Как работает рессора: Как работают рессоры и амортизаторы автомобиля

Содержание

Как работают рессоры и амортизаторы автомобиля

Устройство ходовой части автомобиля влияет на удобство управления и комфорт пассажиров. Рессоры позволяют колесам мягко преодолевать неровности дороги и устраняют тряску, а амортизаторы сокращают вертикальные колебания. Для управления колесами используются различные приспособления.

Типы рессор

Листовая рессора

Листовая рессора представляет собой несколько стальных листов, которые в центре крепятся к оси хомутами. При разгибании листы выравниваются, лучше прилегают друг к другу, и рессора становится более жесткой. Кроме того, они удлиняются и цепляются одним концом к вращающейся петле.

Как правило, рессоры изготавливают из стали. Самым старым типом рессор является листовая рессора. Самый верхний и длинный (коренной) лист сильно скруглен в обоих концов и крепится к раме с помощью подвески. Нижние листы скруглены меньше и имеют меньшую длину.

Листовая рессора в движении

При разгибании рессоры второй лист распрямляется и соприкасается с самым нижним листом, третий лист соприкасается со вторым и т.д. Рессора становится более жесткой. Такое приспособление позволяет автомобилю передвигаться плавнее.

В некоторых автомобилях используются рессоры с одним листом, который имеет конусообразное сечение и потому обладает повышенной жесткостью при распрямлении.

Спиральная пружина

Спиральные пружины изготавливают из прочных стальных прутьев. Когда колесо двигается вниз, пружина распрямляется, а при движении вверх — сжимается, поэтому высота корпуса относительно земли практически не меняется.

Спиральная пружина представляет собой спираль из прочного стального прута. Она сжимается и распрямляется при движении колес в вертикальной плоскости.

Торсион

Торсион — это отрезок упругого стального стержня со шлицованным или квадратным основанием. Один из концов торсиона прикрепляют к плечу рычага, который образует часть подвески. При вращении плечо двигается вверх и вниз.

Торсион

Торсион состоит из упругой стали, один из его концов жестко крепится к раме. Торсион скручивается с другого конца при движении нижнего плеча рычага.

Второй конец шлицован и крепится к раме. Углубления не позволяют торсиону скручиваться по всей длине при отклонении подвески.

При любой конструкции стальная пружина блокирует толчки от неровностей дороги, а не передает их пассажирам, а полученная энергия используется для того, чтобы вернуть автомобиль в первоначальное состояние.

Ту же функцию могут выполнять резиновые пружины, но они не могут накапливать большое количество энергии, а потому применяются только в легковых автомобилях.

В некоторых автомобилях используется сочетание гидроподвески и резиновых пружин. Вертикальное движение колес перегоняет жидкость из одной камеры в другую через заслонку. Полость камеры разделена на две части нибкой мембраной, в одной из частей находится сжатый газ.

Когда через заслонку в камеру поступает жидкость, газ еще больше сжимается и имитирует эффект пневматической рессоры.

Как правило, в камерах у передних колес есть петлевые трубы, которые откачивают жидкость в камеры у задних колес, тем самым выравнивая подвеску.

К примеру, в автомобилях Citroen гидроподвеску можно поднимать и опускать, регулируя высоту корпуса.

Амортизаторы

Некоторые амортизаторы оснащены дополнительной камерой с газом, которая замедляет движение поршня.

Телескопический амортизатор складывается, когда колеса попадают на неровную поверхность. При движении поршня в цилиндр попадает масло, которое замедляет обратный ход.

В подвеске Мак-Ферсона телескопический амортизатор встраивается в складную стойку.

Когда автомобиль едет по неровной поверхности, пружины сжимаются, а затем возвращаются в исходное положение. Если бы не было устройств, поглощающих полученную энергию, автомобиль продолжал бы прыгать вверх и вниз.

Эту функцию берут на себя амортизаторы (они же гасители ударных нагрузок). В амортизаторе находится поршень, который двигается внутри герметичного цилиндра, заполненного маслом. Этот процесс запускается при вертикальном движении колеса.

В поршне есть тонкие каналы и односторонние клапаны, которые позволяют маслу перетекать из одной камеры в другую, однако это происходит очень медленно.

Ток масла замедляет колебания, и автомобиль возвращается в исходное состояние.

Существует три типа амортизаторов. Телескопические амортизаторы обладают складным корпусом, один из концов которого прикреплен к оси, а второй — к кузову автомобиля.

Аналогично работают амортизаторы на направляющих стойках (Мак-Ферсона).

Рычажные амортизаторы похожи на гидравлические дверные доводчики. Они содержат один или два поршня, крепятся к кузову или раме автомобиля и соединяются с осями поворотными рычагами.

В некоторых амортизаторах используется и масло, и газ. Они работают эффективнее, чем масляные амортизаторы.

Гидравлическая подвеска

Гидравлическая подвеска сочетает в себе резиновые пружины и систему амортизаторов, которые попарно соединяют передние и задние колеса.

Когда переднее колесо попадает на неровную поверхность, часть жидкости из передних камер перетекает в задние, поднимая задние колеса и выравнивая кузов.

В каждой камере жидкость проходит через двусторонний клапан, обеспечивая амортизирующий эффект.

Когда неровный участок дороги заканчивается, жидкость возвращается в передние камеры.

Что такое рессоры и какие достоинства у рессорной подвески

Достоинство рессор – это их простота. В наши дни рессорная подвеска практически не применяется, однако она имеет довольно много положительных качеств. Рессора воспринимает не только вертикальную нагрузку, но и другие силы (продольные при разгоне и торможении, боковые – при повороте).

Ранее мы уже описывали самые распространенные виды и типы подвесок автомобилей. А в этот раз речь пойдет о том, что такое рессоры и какие достоинства и недостатки имеет рессорная подвеска.

Достоинства рессор

Рессорная подвеска имеет несколько преимуществ перед другими типами подвесок:

  • При использовании рессор отпадает необходимость в различных рычагах и реактивных штангах. Сравнивая заднюю рессорную подвеску у Волги и пружинную у Жигулей, можно сразу заметить, что у последней гораздо больше рычагов и соответственно запрессованных в них резиновых втулок, которые достаточно часто требуют замены. Разборка такой конструкции после пары лет эксплуатации может доставить немало “приятных” минут. А в независимой подвеске рычагов и сайлент-блоков еще больше.
  • Еще одно достоинство рессорной подвески – ее компактность. Рессоры не выступают в багажник, как пружины, поэтому нередко их ставят вместо пружин на грузопассажирские модификации легковых автомобилей (пикапы, “пирожки”).

Распространено заблуждение, будто подвеска на рессорах обязательно жесткая. В принципе ее можно сделать достаточно мягкой, хотя рессоры при этом получаются длинными. Вспомните Чайку и ЗИЛы-«членовозы» – хотя сзади там стоят рессоры, подвеска у них явно комфортабельнее, чем у тех же Жигулей.

Недостатки рессор

К недостаткам рессорной подвески можно отнести необходимость периодической смазки и замены пластмассовых прокладок между листами рессор, иначе они начинают скрипеть и “дробить” на неровностях. Из-за межлистового трения рессора помогает амортизаторам демпфировать колебания. Если амортизаторы “убитые” (как проверить амортизаторы), это незаметно, но если они работают нормально, такая “помощь” приводит к тому, что мелкие неровности беспрепятственно передаются на кузов.

Правда в последнее время все большее распространение получают малолистовые и даже однолистовые рессоры из композитных материалов, в которых межлистовое трение существенно снижено или вообще отсутствует.

Не способствует популярности рессорной подвески и тот факт, что ее достаточно трудно сделать независимой.

Тюнинг рессор на УАЗ 452

Рессорная подвеска, рессора, балансирная подвеска

 

Какое назначение подвески автомобиля, как она подразделяется?

Подвеска автомобиля – совокупность устройств, обеспечивающих упругую связь между несущей системой и мостами или колесами автомобиля, уменьшение динамических нагрузок на несущую систему и затухание их колебаний, а также регулирование положения кузова автомобиля во время движения.

Подвески по виду упругого элемента подразделяются на рессорные, пружинные, торсионные, пневматические и гидропневматические. Наибольшее распространение на грузовых автомобилях получили подвески на полуэллиптических рессорах.

Как устроена рессорная подвеска?

Рессорная подвеска на полуэллиптических рессорах (рис.157, а) состоит из рессоры, набранной из отдельных стальных упругих листов 5 разной длины, но одинаковой ширины. Самый длинный лист называется коренным. Под ним находится подкоренной лист, который несколько короче коренного и т. д. На переднем конце рессоры автомобиля ЗИЛ-130 на подкладке 1 двумя болтами и стремянками 6 крепится съемное ушко 2, в которое устанавливается втулка 19. Ушко шарнирно соединено со стальным пальцем 3, вокруг которого рессора поворачивается при прогибе. Палец фиксируется в кронштейне 4 двумя болтами, проходящими через полуцилиндрические выточки. При сборке листы рессор смазываются графитной смазкой и центрируются выдавками в листах и фиксаторами (автомобили ЗИЛ и КамАЗ) или центрирующим болтом, проходящим сквозь отверстия, просверленные в каждом листе (автомобили ГАЗ). По бокам листы охвачены хомутиками 7, предотвращающими их сдвиг в поперечном направлении. На заднем конце коренного листа смонтирована накладка 13, в которую упирается сухарь 12. Он может качаться на оси 16, концы которой заходят в отверстия двух боковых вкладышей 17, закрепленных в кронштейне 11 стяжным болтом 18. При колебаниях рессоры ее длина изменяется и сухарь 12 перекатывается по накладке 13.

Рис.157. Рессора:
а – передняя ЗИЛ-130; б – передняя ГАЗ-5ЗА; в – задняя автомобиля ЗИЛ-130.

Собранная рессора средней своей частью стремянками 15 крепится к балке 14 переднего моста. Для этого на ней выполняется специальная площадка с отверстиями для стремянок. На накладке верхнего листа стремянками закреплен резиновый буфер 8, предотвращающий удар рессоры о раму при сильных ее прогибах. Дополнительный буфер 9 крепится к лонжерону рамы и ограничивает прогиб рессоры. Вместе с рессорой к балке переднего моста монтируется гидравлический амортизатор 10, который вторым концом крепится к лонжерону рамы автомобиля.

Как устроена задняя рессора автомобиля ЗИЛ-130?

Задняя рессора 20 автомобиля ЗИЛ-130 (рис.157, в) устроена так же, как и передняя. Однако на ней устанавливается еще дополнительная рессора 22, концы которой могут опираться на кронштейны 21, прикрепленные к раме. Если автомобиль без груза, толчки воспринимает только основная рессора, а когда с грузом, основная рессора прогибается и в работу включается дополнительная рессора.

Как устроены рессоры автомобиля ГА3-53А?

Рессоры автомобиля ГАЗ-53А имеют такое же устройство, как и на ЗИЛ-130, однако крепление их с рамой автомобиля осуществляется при помощи резиновых подушек 23 (рис.157, б). Поэтому в рессоре имеется два коренных листа 24 с разогнутыми концами, на которые одевают две металлические накладки, а на них сверху и снизу устанавливают резиновые подушки и закрепляют их в кронштейнах 25 крышками 26. В передний кронштейн также монтируют резиновую упорную подушку 27, воспринимающую осевые нагрузки. При прогибе рессоры она удлиняется за счет перемещения заднего конца в подушках. Листы стягиваются центровым болтом.

В чем особенности подвески заднего моста на автомобиле ГА3-24 «Волга»?

Задний мост автомобиля ГАЗ-24 «Волга» крепится к кузову с помощью двух полуэллиптических рессор, работающих совместно с двумя телескопическими гидравлическими амортизаторами двустороннего действия (рис.158). Коренные листы рессор по концам имеют загнутые ушки, которыми рессора соединяется с кузовом. Передний конец рессоры 2 шарнирно соединен с кронштейном 1 пальцем 9, установленным в резиновой обойме 8. Задний конец рессоры своим ушком соединяется с серьгой 7 с помощью пальцев с резиновыми втулками, а серьги вторыми концами крепятся к балке кузова также с помощью пальцев с резиновыми втулками.

Рис.158. Подвеска заднего моста автомобиля ГАЗ-24 «Волга».

Следовательно, осевое смещение рессоры при прогибе осуществляется качанием серьг 7 на опорных пальцах. Средняя часть рессоры стремянками 6 крепится к балке 5 заднего моста. Сверху на балке смонтирован резиновый буфер 4, ограничивающий ход подвески при сильных прогибах рессоры, снизу – подкладка для крепления амортизатора 3. Верхний конец амортизатора соединен с полом кузова автомобиля.

Какая подвеска применяется на трехосных автомобилях, как она устроена и работает?

На трехосных автомобилях КамАЗ-5320, ЗИЛ-133 и других для подвески двух задних ведущих мостов применяется балансирная подвеска (рис.159). В устройство такой подвески входит ось 8, жестко соединенная с рамой. На концах оси на скользящих подшипниках установлены ступицы 7, к которым с помощью стремянок 3 крепится перевернутая листовая полуэллиптическая рессора 2, опирающаяся своими концами на кронштейны 4, приваренные к балкам среднего и заднего ведущих мостов. Ведущие мосты соединяются с кронштейнами рамы штангами 6, воспринимающими реактивный момент от мостов и передающими на раму толкающие и тормозные усилия. Головки реактивных штанг соединяются с кронштейнами шаровыми пальцами с вкладышами. При такой подвеске оба задних ведущих моста образуют общую тележку, которая может качаться вместе с рессорами около оси и, кроме того, вследствие прогиба рессоры каждый мост имеет независимые перемещения, что, обеспечивает хорошую приспособляемость колес к неровностям дороги.

Рис.159. Балансирная подвеска.

Что является упругим элементом в торсионной подвеске?

В торсионной подвеске упругим элементом является, стальной стержень, работающий на скручивание. Он с помощью рычагов соединяется с поворотной цапфой колеса. Пружинная подвеска рассмотрена при описании переднего моста автомобиля ГАЗ-24 «Волга».

Где применяется пневматическая подвеска, как она устроена?

Пневматическая подвеска применяется на автобусах, так как она позволяет поддерживать высоту подножек для входа и выхода пассажиров на заданном уровне независимо от количества людей в кузове автобуса. Такая подвеска в качестве упругих элементов имеет баллоны, заполненные сжатым воздухом, поступающим от компрессора. Регуляторы левых и правых баллонов, укрепленные на раме и соединенные с кронштейнами рычагами, поддерживают постоянным расстояние от уровня пола кузова до дороги. При увеличении нагрузки регуляторы обеспечивают поступление сжатого воздуха в баллоны до тех пор, пока не восстановится заданный уровень пола кузова. Если нагрузка на автобус уменьшится, то часть воздуха из баллонов выходит в атмосферу. Такая подвеска применяется на автобусе ЛиАЗ-677.

***
Проверьте свои знания и ответьте на контрольные вопросы по теме «Ходовая часть и дополнительное оборудование автомобиля»

автомобиль, балансирная, мост, подвеска, рессора, рессорная

Смотрите также:

Устройство рессорной подвески: видео

Повозки, найденные при раскопках, подтверждают применение кожаных ремней для подвешивания кузова древних транспортных средств. С начала 19 века в подвесках применялись пружины, в дальнейшем инженеры стали применять стальные листы. В частности, ими снабжали дилижансы.

Подвеска входит в шасси, с ее помощью колеса технически связываются с кузовом, что гарантирует безопасное перемещение грузов и комфортабельную езду. Полвека тому назад этот тип подвешивания повсеместно применялся в легковушках, сейчас ее используют преимущественно в грузовых машинах и прицепах. В отечественных грузовиках КамАЗ они ставились над мостом, на легковом автомобиле «Волга» — под мостом.

