Карбюратор с электронным управлением – Лада 2108 ELECTRONICA › Бортжурнал › Карб с электронным управлением и катализатором ВАЗ 2108. Блок Axtec AFR и др.

Содержание

Лада 2108 ELECTRONICA › Бортжурнал › Карб с электронным управлением и катализатором ВАЗ 2108. Блок Axtec AFR и др.

В предыдущей темке началсь путаница с системами управления экспортных карбовых авто. Решил поделиться, что удалось узнать, «Ху ис Ху, так скажем»:
1. Микропроц зажигание МС-4004 (Болгария, г.София, з-д Электрон)
2. Микропроц зажигание МС-2713 (СССР, г. Москва, з-д Электроника)
3. Система снижения токсичности и электронным управлением смесеобразования AXTEC AFR (314012)
4. Система снижения токсичности, управление смесеобразования и микропроцессорное зажигание OLSON-DINOL.

Начнем
1,2 Микропроцессорное зажигание МС-4004(со встроенным коммутатором ), МС-2713 (коммутатор специальный серии 3734) (предыдущая статья в БЖ)

микропроц зажигание


Нет трамблера, вместо него заглушка, на которой стоят катушки (на фото вариант первого образца, позже стли ставить катушки от Оки и другим кронштейном.

вместо трамблера


расположение штатное блока микропроц зажигания


Блок управления устанавливается зеркально от печки как блок предохранителей и никакого отношения к карбюратору по сути не имеет, у него просто функция умного трамблёра.

2. Блок снижения токсичности с электронным управлением смесеобразования карбюратора AXTEC AFR (314012)

Блок управления карбюратором AXTEC AFR (314012)


Блок управления карбюратором AXTEC AFR (314012)


Да, были и такие системы на экспорт. Прапрадед современного инжектора)))
Эта система обеспечивает снижение токсичности согласно нормам США 1983 г. Система снижения токсичности оснащалась комплектующими фирмы «АКСТЕК». Блок устанавливается под пассажирское сиденье
и к зажиганию не имеет никакого отношения. Здесь вам :
и лямбда-зонд с катализатором
и Карбюратор 21083-1107010-62 с автоподсосом ))))
и лампочка CHECK моргает при ошибке

CHECK индикатор


и рециркуляция отработавших газов,
и…

Принципиальная схемка


www.drive2.ru

Управление карбюратором – что из себя представляет и как устроено

Современные карбюраторы – это не просто топливораспределительный узел автомобиля, но и по-настоящему «умная» деталь. Использование всевозможных электронных системы управления позволило совершить реальный прорыв в концепте карбюраторных агрегатов, когда, казалось бы, инжекторы вытеснили их из привычной сферы использования. В итоге, карбюраторы нынешних автомобилей являются чуть ли ни обучаемыми роботами, которые самостоятельно отлаживают свою работу и делают эксплуатацию машины для водителя в разы комфортабельнее. Более подробно именно о том, как это происходит и возможно в принципе, поговорим в представленной ниже статье.

Управление карбюратором

Электронное управление карбюратором – что это такое

С 50-х годов прошлого столетия карбюраторы начали активно использоваться в конструкции бензиновых средств передвижения. Поначалу, естественно, диковинная и очень удобная деталь для качественного смесеобразования нравилась всем и особой критики не подвергалась. Однако по истечению некоторого времени карбюраторы стали обыденностью машиностроения, вследствие чего к ним появилось все большее и большее количество вопросов.

Чаще всего критиковали систему смесеобразования, суть которой заключается в принципе «подсоса» воздуха в цилиндры, что и определяет объёмы формирования топливно-воздушной смеси, зачастую явно завышенные.

Долгие годы автомобильные инженеры хотели исправить имеющийся недочёт, однако проблема оставалась актуальной. В начале 70-х годов, когда борьба карбюраторных и инжекторных агрегатов начала обостряться, «с миру по нитки» удалось нейтрализовать, пожалуй, главный недостаток на тот момент в конструкции и функционировании карбюраторов. Нейтрализация произошла посредством организации электронного управления узлом.

Электронные карбюраторы стали настоящим прорывом в те года, однако даже они не смогли навязать достойную конкуренцию инжекторам. В любом случае, карбюраторные агрегаты – не редкость и на современных дорогах, поэтому их электронизация актуальна до сих пор. К слову, такая организация работы карбюратора является одним из лучших среди возможных вариантов, ведь при сохранении первоначальной конструкции узла «умная» электроника позволяет наладить его оптимальное функционирование на всех этапах раскрутки мотора.

Схема электронного карбюратора

Функции электронного оборудования карбюраторов

На этапах зарождения электронное оборудование карбюраторов не могло реализовать всё то, что от него реально требовалось. Несмотря на это, поступательное развитие электроники и работа автомобильных инженеров позволили сформировать из неё настоящий мозг топливораспределительного узла. Сегодня электронное управление карбюратором позволяет:

