. Когда крыльчатка вращается, лопасти ускоряют поток жидкости, и центробежная сила выталкивает жидкость наружу, так что она выходит из отверстий вокруг внутреннего кольца. Кривизна лопастей рабочего колеса направляет жидкость к турбине в том же направлении, что и вращение рабочего колеса.

Лопасти турбины в турбине изогнуты напротив рабочего колеса.Воздействие движущейся жидкости на лопатки турбины создает силу, стремящуюся повернуть турбину в том же направлении, что и крыльчатка. Когда эта сила создает достаточно большой крутящий момент на выходном валу турбины трансмиссии, чтобы преодолеть сопротивление движению, турбина начинает вращаться.

Теперь крыльчатка и турбина действуют как простая гидромуфта, но умножения крутящего момента пока нет. Чтобы увеличить крутящий момент, мы должны вернуть жидкость от турбины к рабочему колесу и снова ускорить жидкость, чтобы увеличить ее силу на турбине.

Чтобы получить максимальную силу на лопасти турбины, когда движущаяся жидкость сталкивается с ними, лопасти изогнуты, чтобы изменить направление потока. Меньшая сила была бы получена, если бы турбина отклоняла жидкость, а не реверсировала ее. В любом состоянии остановки, когда трансмиссия включена и двигатель работает, но турбина стоит на месте, жидкость переворачивается лопатками турбины и направляется обратно к рабочему колесу. Без статора любой импульс, оставшийся в жидкости после выхода из турбины, будет сопротивляться вращению крыльчатки.

Муфта гидротрансформатора (TCC)

Функция муфты гидротрансформатора трансмиссии (TCC) предназначена для устранения потерь мощности ступени гидротрансформатора, когда автомобиль находится в крейсерском режиме. В системе TCC используется электромагнитный клапан для соединения маховика двигателя с выходным валом трансмиссии через гидротрансформатор. Блокировка уменьшает проскальзывание в конвертере, увеличивая экономию топлива. Для срабатывания муфты гидротрансформатора должны быть выполнены два условия:

  • Внутреннее давление трансмиссионной жидкости должно быть правильным.
  • Контроллер ЭСУД должен замкнуть цепь массы, чтобы подать питание на соленоид TCC, который перемещает контрольный шарик в трубопроводе жидкости. Это позволяет муфте гидротрансформатора срабатывать, когда гидравлическое давление является правильным.

TCC очень похож на сцепление в механической коробке передач. При включении он создает прямую физическую связь между двигателем и трансмиссией. Как правило, TCC включается на скорости около 50 миль в час и отключается на скорости около 45 миль в час.

Соленоид TCC

Соленоид TCC — это то, что фактически заставляет TCC включаться и отключаться.Когда соленоид TCC получает сигнал от ECM, он открывает канал в корпусе клапана, и гидравлическая жидкость воздействует на TCC. Когда сигнал ECM прекращается, соленоид закрывает клапан, и давление сбрасывается, что приводит к отключению TCC. Если TCC не отключается, когда автомобиль останавливается, двигатель глохнет.

Тестирование TCC

Прежде чем пытаться диагностировать электрические проблемы муфты гидротрансформатора, необходимо выполнить механические проверки, такие как регулировка рычажного механизма и уровня масла, и исправить их при необходимости.

Как правило, если вы отсоединяете соленоид TCC от коробки передач и симптомы исчезают, вы обнаружили проблему. Но иногда это может ввести в заблуждение, потому что вы не знаете наверняка, является ли это плохим соленоидом, грязью в корпусе клапана или плохим сигналом от ECM. Единственный способ узнать наверняка — следовать диагностической процедуре, описанной General Motors. Если вы выполните тест шаг за шагом, вы сможете определить точную причину проблемы.

Поскольку некоторые из этих испытаний требуют, чтобы ведущие колеса были подняты над землей, а двигатель и трансмиссия работали на передаче, необходимо соблюдать надлежащие меры для безопасного проведения испытаний.Подоприте автомобиль домкратными стойками. НИКОГДА не запускайте автомобиль на передаче, поддерживаемой только домкратом. Заблокируйте ведущие колеса и включите стояночный тормоз.

Кроме того, некоторые тесты (тест № 11 и 12) требуют открытия трансмиссии и физического осмотра клапанов. Я не рекомендую вам делать это. Если все остальные тесты пройдены, пришло время отнести его в магазин и проверить внутренние детали на предмет правильной работы.