Рессорная подвеска

Подвески условно делятся на пневматические и механические типы. Рессорная подвеска относится к механическому виду подвешивания. Основными частями подвески считаются: упругие, направляющие и амортизаторы.

Амортизаторы обеспечивают зацепления колес с дорогой, гасят удары автомобиля об различные дефекты дорожного покрытия.

Направляющие элементы – органы управления, которые технически фиксируют кузов и колеса автомобиля, способствуют сохранению заданного направления смещения колес относительно кузова.

Рессора выполняет упругую функцию подвески, сберегает работоспособность подвески, в процессе поглощения энергии реакции плохого дорожного покрытия на перемещение автомобиля. Она своевременно устраняет уклоны в процессе движения транспорта.

Еще три десятилетия назад такая система подвешивания применялась в легковых автомобилях, сейчас ее используют преимущественно на грузовых машинах и прицепах.

Особенности работы

Рессора состоит из нескольких листов высокопрочной стали разной длины и одинаковой ширины, собранных хомутами. Середина пружины фиксируется с мостом автомобиля, концы прикрепляются к кузову шарнирами или сережками. Рессора, установленная на автомобиль, делает подвеску жесткой, что на высоких скоростях негативно воздействует на контролируемость транспорта.

Нынешние рессоры обычно производят с одним листом, они компактны и могут применяться без амортизаторов, со стабилизаторами, что существенно снижает вибрацию кузова. Кроме листовых видов рессор выпускаются пружинные и торсионные типы. В торсионном типе ключевую роль совершает пружина в виде вала, функционирующая под воздействием сил вращения.

В пружинных рессорах, согласно названию, применяются параболоидные, конические и другие формы пружин. У зарубежных систем подвешивания коэффициент гашения вертикальных колебаний выше отечественных. На современных легковушках сегодня ставятся другие виды систем подвешивания, в частности, пневматические подвески. Автомобильная промышленность разных стран производит востребованные пружинные и торсионные виды рессор. У зарубежных систем подвешивания коэффициент гашения вертикальных колебаний выше отечественных.

Достоинства:

— способность сохранить равновесие движения при перегрузках;

— эффективность управления на ухабистых дорогах;

— высокая надежность и износостойкость конструкции;

— сравнительно низкая стоимость элемента;

— компактность размеров.

Минусы:

Отрицательной стороной является проседание листов при регулярных перегрузках. Чтобы исключить возникшие скрипы и другие неприятные явления в процессе езды, требуется постоянно заменять прокладки, систематически освежать графитную смазку, регулярно подкручивать резьбовые соединения.

Специалисты считают, что затраты на профилактические работы рессорной подвески стоят дороже по сравнению с пневматической подвеской. Учитывая темпы развития в области металлообработки, нельзя исключить возобновления в скором времени производства более качественных систем подвешивания.

Рессорная подвеска и ее особенности


Рессорная подвеска и ее особенности

В то время как рессоры на легковых автомобилях стали пережитком прошлого, они остаются незаменимым элементом демпфирования для микроавтобусов и грузового транспорта. История создания рессор уходит своими корнями во времена Древнего Египта, таким образом, насчитывая не один десяток  столетий. Найдя свое применение на египетских колесницах, перекочевавши на европейские кареты и в итоге став у истоков автомобилестроения в начале ХХ века, они сохраняют свою исключительную значимость по сей день.

 

Что же такое рессора и зачем она нужна?

Само слово «Рессора» происходит от французского ressort, что переводиться как пружина. Это упругий элемент подвески машины, обладающий амортизирующим свойством. Если говорить точнее, то она передает нагрузку рамы или кузова на его ходовые части. Соответственно, необходима она для смягчения ударов и колебаний во время езды. Выход из строя рессоры грозит утратой плавности хода.   

Какие бывают виды рессор и из чего они сделаны?

    На сегодняшний день можно выделить три вида рессор:
— Торсионная. Основную рабочую функцию выполняет торсион – валообразная пружина, которая работает на вращательном действии силы. 
— Пружинная. Исходя из названия главная роль отводится параболоидным, цилиндрическим, тарельчатым и коническим пружинам
— Листовая. Выполнена из нескольких слоев листов, отличающихся по размеру. Этот тип рессор является наиболее распространенным. Давайте рассмотрим его подробней.

    Листовая рессора представляет собой набор листов, в зависимости от сплава, из которого они изготовлены (обычно это закаленная сталь, но сейчас существуют аналоги из пластика, которые пользуются спросом среди автовладельцев) их количество может быть разным. Листы отличаются по длине и толщине. Коренной, т.е. первый лист, который взаимодействует с элементами крепления автомобиля, должен быть толще остальных, толщина следующих слоев одинакова, длина листов идет на убывание с каждым новым слоем. 

Такая рессора имеет серповидную форму, а для обеспечения всей конструкции дополнительной упругости, каждый лист модифицирован с целью предать им разную степень изогнутости.
Рессоры соединены между собой специальными хомутами, которые стянуты болтами. Для сохранности поверхности рессоры, между хомутом и металлом прокладывают резиновые вкладки. Также поверхность каждого листа проходит специальную химическую обработку, благодаря чему его срок службы существенно увеличивается. Для сохранности Вашей рессоры, не забывайте смазывать листы графитной смазкой, чтобы уменьшить силу трения, а пальцы солидолом, если втулки на ней металлические (обратите внимание, что резиновые и капроновые втулки смазывать необходимости нет). 

Листовые рессоры делятся на два типа исходя из их конструктивных особенностей:

— однолистовая рессора (параболическая) – в большинстве случаев применяется для передней подвески. Имеет высокую гибкость и обеспечивает комфорт езды на автомобиле, она сглаживает толчки и неровности дороги.

— многолистовая рессора (трапециевидная) – чаще всего используется для задней подвески. Именно они влияют на грузоподъемность и ходовые качества машины. 


    Состояние задних рессор напрямую влияет на поведение автомобиля на дороге. Распространенная ошибка наших водителей добавлять дополнительные листы задней рессоры, для того чтобы поднять кузов авто. В результате это приводит к тому, что излишне усиленные рессоры становятся слишком жесткими. Что влечет за собой усиление тряски кузова на выбоинах и усложняет управление машиной.

    Важно отметить, что в силу большой грузоподъемности, на грузовые автомобили не редко ставят многолистовые рессоры как на задние так и передние мосты.

Известные производители рессор:  TES, STR, Celikyay, Svensson, Schomaecker, Weweler, Marshall.

Как устанавливается рессора?
На передних концах рессоры закреплены съемные подушки, которыми рессоры закреплены к раме пальцами, а задние концы упираются на подушку и при изменении длины скользят по ней. 

Задние рессоры передними концами закреплены к кронштейну с резиновой втулкой, а задние концы, чтобы рессора могла удлиняться, прикреплены к днищу кузова при помощи серьги и двух пальцев. Рессоры прикреплены к кожухам ведущих мостов или к оси стремянками. Листы в рессорах крепятся и центрируются стяжными болтами, а от бокового смещения листы закреплены хомутиками.
Кроме основных задних рессор, на грузовых автомобилях установлены дополнительные рессоры, которые закреплены вместе с основной рессорой стремянками, а концы находятся против полок опорных кронштейнов. В разгруженном автомобиле дополнительные рессоры не работают, а при нагрузке, упираясь концами в кронштейны, несут нагрузку вместе с основными рессорами.

 

Устройство рессоры

Так как рессоры всегда эксплуатируются при постоянном деформирующем воздействии, то специфика их изготовления обеспечивает высочайшую стойкость к механическому воздействию.

В чем преимущества и недостатки рессорной подвески?

К несомненным преимуществам рессор можно отнести следующие факторы:

— простота и надежность конструкции;
— доступная стоимость;
— устойчивость к перегрузкам;
— эффективность и выносливость на плохом дорожном покрытии;
— расположение, которое обеспечивает свободное пространство в кузове.

Из недостатков мы можем выделить лишь два, и те легко устранимы при разумном обращении с автомобилем.

— быстрое проседание при постоянной перегрузке транспортного средства;
— необходимость чистки листов от мусора, камешков, травы и пр. во избежание скрипов при езде.

    При таких лестных характеристиках листовых рессор возникает вопрос: почему их перестали использовать на легковых автомобилях?

Ответ достаточно прост, в большинстве своем легковые авто предназначены для использования на высоких скоростях. При этом к подвеске выдвигаются повышенные требования по надежности и управляемости. Листовые рессоры в свою очередь имеют свойство смещать продольно мост машины, к которому они прикреплены. Это и ухудшает управляемость авто на высокой скорости и делает их такими не популярными сегодня в легковом автомобилестроении. 

Как продлить жизнь рессоре?

При эксплуатации рессорных подвесок, желательно соблюдать несколько нехитрых правил:

— не превышать грузоподъемность автомобиля;
— не затягивать с заменой неисправных листов рессоры;
— учитывать особенности дорожного покрытия;
— резко не трогаться и не тормозить;
— обращать внимание на скрежет рессор;
— своевременно обновлять графитную смазку и подтягивать резьбовые соединения.


Таким образом, срок службы рессор во многом зависит не только от конструктивных, технологических и эксплуатационно-ремонтных особенностей, но так же от профессионализма механиков и водителей.

Приобрести рессору и другие сопутствующие товары Вы можете в нашем интернет магазине. Наши менеджеры всегда рады Вам помочь!


 

ᐉ От листовых рессор к амортизаторам

Даже самая гладкая дорога не гарантирует кузов автомобиля от отдельных толчков и раскачиваний. Да и нет необходимости подчеркивать это обстоятельство, так как автомобилю приходится ездить не только по неровным, но и вовсе по плохим дорогам: по поврежденному асфальту, по булыжным и щебеночным шоссе и ухабистым проселкам; преодолевать небольшие пороги при въезде во дворы и на мосты. Можно себе представить, как чувствовали бы себя пассажиры, какова была бы сохранность грузов, если бы кузов автомобиля не был защищен от неровностей дороги! Переданная в наследство автомобилю экипажная рессорная подвеска и сравнительно жесткие шины ранних выпусков не могли в полной мере справиться с этой задачей.

Последовательно проведенные усовершенствования в корне изменили ходовую часть автомобиля. Теперь пассажира защищают от тряски не только рессоры и шины, но и амортизаторы, эластичные крепления подвески к раме или к кузову и кузова к раме (если рама имеется), подушки сидений, а также такие особенности автомобиля, как соотношение весов отдельных частей или расположение отдельных масс по отношению к осям автомобиля. Защитники пассажира от тряски увеличились в числе, а существовавшие ранее неузнаваемо изменились по устройству. С некоторыми из этих защитников — с современными шинами, сиденьями — мы уже знакомы. Другие нам известны в их первоначальном виде. Каковы-то они теперь?

Листовые рессоры сохранились только на грузовых автомобилях и в конструкциях задней подвески легковых старых автомобилей. Листы рессор стали очень длинными и мягкими, приобрели продольные канавки для смазки и оделись в пластмассовые чехлы для защиты от ржавления. Концы рессор на грузовиках вставлены в массивные резиновые гнезда, а на легковых автомобилях крепятся к кронштейнам на резиновых втулках. Чтобы сделать листы рессор менее хрупкими, их обрабатывают сильной струей мелкой стальной дроби (наклеп), которая уплотняет поверхностный слой листа, как бы покрывая листы броней.

Почти у всех грузовиков над основной рессорой установлена дополнительная: когда автомобиль идет с неполной нагрузкой или без нагрузки, работает только основная рессора, а концы дополнительной не соприкасаются с рамой шасси; при увеличении нагрузки основная рессора прогибается, площадки на раме доходят до концов дополнительной рессоры, и она вступает в действие. Такое устройство обеспечивает необходимую плавность хода. Без дополнительной рессоры пришлось бы делать основную очень жесткой, рассчитывая ее на полную нагрузку, и ненагруженный автомобиль был бы тряским.

У современных легковых автомобилей и автобусов заполнение пассажирских мест приводит к резкому изменению веса подрессоренных частей. Появилась нужда в так называемой прогрессивной подвеске и для этих машин. Конструктивные ее решения различны. Простейшим является установка в дополнение к рессоре наклонных пружин, действие которых усиливается по мере изменения угла наклона, вызываемого оседанием кузова на рессорах под нагрузкой.

Если задняя подвеска легковых машин еще имеет что-то общее с экипажной, то передняя построена по совершенно иному принципу. При обычной рессорной подвеске каждая пара колес смонтирована на жесткой балке переднего или заднего моста; наезд одного колеса пары на препятствие приводит к наклону балки и к перекосу рамы или кузова, хотя и смягченному рессорами. Кроме того, неподрессореиные, колеблющиеся на неровностях дороги части автомобиля: колеса с тормозами, балки, рессоры имеют большой вес, и их колебания передаются на кузов, расшатывают его и разрушают покрытие дороги. Для устранения этих недостатков применяют независимую подвеску колес.

При независимой подвеске каждое колесо монтируют независимо от другого на качающихся рычагах на особой балке или непосредственно на кузове. Между рычагами и концами балки или специальными площадками кузова ставят витые пружины. В некоторых конструкциях вместо пружин в качестве пружинного элемента используются скручиваемые стержни (торсионы), резиновые блоки, резиновые баллоны с воздухом. Детали независимой подвески весят меньше, чем балка и рессоры прежнего типа; причем к неподрессоренным массам относятся только колеса с тормозами и примерно половина масс деталей подвески, а балка и остальная часть масс подвески становятся подрессоренными.

Независимая подвеска, помимо облегчения неподрессоренной части, выгодно отличается от прежней тем, что каждое колесо автомобиля самостоятельно «приспосабливается» к неровностям дороги, отчего перекосы рамы и кузова значительно уменьшаются.

Независимая подвеска постепенно получила распространение и для задних колес. В последнем случае трансмиссионный вал и главная передача монтируются жестко на раме, а карданные шарниры устанавливаются на качающихся полуосях.

Но рессорная подвеска автомобиля имеет один существенный недостаток: после преодоления препятствия рессора продолжает совершать повторные колебания, которые, хотя и затухают, все же передаются на раму и кузов. Чтобы устранить или уменьшить повторные колебания, в дополнение к рессорам между рамой и осями или между рамой и качающимися рычагами установили гасители колебаний — так называемые амортизаторы.

Наиболее распространенный вид амортизатора — жидкостный (или гидравлический), представляющий собой цилиндр, заполненный вязкой жидкостью и закрепленный на раме или на кузове автомобиля. В цилиндре перемещается поршень, шток которого связан с осью колес или с рычагом подвески. При колебаниях колес поршень амортизатора перегоняет жидкость из одной полости цилиндра в другую. Действие амортизатора напоминает действие насоса. В амортизаторе имеется клапан. В момент толчка перетекание жидкости через клапан лишь незначительно увеличивает сопротивление подвески перемещению колеса (то есть жесткость подвески), а при обратном ходе колеса, когда клапан закрыт, жидкость в амортизаторе перетекает через оставшееся открытым маленькое отверстие и как бы затормаживает раскачку рессор и кузова.

Еще недавно корпусы амортизаторов были тяжелыми, литыми, а связь их поршней с подвеской состояла из системы стоек и рычажков. Теперь амортизаторы выполняют в виде легких трубок, входящих одна в другую, и ставят их внутрь пружин подвески. Такие амортизаторы получили название телескопических.

Облегчение неподрессоренных масс переднего моста продолжается. Вместо громоздких шкворней и цапф колес применяют ажурную конструкцию подвески с шаровыми пальцами, уменьшают колеса. В ряде конструкций ведущего заднего моста с той же целью переносят тормоза с колес на полуоси; тормозные барабаны, укрепленные на картере главной передачи, становятся подрессоренными.