  • Стабилизировать обороты холостого хода. Для достижения этой цели используется электрический экономайзер принудительного холостого хода (ЭПХХ). Данный элемент карбюраторного узла позволяет организовать наиболее оптимальный режим мотора на холостом ходу. Экономайзер контролирует отдельные канали и жиклёры поступления топливовоздушной смеси в мотор, когда тот работает в холостом режиме (как при стоянке на месте, так и при движении по инерции). ЭХПП карбюратора имеет свою настройку и никак не связан с воздушной заслонкой. Схема подключения экономайзера представляет собой соединение узла с контроллерами работы двигателя, которые в совместном режиме работы через электронный блок управления настраивают холостой ход автомобиля под наиболее оптимальное функционирование в данный момент времени. Блок управление ЭПХХ – есть тот самый «мозг», контролирующий объёмы топлива и периоды их поставки в цилиндры мотора при работе его в холостую, что позволяет экономить литры бензина при передвижении на автомобиле;
  • Прогревать двигатель автомобиля при запуске до тех пор, пока его работа не станет стабильной. Эта функция также осуществляется благодаря ЭПХХ, что опять же исключает управление заслонкой дросселя на холостом ходу. Такой подход к работе карбюратора не только продлевает ресурс мотора посредством его грамотного прогрева, но и позволяет владельцу автомобиля существенно экономить на топливе. Отметим, что в некоторых видах электронных карбюраторов обогащение топливно-воздушной смеси на этапах прогревания мотора происходит не через экономайзер, а через движение дроссельной заслонки. Однако сейчас это большая редкость, в силу грамотной организации системы ЭПХХ;
  • Отключать или, напротив, усиливать подачу топлива в цилиндры двигателя при возникновении такой необходимости. Происходит это посредством либо уже изученного нами ЭПХХ (отключает подачу топлива в мотор, если машина катится по инерции на холостом ходу, то есть без нажатой педали газа) и другого экономайзера, который подключается к работе при высоких оборотах мотора и исключает его перегрев из-за недостатка топлива. Такая возможность электронного управления карбюратора иногда позволяет сэкономить топливо, а в некоторых случаях – предотвратить серьезнейшие поломки автомобиля.

Электрический экономайзер принудительного холостого хода

Схема работы ЭПХХ

Дроссельная заслонка карбюратора

Как видите, электронное оснащение карбюраторных узлов – это очень полезна вещь, зачастую экономящая автовладельцу немалые средства.

Экономайзер карбюратора

Особенности функционирования «карбюраторной» электроники

Итак, выше были детально рассмотрены функции электронного управления карбюратора, с которыми всё предельно просто. «Как происходит их реализация?» — вполне резонный вопрос, возникающий у многих людей, которые желают разобраться с карбюраторными узлами более подробно. Для того чтобы ответить на него, сначала обратим внимание на следующую схему:

Схема работы электроники карбюратора

В целом, по рисунку всё понятно. Электронное управление карбюратором реализуется по принципу двухстороннего взаимодействия датчиков узлов автомобиля, которым посвящена отдельная статья на нашем ресурсе, и электронным блоком управления (ЭБУ). Последний, к слову, может быть как единым устройством для всех электронных составляющих карбюратора, так и отдельным для каждого из них. В любом случае, принцип работы электронного управления останется неизменным и будет заключаться в следующем алгоритме:

  1. Блок управления запрашивает информацию у датчиков мотора, обращаясь к ним по электрической цепи автомобиля;
  2. Получив и проанализировав полученные данные, ЭБУ решает – нужно ли как-либо реагировать на работу двигателя или нет. Если ответ положительный, то блок управления передаёт управляющий сигнал устройствам и датчикам карбюратора, которые осуществляют необходимые действия.

Данный алгоритм циклический и повторяется огромное количество раз в процессе функционирования автомобиля.

В целом, с электронным управлением карбюратора разобраться не столь сложно, если понять базовые принципы его реализации, которые были детально рассмотрены и описаны выше. Надеемся, статья дала ответы на интересующие вас вопросы. Удачи на дорогах!

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

swapmotor.ru

Система “Ecotronik”, электронный карбюратор

просмотров 5 767 Google+

Система “Ecotronik” является характерным примером электронного карбюратора, прототипом моновпрыскового инжектора. Эта система обеспечивает оптимальный состав рабочей смеси при пуске, прогреве двигателя, а также отключение топлива при режиме принудительного холостого хода и поддержание определённой частоты оборотов на холостом ходу.

Эти функции обеспечиваются за счёт согласованных действий воздушной и дроссельной заслонки. Так при пуске двигателя электронный карбюратор обеспечивает приоткрытие дроссельной и закрытие воздушной заслонки, на величину обеспечивающую оптимальное обогащение горючей смеси для пуска двигателя при определённой температуре охлаждающей жидкости. В режиме принудительного хода происходит полное закрытие дроссельной заслонки, что прекращает смесеобразование. Для приготовления горючей смеси оптимального состава при разных режимах работы двигателя применяются датчики. В системе “Ecotronik” применяются датчик положения дроссельной заслонки, температуры охлаждающей жидкости, датчика частоты вращения коленвала и датчик кислорода в отработанных газах. Показания датчиков поступают на блок управления, который на основании показаний управляет положением заслонок. Блок управления представляет из себя микропроцессор с постоянным запоминающим устройством, в которое записаны данные опорных точек положения дроссельной заслонки, температуры охлаждающей жидкости и частоты коленчатого вала. Аналоговая информация от датчиков кислорода и положения дроссельной заслонки поступающая на блок управления, преобразуется в цифровую. Частота оборотов коленвала определяется преобразованием временного интервала между последовательными импульсами от датчика. После усиления и обработки сигналов от датчиков блок управления даёт команды на изменения положений заслонок. Так на пример при отсутствии свободного кислорода в отработавших газах, фиксируемое датчиком кислорода, происходит приоткрытие воздушной заслонки.

Применение системы “Ecotronik” позволяет поддерживать оптимальный состав рабочей смеси, что позволяет снизить расход топлива, содержание вредных веществ в отработанных газах, облегчить техническое обслуживание и надёжность системы смесеобразования. Но эта система имеет придел в адаптации смесеобразования. Этот недостаток устранён в инжекторной системе.

admin 19/06/2011«Если Вы заметили ошибку в тексте, пожалуйста выделите это место мышкой и нажмите CTRL+ENTER» «Если статья была Вам полезна, поделитесь ссылкой на неё в соцсетях»

avtolektron.ru

Карбюратор с электронным управлением | Хитрости Жизни

Страницы работы

Фрагмент текста работы

экономии топлива и уменьшения токсичности выхлопных газов обороты поддерживаются на достаточно низком уровне, при этом ДВС не должен глохнуть;

· прогрев двигателя. Обороты поддерживаются увеличенными до поступления сигнала с датчика температуры;

· обогащение смеси при прогреве. Используется вращающаяся воздушная заслонка или иной тип клапана для обогащения смеси в зависимости от режима работы ДВС;

· отключение подачи топлива при больших оборотах ДВС.