Тест №1 (обычный метод)

Проверьте наличие 12 вольт на клемме А коробки передач

  1. Поднимите автомобиль на подъемнике так, чтобы ведущие колеса оторвались от земли.
  2. Соедините зажим типа «крокодил» тестового фонаря с землей. Отсоедините провода от корпуса и поместите кончик контрольной лампы на клемму с маркировкой A.
  3. Не нажимайте педаль тормоза.
  4. Транспортные средства с компьютерным управлением : включите зажигание, и тестер должен загореться.
  5. На всех остальных автомобилях запустите двигатель и доведите его до нормальной рабочей температуры.
  6. Увеличьте обороты до 1500, и тестер должен загореться. Если тестер горит, продолжайте использовать обычный метод.
  7. Если тестер не загорается, перейдите к Тесту № 2.

Тест №1 (быстрый метод)

Проверьте наличие 12 вольт на клемме А на ALDL

Примечание.  Быстрые методы ALDL, если они предоставлены, позволяют выполнить многие тесты на линии диагностики сборочной линии (ALDL). Это позволит вам выполнять большую часть электрических проверок с места водителя и сэкономить много драгоценного времени на диагностику.

  1. Подсоедините один конец контрольной лампы к клемме A на ALDL.
  2. Подсоедините другой конец к клемме F на ALDL.
  3. Включите зажигание, тестер должен загореться. Примечание:  некоторые передачи, например 125C, должны переключиться на 3-ю, прежде чем тестер загорится.
  4. Если тестер загорается, на клемму А коробки передач подается 12 вольт. Перейти к Тесту №6.
  5. Если тестер не горит, то проверить наличие 12 вольт штатным методом.

Тест №2

Проверка наличия 12 вольт на предохранителе

  1. Проверьте наличие 12 вольт с обеих сторон предохранителя.
  2. Найдите блок предохранителей и предохранитель с маркировкой «манометры» (большинство моделей).
  3. Соедините зажим типа «крокодил» тестового фонаря с землей. Включите зажигание.
  4. Поместите наконечник контрольной лампы на одну сторону предохранителя, и тестер должен загореться.
  5. Поместите наконечник тестовой лампы с другой стороны предохранителя, и тестер снова должен загореться.

Тест №3

Проверка наличия 12 В на переключателе тормоза

Важно:  Любой из этих переключателей можно использовать для блокировки.Чтобы избежать неправильного диагноза, проверьте их оба. Если используется верхний переключатель с вакуумным шлангом, проверьте два провода на этом переключателе. На четырехпроводном нижнем переключателе проверьте два провода, наиболее удаленных от плунжера.

  1. Проверьте наличие 12 В с обеих сторон выключателя тормоза. Некоторые автомобили GM имеют два электрических выключателя на педали тормоза. Один переключатель будет иметь четыре провода, а другой переключатель будет иметь два провода и вакуумный шланг.
  2. Соедините зажим типа «крокодил» тестового фонаря с землей.
  3. Не нажимайте педаль тормоза.
  4. Включите зажигание.
  5. Вставьте наконечник тестера в один из проводов, и тестер должен загореться.
  6. Теперь проверьте другой провод, и снова тестер должен загореться.
  7. Нажмите на педаль тормоза и повторите проверку. Теперь только один провод должен быть горячим.

Тест №4

Регулировка/замена тормозного выключателя

  1. Снимите выключатель тормоза с кронштейна.
  2. Подсоедините провода к тормозному выключателю.
  3. Повторите тест, как указано в тесте № 2, но нажмите и отпустите поршень пальцем.
  4. Если теперь он проходит проверку, то выключатель тормоза исправен, но нуждается в регулировке.
  5. Если не проходит, замените выключатель тормоза.

Тест №5

Проверка проводов на короткое замыкание и обрыв

Важно:  Убедитесь, что зажигание выключено для следующих проверок.

Шорты:

  1. Установите омметр на ом, умноженный на один (Rx1).
  2. Подсоедините один провод омметра к одному концу подозрительного провода.
  3. Подключите другой провод омметра к хорошему заземлению.
  4. Если счетчик показывает ЧТО-НИБУДЬ, кроме бесконечности, у вас есть короткое замыкание на массу в этом проводе.

Открывает:

  1. Если в подозрительном проводе нет напряжения, и его соединение на обоих концах хорошее, и он не замкнут на землю, в проводе есть обрыв.
  2. Замените провод.