Значительная часть новых автомобилей снабжена вместо витых пружин более простыми стержневыми и допускающими регулировку жесткости путем поворота их в опоре крепления.

Рассматривая некоторые подвески этого типа, можно заметить около задних колес вторую пару стержней. Они автоматически включаются в работу подвески с помощью электрических датчиков и электромотора, когда машина идет с полной нагрузкой.

Закрепление картера силовой передачи на раме или кузове позволяет не только уменьшить неподрессоренные массы, но и перемести коробку передач назад. При этом, во-первых, улучшается распределение веса по колесам и, во-вторых, пол кузова становится более ровным.

Пока подвеска автомобиля была недостаточно совершенной и пока существовала на всех автомобилях рама, кузов устанавливали на раме эластично — на пружинах, толстых войлочных прокладках, резиновых подушках. Это была четвертая после шин, рессор и амортизаторов «прослойка» между дорогой и пассажирами. Когда кузов соединился с рамой в одно целое, эту «прослойку» перенесли на крепление подвески к кузову. Установка рессор и рычагов подвески в резине преследует еще одну цель: теперешние небольшие колеса при наезде на препятствие передают на кузов сравнительно слабые вертикальные толчки, но испытывают сильные удары в горизонтальном направлении; резиновые опоры смягчают и эти удары.

Все сказанное о подвеске относится к созданию удобств для всех обитателей автомобиля. Но главный «житель» автомобиля, его непременный пассажир — водитель. Притом этот пассажир, не только путешествующий и отдыхающий, но и работающий в пути. От него зависит использование возможностей автомобиля для быстрого движения, для плавной и бесшумной работы машины, для безопасности. Поэтому удобствам водителя и облегчению его работы должно быть уделено особое внимание.

Амортизаторы и рессоры автомобиля

Проверить наличие жидкости в амортизаторе и его работу довольно просто. Для этого надо снять амортизатор в сборе с его нижним кронштейном, установить вертикально и, поддерживая кронштейн ногами, вытянуть и опустить несколько раз шток. При исправном амортизаторе сопротивление перемещению штока вверх должно быть больше (примерно втрое), чем сопротивление перемещению вниз.

Рис. 1. Схема проверки развала колес

В положениях штока, близких к крайним, не должно ощущаться уменьшения сопротивления или упругости, свидетельствующего о наличии в рабочем цилиндре воздуха. Если шток перемещается свободно, значит рабочей жидкости мало и ее следует долить до нормального уровня (уровень жидкости в гидравлическом амортизаторе должен быть на 1 см ниже торца цилиндра), а при необходимости подтянуть ослабленную гайку резервуара.

Амортизатор должен быть всегда сухим, так как подтекание жидкости неизбежно ухудшает его нормальную работу, появляются стук и скрипы при ходе отдачи или при ходе сжатия. При обнаружении подтекания или потери эффективности действия амортизатора, а также при деформации его кожуха в результате ударов амортизатор следует заменить новым на СТО.

Рис. 2. Амортизатор передней подвески автомобиля ВАЗ

Проверяя амортизаторы, необходимо убедиться также и в исправности верхнего и нижнего их креплений, в которых не должно быть люфтов или износа и разрушения резиновых подушек и втулок в нижнем шарнире. Обнаруженные неисправные втулки следует заменить.

Если при движении автомобиль наклоняется в сторону, следовательно неисправна подвеска, а именно появилась поломка одного или нескольких листов рессоры, произошла односторонняя осадка задней рессоры или пружины передней подвески. В этом случае неисправные детали заменяют на СТО.

Рис. 3. Задняя подвеска автомобиля «Москвич-2140»

Нередко в ходовой части автомобиля появляются стуки или скрип рессор. Чтобы обнаружить их причины, необходимо проверить состояние резиновых буферов, резиновых втулок, кронштейнов крепления амортизаторов, серьги и кронштейна крепления концов рессоры, хомутов крепления листов рессоры, противоскрипных полиэтиленовых шайб, которые установлены между листами рессор, наличие смазки между листами. В этих случаях изношенные детали заменяют, листы рессор при необходимости смазывают.

Наибольшие удобства при движении автомобиля достигаются при наличии мягкой подвески. Удары и толчки, которые испытывают колеса автомобиля при движении по неровной дороге, передаются на раму тем меньше, чем мягче рессоры. Чем длиннее рессора и чем больше листов меньшей толщины в нее входит, тей она мягче. Но мягкие рессоры обладают существенным недостатком — их колебания, имеющие большую амплитуду, затухают очень медленно. Колебания рессор гасятся благодаря трению между их листами. Для более быстрого гашения собственных колебаний рессор и повышения их долговечности на,автомобиле устанавливают специальные устройства, называемые амортизаторами. Амортизаторы гидравлического типа ставят на всех легковых автомобилях и на большинстве грузовых.

Сопротивление колебательным движениям рамы в гидравлическом амортизаторе создается при перекачивании жидкости через небольшие отверстия в его корпусе. При увеличении скорости относительных перемещений оси и рамы резко возрастает сопротивление амортизатора. Амортизаторы заполняют специальной жидкостью, вязкость которой мало изменяется в зависимости от окружающей температуры.

Колебания рамы можно представить себе состоящим из двух следующих движений:
— хода сжатия рессоры, когда рама и мост сближаются;
— хода отдачи, когда рама и мост расходятся.

Амортизатор одностороннего действия гасит колебания лишь во время хода отдачи. Амортизатор двустороннего действия способствует более плавной работе подвески, так как поглощает энергию колебаний как при отдаче, так и при сжатии. Вследствие этого амортизаторы двустороннего действия почти полностью вытеснили амортизаторы одностороннего действия.

Сопротивление, создаваемое амортизатором двустороннего действия, неодинаково при сжатии и отдаче., Сопротивление при сжатии составляет 20—25% сопротивления при отдаче, так как необходимо, чтобы амортизатор гасил в основном свободное колебание подвески при отдаче и не увеличивал жесткость рессор при сжатии. В подвесках легковых автомобилей и автобусов ставят четыре амортизатора, а в подвесках грузовых автомобилей — два (только в передней подвеске).

Рис. 4. Схема передачи толкающего усилия от ведущего моста на раму автомобиля через механизм подвески

Рис. 5. Телескопический амортизатор; А — отверстие для слива жидкости в резервуар; Б — полость резервуара; 1 — проушины; 2 — гайка резервуара; 3 — сальник штока; 4 — сальник обоймы; 5 — перепускной клапан отдачи; 6 — отверстия наружного ряда; 7 — клапан- отдачи; 8, 11 а 22 — пружины; 9 — перепускной клапан сжатия; 10 — клапан сжатия; 12 — гайка; 13 — отверстия перепускного клапана; 14 — поршень; 15 — отверстия внутреннего ряда; 16 — поршневое кольцо; 17 — корпус резервуара; 18 — рабочий цилиндр; 19 — шток поршня; 20 — направляющая штока; 21 — сальник направляющей; 23 — обойма сальников; 24 — войлочные сальники штока

Рабочий цилиндр амортизатора и часть окружающего его наружного корпуса заполнены специальной жидкостью. Внутри цилиндра помещен поршень со штоком, к концу которого приварена проушина. Этой проушиной штока амортизатор соединен с рамой или кузовом, а проушиной корпуса — с балкой моста или рычагом колеса.

Сверху цилиндр закрыт направляющей штока, а снизу — днищем, являющимся одновременно корпусом клапана сжатия. В поршне по окружностям разного диаметра равномерно расположены два ряда отверстий. Отверстия на большом диаметре закрыты сверху тарельчатым перепускным клапаном отдачи. Отверстия на малом диаметре закрыты снизу дисками клапана отдачи, поджатого пружиной. В нижней части цилиндра запрессован корпус клапана сжатия, состоящий из тарельчатого перепускного клапана сжатия, пружины, дисков клапана сжатия и пружины. В корпусе клапана сжатия, аналогично клапану отдачи, имеются два ряда отверстий, расположенных на большом и малом диаметре. Отверстия на большом диаметре закрыты, сверху перепускным Клапаном, а отверстия на малом диаметре закрыты снизу дисками клапана сжатия. Для работы амортизатора большое значение имеет герметичность его полостей. Поэтому верхний конец штока уплотнен резиновыми сальниками.

Во время плавного хода сжатия рессоры в случае наезда колеса не небольшое препятствие, шток и поршень, опускаясь вниз, вытесняют основную часть жидкости из пространства под поршнем в пространство над поршнем через перепускной клапан отдачи, имеющий слабую пружину и незначительное сопротивление. При этом часть жидкости, равная объему штока, вводимого в рабочий цилиндр, через калиброванные отверстия клапана сжатия перетекает в полость резервуара. Сопротивление хода сжатия в основном пропорционально квадрату скорости перетекания.

При резком ходе сжатия и большой скорости движения поршня возросшее давление жидкости открывает клапан сжатия на большую величину, преодолевая сопротивление пружины, вследствие чего уменьшается нарастание сопротивления перетекания жидкости.

Во время хода отдачи поршень движется вверх и сжимает жидкость, находящуюся над поршнем. Перепускной клапан закрывается, и жидкость через внутренний ряд отверстий и клапан отдачи перетекает в пространство под поршнем. Необходимое сопротивление амортизатора создается жесткостью дискового клапана отдачи и его пружиной. При этом часть жидкости, равная объему штока, выводимого из цилиндра, через отверстия и перепускной клапан сжатия из полости П резервуара перетекает в рабочий цилиндр. При резком ходе отдачи жидкость открывает клапан отдачи на более значительную величину, преодолевая сопротивление пружины.

Сопротивление амортизатора определяется размерами отверстий в корпусах клапанов отдачи и сжатия и усилиями их пружин. Подвеска оказывает большое влияние на безопасность дорожного движения, поэтому на ее состояние всегда обращают самое серьезное внимание.

Необходимость быстрого гашения колебаний подвески передних колес требует установки амортизаторов. На современных автомобилях с дизельными двигателями применяют телескопические амортизаторы. Эти амортизаторы гасят колебания подвески как при подъеме, так и при опускании колеса, и являются амортизаторами двойного действия.

Принцип работы телескопического гидравлического амортизатора основан на сопротивлении, оказываемом заполняющей амортизатор жидкостью при перемещении подвижных частей, связанных с элементами подвески и колесом. Перетекание жидкости из одной полости амортизатора в другую через отверстие малого сечения вызывает гидравлическое сопротивление и приводит к гашению колебаний.

Верхней головкой амортизатор крепится к лонжерону рамы, а нижней — к кронштейну на балке переднего моста. В проушины головки вставлены резиновые втулки, смягчающие ударные нагрузки и предотвращающие поломки при перекосах. В амортизаторах последних образцов в проушины устанавливаются разъемные втулки с поджимом.

Устройство телескопического амортизатора показано на рис. 90. В полом корпусе 6 амортизатора установлен цилиндр, заполненный амортизаторной жидкостью. В цилиндре перемещается поршень, установленный на штоке 5, соединенном с верхней головкой амортизатора. В самом поршне имеются Два клапана: перепускной и клапан отдачи. Отверстия в днище поршня, расположенные по большой окружности,

перекрываются сверху перепускным клапаном. Отверстия, расположенные по малой окружности, перекрываются снизу клапаном отдачи. Для лучшего уплотнения на цилиндрической поверхности поршня выполнены две канавки, в которые установлены уплот-нительные кольца.

В днище цилиндра установлены впускной клапан и клапан сжатия. Шток, проходящий через направляющую в верхней части цилиндра, крепится к кронштейну рамы автомобиля. Направляющей штока служит бронзовая втулка, а для его уплотнения установлен резиновый сальник, поджимаемый через шайбу пружиной. Текстолитовые шайбы и войлочное кольцо дополнительно защищают сальник от попадания в него грязи и пыли.

Снизу корпус амортизатора закрыт вставным днищем, на которое опирается нижнее основание цилиндра. Днище корпуса представляет одно целое с нижней головкой амортизатора, имеющей проушину для крепления с кронштейном на балке передней оси.

Работает телескопический амортизатор следующим образом. В момент сжатия рессоры, вызванный наездом колеса на препятствие, поршень со штоком движется вниз. При этом давление в полости цилиндра под поршнем возрастает, в результате чего открывается перепускной клапан, и жидкость перетекает через отверстия, расположенные по внешнему кругу на поршне, в полость над ним. В то же время клапан отдачи прижимается снизу к поршню и перекрывает отверстия, расположенные по внутреннему кругу поршня.

Рис. 6. Телескопический амортизатор:
1 — верхняя головка; 2 — войлочное кольцо штока; 3 — сальник; 4 — пружина сальника; 5 — шток; 6 — корпус; 7 — цилиндр; 8 — перепускной клапан; 9 — уплотнительное кольцо; 10 — поршень; 11 — клапан отдачи; 12 — впускной клапан; 13 — клапан сжатия

Резкое сжатие рессоры вызывает быстрое нарастание давления под поршнем; при этом происходит открытие клапана сжатия, и часть жидкости проходит через этот клапан из цилиндра в резервуар. Под действием жидкости, поступающей из цилиндра в резервуар при ходе сжатия, воздух, находящийся в верхней части резервуара, сжимается.

Распрямление рессоры вызывает ход отдачи, при этом шток с поршнем перемещается вверх, давление жидкости в полости над поршнем повышается, и она проходит в нижнюю часть цилиндра через калиброванные отверстия, расположенные на поршне по внутреннему кругу. Следует иметь в виду, что при ходе отдачи шток выходит из цилиндра и соответственно освобождает объем внутри него. Этот объем заполняется жидкостью, перетекающей через открывающийся впускной клапан из резервуара под давлением воздуха, сжатого в его верхней части.

При резком ходе поршня вверх открывается клапан отдачи, через который и перетекает жидкость из верхней полости цилнлдра в нижнюю.

Что такое пружины и как работают пружины?

Что такое пружины и как работают пружины?

Опубликовано 16 декабря 2020 г. автором IDC Spring

Пружины являются важными компонентами тяжелой техники, гаражных ворот и других устройств в различных отраслях промышленности. Пружины существуют всех форм и размеров и состоят из различных материалов. Независимо от того, работаете ли вы в обрабатывающей промышленности или специализируетесь на установке гаражных ворот, вы полагаетесь на высококачественные пружины для производства высококачественного продукта.

Многие пружины изготавливаются на заказ для конкретных применений. Другие производятся серийно с учетом определенных функций. Когда для вашей гаражной двери или оригинального оборудования требуется определенная пружина, вам нужно точно знать, какой тип использовать. Вы хотите, чтобы ваши клиенты были довольны, и иногда все сводится к использованию правильной пружины.

Что такое весна?

Пружина — это упругий объект, который накапливает механическую энергию и высвобождает ее при снятии противодействующей силы.Если вам нужно применить силу, чтобы создать движение или удержать что-то на месте без использования двигателей или других силовых средств, ответом могут быть пружины.

Когда вы думаете о пружинах, вы, вероятно, представляете себе классические винтовые пружины из металла цилиндрической формы. Вы можете обнаружить, что они встроены в пружинный механизм для приложения силы к объекту или от него. Хотя металлические винтовые пружины, подобные этим, легко узнаваемы, они представляют собой лишь часть существующих пружин. Чтобы понять их универсальность и функции, вам следует больше узнать об истории пружин.

Пружины

обеспечивают механические решения для многих ситуаций и нужд на протяжении сотен лет. Они приняли множество форм. По сути, спиральная пружина является современным изобретением по сравнению с первыми типами пружин. Одним из первых способов, которым люди использовали пружины, было создание лука и стрел для охоты, защиты и ведения войны. В этом типе пружины явно отсутствуют витки.