На рисунке 2.1 показаны основные компоненты карбюратора с электронным управлением, который используется на некоторых ранних моделях автомобилей фирмы Rover [2]. На рисунке 2.2 показана блок-схема системы управления карбюратором.

В такой системе обороты двигателя определяются по частоте импульсного сигнала, поступающего с отрицательного зажима первичной обмотки катушки зажигания, как и во многих других системах.

Датчик температуры охлаждающей жидкости размещен в рубашке водяного охлаждения двигателя, этот же датчик используется в системе управления зажиганием.

Температура окружающего воздуха определяется термистором, расположенным под передним бампером или за фарой.

Датчик закрытого положения дроссельной заслонки помещен под педалью акселератора и срабатывает, когда педаль отпущена, т. е. дроссельная заслонка закрыта.

Основным исполнительным механизмом в электронном карбюраторе является шаговый электродвигатель. Шаговый двигатель изменяет положение дроссельной заслонки в соответствии с командами, которые формируются в ЭБУ с учетом режима работы двигателя, температуры охлаждающей жидкости и всасываемого воздуха.

Когда обороты двигателя превышают допустимое значение, ЭБУ с помощью электроклапана уравнивает давление в поплавковой и смесительной камерах и подача топлива прекращается.

ЭБУ выдает также сигнал на указатель температуры двигателя, который установлен на щитке приборов для водителя [1].

Рисунок 2.1 – Основные компоненты карбюратора с электронным

Рисунок 2.2 — блок-схема системы управления карбюратором

2.2. Система впрыскивания топлива с электронным управлением LJetronic

На рисунке 3 показана система распределенного впрыскивания топлива LJetronic.

Рисунок 3 – Система впрыскивания топлива «L-Jetronic»

Электрический топливный насос 2 подает топливо из бака 1 через фильтр 3 в топливный коллектор 4, в котором с помощью стабилизатора 5 поддерживается постоянный перепад давления на входе и выходе топлива из форсунок 7. Стабилизатор перепада давления предназначен для поддержки постоянного давления впрыскивания и обеспечения возврата избыточного топлива обратно в бак. Благодаря этому происходит циркуляция топлива в системе и не допускается образование паровых пробок. Из коллектора топливо поступает к рабочим форсункам, которые подают его в зону впускных клапанов. Количество впрыскиваемого топлива определяется электронным блоком управления 6 в зависимости от температуры, давления и объема поступающего воздуха, частоты вращения коленчатого вала и нагрузки двигателя. Учитывается также температура охлаждающей жидкости.

Объем воздуха, который поступает в систему, является основным параметром, определяющим дозирование топлива. Воздух поступает в цилиндры через измеритель 12 расхода воздуха и впускной трубопровод. Воздушный поток, поступающий в двигатель, отклоняет напорную измерительную заслонку измерителя расхода воздуха на определенный угол. При этом с помощью потенциометра электрический сигнал подается в блок управления, который определяет необходимое количество топлива и выдает на электромагнитные клапаны импульсы управления моментом впрыскивания топлива. Электронная схема управления дозированием топлива получает питание от аккумуляторной батареи 20 и начинает работать при включении зажигания.

Независимо от положения впускных клапанов, форсунки впрыскивают топливо за один или два оборота коленчатого вала двигателя. Если впускной клапан в момент впрыскивания топлива форсункой закрыт, топливо накапливается в пространстве перед клапаном и поступает в цилиндр при следующем его открытии одновременно с воздухом.

Система L3-Jetronic это модификация системы, рассмотренной выше. Основное отличие от LJetronic блок управления установлен вместе с датчиком расхода воздуха и находится в моторном отсеке.

Система может диагностировать датчики. В системе нет клапана холодного пуска и термореле, а обогащение смеси при пуске холодного двигателя происходит путем увеличения подачи топлива через основные форсунки.

Система LHJetronicимеет датчик массового расхода воздуха

страница 10/11
Дата 07.02.2019
Размер 1.35 Mb.
Название файла вариант 12.docx

27 Карбюраторы с электронным управлением

Электронный карбюратор позволяет реализовать следующие функции:

  • стабилизация оборотов ХХ. Обороты ДВС на ХХ поддерживаются постоянными на низком уровне с целью экономии топлива и уменьшения токсичности выхлопных газов. Регулирование производится шаговым двигателем. Обороты ХХ могут быть изменены по сигналу от автоматической коробки переключения передач, от реле включения муфты кондиционера и другим сигналом об увеличении нагрузки;
  • Прогрев двигателя. При прогреве двигателя обороты ХХ поддерживаются увеличенными до тех пор, пока соответствующий сигнал не поступит от датчика температуры ОЖ;
  • обогащение ТВ-смеси при прогреве. Используется вращающаяся воздушная заслонка или иной тип клапана для обогащения смеси в зависимости от режима работы двигателя и температуры ОС;
  • отключение подачи топлива при больших оборотах двигателя. Для отключения подачи топлива используется запирающий электроклапан, который срабатывает, когда температура двигателя выше установленного предела или обороты двигателя выше допустимого значения при отпущенной педали акселератора (случай – торможение двигателем).

На рис.17 показаны основные компоненты карбюратора с электронным управлением, используемые на некоторых ранних моделях автомобилей фирмы Rover.

Рисунок – Основные компоненты карбюратора с электронным управлением

Блок-схема СУ карбюратором рис. 18, содержит набор датчиков, устройство обработки информации, исполнительные механизмы.