Тест №6 (обычный метод)

Проверьте наличие массы на клемме D коробки передач.

  1. На автомобилях без компьютерного управления пропустите этот тест и сразу переходите к тесту давления в трубопроводе охладителя или тесту помпажа.
  2. Поднимите автомобиль на подъемнике так, чтобы ведущие колеса оторвались от земли.
  3. Отсоедините провода от корпуса и подсоедините зажим-крокодил контрольной лампы к клемме A.
  4. Поместите наконечник контрольной лампы на клемму D.
  5. Запустите двигатель и доведите до нормальной рабочей температуры.
  6. Поместите селектор в Диск. (О.D. на четырехскоростных агрегатах).
  7. Медленно разгоните до 60 миль в час, и тестер должен загореться.
  8. Если тестер не загорается, проблема в системе компьютера. Перейти к тесту № 7 (Обычный метод).

Тест № 6 (быстрый метод)

Проверьте заземление на клемме D на ALDL.

Примечание:  Сначала вы должны пройти Быстрый метод ALDL (Тест №1. В противном случае продолжайте обычный метод Тест №6).

  1. Контрольная лампа все еще должна быть подключена между клеммами A и F на ALDL.
  2. Проведите дорожное испытание при нормальной рабочей температуре двигателя.
  3. В начале дорожного испытания тестер должен загореться. Примечание:  Если вы нажмете на педаль тормоза, индикатор погаснет.
  4. Следите за контрольной лампой, чтобы увидеть, не погаснет ли она в какой-то момент во время дорожного испытания.
  5. Если контрольная лампа погаснет, клемма D коробки передач заземлена. Перейдите к проверке № 7.
  6. Если контрольная лампочка продолжает гореть, значит, проблема в системе компьютера. (См. тест №13) Пройди тест №7.

Тест №7 (обычный метод)

Заземлите провод D на коробке передач

  1. Срежьте немного изоляции или проткните провод D возле разъема коробки передач. Повторно загерметизируйте силиконом.
  2. Подсоедините один конец перемычки к оголенному проводу, который вы только что обрезали или проткнули.
  3. Подсоедините другой конец перемычки к земле.
  4. Дорожный тест на блокировку (можно провести на подъемнике).
  5. Если вы не уверены, произошла ли блокировка, поддерживайте постоянную скорость 60 миль в час (на подъемнике), слегка коснитесь и отпустите тормоз.Вы должны почувствовать, как блокировка отключается и снова включается.

Тест №7 (быстрый метод)

Заземлите провод D на ALDL

Примечание:  Сначала вы должны пройти быстрый метод ALDL (тест № 1).

  1. Подсоедините один конец контрольной лампы или перемычки к клемме A на ALDL.
  2. Отправляйтесь на дорожное испытание. (Это также можно сделать на подъемнике)
  3. При скорости примерно 35 миль в час подключите другой конец контрольной лампы или перемычки к клемме F на ALDL.Преобразователь крутящего момента должен заблокироваться.
  4. Независимо от того, заблокирован ли термопарный датчик или нет, следуйте схеме устранения неполадок и перейдите к следующему шагу, проверке перенапряжения в линии охладителя.

Тест №8

Проверка давления или пульсации в линии охладителя

  1. Проверьте давление в линии охладителя или пульсацию.
  2. Отсоедините линию охладителя.
  3. Подсоедините один конец резинового шланга к отсоединенной линии, идущей от радиатора.
  4. Вставьте другой конец резинового шланга в заливную трубку коробки передач.
  5. Не отрывая ведущих колес от земли, запустите двигатель. Держите резиновый шланг в руке. Попросите помощника перевести селектор в положение «Драйв» и (медленно) разогнаться до 60 миль в час. При перемещении запорного клапана резиновый шланг должен слегка подпрыгивать.

Тест № 9

Проверка соленоида

Для этого теста вам понадобится АНАЛОГОВЫЙ омметр и 12-вольтовый источник.