Винтовые пружины были впервые представлены с появлением дверных замков. Способность спиральной пружины принимать различные размеры и накапливать механическую энергию придавала замкам безопасность и подвижность, в которых они нуждались.Вскоре после этого изобретатели начали использовать пружины в часах и карманных часах. Их настраиваемое и постоянное натяжение имело решающее значение для сохранения точного времени.

Сегодня люди используют пружины в самых разных приложениях и проектах. Они являются незаменимым компонентом многих устройств, на которые люди полагаются ежедневно, от самых маленьких игрушек до самых больших машин. Автомобили, строительная техника и гаражные ворота зависят от хранения и высвобождения механической энергии, которую предлагают пружины. Пружины важны, но как именно они работают?

Как работают пружины

Вспомните самый ранний пример пружины: лук и стрелы.Лучник надрезает стрелу на тетиве лука и тянет ее назад, применяя обратное натяжение. Это сохраняет механическую энергию в луке, так как лук хочет вернуться в исходное состояние. Когда лучник выпускает стрелу, тетива быстро возвращается в исходное положение, отправляя стрелу вперед. Это высвобождение механической энергии, которую лучник приложил при оттягивании назад.

Если лучник натянет лук с большой силой, стрела также выстрелит с большой силой.Если лучник слабо отступит, стрела выстрелит без особого усилия и упадет на землю. Эта взаимосвязь между приложенной силой и механической энергией присутствует во всех пружинах на протяжении всей истории. Энергия, которую высвобождает пружина, прямо пропорциональна количеству энергии, которое кто-то прикладывает к ней. Это определяющая характеристика пружин, а также то, что делает их такими полезными.

Материал пружины также играет роль в соотношении между накопленной и высвобождаемой механической энергией.Если вышеупомянутый лук состоит из гибкого дерева и натянутой тетивы, лучнику будет легко натянуть его назад. Лучник прилагает мало усилий к луку, что приводит к высвобождению небольшой силы, когда он или она отпускает лук.

Люди могут делать разные луки для разных целей. Ребенок может быть не в состоянии натянуть лук взрослого из-за того количества начальной механической энергии, которое ему требуется. Тот же ребенок может преуспеть с тренировочным луком, для натягивания которого требуется гораздо меньше энергии.

Тот же принцип применим ко всем пружинам. Спиральные пружины бывают разных материалов и прочности для разных целей. Пружина, которая удерживает батарею на месте в пульте дистанционного управления, слабее, чем пружины гаражных ворот, которые удерживают на месте тяжелую дверь. Оба пружинные. Оба выполняют разные функции.

Типы пружин

Существует три основных типа спиральных пружин: сжатия, кручения и растяжения. Каждый из них служит разным целям и пригодится в определенных ситуациях.

Как работают пружины сжатия?

Спиральные пружины, которые накапливают механическую энергию за счет сжатия и высвобождают ее наружу, представляют собой механические пружины сжатия. Эти пружины удерживают вес и уменьшаются в размерах под воздействием этой силы. Уберите силу, и пружина снова растянется, высвобождая запасенную механическую энергию.

Пружины сжатия

способны на это благодаря их шагу. Шаг пружины – это расстояние между витками. При сжатии шаг пружины уменьшается, накапливая механическую энергию до тех пор, пока она не сможет снова расшириться до своего первоначального размера.

Как работают торсионные пружины?

В отличие от пружин сжатия, которые сжимаются при накоплении энергии, пружины кручения скручиваются для передачи механической энергии. Рассмотрим дверную ручку. Когда вы прикладываете силу и поворачиваете ручку, при повороте вы испытываете небольшое сопротивление. Это накапливает механическую энергию в торсионной пружине внутри рукоятки. Как только вы отпускаете ручку, она возвращается в исходное положение в соответствии со спецификациями торсионной пружины.

Пружины кручения являются обычными компонентами гаражных ворот.Торсионные пружины гаражных ворот необходимы в системе противовеса ворот. Они обеспечивают сопротивление, необходимое для того, чтобы дверь оставалась открытой или закрытой, когда вы этого хотите, а также облегчают движение, когда вы прикладываете необходимое усилие.

Как работают пружины растяжения?

Механические пружины растяжения представляют собой туго закрученные винтовые пружины без шага между витками. Пружины растяжения растягиваются, когда вы прикладываете к ним силу, раздвигая витки. Их сопротивление этой силе накапливает механическую энергию внутри катушки.Когда вы снимаете силу, пружина высвобождает свою механическую энергию, возвращаясь в исходное состояние без шага между витками.

Пружины растяжения

— отличный выбор, когда вам нужно вернуть объект в исходное положение после приложения силы к пружине. Вот почему пружины выдвижения гаражных ворот являются обычным компонентом систем открывания гаражных ворот. Они натягивают ворота гаража и помогают им двигаться в системе шкивов.

Получите нужные вам пружины от IDC Spring

Пружины являются важной частью производства и производства гаражных ворот.Если вы ищете компанию для производства пружин, необходимых для вашей продукции, обратите внимание на IDC Spring. Имея собственные производственные предприятия в Миннесоте, Огайо и Аризоне, мы можем удовлетворить ваши потребности в любой точке США. Мы знаем, что вашей конечной целью является сделать ваших клиентов и клиентов счастливыми, и мы хотим помочь вам достичь этого с помощью высококачественных пружин, которые выполнят свою работу.

Нужны ли вам индивидуальные механические пружины или нужные пружины для гаражных ворот, IDC Spring поможет вам.Мы — ваше комплексное решение для всех ваших весенних потребностей, независимо от вашей задачи или местоположения. Когда дело доходит до качества вашего конечного продукта, не полагайтесь на некачественную пружину. В IDC Spring мы придерживаемся традиции качества и предлагаем обслуживание клиентов, которого вы заслуживаете. Позвоните нам сегодня по телефону 800-899-7945 или запросите предложение, чтобы получить качественные пружины, которые вам нужны.

Как работают пружины? | Как пружины накапливают энергию?

Как работают пружины? | Как пружины накапливают энергию? Реклама

Если вы похожи на меня и любите разбирать вещи на части, пружины ваш враг. Попробуйте снова собрать гаджет или машину опять же позже, и это пружины часто побеждают вас: только где же они уходят, и как же они снова вписываются? В их большинстве привычная форма, пружины — это закаленные спирали металла, которые помогают вещам вернуться в определенное положение, но их также можно использовать для поглощения энергию (как в подвеске автомобиля) или хранить ее в течение длительного периода времени (как в часах и часах).Вы можете найти пружины во всем, от автоматические двери для шариковых ручек. Давайте подробнее рассмотрим, как они работают!

Фото: Натянутые спиральные пружины из нержавеющей стали на настольной лампе. Все винтовые пружины имеют одинаковую базовую форму спирали, но бывают разных размеров, от крошечных, которые можно найти в шариковых ручках, до огромных, которые наматываются на амортизаторы автомобилей.

Что такое пружина?

Фото: Сделайте бумажную пружину, нарисовав спираль на бумаге или картоне.Затем просто обрежьте линию ножницами. Вы удивитесь, какая весенняя эта весна!

Типичная пружина представляет собой туго закрученный виток или спираль из металла, растягивается, когда вы тянете его (прикладываете силу) и возвращается в исходное положение. первоначальная форма, когда вы снова отпустите ее (уберите силу). В других словом, пружина упругая. Я не имею в виду, что он сделан из резины; Я имею в виду, что он имеет эластичность : оно становится длиннее, когда применяется напряжение, но (при условии сильно не растягивайте) возвращается точно к своей первоначальной длине когда это напряжение будет удалено.В зависимости от того, как изготовлена ​​пружина, может работать и наоборот: если его сжать, он сжимается но возвращается к своей первоначальной длине при снятии толкающей силы.

Вы можете сделать пружину более или менее из чего угодно — даже бумагу или апельсиновую корку! Но пружины, которые мы используем в машинах, работают эффективно только в том случае, если они достаточно жесткие, чтобы выдерживать тяговое усилие, и прочные достаточно, чтобы быть растянутым много раз без разрыва. Обычно это означает, что они должны быть изготовлены из таких материалов, как нержавеющая сталь или прочные сплавы, такие как бронза.Некоторые сплавы обладают свойством, называемым памятью формы, что означает, что они естественным образом упругий. Оправы для очков часто изготавливают из никеля. титановый сплав с памятью формы, называемый нитинол, продается под такими торговыми марками, как Flexon®.

Как работает пружина?

Представьте, что у вас есть кусок прямой стальной проволоки длиной около 10 см (4 дюйма). длинный — что-то вроде длинной скрепки, которую вы развернули. Если вы потянете его пальцами растянуть его крайне сложно. Катушка это вокруг карандаша и, приложив немного усилий, вы сможете сделать себе небольшой, но идеально действующая пружина.Теперь потяните или толкните его пальцами, и вы обнаружить, что вы можете растянуть и сжать его довольно легко.


Фото: Из скрепки легко сделать простую винтовую пружину.

Почему этот когда-то упрямый кусок металла вдруг стал таким послушным? Почему пружина действительно легко растягивается и сжимается, когда один и тот же кусок металл в форме проволоки так неохотно менял форму?

Рекламные ссылки

Когда материал находится в своей первоначальной форме, его растяжение включает в себя вытягивание атомов из их положения в кристалле металла решетка — и это относительно трудно сделать.Когда вы делаете пружину (как вы обнаружите, если попробуете согнуть скрепку), вам придется потрудиться немного согнуть металл в форму, но это далеко не так сложно. Когда вы сгибаете проволоку, вы используете энергию в процессе, и часть этой энергии сохраняется в весна; Другими словами, он предварительно напряжен. Когда пружина сформирована, ее форму легко изменить. еще немного: чем больше металлических витков в пружине, тем легче это растянуть или сжать его. Вам нужно только сдвинуть каждый атом в спиральная пружина на небольшую величину, и вся пружина может растягиваться или выжимать на удивление много.

Фото: Попробуйте согнуть пружину и вы почувствуете сила, которую вы должны использовать, чтобы удержать его там. Для деформации пружины (изменения ее формы) требуется энергия: эта энергия запасается весной, и вы можете использовать его снова позже.

Пружины

отлично подходят для хранения или поглощения энергии. Когда вы используете толкающее или тянущее усилие для растяжения пружины, которое вы используете сила на расстоянии, поэтому, с точки зрения физики, вы выполняете работ и используя энергию. Чем туже пружина, тем труднее ее деформировать, тем больше работы вам нужно сделать, и тем больше энергии вам нужно.Энергия который вы используете, не теряется: большая его часть хранится в виде потенциальной энергии в весна. Отпустите растянутую пружину, и вы сможете использовать ее для выполнения работы за ты. Когда вы заводите механические часы или часы, вы накапливаете энергию затягиванием пружины. Когда пружина ослабевает, энергия медленно выпущен, чтобы привести в действие механизмы внутри и повернуть руки вокруг циферблат в течение дня или более. Катапульты и арбалеты работают в аналогичный способ, за исключением того, что они используют витки резины для своих пружин вместо катушек и спиралей из металла.

«Зацеп» на пружинах

Работа: обложка книги Роберта Гука 1678 года «Lectures de Potentia Restitutiva, или о весне, объясняющей силу пружинящих тел».

Чем больше вы растягиваете пружину, тем длиннее она становится, тем больше работы вы выполняете и тем больше энергии она сохраняет.

Если вы потянете обычную пружину в два раза сильнее (с удвоенной силой), она растянется в два раза сильнее, но только до точки, называемой пределом упругости.

В физике это простое описание упругости (как вещи стрейч) известен как закон Гука по имени открывшего его английского ученого Роберт Гук (1635–1703).

Закон Гука

Вот диаграмма, показывающая закон Гука в действии. Вы можете видеть, что чем большую «нагрузку» вы прикладываете к пружине (чем большую силу вы прикладываете, показано на вертикальной оси), тем больше пружина «растягивается» (показано на горизонтальной оси). Закон Гука гласит, что удлинение (растяжение) пропорционально нагрузке, поэтому нижняя (красная) часть графика представляет собой прямую линию. В этой области пружина упругая: она возвращается в исходное положение. оригинальный размер, когда вы отпустите.

Однако на графике можно увидеть нечто большее. Если вы продолжите растягиваться за пределы синей точки (предел эластичности), вы растянете пружину настолько, что она уже не вернется к своей первоначальной длине. В этом часть графика (показана желтым и красным), даже небольшая дополнительная сила может заставить пружину растянуться на много — это почти как лакрица или жевательная резинка. В этой области пружина уже не упругая, а «пластиковый» (он постоянно деформируется).

Еще Гук

Гук был совершенным эрудитом: если не считать его закона упругости, который он обнаруженный в 1660 году и опубликованный в 1678 году, он наиболее известен как один из главных пионеров микроскопии, но он активно работал во многих других областях, от архитектуры и астрономии до изучения памяти и окаменелостей.

Типы пружин

Фото: Листовые рессоры обеспечивают грубую подвеску этого старого железнодорожного грузовика.

Вы могли бы подумать, что весна есть весна, но вы бы неправильный! Есть несколько совершенно разных видов. Самый знакомый это винтовые пружины (как те, что вы найдете в ручках и тот, который мы сделали выше из скрепки): цилиндры из проволоки, обернутые по окружности фиксированного радиуса. Спираль пружины аналогичны, но виток постепенно уменьшается по мере достижения центр; наша бумажная пружина тому пример.Нежная спиралька, помогающая следить за временем часы — еще один пример такой пружины. Пружины кручения работают как резинка в катапульте или многократно скрученная между пальцами резинка: правильные сделаны из жестких кусков металла, которые вращаются вокруг своей оси. Листовые рессоры представляют собой наборы изогнутых металлических стержней. которые поддерживают колеса автомобиля или железнодорожной тележки и изгибаются и вниз, чтобы сгладить горбы и неровности.

Пружины также различаются по тому, как они сопротивляются силам или накапливают энергию.Некоторые предназначены для поглощения энергии и силы, когда вы их сжимаете; их катушки начинают слегка вытягиваться и сжиматься вместе когда вы прилагаете усилие, поэтому они называются пружинами сжатия . Противоположное происходит с пружинами растяжения (иногда называемыми пружинами растяжения): они начинают сжимаются и сопротивляются силам, которые пытаются их растянуть. Пружины кручения имеют горизонтальные стержни на двух концах, поэтому они могут сопротивляться скручиванию чего-либо. или вращающийся.

Анимация: пружины сжатия предназначены для поглощения сил путем сжатия друг друга.Пружины растяжения работают наоборот, растягиваясь при приложении силы. Торсионные пружины имеют параллельные стержни на конце, которые останавливают вращение чего-либо (или возвращают его в исходное положение, если это происходит).

Не все пружины работают, растягивая и сжимая куски металла, пластика или другого материала. твердый материал. Совершенно другая конструкция предполагает использование поршня, который движется назад. и вперед в цилиндре с жидкостью (газом, жидкостью, а иногда и с тем и другим), что-то вроде велосипедного насоса, очень тяжело входить и выходить.Подробнее об этом читайте в нашей статье о газовые пружины.

Для чего используются пружины?

Фото: Пружина заводной игрушки. Когда вы заводите игрушку, вы сжимаете пружину в более плотное пространство, чтобы накапливать энергию, которая необходима. отпускается, когда игрушка начинает двигаться.

Откройте шариковую ручку (одну из тех, что с кнопкой, которую вы нажимаете). чтобы втянуть шарик) и внутри вы найдете пружину. Посмотрите под автомобиль, и там тоже есть пружины, помогающие амортизаторам сгладить неровности дороги.В часах есть пружины и часы, как мы уже видели. И в машине есть пружина спидометр (по крайней мере, один из старомодных механических). Как только вы начнете наблюдать за весенними пятнами, вы обнаружите, что можете видеть родники. повсюду!