Рисунок – Блок-схема СУ карбюратором

В такой системе обороты двигателя определяются по частоте импульсного сигнала, поступающего с отрицательного зажима первичной обмотки катушки зажигания, как и во многих других системах.

Датчик температуры охлаждающей жидкости (термистор) размешен в рубашке водяного охлаждения двигателя, этот же датчик используется в СУ зажиганием.

Температура окружающего воздуха определяется термистором, расположенным под передним бампером или за фарой. В более поздних системах температура всасываемого воздуха измеряется датчиком, установленным во впускном коллекторе.

Датчик закрытого положения дроссельной заслонки помещен под педалью акселератора и срабатывает, когда педаль отпущена, т.е. дроссельная заслонка закрыта.

Основным исполнительным механизмом в электронном карбюраторе является шаговый электродвигатель. Шаговый двигатель изменяет положение дроссельной заслонки в соответствии с командами, которые формируются в ЭБУ с учетом режима работы двигателя, температуры охлаждающей жидкости и всасываемого воздуха.

Когда обороты двигателя превышают допустимое значение, ЭБУ с помощью электроклапана уравнивает давление в поплавковой и смесительной камерах и подача топлива прекращается.

ЭБУ выдает также сигнал на указатель температуры двигателя, который установлен на щитке приборов для водителя.

Примером карбюратора с электронным управлением является система «Ecotronic» (рис. 19) – устройство, сохраняющее стехиометрический состав топливовоздушной смеси (коэффициент избытка воздуха а = 7) на рабочих режимах, обеспечивающее оптимальный состав топливовоздушной смеси на режимах пуска, прогрева двигателя, отключения подачи топлива на принудительном холостом ходу, а также поддержание заданной частоты вращения коленчатого вала в режиме холостого хода.

Система «Ecotronic» осуществляет согласованное управление дроссельной и воздушной заслонками. При пуске установочное устройство приоткрывает дроссельную заслонку на угол, при котором обеспечивается максимальное значение частоты вращения коленчатого вала в режиме холостого хода. Воздушная заслонка закрывается до положения, обеспечивающего холодный пуск двигателя. После пуска двигателя дроссельная заслонка автоматически устанавливается в положение, которое зависит от температуры охлаждающей жидкости. По мере прогрева установочные устройства постепенно закрывают дроссельную заслонку и открывают воздушную.

Рисунок – Карбюратор с электронным управлением системы «Ecotronic»:

1 – трехкомпонентный каталитический нейтрализатор; 2 – датчик кислорода; 3, 4 – датчики соответственно температуры и положения дроссельной заслонки; 5 – привод воздушной заслонки; 6 – электропневматический привод дроссельной заслонки первичной камеры; 7 – блок управления

В режиме принудительного холостого хода дроссельная заслонка закрывается в большей степени по сравнению с нормальным положением при данной температуре охлаждающей жидкости. Образование топливовоздушной смеси прекращается. При появлении нагрузки на двигатель дроссельную заслонку приоткрывают до положения, при котором подача топливовоздушной смеси в цилиндры возобновляется. По такому же принципу обеспечивается прекращение подачи топливовоздушной смеси при калильном зажигании после выключения зажигания.

Для поддержания стехиометрического состава топливовоздушной смеси используется сигнал датчика кислорода (А,-зонда), который устанавливается в выпускном трубопроводе. Установочное устройство изменяет положение воздушной заслонки. Воздушная заслонка приоткрывается, если при работе двигателя на обогащенной топливовоздушной смеси датчик кислорода фиксирует отсутствие свободного кислорода в отработавших газах двигателя. Блок управления (ЭБУ), представляющий собой микропроцессор с ПЗУ, имеет устройства ввода информации, синтеза информации, вывода команд управления. Аналоговая информация от датчика положения дроссельной заслонки и датчика кислорода преобразуется в цифровую. Частота вращения коленчатого вала определяется путем преобразования временного интервала между двумя последовательными импульсами системы зажигания. В ПЗУ записаны данные опорных точек для установочных устройств положения воздушной и дроссельной заслонок, частоты вращения коленчатого вала, температуры охлаждающей жидкости.

После обработки информации выходные сигналы усиливаются и подаются на исполнительные механизмы. Система «Ecotronic» получает питание от бортовой сети автомобиля.

Применение карбюраторов с электронным управлением позволяет поддерживать оптимальный состав топливовоздушной смеси и оптимальное наполнение цилиндров на различных режимах работы двигателя, повысить топливную экономичность и уменьшить содержание токсичных веществ в отработавших газах, повысить надежность системы топливоподачи, а также облегчить техническое обслуживание в эксплуатации. Однако система не полностью адаптируется к режимам работы двигателя.

В поплавковом карбюраторе, чем больше воз­духа засасывается в цилиндры, тем больше топлива поступает для образования ТВ-смеси. Основной недостаток такой системы смесеобразования—нелинейная связь между массой поступающего в двигатель воздуха и количеством распылен­ного топлива, т.е. не выдерживается стехиометрический состав ТВ-смеси при раз­личных оборотах двигателя. Для компенсации этого недостатка вво­дят электронное управление.

Электронный карбюратор позволяет реализовать следующие функции:

стабилизация оборотов ХХ. Обороты ДВС на ХХ поддерживаются постоянными на низком уровне с целью эко­номии топлива и уменьшения токсичности выхлопных газов. Регулирование производится шаговым двигателем. Обороты ХХ могут быть изменены по сигналу от авто­матической коробки переключения передач, от реле включения муфты кондиционера и другим сигналом об увеличении нагрузки;

Прогрев двигателя. При прогреве двигателя обороты ХХ поддер­живаются увеличенными до тех пор, пока соответствующий сигнал не по­ступит от датчика температуры ОЖ;

обогащение ТВ-смеси при прогреве. Используется вращающаяся воздуш­ная заслонка или иной тип клапана для обогащения смеси в зависимости от режима работы двигателя и температуры ОС;

отключение подачи топлива при больших оборотах двигателя. Для отклю­чения подачи топлива используется запирающий электроклапан, который срабатывает, когда температура двигателя выше установленного предела или обороты двигателя выше допустимого значения при отпущенной педа­ли акселератора (случай — торможение двигателем).