  1. Подсоедините черный провод омметра к КРАСНОМУ проводу соленоида.
  2. Подсоедините КРАСНЫЙ провод омметра к ЧЕРНОМУ проводу соленоида. Если у вас однопроводной соленоид, подключите КРАСНЫЙ провод омметра к корпусу соленоида.
  3. Если омметр настроен на ом, умноженный на один (Rx1), показание должно быть не менее 20 Ом, но не бесконечно.
  4. Подсоедините КРАСНЫЙ провод омметра к КРАСНОМУ проводу соленоида, а черный провод к черному проводу или корпусу (вы просто переключаете соединения).
  5. Омметр должен показать меньше, чем при первом тесте.
  6. Подключите соленоид к источнику 12 В. ОБЯЗАТЕЛЬНО СОБЛЮДАЙТЕ ПОЛЯРНОСТЬ при использовании автомобильного аккумулятора.
  7. При легочном давлении (или очень низком давлении) попытайтесь продуть соленоид. Он должен быть запечатан.
  8. Отсоедините источник 12 В, и теперь вы сможете продуть соленоид.

Тест №10

Проверка электрических переключателей на коробке передач

Примечание:  Если вы прошли быстрые методы ALDL, электрические переключатели не вызывают блокировки.Перейти к тесту № 11.

Тип переключателя:  Одна клемма, нормально разомкнутая
Деталь №:  8642473
Тест:  Подсоедините один провод омметра к клемме переключателя, а другой провод к корпусу переключателя. Омметр должен показывать бесконечность. Подайте на переключатель воздух под давлением 60 фунтов на квадратный дюйм, и омметр должен показывать 0.

Тип переключателя:  Сигнальная клемма, нормально замкнутая
Номер детали:  8642569, 8634475
Тест:  Подсоедините один провод омметра к клемме переключателя, а другой провод к корпусу переключателя.Омметр должен показывать 0. Подайте на переключатель воздух под давлением 60 фунтов на квадратный дюйм, и омметр должен показывать бесконечность.

Тип переключателя: Две нормально разомкнутые клеммы
Деталь №: 8643710
Тест: Подсоедините один провод омметра к одной клемме переключателя, а другой провод к другому проводу к другой клемме. Омметр должен показывать бесконечность. Подайте на переключатель воздух под давлением 60 фунтов на квадратный дюйм, и омметр должен показывать 0.

Тип переключателя:  два нормально замкнутых контакта
Номер детали:  8642346
Испытание:  Подключите один провод омметра к одному контакту переключателя, а другой — к другому контакту.Омметр должен показывать 0. Подайте на переключатель воздух под давлением 60 фунтов на квадратный дюйм, и омметр должен показывать бесконечность.

Тест №11

Проверка клапана включения блокировки (требуется разборка)

Тест №12

Проверка сигнальной масляной цепи (требуется разборка)

Тест №13

Проверка компьютерной системы

Целью следующих тестов является предоставление профессиональному специалисту по коробкам передач возможности определить общую область неисправности компьютерной системы.Для полной процедуры тестирования обратитесь к соответствующему руководству по ремонту. Компьютерная система имеет возможность самодиагностики. Всегда начинайте проверку компьютерной системы с доступа к диагностической схеме компьютера.

Всем датчикам, отправляющим информацию на компьютер, присваивается двухзначный код неисправности. Если один из этих датчиков выйдет из строя, компьютер сохранит код неисправности датчика в своей памяти и обычно активирует индикатор «Проверьте двигатель» или «Скоро обслуживание». Когда компьютер находится в состоянии диагностики, он считывает коды неисправностей, хранящиеся в его памяти.Тогда у вас есть место, чтобы начать искать неисправность.

Проверка цепи диагностики

  1. Включите зажигание и выключите двигатель.
  2. Индикатор проверки двигателя должен постоянно гореть. (Если индикатор проверки двигателя не горит, проверьте лампочку).
  3. Если лампа исправна или лампочка периодически мигает, обратитесь к руководству по техническому обслуживанию автомобиля для дальнейших проверок.
  4. Подключите перемычку между контактами A и B 12-контактного ALDL.
  5. Индикатор проверки двигателя должен мигать с кодом 12.(Если код 12 не мигает, обратитесь к руководству по обслуживанию автомобиля для дальнейших проверок).
  6. Если вы получили код 12, отметьте и запишите все дополнительные коды.
  7. Если сохранен код серии 50, обратитесь к руководству по техническому обслуживанию автомобиля для дальнейших проверок.
  8. Очистите долговременную память компьютера и отправляйтесь на новое дорожное испытание.
  9. Повторно протестируйте и запишите коды.
  10. Если в ЛЮБОМ тесте не было кодов, компьютер не видит никаких неисправностей. (Это не значит, что неисправности нет).
  11. Если коды присутствовали только при первом тесте, они прерывистые.