Из каких материалов изготавливаются пружины?

Фото: Когда весна не весна? Многим повседневным вещам нужна «пружина», даже если они не пружины. Например, пластиковый зажим для лацкана этой перьевой ручки сгибается (до определенной степени), поэтому надежно удерживается в кармане.Это не пружина как таковая, но она точно так же тщательно спроектирована.

Пружины обычно изготавливаются из пружинных сталей , которые представляют собой сплавы на основе железо, с небольшое количество углерода (около 0,6–0,7 процента), кремния (0,2–0,8 процента), марганца (0,6–1 процента) и хром (0,5–0,8%). Точный состав пружинной стали зависит от свойств, которые вы хотите, чтобы она имела, в том числе нагрузки, которые он должен будет выдерживать, сколько циклов напряжений и деформаций он будет подвергать, температуры, при которых он должен работать, должен ли он выдерживать нагрев или коррозию, насколько хорошо он должен проводить электричество, насколько «пластичным» (легким в форме) он должен быть во время его первоначального изготовления и придания формы и так далее.Как правило, пружины изготавливаются из стали с содержанием углерода от среднего до высокого (это означает небольшое количество углерода в общей смеси, но больше, чем в других видах стали). Обычно их подвергают какой-либо форме термической обработки, например отпуску, чтобы обеспечить их прочность и способность выдерживать множество циклов нагрузок и деформаций, другими словами, так что вы можете растягивать или сжимать их много раз, не ломая их. Пружины обычно выходят из строя из-за усталости металла , что означает, что они внезапно трескаются после многократного перемещения вперед и назад.На микроскопическом уровне ни одна пружина не является по-настоящему эластичной: каждый раз, когда она проходит через цикл растяжения (растяжение или сжатие, а затем возвращение к исходному размеру), ее внутренняя структура очень незначительно меняется, и внутри могут образовываться и расти крошечные «микротрещины». Это. В какой-то момент в будущем он обязательно выйдет из строя: пружина сломается, когда трещина станет достаточно большой. Наука о материалах учит нас тому, что способ изготовления пружин чрезвычайно важен для их долговечности. Например, если вы не используете правильную температуру закалки при изготовлении стали, вы получите более слабую сталь и более слабую пружину, которая, скорее всего, выйдет из строя быстрее.

Рекламные ссылки

Узнать больше

На этом сайте

Книги

Для юных читателей
  • Изготовление машин с пружинами, Крис Окслейд. Raintree, 2015. 32-страничное практическое введение для 2–4 классов, 7–9 лет.
  • Магниты и пружины Кэрол Баллард. Hachette, 2014. 32-страничное руководство (2–4 классы, 7–9 лет). Вы можете задаться вопросом, почему магниты и пружины закрыты вместе; так получилось, что некоторые учебные программы по естественным наукам учат этому.
  • Springs Анджела Ройстон. Heinemann/Raintree, 2003. Для младших читателей (2–4 классы, 7–9 лет).
Для читателей постарше
  • Материалы для пружин Y. Yamada. Springer, 2007. Описывает качества, необходимые для различных типов пружин и различных металлов, сплавов и других материалов (пластиков, композитов, керамики и т. д.), используемых для их изготовления. Для профессиональных инженеров и студентов инженерных специальностей.
  • Выбор материалов в механическом проектировании, Майкл Ф.Эшби. Butterworth-Heinemann, 2016. Хорошее введение в идею использования материаловедения в инженерии.
Патенты
  • Патент США 3,468,527: Спиральная пружина Гленна Мазера, North American Rockwell/Boeing, 1968 г. Интересный технический взгляд на конструкцию винтовых пружин.
  • Патент США 3,062,526: Подвеска транспортного средства с листовой рессорой, Джон А. Рериг, 1962 г. Типичная подвеска с листовой рессорой, которая автоматически настраивается в соответствии с весом, который несет автомобиль.
  • Патент США 3,468,527 : Барабан с заводной пружиной для часов А.Н. Gauthier, 1894. Описывает механизм накопления энергии спиральной часовой пружины.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты

Статьи с этого веб-сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и/или нарушение смежных прав может повлечь за собой серьезные гражданские или уголовные санкции.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условия использования.

Flexon является зарегистрированным товарным знаком Marchon Eyewear, Inc.

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее или рассказать о ней своим друзьям:

Цитировать эту страницу

Вудфорд, Крис. (2010/2020) Пружины. Получено с https://www.объясните, чтоstuff.com/how-springs-work.html. [Доступ (вставьте дату здесь)]

Подробнее на нашем сайте…

Как работают пружины? | Как пружины накапливают энергию?

Как работают пружины? | Как пружины накапливают энергию? Реклама

Если вы похожи на меня и любите разбирать вещи на части, пружины ваш враг.Попробуйте снова собрать гаджет или машину опять же позже, и это пружины часто побеждают вас: только где же они уходят, и как же они снова вписываются? В их большинстве привычная форма, пружины — это закаленные спирали металла, которые помогают вещам вернуться в определенное положение, но их также можно использовать для поглощения энергию (как в подвеске автомобиля) или хранить ее в течение длительного периода времени (как в часах и часах). Вы можете найти пружины во всем, от автоматические двери для шариковых ручек. Давайте подробнее рассмотрим, как они работают!

Фото: Натянутые спиральные пружины из нержавеющей стали на настольной лампе.Все винтовые пружины имеют одинаковую базовую форму спирали, но бывают разных размеров, от крошечных, которые можно найти в шариковых ручках, до огромных, которые наматываются на амортизаторы автомобилей.

Что такое пружина?

Фото: Сделайте бумажную пружину, нарисовав спираль на бумаге или картоне. Затем просто обрежьте линию ножницами. Вы удивитесь, какая весенняя эта весна!

Типичная пружина представляет собой туго закрученный виток или спираль из металла, растягивается, когда вы тянете его (прикладываете силу) и возвращается в исходное положение. первоначальная форма, когда вы снова отпустите ее (уберите силу).В других словом, пружина упругая. Я не имею в виду, что он сделан из резины; Я имею в виду, что он имеет эластичность : оно становится длиннее, когда применяется напряжение, но (при условии сильно не растягивайте) возвращается точно к своей первоначальной длине когда это напряжение будет удалено. В зависимости от того, как изготовлена ​​пружина, может работать и наоборот: если его сжать, он сжимается но возвращается к своей первоначальной длине при снятии толкающей силы.

Вы можете сделать пружину более или менее из чего угодно — даже бумагу или апельсиновую корку! Но пружины, которые мы используем в машинах, работают эффективно только в том случае, если они достаточно жесткие, чтобы выдерживать тяговое усилие, и прочные достаточно, чтобы быть растянутым много раз без разрыва.Обычно это означает, что они должны быть изготовлены из таких материалов, как нержавеющая сталь или прочные сплавы, такие как бронза. Некоторые сплавы обладают свойством, называемым памятью формы, что означает, что они естественным образом упругий. Оправы для очков часто изготавливают из никеля. титановый сплав с памятью формы, называемый нитинол, продается под такими торговыми марками, как Flexon®.

Как работает пружина?

Представьте, что у вас есть кусок прямой стальной проволоки длиной около 10 см (4 дюйма). длинный — что-то вроде длинной скрепки, которую вы развернули.Если вы потянете его пальцами растянуть его крайне сложно. Катушка это вокруг карандаша и, приложив немного усилий, вы сможете сделать себе небольшой, но идеально действующая пружина. Теперь потяните или толкните его пальцами, и вы обнаружить, что вы можете растянуть и сжать его довольно легко.


Фото: Из скрепки легко сделать простую винтовую пружину.

Почему этот когда-то упрямый кусок металла вдруг стал таким послушным? Почему пружина действительно легко растягивается и сжимается, когда один и тот же кусок металл в форме проволоки так неохотно менял форму?

Рекламные ссылки

Когда материал находится в своей первоначальной форме, его растяжение включает в себя вытягивание атомов из их положения в кристалле металла решетка — и это относительно трудно сделать.Когда вы делаете пружину (как вы обнаружите, если попробуете согнуть скрепку), вам придется потрудиться немного согнуть металл в форму, но это далеко не так сложно. Когда вы сгибаете проволоку, вы используете энергию в процессе, и часть этой энергии сохраняется в весна; Другими словами, он предварительно напряжен. Когда пружина сформирована, ее форму легко изменить. еще немного: чем больше металлических витков в пружине, тем легче это растянуть или сжать его. Вам нужно только сдвинуть каждый атом в спиральная пружина на небольшую величину, и вся пружина может растягиваться или выжимать на удивление много.

Фото: Попробуйте согнуть пружину и вы почувствуете сила, которую вы должны использовать, чтобы удержать его там. Для деформации пружины (изменения ее формы) требуется энергия: эта энергия запасается весной, и вы можете использовать его снова позже.

Пружины

отлично подходят для хранения или поглощения энергии. Когда вы используете толкающее или тянущее усилие для растяжения пружины, которое вы используете сила на расстоянии, поэтому, с точки зрения физики, вы выполняете работ и используя энергию. Чем туже пружина, тем труднее ее деформировать, тем больше работы вам нужно сделать, и тем больше энергии вам нужно.Энергия который вы используете, не теряется: большая его часть хранится в виде потенциальной энергии в весна. Отпустите растянутую пружину, и вы сможете использовать ее для выполнения работы за ты. Когда вы заводите механические часы или часы, вы накапливаете энергию затягиванием пружины. Когда пружина ослабевает, энергия медленно выпущен, чтобы привести в действие механизмы внутри и повернуть руки вокруг циферблат в течение дня или более. Катапульты и арбалеты работают в аналогичный способ, за исключением того, что они используют витки резины для своих пружин вместо катушек и спиралей из металла.

«Зацеп» на пружинах

Работа: обложка книги Роберта Гука 1678 года «Lectures de Potentia Restitutiva, или о весне, объясняющей силу пружинящих тел».

Чем больше вы растягиваете пружину, тем длиннее она становится, тем больше работы вы выполняете и тем больше энергии она сохраняет.

Если вы потянете обычную пружину в два раза сильнее (с удвоенной силой), она растянется в два раза сильнее, но только до точки, называемой пределом упругости.

В физике это простое описание упругости (как вещи стрейч) известен как закон Гука по имени открывшего его английского ученого Роберт Гук (1635–1703).

Закон Гука

Вот диаграмма, показывающая закон Гука в действии. Вы можете видеть, что чем большую «нагрузку» вы прикладываете к пружине (чем большую силу вы прикладываете, показано на вертикальной оси), тем больше пружина «растягивается» (показано на горизонтальной оси). Закон Гука гласит, что удлинение (растяжение) пропорционально нагрузке, поэтому нижняя (красная) часть графика представляет собой прямую линию. В этой области пружина упругая: она возвращается в исходное положение. оригинальный размер, когда вы отпустите.

Однако на графике можно увидеть нечто большее. Если вы продолжите растягиваться за пределы синей точки (предел эластичности), вы растянете пружину настолько, что она уже не вернется к своей первоначальной длине. В этом часть графика (показана желтым и красным), даже небольшая дополнительная сила может заставить пружину растянуться на много — это почти как лакрица или жевательная резинка. В этой области пружина уже не упругая, а «пластиковый» (он постоянно деформируется).

Еще Гук

Гук был совершенным эрудитом: если не считать его закона упругости, который он обнаруженный в 1660 году и опубликованный в 1678 году, он наиболее известен как один из главных пионеров микроскопии, но он активно работал во многих других областях, от архитектуры и астрономии до изучения памяти и окаменелостей.

Типы пружин

Фото: Листовые рессоры обеспечивают грубую подвеску этого старого железнодорожного грузовика.

Вы могли бы подумать, что весна есть весна, но вы бы неправильный! Есть несколько совершенно разных видов. Самый знакомый это винтовые пружины (как те, что вы найдете в ручках и тот, который мы сделали выше из скрепки): цилиндры из проволоки, обернутые по окружности фиксированного радиуса. Спираль пружины аналогичны, но виток постепенно уменьшается по мере достижения центр; наша бумажная пружина тому пример.Нежная спиралька, помогающая следить за временем часы — еще один пример такой пружины. Пружины кручения работают как резинка в катапульте или многократно скрученная между пальцами резинка: правильные сделаны из жестких кусков металла, которые вращаются вокруг своей оси. Листовые рессоры представляют собой наборы изогнутых металлических стержней. которые поддерживают колеса автомобиля или железнодорожной тележки и изгибаются и вниз, чтобы сгладить горбы и неровности.

Пружины также различаются по тому, как они сопротивляются силам или накапливают энергию.Некоторые предназначены для поглощения энергии и силы, когда вы их сжимаете; их катушки начинают слегка вытягиваться и сжиматься вместе когда вы прилагаете усилие, поэтому они называются пружинами сжатия . Противоположное происходит с пружинами растяжения (иногда называемыми пружинами растяжения): они начинают сжимаются и сопротивляются силам, которые пытаются их растянуть. Пружины кручения имеют горизонтальные стержни на двух концах, поэтому они могут сопротивляться скручиванию чего-либо. или вращающийся.

Анимация: пружины сжатия предназначены для поглощения сил путем сжатия друг друга.Пружины растяжения работают наоборот, растягиваясь при приложении силы. Торсионные пружины имеют параллельные стержни на конце, которые останавливают вращение чего-либо (или возвращают его в исходное положение, если это происходит).

Не все пружины работают, растягивая и сжимая куски металла, пластика или другого материала. твердый материал. Совершенно другая конструкция предполагает использование поршня, который движется назад. и вперед в цилиндре с жидкостью (газом, жидкостью, а иногда и с тем и другим), что-то вроде велосипедного насоса, очень тяжело входить и выходить.Подробнее об этом читайте в нашей статье о газовые пружины.

Для чего используются пружины?

Фото: Пружина заводной игрушки. Когда вы заводите игрушку, вы сжимаете пружину в более плотное пространство, чтобы накапливать энергию, которая необходима. отпускается, когда игрушка начинает двигаться.

Откройте шариковую ручку (одну из тех, что с кнопкой, которую вы нажимаете). чтобы втянуть шарик) и внутри вы найдете пружину. Посмотрите под автомобиль, и там тоже есть пружины, помогающие амортизаторам сгладить неровности дороги.В часах есть пружины и часы, как мы уже видели. И в машине есть пружина спидометр (по крайней мере, один из старомодных механических). Как только вы начнете наблюдать за весенними пятнами, вы обнаружите, что можете видеть родники. повсюду!

Из каких материалов изготавливаются пружины?

Фото: Когда весна не весна? Многим повседневным вещам нужна «пружина», даже если они не пружины. Например, пластиковый зажим для лацкана этой перьевой ручки сгибается (до определенной степени), поэтому надежно удерживается в кармане.Это не пружина как таковая, но она точно так же тщательно спроектирована.

Пружины обычно изготавливаются из пружинных сталей , которые представляют собой сплавы на основе железо, с небольшое количество углерода (около 0,6–0,7 процента), кремния (0,2–0,8 процента), марганца (0,6–1 процента) и хром (0,5–0,8%). Точный состав пружинной стали зависит от свойств, которые вы хотите, чтобы она имела, в том числе нагрузки, которые он должен будет выдерживать, сколько циклов напряжений и деформаций он будет подвергать, температуры, при которых он должен работать, должен ли он выдерживать нагрев или коррозию, насколько хорошо он должен проводить электричество, насколько «пластичным» (легким в форме) он должен быть во время его первоначального изготовления и придания формы и так далее.Как правило, пружины изготавливаются из стали с содержанием углерода от среднего до высокого (это означает небольшое количество углерода в общей смеси, но больше, чем в других видах стали). Обычно их подвергают какой-либо форме термической обработки, например отпуску, чтобы обеспечить их прочность и способность выдерживать множество циклов нагрузок и деформаций, другими словами, так что вы можете растягивать или сжимать их много раз, не ломая их. Пружины обычно выходят из строя из-за усталости металла , что означает, что они внезапно трескаются после многократного перемещения вперед и назад.На микроскопическом уровне ни одна пружина не является по-настоящему эластичной: каждый раз, когда она проходит через цикл растяжения (растяжение или сжатие, а затем возвращение к исходному размеру), ее внутренняя структура очень незначительно меняется, и внутри могут образовываться и расти крошечные «микротрещины». Это. В какой-то момент в будущем он обязательно выйдет из строя: пружина сломается, когда трещина станет достаточно большой. Наука о материалах учит нас тому, что способ изготовления пружин чрезвычайно важен для их долговечности. Например, если вы не используете правильную температуру закалки при изготовлении стали, вы получите более слабую сталь и более слабую пружину, которая, скорее всего, выйдет из строя быстрее.