Рис. 3.3. Основные компоненты карбюратора с электронным управлением

На рис.3.3 показаны основные компоненты карбюратора с электронным управлением, используемые на некоторых ранних моделях автомобилей фирмы Rover. Блок-схема СУ карбюратором рис.3.4, содержит набор датчиков, устройст­во обработки информации, исполнительные механизмы.

В такой системе обороты двигателя определяются по частоте импульсного сиг­нала, поступающего с отрицательного зажима первичной обмотки катушки зажи­гания, как и во многих других системах.

Датчик температуры охлаждающей жидкости (термистор) размешен в рубашке водяного охлаждения двигателя, этот же датчик используется в СУ зажиганием.

Температура окружающего воздуха определяется термистором, расположенным под передним бампером или за фарой. В более поздних системах температура вса­сываемого воздуха измеряется датчиком, установленным во впускном коллекторе.

Датчик закрытого положения дроссельной заслонки помещен под педалью ак­селератора и срабатывает, когда педаль отпущена, т.е. дроссельная заслонка за­крыта.

Основным исполнительным механизмом в электронном карбюраторе является шаговый электродвигатель. Шаговый двигатель изменяет положение дроссельной заслонки в соответствии с командами, которые формируются в ЭБУ с учетом режима работы двигателя, температуры охлаждающей жидкости и всасываемого воздуха.

Когда обороты двигателя превышают допустимое значение, ЭБУ с помощью электроклапана уравнивает давление в поплавковой и смесительной камерах и по­дача топлива прекращается.

ЭБУ выдает также сигнал на указатель температуры двигателя, который уста­новлен на щитке приборов для водителя.

litezona.ru

Электронное управление карбюратором – что это такое

Современные карбюраторы – это не просто топливораспределительный узел автомобиля, но и по-настоящему «умная» деталь. Использование всевозможных электронных системы управления позволило совершить реальный прорыв в концепте карбюраторных агрегатов, когда, казалось бы, инжекторы вытеснили их из привычной сферы использования. В итоге, карбюраторы нынешних автомобилей являются чуть ли ни обучаемыми роботами, которые самостоятельно отлаживают свою работу и делают эксплуатацию машины для водителя в разы комфортабельнее. Более подробно именно о том, как это происходит и возможно в принципе, поговорим в представленной ниже статье.

С 50-х годов прошлого столетия карбюраторы начали активно использоваться в конструкции бензиновых средств передвижения. Поначалу, естественно, диковинная и очень удобная деталь для качественного смесеобразования нравилась всем и особой критики не подвергалась. Однако по истечению некоторого времени карбюраторы стали обыденностью машиностроения, вследствие чего к ним появилось все большее и большее количество вопросов.

Чаще всего критиковали систему смесеобразования, суть которой заключается в принципе «подсоса» воздуха в цилиндры, что и определяет объёмы формирования топливно-воздушной смеси, зачастую явно завышенные.

Долгие годы автомобильные инженеры хотели исправить имеющийся недочёт, однако проблема оставалась актуальной. В начале 70-х годов, когда борьба карбюраторных и инжекторных агрегатов начала обостряться, «с миру по нитки» удалось нейтрализовать, пожалуй, главный недостаток на тот момент в конструкции и функционировании карбюраторов. Нейтрализация произошла посредством организации электронного управления узлом.

Электронные карбюраторы стали настоящим прорывом в те года, однако даже они не смогли навязать достойную конкуренцию инжекторам. В любом случае, карбюраторные агрегаты – не редкость и на современных дорогах, поэтому их электронизация актуальна до сих пор. К слову, такая организация работы карбюратора является одним из лучших среди возможных вариантов, ведь при сохранении первоначальной конструкции узла «умная» электроника позволяет наладить его оптимальное функционирование на всех этапах раскрутки мотора.

Функции электронного оборудования карбюраторов

На этапах зарождения электронное оборудование карбюраторов не могло реализовать всё то, что от него реально требовалось. Несмотря на это, поступательное развитие электроники и работа автомобильных инженеров позволили сформировать из неё настоящий мозг топливораспределительного узла. Сегодня электронное управление карбюратором позволяет:

  • Стабилизировать обороты холостого хода. Для достижения этой цели используется электрический экономайзер принудительного холостого хода (ЭПХХ). Данный элемент карбюраторного узла позволяет организовать наиболее оптимальный режим мотора на холостом ходу. Экономайзер контролирует отдельные канали и жиклёры поступления топливовоздушной смеси в мотор, когда тот работает в холостом режиме (как при стоянке на месте, так и при движении по инерции). ЭХПП карбюратора имеет свою настройку и никак не связан с воздушной заслонкой. Схема подключения экономайзера представляет собой соединение узла с контроллерами работы двигателя, которые в совместном режиме работы через электронный блок управления настраивают холостой ход автомобиля под наиболее оптимальное функционирование в данный момент времени. Блок управление ЭПХХ – есть тот самый «мозг», контролирующий объёмы топлива и периоды их поставки в цилиндры мотора при работе его в холостую, что позволяет экономить литры бензина при передвижении на автомобиле;
  • Прогревать двигатель автомобиля при запуске до тех пор, пока его работа не станет стабильной. Эта функция также осуществляется благодаря ЭПХХ, что опять же исключает управление заслонкой дросселя на холостом ходу. Такой подход к работе карбюратора не только продлевает ресурс мотора посредством его грамотного прогрева, но и позволяет владельцу автомобиля существенно экономить на топливе. Отметим, что в некоторых видах электронных карбюраторов обогащение топливно-воздушной смеси на этапах прогревания мотора происходит не через экономайзер, а через движение дроссельной заслонки. Однако сейчас это большая редкость, в силу грамотной организации системы ЭПХХ;
  • Отключать или, напротив, усиливать подачу топлива в цилиндры двигателя при возникновении такой необходимости. Происходит это посредством либо уже изученного нами ЭПХХ (отключает подачу топлива в мотор, если машина катится по инерции на холостом ходу, то есть без нажатой педали газа) и другого экономайзера, который подключается к работе при высоких оборотах мотора и исключает его перегрев из-за недостатка топлива. Такая возможность электронного управления карбюратора иногда позволяет сэкономить топливо, а в некоторых случаях – предотвратить серьезнейшие поломки автомобиля.