Если коды присутствовали в ОБОИХ тестах, компьютер видит текущую неисправность. Следующие коды, скорее всего, повлияют на характеристики передачи.

  1. Код 14 = Закороченная цепь температуры охлаждающей жидкости
  2. Код 15 = Обрыв цепи температуры охлаждающей жидкости
  3. Код 21 = Цепь датчика положения дроссельной заслонки
  4. Код 24 = Цепь датчика скорости автомобиля
  5. Код 32 = Цепь датчика атмосферного давления
  6. Код 34 Цепь MAP или датчика вакуума

Как читать коды неисправностей

\Код неисправности 12 отображается в виде одной вспышки индикатора проверки двигателя, затем паузы, а затем еще двух быстрых вспышек.Это повторится еще два раза. Код 34 будет отображаться в виде трех вспышек, за которыми следует пауза, а затем 4 быстрых вспышки. Все коды в компьютере будут мигать три раза, начиная с самого низкого кода, пока не будут отображены все коды. Затем компьютер снова запустит всю последовательность, начиная с кода 12. Если присутствует более одного кода неисправности, всегда начинайте проверку с кода с наименьшим числом. Исключение: код серии 50 всегда проверяется первым. Пример: если бы присутствовал код 21 и код 32, вы бы сначала диагностировали код 21.

Как очистить компьютер

  1. Выключите ключ.
  2. Снимите перемычку между A и B на ALDL.
  3. Отсоедините косой провод от положительного кабеля аккумуляторной батареи или извлеките предохранитель ECM на 10 секунд.
  4. Подсоедините косичку или замените предохранитель, и коды будут стерты.
  5. Проедьте на автомобиле при рабочей температуре не менее 5 минут перед повторной проверкой кодов неисправностей. Вернитесь к тесту №13.

Если вы следовали этой процедуре тестирования шаг за шагом, вы точно обнаружили, в чем проблема.Теперь вопрос: «Если у меня плохой соленоид TCC, как мне его заменить?» Поскольку соленоид TCC прикреплен к корпусу вспомогательного клапана, его замену лучше поручить специалисту по трансмиссии. Кроме того, возможна физическая закупорка или поперечная утечка из корпуса вспомогательного клапана. Кроме того, необходимо внести изменения в прокладку блока вспомогательных клапанов, которая требуется для некоторых трансмиссий. И, наконец, если у вас есть автомобиль, выпущенный ранее 1987 года, замените соленоид TCC на #8652379.Соленоид до 1987 года забивался легче, чем поздний тип.

Пятиступенчатая передняя автоматическая коробка передач DB A Class с преобразователем крутящего момента

Пятиступенчатая передняя автоматическая коробка передач DB A Class с преобразователем крутящего момента

Этот веб-сайт использует файлы cookie, чтобы обеспечить вам максимальное удобство на нашем веб-сайте. Если вы продолжите использовать этот сайт, мы будем считать, что вы согласны принять файлы cookie.Подробнее Разрешить файлы cookie


Передачи на отдельных ступенях передач реализованы не с помощью планетарных зубчатых передач, а с цилиндрическими зубчатыми колесами.

..

Процессы переключения инициируются электронным способом, при этом передачи переключаются гидравлическими муфтами через электрогидравлический блок управления. В гидротрансформаторе в разрезе видны насос и турбинное колесо, муфта свободного хода и муфта блокировки гидротрансформатора. Приведено очень подробное описание функции.

Гидротрансформатор нового поколения предназначен для автомобилей 2017 года выпуска

Эта статья также появляется в

Подпишитесь сейчас »

На двухмерном изображении в разрезе показаны компоненты iTC следующего поколения.


Гидротрансформатор нового поколения предназначен для автомобилей 2017 года выпуска

2014-10-13 Ками Буххольц

Новый гидротрансформатор, который меньше и легче по весу, чем его предшественник, добавляет важные функции для автомобилей с двигателями уменьшенного размера в сочетании с автоматической коробкой передач.

«Тенденция к уменьшению размеров означает, что мы наблюдаем трехцилиндровые двигатели, работающие на двух цилиндрах, что является чрезвычайно сильным усилителем вибрации», — заметил Джефф Хемфилл, главный технический директор Schaeffler North America. на недавнем технологическом симпозиуме его компании. в Детройте Хемфилл и его коллеги подробно описали LuK iTC (интегрированный преобразователь крутящего момента), упрощенную конструкцию, которая включает демпфер, «чтобы справляться с этими вибрациями и позволять экономить топливо за счет двигателя меньшего размера», — сказал он.