Рекламные ссылки

Узнать больше

На этом сайте

Книги

Для юных читателей
  • Изготовление машин с пружинами, Крис Окслейд. Raintree, 2015. 32-страничное практическое введение для 2–4 классов, 7–9 лет.
  • Магниты и пружины Кэрол Баллард. Hachette, 2014. 32-страничное руководство (2–4 классы, 7–9 лет). Вы можете задаться вопросом, почему магниты и пружины закрыты вместе; так получилось, что некоторые учебные программы по естественным наукам учат этому.
  • Springs Анджела Ройстон. Heinemann/Raintree, 2003. Для младших читателей (2–4 классы, 7–9 лет).
Для читателей постарше
  • Материалы для пружин Y. Yamada. Springer, 2007. Описывает качества, необходимые для различных типов пружин и различных металлов, сплавов и других материалов (пластиков, композитов, керамики и т. д.), используемых для их изготовления. Для профессиональных инженеров и студентов инженерных специальностей.
  • Выбор материалов в механическом проектировании, Майкл Ф.Эшби. Butterworth-Heinemann, 2016. Хорошее введение в идею использования материаловедения в инженерии.
Патенты
  • Патент США 3,468,527: Спиральная пружина Гленна Мазера, North American Rockwell/Boeing, 1968 г. Интересный технический взгляд на конструкцию винтовых пружин.
  • Патент США 3,062,526: Подвеска транспортного средства с листовой рессорой, Джон А. Рериг, 1962 г. Типичная подвеска с листовой рессорой, которая автоматически настраивается в соответствии с весом, который несет автомобиль.
  • Патент США 3,468,527 : Барабан с заводной пружиной для часов А.Н. Gauthier, 1894. Описывает механизм накопления энергии спиральной часовой пружины.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты

Статьи с этого веб-сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и/или нарушение смежных прав может повлечь за собой серьезные гражданские или уголовные санкции.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условия использования.

Flexon является зарегистрированным товарным знаком Marchon Eyewear, Inc.

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее или рассказать о ней своим друзьям:

Цитировать эту страницу

Вудфорд, Крис. (2010/2020) Пружины. Получено с https://www.объясните, чтоstuff.com/how-springs-work.html. [Доступ (вставьте дату здесь)]

Подробнее на нашем сайте…

Как работают пружины? | Как пружины накапливают энергию?

Как работают пружины? | Как пружины накапливают энергию? Реклама

Если вы похожи на меня и любите разбирать вещи на части, пружины ваш враг.Попробуйте снова собрать гаджет или машину опять же позже, и это пружины часто побеждают вас: только где же они уходят, и как же они снова вписываются? В их большинстве привычная форма, пружины — это закаленные спирали металла, которые помогают вещам вернуться в определенное положение, но их также можно использовать для поглощения энергию (как в подвеске автомобиля) или хранить ее в течение длительного периода времени (как в часах и часах). Вы можете найти пружины во всем, от автоматические двери для шариковых ручек. Давайте подробнее рассмотрим, как они работают!

Фото: Натянутые спиральные пружины из нержавеющей стали на настольной лампе.Все винтовые пружины имеют одинаковую базовую форму спирали, но бывают разных размеров, от крошечных, которые можно найти в шариковых ручках, до огромных, которые наматываются на амортизаторы автомобилей.

Что такое пружина?

Фото: Сделайте бумажную пружину, нарисовав спираль на бумаге или картоне. Затем просто обрежьте линию ножницами. Вы удивитесь, какая весенняя эта весна!

Типичная пружина представляет собой туго закрученный виток или спираль из металла, растягивается, когда вы тянете его (прикладываете силу) и возвращается в исходное положение. первоначальная форма, когда вы снова отпустите ее (уберите силу).В других словом, пружина упругая. Я не имею в виду, что он сделан из резины; Я имею в виду, что он имеет эластичность : оно становится длиннее, когда применяется напряжение, но (при условии сильно не растягивайте) возвращается точно к своей первоначальной длине когда это напряжение будет удалено. В зависимости от того, как изготовлена ​​пружина, может работать и наоборот: если его сжать, он сжимается но возвращается к своей первоначальной длине при снятии толкающей силы.

Вы можете сделать пружину более или менее из чего угодно — даже бумагу или апельсиновую корку! Но пружины, которые мы используем в машинах, работают эффективно только в том случае, если они достаточно жесткие, чтобы выдерживать тяговое усилие, и прочные достаточно, чтобы быть растянутым много раз без разрыва.Обычно это означает, что они должны быть изготовлены из таких материалов, как нержавеющая сталь или прочные сплавы, такие как бронза. Некоторые сплавы обладают свойством, называемым памятью формы, что означает, что они естественным образом упругий. Оправы для очков часто изготавливают из никеля. титановый сплав с памятью формы, называемый нитинол, продается под такими торговыми марками, как Flexon®.

Как работает пружина?

Представьте, что у вас есть кусок прямой стальной проволоки длиной около 10 см (4 дюйма). длинный — что-то вроде длинной скрепки, которую вы развернули.Если вы потянете его пальцами растянуть его крайне сложно. Катушка это вокруг карандаша и, приложив немного усилий, вы сможете сделать себе небольшой, но идеально действующая пружина. Теперь потяните или толкните его пальцами, и вы обнаружить, что вы можете растянуть и сжать его довольно легко.


Фото: Из скрепки легко сделать простую винтовую пружину.

Почему этот когда-то упрямый кусок металла вдруг стал таким послушным? Почему пружина действительно легко растягивается и сжимается, когда один и тот же кусок металл в форме проволоки так неохотно менял форму?

Рекламные ссылки

Когда материал находится в своей первоначальной форме, его растяжение включает в себя вытягивание атомов из их положения в кристалле металла решетка — и это относительно трудно сделать.Когда вы делаете пружину (как вы обнаружите, если попробуете согнуть скрепку), вам придется потрудиться немного согнуть металл в форму, но это далеко не так сложно. Когда вы сгибаете проволоку, вы используете энергию в процессе, и часть этой энергии сохраняется в весна; Другими словами, он предварительно напряжен. Когда пружина сформирована, ее форму легко изменить. еще немного: чем больше металлических витков в пружине, тем легче это растянуть или сжать его. Вам нужно только сдвинуть каждый атом в спиральная пружина на небольшую величину, и вся пружина может растягиваться или выжимать на удивление много.

Фото: Попробуйте согнуть пружину и вы почувствуете сила, которую вы должны использовать, чтобы удержать его там. Для деформации пружины (изменения ее формы) требуется энергия: эта энергия запасается весной, и вы можете использовать его снова позже.

Пружины

отлично подходят для хранения или поглощения энергии. Когда вы используете усилие толкания или тяги для растяжения пружины, которое вы используете сила на расстоянии, поэтому, с точки зрения физики, вы выполняете работ и используя энергию. Чем туже пружина, тем труднее ее деформировать, тем больше работы вам нужно сделать, и тем больше энергии вам нужно.Энергия который вы используете, не теряется: большая его часть хранится в виде потенциальной энергии в весна. Отпустите растянутую пружину, и вы сможете использовать ее для выполнения работы за ты. Когда вы заводите механические часы или часы, вы накапливаете энергию затягиванием пружины. Когда пружина ослабевает, энергия медленно выпущен, чтобы привести в действие механизмы внутри и повернуть руки вокруг циферблат в течение дня или более. Катапульты и арбалеты работают в аналогичный способ, за исключением того, что они используют витки резины для своих пружин вместо катушек и спиралей из металла.

«Зацеп» на пружинах

Работа: обложка книги Роберта Гука 1678 года «Lectures de Potentia Restitutiva, или о весне, объясняющей силу пружинящих тел».

Чем больше вы растягиваете пружину, тем длиннее она становится, тем больше работы вы выполняете и тем больше энергии она сохраняет.

Если вы потянете обычную пружину в два раза сильнее (с удвоенной силой), она растянется в два раза сильнее, но только до точки, называемой пределом упругости.

В физике это простое описание упругости (как вещи стрейч) известен как закон Гука по имени открывшего его английского ученого Роберт Гук (1635–1703).

Закон Гука

Вот диаграмма, показывающая закон Гука в действии. Вы можете видеть, что чем большую «нагрузку» вы прикладываете к пружине (чем большую силу вы прикладываете, показано на вертикальной оси), тем больше пружина «растягивается» (показано на горизонтальной оси). Закон Гука гласит, что удлинение (растяжение) пропорционально нагрузке, поэтому нижняя (красная) часть графика представляет собой прямую линию. В этой области пружина упругая: она возвращается в исходное положение. оригинальный размер, когда вы отпустите.

Однако на графике можно увидеть нечто большее. Если вы продолжите растягиваться за пределы синей точки (предел эластичности), вы растянете пружину настолько, что она уже не вернется к своей первоначальной длине. В этом часть графика (показана желтым и красным), даже небольшая дополнительная сила может заставить пружину растянуться на много — это почти как лакрица или жевательная резинка. В этой области пружина уже не упругая, а «пластиковый» (он постоянно деформируется).

Еще Гук

Гук был совершенным эрудитом: если не считать его закона упругости, который он обнаруженный в 1660 году и опубликованный в 1678 году, он наиболее известен как один из главных пионеров микроскопии, но он активно работал во многих других областях, от архитектуры и астрономии до изучения памяти и окаменелостей.

Типы пружин

Фото: Листовые рессоры обеспечивают грубую подвеску этого старого железнодорожного грузовика.

Вы могли бы подумать, что весна есть весна, но вы бы неправильный! Есть несколько совершенно разных видов. Самый знакомый это винтовые пружины (как те, что вы найдете в ручках и тот, который мы сделали выше из скрепки): цилиндры из проволоки, обернутые по окружности фиксированного радиуса. Спираль пружины аналогичны, но виток постепенно уменьшается по мере достижения центр; наша бумажная пружина тому пример.Нежная спиралька, помогающая следить за временем часы — еще один пример такой пружины. Пружины кручения работают как резинка в катапульте или многократно скрученная между пальцами резинка: правильные сделаны из жестких кусков металла, которые вращаются вокруг своей оси. Листовые рессоры представляют собой наборы изогнутых металлических стержней. которые поддерживают колеса автомобиля или железнодорожной тележки и изгибаются и вниз, чтобы сгладить горбы и неровности.

Пружины также различаются по тому, как они сопротивляются силам или накапливают энергию.Некоторые предназначены для поглощения энергии и силы, когда вы их сжимаете; их катушки начинают слегка вытягиваться и сжиматься вместе когда вы прилагаете усилие, поэтому они называются пружинами сжатия . Противоположное происходит с пружинами растяжения (иногда называемыми пружинами растяжения): они начинают сжимаются и сопротивляются силам, которые пытаются их растянуть. Пружины кручения имеют горизонтальные стержни на двух концах, поэтому они могут сопротивляться скручиванию чего-либо. или вращающийся.

Анимация: пружины сжатия предназначены для поглощения сил путем сжатия друг друга.Пружины растяжения работают наоборот, растягиваясь при приложении силы. Торсионные пружины имеют параллельные стержни на конце, которые останавливают вращение чего-либо (или возвращают его в исходное положение, если это происходит).

Не все пружины работают, растягивая и сжимая куски металла, пластика или другого материала. твердый материал. Совершенно другая конструкция предполагает использование поршня, который движется назад. и далее в цилиндре с жидкостью (газом, жидкостью, а иногда и с тем и другим), что-то вроде велосипедного насоса, очень тяжело входить и выходить.Подробнее об этом читайте в нашей статье о газовые пружины.

Для чего используются пружины?

Фото: Пружина заводной игрушки. Когда вы заводите игрушку, вы сжимаете пружину в более плотное пространство, чтобы накапливать энергию, которая необходима. отпускается, когда игрушка начинает двигаться.

Откройте шариковую ручку (одну из тех, что с кнопкой, которую вы нажимаете). чтобы втянуть шарик) и внутри вы найдете пружину. Посмотрите под автомобиль, и там тоже есть пружины, помогающие амортизаторам сгладить неровности дороги.В часах есть пружины и часы, как мы уже видели. И в машине есть пружина спидометр (по крайней мере, один из старомодных механических). Как только вы начнете наблюдать за весенними пятнами, вы обнаружите, что можете видеть родники. повсюду!

Из каких материалов изготавливаются пружины?

Фото: Когда весна не весна? Многим повседневным вещам нужна «пружина», даже если они не пружины. Например, пластиковый зажим для лацкана этой перьевой ручки сгибается (до определенной степени), поэтому надежно удерживается в кармане.Это не пружина как таковая, но она точно так же тщательно спроектирована.

Пружины обычно изготавливаются из пружинных сталей , которые представляют собой сплавы на основе железо, с небольшое количество углерода (около 0,6–0,7 процента), кремния (0,2–0,8 процента), марганца (0,6–1 процента) и хром (0,5–0,8%). Точный состав пружинной стали зависит от свойств, которые вы хотите, чтобы она имела, в том числе нагрузки, которые он должен будет выдерживать, сколько циклов напряжений и деформаций он будет подвергать, температуры, при которых он должен работать, должен ли он выдерживать нагрев или коррозию, насколько хорошо он должен проводить электричество, насколько «пластичным» (легким в форме) он должен быть во время его первоначального изготовления и придания формы и так далее.Как правило, пружины изготавливаются из стали с содержанием углерода от среднего до высокого (это означает небольшое количество углерода в общей смеси, но больше, чем в других видах стали). Обычно их подвергают какой-либо форме термической обработки, например отпуску, чтобы обеспечить их прочность и способность выдерживать множество циклов нагрузок и деформаций, другими словами, так что вы можете растягивать или сжимать их много раз, не ломая их. Пружины обычно выходят из строя из-за усталости металла , что означает, что они внезапно трескаются после многократного перемещения вперед и назад.На микроскопическом уровне ни одна пружина не является по-настоящему эластичной: каждый раз, когда она проходит через цикл растяжения (растяжение или сжатие, а затем возвращение к исходному размеру), ее внутренняя структура очень незначительно меняется, и внутри могут образовываться и расти крошечные «микротрещины». Это. В какой-то момент в будущем он обязательно выйдет из строя: пружина сломается, когда трещина станет достаточно большой. Наука о материалах учит нас тому, что способ изготовления пружин чрезвычайно важен для их долговечности. Например, если вы не используете правильную температуру закалки при изготовлении стали, вы получите более слабую сталь и более слабую пружину, которая, скорее всего, выйдет из строя быстрее.