Как видите, электронное оснащение карбюраторных узлов – это очень полезна вещь, зачастую экономящая автовладельцу немалые средства.

Особенности функционирования «карбюраторной» электроники

Итак, выше были детально рассмотрены функции электронного управления карбюратора, с которыми всё предельно просто. «Как происходит их реализация?» — вполне резонный вопрос, возникающий у многих людей, которые желают разобраться с карбюраторными узлами более подробно. Для того чтобы ответить на него, сначала обратим внимание на следующую схему:

В целом, по рисунку всё понятно. Электронное управление карбюратором реализуется по принципу двухстороннего взаимодействия датчиков узлов автомобиля, которым посвящена отдельная статья на нашем ресурсе, и электронным блоком управления (ЭБУ). Последний, к слову, может быть как единым устройством для всех электронных составляющих карбюратора, так и отдельным для каждого из них. В любом случае, принцип работы электронного управления останется неизменным и будет заключаться в следующем алгоритме:

  1. Блок управления запрашивает информацию у датчиков мотора, обращаясь к ним по электрической цепи автомобиля;
  2. Получив и проанализировав полученные данные, ЭБУ решает – нужно ли как-либо реагировать на работу двигателя или нет. Если ответ положительный, то блок управления передаёт управляющий сигнал устройствам и датчикам карбюратора, которые осуществляют необходимые действия.

Данный алгоритм циклический и повторяется огромное количество раз в процессе функционирования автомобиля.

В целом, с электронным управлением карбюратора разобраться не столь сложно, если понять базовые принципы его реализации, которые были детально рассмотрены и описаны выше. Надеемся, статья дала ответы на интересующие вас вопросы. Удачи на дорогах!

auto-gl.ru

Карбюратор с электронным управлением — Студопедия.Нет

 

При использовании простейшего поплавкового карбюратора, чем больше воз­духа засасывается в цилиндры, тем больше топлива поступает для образования ТВ-смеси. Основной недостаток такой системы смесеобразования — нелинейная связь между массой поступающего в двигатель воздуха и количеством распылен­ного топлива, т.е. не выдерживается стехиометрический состав ТВ-смеси при раз­личных оборотах двигателя. Для компенсации этого недостатка приходится вво­дить в конструкцию карбюратора электронное управление. Такой карбюратор на­зывают электронным.

Электронный карбюратор позволяет более качественно реализовать следующие функции:

• стабилизация оборотов холостого хода. Обороты ДВС на холостом ходу поддерживаются постоянными на достаточно низком уровне с целью эко­номии топлива и уменьшения токсичности выхлопных газов. При этом двигатель не должен глохнуть. Регулирование производится шаговым двигателем. Обороты холостого хода могут быть изменены по сигналу от авто­матической коробки переключения передач, от реле включения муфты кондиционера и другим сигналом об увеличении нагрузки;

• прогрев двигателя. При прогреве двигателя обороты холостого хода поддер­живаются увеличенными до тех пор, пока соответствующий сигнал не по­ступит отдатчика температуры охлаждающей жидкости;

• обогащение ТВ-смеси при прогреве. Используется вращающаяся воздуш­ная заслонка или иной тип клапана для обогащения смеси в зависимости от режима работы двигателя и температуры окружающей среды;

Рисунок 1.5 – Основные компоненты карбюратора с электронным управлением

 

Рисунок 1.6 – Блок-схема системы управления электронным карбюратором

 

• отключение подачи топлива при больших оборотах двигателя. Для отклю­чения подачи топлива используется запирающий электроклапан, который срабатывает, когда температура двигателя выше установленного предела или обороты двигателя выше допустимого значения при отпущенной педа­ли акселератора (случай — торможение двигателем).

Изменение состава (качества) ТВ-смеси осуществляется в любом карбюраторе механическими средствами и плохо поддается электронному управлению.

На рис. 1.5 показаны основные компоненты карбюратора с электронным управлением, используемые на некоторых ранних моделях автомобилей фирмы Rover. На рис. 1.6 показана блок-схема системы управления карбюратором. Как обычно, в систему управления входят набор необходимых датчиков, устройст­во обработки информации, исполнительные механизмы.

В такой системе обороты двигателя определяются по частоте импульсного сиг­нала, поступающего с отрицательного зажима первичной обмотки катушки зажи­гания, как и во многих других системах.

Датчик температуры охлаждающей жидкости (термистор) размещен в рубашке водяного охлаждения двигателя, этот же датчик используется в системе управле­ния зажиганием.

Температура окружающего воздуха определяется термистором, расположенным под передним бампером или за фарой. В более поздних системах температура вса­сываемого воздуха измеряется датчиком, установленным во впускном коллекторе.

Датчик закрытого положения дроссельной заслонки помещен под педалью ак­селератора и срабатывает, когда педаль отпущена, т. е. дроссельная заслонка за­крыта.