В новом iTC отсутствует поршневая пластина толщиной от 3 до 4 мм (от 0,11 до 0,15 дюйма), которая использовалась в предыдущем гидротрансформаторе Schaeffler, отметил Маркус Стейнбергер, руководитель отдела усовершенствованного проектирования гидротрансформаторов LuK USA. В результате турбина стала толще, потому что инженерам пришлось интегрировать функцию поршня в турбину. Schaeffler объединил «два компонента, которые у нас были внутри гидротрансформатора на протяжении нескольких десятилетий, в один компонент», – объяснил Стейнбергер в интервью Automotive Engineering .

Уменьшенная масса – еще одно преимущество. iTC весит 10,7 кг (23,5 фунта), что на 2,4 кг (5,20 фунта) меньше, чем у предшественника, который весил 13,1 кг (28,8 фунта). «И, убрав компонент толщиной от 3 до 4 мм плюс зазор вокруг него, мы экономим от 5 до 6 мм (от 0,19 до 0,23 дюйма) в осевом пространстве гидротрансформатора», — сказал Стейнбергер.

Многофункциональный iTC от LuK может быть оснащен муфтой крыльчатки, что позволяет двигателю работать на более высокой скорости, чем крыльчатка. Поскольку крыльчатка не связана напрямую с двигателем, двигатель может быстрее обеспечивать более высокий крутящий момент.В конфигурации двигателя с турбонаддувом, которая помогает уменьшить влияние турбо-задержки.

Конструкции iTC позволяют использовать муфту крыльчатки без значительных изменений конструкции, поскольку муфта крыльчатки может быть интегрирована в муфту турбины iTC. По словам Стейнбергера, в дополнение к двум стандартным напорным каналам есть третий канал, идущий от задней части муфты крыльчатки к масляному картеру.

Учитывая, что к 2025 г. в США действуют требования по экономии топлива, повышение экономии топлива является отраслевым приоритетом.

«Мы действительно добиваемся эффективности использования топлива с разных сторон, — сказал Стейнбергер. — Уменьшение веса iTC приводит к улучшению топливной экономичности. И потому что мы можем установить демпфер большего размера внутри гидротрансформатора, что позволяет трансмиссии работать более эффективно».

Первое серийное применение iTC возможно уже в 2017 модельном году. «Сейчас мы работаем над прототипами переднеприводных и заднеприводных автомобилей с американскими и азиатскими автопроизводителями», — сообщил он.

Продолжить чтение »

Основы гидротрансформатора

Чтобы изменить направление движущегося объекта, вы должны приложить силу к этому объекту — не имеет значения, является ли этот объект автомобилем или каплей жидкости. И все, что прикладывает силу, заставляющую объект поворачиваться, должно также ощущать эту силу, но в противоположном направлении. Так как турбина заставляет жидкость менять направление, жидкость заставляет турбину вращаться.

Жидкость выходит из турбины в центре, двигаясь в другом направлении, чем при входе. Если вы посмотрите на стрелки на рисунке выше, вы увидите, что жидкость выходит из турбины, двигаясь в направлении, противоположном вращению насоса (и двигателя). Если бы жидкость попала в насос, это замедлило бы работу двигателя, что привело бы к потере мощности. Вот почему преобразователь крутящего момента имеет статор.

Статор направляет жидкость, возвращающуюся из турбины в насос. Это повышает эффективность гидротрансформатора.Обратите внимание на шлиц, который соединен с односторонней муфтой внутри статора.

Статор находится в самом центре гидротрансформатора. Его работа заключается в перенаправлении жидкости, возвращающейся из турбины, до того, как она снова попадет в насос. Это значительно повышает эффективность гидротрансформатора.

Статор имеет очень агрессивную конструкцию лопастей, которая почти полностью меняет направление потока жидкости. Обгонная муфта (внутри статора) соединяет статор с неподвижным валом в трансмиссии (направление, в котором муфта позволяет статору вращаться, показано на рисунке выше).Из-за такого расположения статор не может вращаться вместе с жидкостью — он может вращаться только в противоположном направлении, заставляя жидкость менять направление при попадании на лопасти статора.

Добавить комментарий

Ваш адрес email не будет опубликован.