Рекламные ссылки

Узнать больше

На этом сайте

Книги

Для юных читателей
  • Изготовление машин с пружинами, Крис Окслейд. Raintree, 2015. 32-страничное практическое введение для 2–4 классов, 7–9 лет.
  • Магниты и пружины Кэрол Баллард. Hachette, 2014. 32-страничное руководство (2–4 классы, 7–9 лет). Вы можете задаться вопросом, почему магниты и пружины закрыты вместе; так получилось, что некоторые учебные программы по естественным наукам учат этому.
  • Springs Анджела Ройстон. Heinemann/Raintree, 2003. Для младших читателей (2–4 классы, 7–9 лет).
Для читателей постарше
  • Материалы для пружин Y. Yamada. Springer, 2007. Описывает качества, необходимые для различных типов пружин и различных металлов, сплавов и других материалов (пластиков, композитов, керамики и т. д.), используемых для их изготовления. Для профессиональных инженеров и студентов инженерных специальностей.
  • Выбор материалов в механическом проектировании, Майкл Ф.Эшби. Butterworth-Heinemann, 2016. Хорошее введение в идею использования материаловедения в инженерии.
Патенты
  • Патент США 3,468,527: Спиральная пружина Гленна Мазера, North American Rockwell/Boeing, 1968 г. Интересный технический взгляд на конструкцию винтовых пружин.
  • Патент США 3,062,526: Подвеска транспортного средства с листовой рессорой, Джон А. Рериг, 1962 г. Типичная подвеска с листовой рессорой, которая автоматически настраивается в соответствии с весом, который несет автомобиль.
  • Патент США 3,468,527 : Барабан с заводной пружиной для часов А.Н. Gauthier, 1894. Описывает механизм накопления энергии спиральной часовой пружины.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты

Статьи с этого веб-сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и/или нарушение смежных прав может повлечь за собой серьезные гражданские или уголовные санкции.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условия использования.

Flexon является зарегистрированным товарным знаком Marchon Eyewear, Inc.

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее или рассказать о ней своим друзьям:

Цитировать эту страницу

Вудфорд, Крис. (2010/2020) Пружины. Получено с https://www.объясните, чтоstuff.com/how-springs-work.html. [Доступ (вставьте дату здесь)]

Подробнее на нашем сайте…

Как работают пружины? | Как пружины накапливают энергию?

Как работают пружины? | Как пружины накапливают энергию? Реклама

Если вы похожи на меня и любите разбирать вещи на части, пружины ваш враг.Попробуйте снова собрать гаджет или машину опять же позже, и это пружины часто побеждают вас: только где же они уходят, и как же они снова вписываются? В их большинстве привычная форма, пружины — это закаленные спирали металла, которые помогают вещам вернуться в определенное положение, но их также можно использовать для поглощения энергию (как в подвеске автомобиля) или хранить ее в течение длительного периода времени (как в часах и часах). Вы можете найти пружины во всем, от автоматические двери для шариковых ручек. Давайте подробнее рассмотрим, как они работают!

Фото: Натянутые спиральные пружины из нержавеющей стали на настольной лампе.Все винтовые пружины имеют одинаковую базовую форму спирали, но бывают разных размеров, от крошечных, которые можно найти в шариковых ручках, до огромных, которые наматываются на амортизаторы автомобилей.

Что такое пружина?

Фото: Сделайте бумажную пружину, нарисовав спираль на бумаге или картоне. Затем просто обрежьте линию ножницами. Вы удивитесь, какая весенняя эта весна!

Типичная пружина представляет собой туго закрученный виток или спираль из металла, растягивается, когда вы тянете его (прикладываете силу) и возвращается в исходное положение. первоначальная форма, когда вы снова отпустите ее (уберите силу).В других словом, пружина упругая. Я не имею в виду, что он сделан из резины; Я имею в виду, что он имеет эластичность : оно становится длиннее, когда применяется напряжение, но (при условии сильно не растягивайте) возвращается точно к своей первоначальной длине когда это напряжение будет удалено. В зависимости от того, как изготовлена ​​пружина, может работать и наоборот: если его сжать, он сжимается но возвращается к своей первоначальной длине при снятии толкающей силы.

Вы можете сделать пружину более или менее из чего угодно — даже бумагу или апельсиновую корку! Но пружины, которые мы используем в машинах, работают эффективно только в том случае, если они достаточно жесткие, чтобы выдерживать тяговое усилие, и прочные достаточно, чтобы быть растянутым много раз без разрыва.Обычно это означает, что они должны быть изготовлены из таких материалов, как нержавеющая сталь или прочные сплавы, такие как бронза. Некоторые сплавы обладают свойством, называемым памятью формы, что означает, что они естественным образом упругий. Оправы для очков часто изготавливают из никеля. титановый сплав с памятью формы, называемый нитинол, продается под такими торговыми марками, как Flexon®.

Как работает пружина?

Представьте, что у вас есть кусок прямой стальной проволоки длиной около 10 см (4 дюйма). длинный — что-то вроде длинной скрепки, которую вы развернули.Если вы потянете его пальцами растянуть его крайне сложно. Катушка это вокруг карандаша и, приложив немного усилий, вы сможете сделать себе небольшой, но идеально действующая пружина. Теперь потяните или толкните его пальцами, и вы обнаружить, что вы можете растянуть и сжать его довольно легко.


Фото: Из скрепки легко сделать простую винтовую пружину.

Почему этот когда-то упрямый кусок металла вдруг стал таким послушным? Почему пружина действительно легко растягивается и сжимается, когда один и тот же кусок металл в форме проволоки так неохотно менял форму?

Рекламные ссылки

Когда материал находится в своей первоначальной форме, его растяжение включает в себя вытягивание атомов из их положения в кристалле металла решетка — и это относительно трудно сделать.Когда вы делаете пружину (как вы обнаружите, если попробуете согнуть скрепку), вам придется потрудиться немного согнуть металл в форму, но это далеко не так сложно. Когда вы сгибаете проволоку, вы используете энергию в процессе, и часть этой энергии сохраняется в весна; Другими словами, он предварительно напряжен. Когда пружина сформирована, ее форму легко изменить. еще немного: чем больше металлических витков в пружине, тем легче это растянуть или сжать его. Вам нужно только сдвинуть каждый атом в спиральная пружина на небольшую величину, и вся пружина может растягиваться или выжимать на удивление много.

Фото: Попробуйте согнуть пружину и вы почувствуете сила, которую вы должны использовать, чтобы удержать его там. Для деформации пружины (изменения ее формы) требуется энергия: эта энергия запасается весной, и вы можете использовать его снова позже.

Пружины

отлично подходят для хранения или поглощения энергии. Когда вы используете толкающее или тянущее усилие для растяжения пружины, которое вы используете сила на расстоянии, поэтому, с точки зрения физики, вы выполняете работ и используя энергию. Чем туже пружина, тем труднее ее деформировать, тем больше работы вам нужно сделать, и тем больше энергии вам нужно.Энергия который вы используете, не теряется: большая его часть хранится в виде потенциальной энергии в весна. Отпустите растянутую пружину, и вы сможете использовать ее для выполнения работы за ты. Когда вы заводите механические часы или часы, вы накапливаете энергию затягиванием пружины. Когда пружина ослабевает, энергия медленно выпущен, чтобы привести в действие механизмы внутри и повернуть руки вокруг циферблат в течение дня или более. Катапульты и арбалеты работают в аналогичный способ, за исключением того, что они используют витки резины для своих пружин вместо катушек и спиралей из металла.

«Зацеп» на пружинах

Работа: обложка книги Роберта Гука 1678 года «Lectures de Potentia Restitutiva, или о весне, объясняющей силу пружинящих тел».

Чем больше вы растягиваете пружину, тем длиннее она становится, тем больше работы вы выполняете и тем больше энергии она сохраняет.

Если вы потянете обычную пружину в два раза сильнее (с удвоенной силой), она растянется в два раза сильнее, но только до точки, называемой пределом упругости.

В физике это простое описание упругости (как вещи стрейч) известен как закон Гука по имени открывшего его английского ученого Роберт Гук (1635–1703).

Закон Гука

Вот диаграмма, показывающая закон Гука в действии. Вы можете видеть, что чем большую «нагрузку» вы прикладываете к пружине (чем большую силу вы прикладываете, показано на вертикальной оси), тем больше пружина «растягивается» (показано на горизонтальной оси). Закон Гука гласит, что удлинение (растяжение) пропорционально нагрузке, поэтому нижняя (красная) часть графика представляет собой прямую линию. В этой области пружина упругая: она возвращается в исходное положение. оригинальный размер, когда вы отпустите.

Однако на графике можно увидеть нечто большее. Если вы продолжите растягиваться за пределы синей точки (предел эластичности), вы растянете пружину настолько, что она уже не вернется к своей первоначальной длине. В этом часть графика (показана желтым и красным), даже небольшая дополнительная сила может заставить пружину растянуться на много — это почти как лакрица или жевательная резинка. В этой области пружина уже не упругая, а «пластиковый» (он постоянно деформируется).

Еще Гук

Гук был совершенным эрудитом: если не считать его закона упругости, который он обнаруженный в 1660 году и опубликованный в 1678 году, он наиболее известен как один из главных пионеров микроскопии, но он активно работал во многих других областях, от архитектуры и астрономии до изучения памяти и окаменелостей.

Типы пружин

Фото: Листовые рессоры обеспечивают грубую подвеску этого старого железнодорожного грузовика.

Вы могли бы подумать, что весна есть весна, но вы бы неправильный! Есть несколько совершенно разных видов. Самый знакомый это винтовые пружины (как те, что вы найдете в ручках и тот, который мы сделали выше из скрепки): цилиндры из проволоки, обернутые по окружности фиксированного радиуса. Спираль пружины аналогичны, но виток постепенно уменьшается по мере достижения центр; наша бумажная пружина тому пример.Нежная спиралька, помогающая следить за временем часы — еще один пример такой пружины. Пружины кручения работают как резинка в катапульте или многократно скрученная между пальцами резинка: правильные сделаны из жестких кусков металла, которые вращаются вокруг своей оси. Листовые рессоры представляют собой наборы изогнутых металлических стержней. которые поддерживают колеса автомобиля или железнодорожной тележки и изгибаются и вниз, чтобы сгладить горбы и неровности.

Пружины также различаются по тому, как они сопротивляются силам или накапливают энергию.Некоторые предназначены для поглощения энергии и силы, когда вы их сжимаете; их катушки начинают слегка вытягиваться и сжиматься вместе когда вы прилагаете усилие, поэтому они называются пружинами сжатия . Противоположное происходит с пружинами растяжения (иногда называемыми пружинами растяжения): они начинают сжимаются и сопротивляются силам, которые пытаются их растянуть. Пружины кручения имеют горизонтальные стержни на двух концах, поэтому они могут сопротивляться скручиванию чего-либо. или вращающийся.

Анимация: пружины сжатия предназначены для поглощения сил путем сжатия друг друга.Пружины растяжения работают наоборот, растягиваясь при приложении силы. Торсионные пружины имеют параллельные стержни на конце, которые останавливают вращение чего-либо (или возвращают его в исходное положение, если это происходит).

Не все пружины работают, растягивая и сжимая куски металла, пластика или другого материала. твердый материал. Совершенно другая конструкция предполагает использование поршня, который движется назад. и вперед в цилиндре с жидкостью (газом, жидкостью, а иногда и с тем и другим), что-то вроде велосипедного насоса, очень тяжело входить и выходить.Подробнее об этом читайте в нашей статье о газовые пружины.

Для чего используются пружины?

Фото: Пружина заводной игрушки. Когда вы заводите игрушку, вы сжимаете пружину в более плотное пространство, чтобы накапливать энергию, которая необходима. отпускается, когда игрушка начинает двигаться.

Откройте шариковую ручку (одну из тех, что с кнопкой, которую вы нажимаете). чтобы втянуть шарик) и внутри вы найдете пружину. Посмотрите под автомобиль, и там тоже есть пружины, помогающие амортизаторам сгладить неровности дороги.В часах есть пружины и часы, как мы уже видели. И в машине есть пружина спидометр (по крайней мере, один из старомодных механических). Как только вы начнете наблюдать за весенними пятнами, вы обнаружите, что можете видеть родники. повсюду!

Из каких материалов изготавливаются пружины?

Фото: Когда весна не весна? Многим повседневным вещам нужна «пружина», даже если они не пружины. Например, пластиковый зажим для лацкана этой перьевой ручки сгибается (до определенной степени), поэтому надежно удерживается в кармане.Это не пружина как таковая, но она точно так же тщательно спроектирована.

Пружины обычно изготавливаются из пружинных сталей , которые представляют собой сплавы на основе железо, с небольшое количество углерода (около 0,6–0,7 процента), кремния (0,2–0,8 процента), марганца (0,6–1 процента) и хром (0,5–0,8%). Точный состав пружинной стали зависит от свойств, которые вы хотите, чтобы она имела, в том числе нагрузки, которые он должен будет выдерживать, сколько циклов напряжений и деформаций он будет подвергать, температуры, при которых он должен работать, должен ли он выдерживать нагрев или коррозию, насколько хорошо он должен проводить электричество, насколько «пластичным» (легким в форме) он должен быть во время его первоначального изготовления и придания формы и так далее.Как правило, пружины изготавливаются из стали с содержанием углерода от среднего до высокого (это означает небольшое количество углерода в общей смеси, но больше, чем в других видах стали). Обычно их подвергают какой-либо форме термической обработки, например отпуску, чтобы обеспечить их прочность и способность выдерживать множество циклов нагрузок и деформаций, другими словами, так что вы можете растягивать или сжимать их много раз, не ломая их. Пружины обычно выходят из строя из-за усталости металла , что означает, что они внезапно трескаются после многократного перемещения вперед и назад.На микроскопическом уровне ни одна пружина не является по-настоящему эластичной: каждый раз, когда она проходит через цикл растяжения (растяжение или сжатие, а затем возвращение к исходному размеру), ее внутренняя структура очень незначительно меняется, и внутри могут образовываться и расти крошечные «микротрещины». Это. В какой-то момент в будущем он обязательно выйдет из строя: пружина сломается, когда трещина станет достаточно большой. Наука о материалах учит нас тому, что способ изготовления пружин чрезвычайно важен для их долговечности. Например, если вы не используете правильную температуру закалки при изготовлении стали, вы получите более слабую сталь и более слабую пружину, которая, скорее всего, выйдет из строя быстрее.

Рекламные ссылки

Узнать больше

На этом сайте

Книги

Для юных читателей
  • Изготовление машин с пружинами, Крис Окслейд. Raintree, 2015. 32-страничное практическое введение для 2–4 классов, 7–9 лет.
  • Магниты и пружины Кэрол Баллард. Hachette, 2014. 32-страничное руководство (2–4 классы, 7–9 лет). Вы можете задаться вопросом, почему магниты и пружины закрыты вместе; так получилось, что некоторые учебные программы по естественным наукам учат этому.
  • Springs Анджела Ройстон. Heinemann/Raintree, 2003. Для младших читателей (2–4 классы, 7–9 лет).
Для читателей постарше
  • Материалы для пружин Y. Yamada. Springer, 2007. Описывает качества, необходимые для различных типов пружин и различных металлов, сплавов и других материалов (пластиков, композитов, керамики и т. д.), используемых для их изготовления. Для профессиональных инженеров и студентов инженерных специальностей.
  • Выбор материалов в механическом проектировании, Майкл Ф.Эшби. Butterworth-Heinemann, 2016. Хорошее введение в идею использования материаловедения в инженерии.
Патенты
  • Патент США 3,468,527: Спиральная пружина Гленна Мазера, North American Rockwell/Boeing, 1968 г. Интересный технический взгляд на конструкцию винтовых пружин.
  • Патент США 3,062,526: Подвеска транспортного средства с листовой рессорой, Джон А. Рериг, 1962 г. Типичная подвеска с листовой рессорой, которая автоматически настраивается в соответствии с весом, который несет автомобиль.
  • Патент США 3,468,527 : Барабан с заводной пружиной для часов А.Н. Gauthier, 1894. Описывает механизм накопления энергии спиральной часовой пружины.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие веб-сайты

Статьи с этого веб-сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных произведений без разрешения, удаление этого или других уведомлений об авторских правах и/или нарушение смежных прав может повлечь за собой серьезные гражданские или уголовные санкции.