Основным исполнительным механизмом в электронном карбюраторе является шаговый электродвигатель. Шаговый двигатель изменяет положение дроссельной заслонки в соответствии с командами, которые формируются в ЭБУ с учетом режима работы двигателя, температуры охлаждающей жидкости и всасываемого воздуха.

Когда обороты двигателя превышают допустимое значение, ЭБУ с помощью электроклапана уравнивает давление в поплавковой и смесительной камерах и по­дача топлива прекращается.

ЭБУ выдает также сигнал на указатель температуры двигателя, который уста­новлен на щитке приборов для водителя.

Электронное управление карбюратором оказалось неэффективным по сравне­нию с системами впрыска топлива, которые нашли широкое применение на со­временных автомобилях.

 

studopedia.net

Электронное управление карбюратора — RUUD

Содержание статьи:

Засоряющиеся жиклеры, плавающие холостые обороты, бесконечные провалы при разгоне… То ли дело инжектор! Но машину с инжекторным мотором позволить себе в конце прошлого века могли не все. Впрочем, вдохнуть новую жизнь в старенький мотор позволяла микропроцессорная система зажигания – забытый, недооцененный, но интересный и важный этап развития моторостроения.

Почему инжектор сменил карбюратор?

Многие считают, что в эволюции систем питания автомобильных бензиновых моторов карбюраторы последовательно сменил моновпрыск, затем впрыск распределенный, а потом и непосредственный. Однако не все знают, что был короткий период развития карбюраторных двигателей, когда у них получилось почти вплотную подобраться по характеристикам к инжекторным! Произошло это благодаря МПСЗ – микропроцессорным системам зажигания.

Вам будет интересно:УАЗ «Хантер»: расход топлива на 100 км и технические характеристики

Несовершенство классической системы питания и зажигания не было секретом для автоинженеров со времен появления первых автомобилей. Карбюраторный принцип смесеобразования и центробежно-вакуумный принцип поддержания оптимального угла зажигания всегда считались компромиссом – у двигателя слишком много переходных режимов, в которых карбюратор и трамблер не способны обеспечить оптимальную работу мотора, сочетающую максимальную экономичность, приемистость, эластичность, мощность и полное отсутствие детонации. А вот ЭБУ, электронный вычислительный блок, управляющий топливными форсунками и свечами инжекторной системы — может.

Вам будет интересно:Замена лампочки стоп-сигнала: советы и рекомендации

Однако все допотопные механические и электромеханические впрысковые системы, существовавшие до эпохи появления полноценных электронно-управляемых распределенных инжекторов (от «командогеретов» авиационных двигателей люфтваффе до многочисленных поколений автомобильных «джетроников»), по сути, слабо отличались в лучшую сторону от качественных карбюраторов. И до практической реализации инжектора в его самом массовом современном виде дошло лишь тогда, когда сделать это позволил уровень развития электроники. Создать полноценный блок ЭБУ для инжектора на радиолампах в 50-е годы ХХ века было попросту нереально. Сделать его на транзисторах 60-х годов – тоже. Лишь в 80-е годы, благодаря распространению компактных микросхем и мощных транзисторов, ЭБУ приобрел знакомые нам сегодня функционал, габариты и облик.

Вам будет интересно:Тормозная жидкость в «Тойоте»: где находится бачок и как заменить

Карбюратор уходит, но не сдается

Когда-то первые карбюраторы представляли собой примитивную трубку с одним жиклером и дроссельной заслонкой. Однако за десятилетия эволюции их конструкция усложнилась неимоверно. Идеальными устройствами для приготовления топливовоздушной смеси они так и не стали, но заметно к ним приблизились. Поэтому, несмотря на то, что переход на распределенный электронно-управляемый впрыск был предрешен и очевиден даже инженерам советских автозаводов, мысль о том, что миллионы карбюраторных машин еще не исчерпали свой потенциал, не давала покоя многим.

Статьи / Практика

Лечение огнем: как советские автолюбители ремонтировали шины

Зажигательный ремонт Вообще, огонь в качестве помощника шиномонтажника сегодня известен многим. С его помощью удается в полевых (и не только в полевых) условиях натянуть на обод бескамерную шину большого диаметра. Для…

9848

3

2 31.08.2018

Дело в том, что современный карбюратор не зря имеет сложную конструкцию: благодаря этому он, будучи исправным и идеально отрегулированным, достаточно неплохо справляется с задачей подготовки правильной бензовоздушной смеси в различных режимах работы двигателя и с учетом самых разных внешних условий. А значит, карбюратор можно попытаться оставить в покое и переключить внимание на второе из двух важнейших для работы мотора условий – правильное зажигание. Трамблер с его убогими вакуумным и центробежным регуляторами угла опережения – узкое место в моторе, он во многом губит все то, что дает карбюратор. Поэтому можно попытаться дополнить карбюратор умной электронной системой зажигания, и он приблизится по эффективности к инжектору. Так и родились микропроцессорные системы зажигания.

Вам будет интересно:Датчики ВАЗ-2110: краткая характеристика, расположение, функции

Для понимания идеологии этих систем нужно отметить один важный момент. Многие помнят, как едва ли не каждый советский владелец вазовской классики, Москвича или Волги стремился заменить нестабильное и примитивное штатное контактное зажигание на бесконтактное электронное. В последнем контактную группу из трамблера выбрасывали и заменяли датчиком Холла, индуктивным датчиком или даже инфракрасным. Так вот, электронные системы бесконтактного зажигания и МПСЗ – это совершенно разные вещи.

Электронное бесконтактное зажигание позволяло лишь избавиться от контактной пары и уменьшить зависимости мощности искры от просадки напряжения бортсети стартером. Ну и иногда брало на себя функцию ручного октан-корректора. А МПСЗ делала не только всё то же самое, но и — что гораздо важнее — автоматически регулировала параметры опережения зажигания, исходя из положения коленвала, оборотов и давления на впуске. С развитием микропроцессорных систем стало возможным при желании добавить датчик детонации, лямбда-зонд, датчики температуры антифриза и воздуха на впуске. Причем эта регулировка шла непрерывно, практически как у инжектора. Контроллер быстро реагировал на изменение условий работы мотора и корректировал угол опережения зажигания, учитывая в том числе и качество топлива.