Авторские права на текст © Chris Woodford 2009, 2020. Все права защищены. Полное уведомление об авторских правах и условия использования.

Flexon является зарегистрированным товарным знаком Marchon Eyewear, Inc.

Подписывайтесь на нас

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее или рассказать о ней своим друзьям:

Цитировать эту страницу

Вудфорд, Крис. (2010/2020) Пружины. Получено с https://www.объясните, чтоstuff.com/how-springs-work.html. [Доступ (вставьте дату здесь)]

Подробнее на нашем сайте…

Физика пружин | Как производители понимают Spring Design

Физика пружин: как производители проектируют пружины, которые работают

Поместите пружину сжатия рядом с листовой пружиной , и вы увидите два очень разных объекта, у которых мало общего на поверхности.Пружины бывают самых разных форм и размеров, но независимо от того, как они выглядят, все они работают одинаково. Каждая пружина представляет собой эластичный объект , что означает, что она хранит и высвобождает энергию. Конструкция пружин и их изготовление зависят от глубокого понимания физики пружин.

Процесс изготовления пружин и оборудование для изготовления пружин немного сложнее, но сами пружины представляют собой простые механизмы, которые ведут себя очень предсказуемо, если вы знаете, чего ожидать.Понимая физику пружин, производители могут точно предсказать, как пружина будет вести себя в реальном мире, прежде чем они включат намоточный станок.

Загрузите нашу бесплатную электронную книгу: Все о пружинах

Закон Гука: физика пружин

Помимо хранения и высвобождения энергии, еще одним важным аспектом физики пружин является Закон Гука. Закон Гука гласит, что чем больше вы деформируете пружину, тем больше силы потребуется для ее дальнейшей деформации. Используя пример обычной пружины сжатия, чем больше вы сжимаете пружину, тем больше силы потребуется для ее дальнейшего сжатия.

Британский физик Роберт Гук (на фото справа) впервые опубликовал закон в 1678 году, хотя утверждал, что знал о нем почти два десятилетия. Закон был просто сформулирован на латыни, ut tensio, sic vis, , что примерно переводится как «как протяженность, так и сила». Более современным алгебраическим представлением закона является F=kX , где F — сила, k — жесткость пружины , а X — длина деформации.

Если вы посмотрите на график уравнения, вы увидите прямую линию или линейную скорость изменения силы.Из-за этой особенности пружины, подчиняющиеся закону Гука, попадают в категорию пружин с «линейной силой».

Пружинная постоянная

Постоянная пружины точно определяет, какое усилие потребуется для деформации пружины. Стандартной международной (СИ) единицей измерения жесткости пружины является ньютон/метр, но в Северной Америке они часто измеряются в фунтах/дюйм. Более высокая жесткость пружины означает более жесткую пружину, и наоборот.

Постоянную пружины можно определить на основе четырех параметров:  

  • Диаметр проволоки : диаметр проволоки, содержащей пружину
  • Диаметр рулона : диаметр каждого рулона, измерение натяжения рулона
  • Длина в свободном состоянии : длина пружины в состоянии покоя
  • Количество активных витков : количество витков, которые могут свободно расширяться и сжиматься

Материал , из которого изготовлена ​​пружина, также играет роль в определении жесткости пружины наряду с другими физическими свойствами пружины.

Исключения из закона Гука

В мире пружин есть несколько исключений из закона Гука. Например, слишком растянутая пружина растяжения перестанет соответствовать закону. Длина, на которой пружина останавливается по закону Гука, называется пределом упругости .

Пружины переменного диаметра , такие как конические, выпуклые или вогнутые пружины, могут быть свернуты до различных параметров силы. Если шаг пружины  (расстояние между витками) постоянен, сила конической пружины будет изменяться нелинейно, а это означает, что она не будет подчиняться закону Гука.Однако шаг пружины также можно варьировать для получения конических пружин, которые действительно подчиняются закону.

Пружины с переменным шагом являются третьим примером пружины, которая не подчиняется закону Гука. Пружины с переменным шагом часто представляют собой пружины сжатия с постоянным диаметром витка, но с переменным шагом.

Пружины постоянной силы, по отношению к закону Гука, часто являются ложными исключениями . Судя по их названию и описанию, можно ожидать, что пружины постоянной силы , а не , подчиняются закону Гука.В конце концов, если сила, которую они прикладывают, постоянна, как сила может меняться в зависимости от длины пружины? Как упоминалось в нашей статье о пружинах постоянного усилия , материал, из которого изготовлены эти пружины, на самом деле соответствует закону Гука. Разница в том, что упругая часть пружины с постоянной силой — это только та часть, которая превращается из спиральной в прямую. При вдавливании или вытягивании пружины и изменении диаметра витка действующая сила также изменяется. Это изменение, однако, часто незаметно, потому что изменения диаметра катушки очень малы.

Используя передовое оборудование для навивки пружин с ЧПУ AIM , пружины с постоянным усилием можно спроектировать таким образом, чтобы усилие пружины можно было поддерживать постоянным или даже создавать отрицательный градиент при растяжении пружины. Достигнуты отрицательные градиенты порядка 35%.

Почему физика пружин имеет значение для проектирования и производства пружин

Когда производители производят пружины, они должны знать, как они себя поведут. Очевидно, что та же самая пружина, которая используется для подвески грузовика, не будет работать в шариковой ручке, но во многих механических приложениях мельчайшие различия в поведении пружины будут определять, будет ли система работать или нет.

Например, пружины используются для расширения кровеносных сосудов в медицинских целях. Если жесткость пружины слишком высока или проволока слишком тонкая, пружина может привести к опасному для жизни разрыву. В более широком масштабе системы автомобильной подвески полагаются на чрезвычайно точные пружины, обеспечивающие амортизацию без дестабилизации автомобиля на высоких скоростях.

Все конструктивные характеристики пружины играют роль в определении полезного применения той или иной пружины. Когда производитель настраивает параметры своих станков для намотки пружин, он не просто гадает.Понимая физику пружин, производители могут гарантировать, что они наматывают правильную пружину для работы.

Для всестороннего ознакомления с типами пружин и их производством загрузите нашу бесплатную электронную книгу
Все о пружинах

Как работают пружины? Обзор типов пружин и способов их изготовления

Изображение предоставлено: KPixMining/Shutterstock.com

Пружины — это механические устройства, которые благодаря своей эластичности могут накапливать потенциальную энергию.Термин «эластичность» относится к свойству материалов, которое отражает их тенденцию возвращаться к своей первоначальной форме и размеру после того, как они были подвергнуты воздействию силы, вызывающей деформацию, после того, как эта сила была устранена. Основная идея, лежащая в основе работы пружин, заключается в том, что они всегда будут пытаться вернуться к своему первоначальному размеру или положению всякий раз, когда прилагается сила, которая изменяет их размер, будь то силы сжатия, растяжения или кручения.

Пружины

часто изготавливаются из спиральной закаленной стали, хотя также используются цветные металлы, такие как бронза и титан, и даже пластик.Более полное обсуждение различных материалов, используемых при производстве пружин, см. в соответствующем руководстве по типам материалов для пружин.

Как работают пружины?

Пружины работают на основе принципа, известного как закон Гука, который приписывают британскому физику Роберту Гуку, опубликовавшему свои идеи о пружинах в 1678 году. Закон Гука гласит, что сила, действующая на пружину, пропорциональна смещению от ее исходного положения или положения равновесия. позиция. Это отношение может быть выражено математически как:

, где ( F ) представляет силу, создаваемую пружиной, ( Δx ) представляет собой смещение или величину деформации пружины из расслабленного или нейтрального положения, а ( k ) представляет собой параметр, известный как пружинная постоянная.

Знак минус в приведенном выше выражении отражает направленность результирующей силы от смещения пружины. Если вы раздвинете пружину (увеличите ее длину), возникающая в результате сила будет направлена ​​в сторону, противоположную предпринятому вами действию (стремясь вернуть пружину обратно в ее нейтральное положение). Точно так же, если вы нажмете на струну, чтобы уменьшить ее длину, возникающая в результате сила будет направлена ​​в противоположном направлении и попытается увеличить длину пружины и вернуть ее в нейтральное положение.

Жесткость пружины k зависит не только от материала, используемого для изготовления пружины, но также определяется несколькими факторами, относящимися к геометрии конструкции пружины. Эти расчетные факторы включают:

  1. Диаметр проволоки из пружинного материала.
  2. Диаметр витка, который является мерой натяжения пружины
  3. Свободная длина пружины, представляющая ее длину, когда она ни к чему не прикреплена и не подвергается смещению от равновесия.
  4. Количество активных витков, содержащихся в пружине, что означает количество витков, которые могут расширяться и сжиматься при нормальном использовании.

Единицей измерения жесткости пружины является единица силы, деленная на единицу длины. В метрической системе измерения это будет, например, ньютон/метр или ньютон/сантиметр.

Пружины, которые следуют закону Гука, ведут себя линейно, что означает, что сила, создаваемая пружиной, является линейной функцией смещения или деформации от нейтрального положения.Материалы имеют так называемый предел эластичности — когда материал растягивается за пределы этой точки, он испытывает необратимую деформацию и больше не имеет возможности вернуться к своим первоначальным размерам и форме. Пружины, которые растянуты слишком сильно и превышают предел упругости материала, больше не подчиняются закону Гука.

Другие типы пружин, такие как пружины переменного диаметра (имеющие конические, вогнутые или выпуклые витки), являются примерами пружин, которые также демонстрируют нелинейное поведение в отношении их смещения из нейтрального положения, даже если деформация пределах предела упругости материала.

Другим примером пружины, которая не подчиняется закону Гука, являются пружины с переменным шагом. Шаг пружины — это количество витков, которые используются на каждой длине или сегменте пружины. Пружины с переменным шагом часто имеют постоянный диаметр витка, но шаг пружины изменяется по длине пружины.

Key Spring Терминология и определения

Разработчики пружин используют несколько терминов, параметров и символов при проектировании пружин. Краткое изложение этой ключевой терминологии приведено ниже с примерами символов, связанных со многими из этих параметров.

  • Количество активных витков (AC) – количество витков, которые будут прогибаться под нагрузкой
  • Изгиб – относится к изгибу или боковому смещению пружины сжатия.
  • Коэффициент гибкости – отношение длины пружины к ее среднему диаметру для винтовых пружин. Склонность к короблению связана с отношением гибкости L/D.
  • Прогиб – движение пружины в результате приложения или снятия нагрузки с пружины.
  • Длина в сжатом состоянии (CL) – значение длины пружины, когда пружина полностью сжата.
  • Плотность витков – количество витков на единицу длины пружины.
  • Предел упругости — максимальное значение напряжения, которое может быть приложено к пружине до того, как произойдет остаточная деформация, означающая, что материал больше не проявляет способности возвращаться к своим первоначальным размерам или форме после снятия напряжения.
  • Средний диаметр витка (D) – средний диаметр витков пружины.
  • Свободный угол — для винтовых торсионных пружин представляет собой угловое положение двух плеч пружины, когда они не находятся под нагрузкой.
  • Диаметр проволоки пружины (d) – диаметр проволоки, из которой изготовлена ​​пружина.
  • Свободная длина (FL) – общая длина пружины, измеренная без какой-либо нагрузки на пружину.
  • Гистерезис – представляет собой потерю механической энергии при повторяющихся или циклических нагрузках или разгрузках пружины. Потери являются результатом условий трения в системе поддержки пружины в результате стремления концов пружины вращаться во время сжатия.
  • Начальное натяжение (IT) — для пружин растяжения это значение или величина силы, которую необходимо преодолеть, прежде чем витки замкнутой пружины начнут открываться.
  • Модуль упругости при сдвиге или кручении (G) – коэффициент жесткости пружин сжатия и растяжения. Также называется модулем жесткости.
  • Модуль упругости при растяжении или изгибе (E) – коэффициент жесткости для торсионных или плоских пружин. Также называется модулем Юнга.
  • F = отклонение пружины для N активных витков (для линейного смещения)
  • F o = отклонение пружины для N активных витков (для поворотного перемещения)
  • Активная длина (L) – длина пружины, подверженной отклонению
  • P = нагрузка на пружину
  • Шаг (ρ) – межцентровое расстояние соседних витков в открытой пружине.
  • Коэффициент — представляет вероятность изменения значения нагрузки на единицу длины при прогибе пружины. Единицы измерения силы/расстояния, такие как фунты/дюймы. или Н/мм.
  • Постоянная установка — это изменение значения длины, высоты или положения пружины в результате растяжения пружины за пределы упругости.
  • S t = напряжение кручения
  • S b = напряжение изгиба
  • Общее количество витков (TC) – общее количество витков в пружине, включая активные витки и неактивные витки.

Типы пружин

Существуют различные типы пружин, в конструкциях которых используется различное управление накоплением энергии. К распространенным типам пружин относятся следующие:

Дополнительную информацию о каждом из этих типов пружин можно найти в нашей статье «Типы пружин — руководство по покупке Томаса».

Пружинные материалы и производство

Как делают пружины? Пружины часто изготавливаются из закаленной пружинной стали, которая может быть либо предварительно закалена перед формированием пружины, либо закалена после формирования.Спиральные пружины включают пружины любого типа, изготовленные из стержня или проволоки и имеющие спиральную форму. В эту категорию входят пружины сжатия, пружины растяжения и пружины кручения. Для производства этих типов пружин используется длинная проволока, которая подается в автоматическую намоточную машину. Заготовку проволоки также можно наматывать на токарном станке, если готовится меньший тираж, но следует учитывать множество соображений безопасности. Пружинная проволока будет сильно разматываться, если она не будет привязана или если машинист потеряет контроль над ней.Такое разматывание может быть чрезвычайно опасным для окружающих, особенно если это провод большого сечения.

Автомоталка — это машина, которая может скручивать пружинную проволоку в спираль. Хотя его название похоже на автомобильную автоматическую трансмиссию, это другое устройство. Обычно это регулируемые машины, которые могут изменять натяжение, длину и количество рулонов. В автомотальщиках используются ролики для подачи пружинной проволоки через коллекторы, а затем для быстрого вращения проволоки вокруг цилиндра. Быстрое вращение заставляет пружину принять спиральную форму.Затем автомоталка выталкивает пружину и наматывает следующий кусок проволоки.

Листовые рессоры устроены иначе, чем винтовые пружины. Сначала плоскому стержню придается форма, а затем набор стержней штампуется вместе. Несколько машин обрезают получившиеся стержни, удаляя лишний металл и сужая концы. Затем пружина подвергается термообработке для повышения прочности стали, а другие виды обработки, такие как покраска, выполняются для приведения пружины в соответствие с заданными визуальными характеристиками.

Резюме

В этой статье представлен краткий обзор пружин, включая принцип их работы, ключевую терминологию, различные типы пружин и способы их изготовления.Для получения информации по другим темам обратитесь к нашим дополнительным руководствам или посетите платформу поиска поставщиков Thomas, где вы можете найти потенциальные источники поставок для более чем 70 000 различных категорий продуктов и услуг.

Прочие пружины Артикул

Источники:
  1. https://physics.info/springs/
  2. https://aimcoil.com/the-physics-of-springs-how-manufacturers-design-springs-that-work
  3. https://www.isckc.com/tech-resources/glossary-of-spring-technology/
  4. https://www.newcombspring.com/resources/compression-spring-гистерезис

Больше из Машины, инструменты и расходные материалы

.

Добавить комментарий

Ваш адрес email не будет опубликован.