Все владельцы карбюраторных автомобилей с установленным микропроцессорным зажиганием, начиная от достаточно старых и примитивных моделей МПСЗ и кончая современными, с возможностью самостоятельной ручной коррекции графиков УОЗ через Bluetooth со смартфона (!), отмечали радикальные изменения в поведении машины. «Карбовый» двигатель действительно «просыпался», идеально ровно работая на холостых оборотах и становясь приемистым и очень эластичным в движении. Также МПСЗ делала минимальной разницу между бензином и газом, если на машине было установлено газобаллонное оборудование.

Сфера автоэнтузиастов

Первые отечественные инжекторы появились на ВАЗах в середине 90-х, но массовыми стали лишь к началу 2000-х. Автомобильные заводы СССР, а затем и России слишком долго зависали на «карбюраторном этапе». Последние карбюраторные машины сходили с конвейеров ВАЗа и УАЗа аж в 2006 году, до ввода в нашей стране экологического стандарта Евро-2, в который «карб» уже не вписывался. Массовый и безвозвратный переход на инжекторные системы задержался сильно, и поэтому промежуточный этап с применением МПСЗ для автозаводов оказался неприемлемым.

Под капотом Lada 111 ‘1997–2009

Тем не менее, советская промышленность в конце 80-х производила фабричные комплекты контроллеров МПСЗ с периферией и проводкой. Модели носили характерные для своего времени названия типа «Электроника-МС2713-02» или «Электроника-МС4004». Выпускали их у нас в Москве и «почти у нас», в болгарской Софии. Такие контроллеры МПСЗ заводского производства комплектовались полным набором компонентов для самостоятельного монтажа системы на автомобиль, включая распределенные катушки зажигания (в роли которых часто выступали спаренные катушки от Оки) и даже заглушку, устанавливаемую на место удаляемого трамблера.

Главным из датчиков был, разумеется, датчик положения коленвала, который нужно было установить в КПП напротив зубьев маховика. Вторым по важности являлся датчик разрежения во впускном коллекторе, служивший основным источником информации о нагрузке на двигатель для умной электроники. У систем МПСЗ «Электроника» этот датчик был встроенным непосредственно в сам корпус контроллера и соединялся со штуцером в карбюраторе тонким шлангом.

Однако несмотря на высокий уровень гаджетов под маркой «Электроника», массовой система так и не стала. В 80-х Волжский автозавод выпускал незначительное число переднеприводных автомобилей с МПСЗ «Электроника» на экспорт; в широкой же продаже в качестве комплектов для самостоятельной установки встречались они крайне редко, и мало кто о них знал. А с развалом СССР в 1991 году фабричные МПСЗ и вовсе исчезли с прилавков магазинов.

Лет десять в сфере микропроцессорного зажигания было полное затишье, но примерно в начале 2000-х эту нишу заняли мелкосерийные самодельщики-любители, энтузиасты тюнинга, которые полностью «окучивают» ее и по сей день, создавая достаточно сложные и весьма умные устройства. Правда, количество таких проектов было относительно невелико и сейчас постепенно сокращается, ибо в наши дни спрос на МПСЗ планомерно падает по причине ухода на заслуженный отдых карбюраторных моторов и машин с ними…

Инжектор как донор для карбюратора

Кстати, стоит упомянуть любопытное ответвление развития систем МПСЗ, которое они получили уже в инжекторную эпоху. Многие энтузиасты карбюраторных машин в середине 2000-х почти одновременно пришли к лежащей на поверхности идее. Поскольку блоки управления инжекторными двигателями типа «Январей», «Микасов» и прочих «Бошей» подешевели, их стало возможно приобрести за совершенно небольшие деньги на разборках. А ведь инжекторный ЭБУ – это практически готовый и весьма совершенный блок для карбюраторной МПСЗ.

Дело в том, что инжекторный ЭБУ, собственно, не знает, где он работает. На своем родном инжекторном моторе, на карбюраторном моторе или вообще на лабораторном столе или на коленке. Блок просто методично выполняет свою программу – получает информацию от датчиков и на основе этих данных выдает управляющие сигналы для впрыска и зажигания. И если подключить к ЭБУ вместо топливных форсунок карбюратор, навесить на него модуль зажигания и датчики, то электронный блок будет работать и безупречно подавать искру в нужный момент с точностью, недоступной даже самому лучшему трамблеру, контролируя обороты, нагрузку на мотор, температуру и детонацию. Для этого, правда, нужно откорректировать прошивку, написав ее урезанный «карбюраторный» вариант. Но для настоящих энтузиастов это не так уж сложно.

Получая информацию от датчика положения коленвала, давления на впуске, детонации и иногда даже от лямбда-зондов (если владельцу карбюраторной машины было не лень врезать их в глушитель), популярные и распространенные ЭБУ типа «Январь» дали многим автостаричкам второе дыхание.

Впрочем, повторимся — сегодня история с МПСЗ постепенно сходит на нет. Микропроцессорное зажигание было бы чертовски актуально в виде заводской системы на автомобилях “доинжекторной” эпохи, но отечественным автозаводам эта промежуточная инновация оказалась не по силам. Сейчас же карбюраторных машин становится все меньше, а многие из тех, кто готов своими руками сделать что-то основательное с любимой, но немолодой машинкой, предпочитают собрать полный инжекторный комплект впрыска и зажигания, который с применением подержанных компонентов с разборки порой оказывается сопоставимым по цене с комплектом МПСЗ для карбюратора…

Источник

ruud.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *