Кинематическая схема редуктора – Кинематические схемы редукторов | PRO-TechInfo

Содержание

Методические указания к выполнению курсового проекта и расчётно-графических заданий по дисциплине «Деталям машин», страница 9


2.  КИНЕМАТИЧЕСКИЕ СХЕМЫ РЕДУКТОРОВ И ИХ ПЕРЕДАТОЧНЫЕ ЧИСЛА.

Рис. 2.1. Кинематическая схема цилиндрического двухступенчатого редуктора с развернутой компоновкой.

,

где

— общее передаточное число редуктора

U1— полученное значение округляется до значения стандартного:

1 ряд: 2; 2,5; 3,15; 4;5; 6,3; 8

2 ряд: 2,24; 2,8; 3,55; 4,5; 5,6; 7,1

Рис 2.2. Кинематическая схема цилиндрического двухступенчатого редуктора с развернутой быстроходной ступенью.

,

где

— общее передаточное число редуктора

U1— принимается ближайшее стандартное значение

Рис 2.3. Схема двухступенчатого соосного редуктора.

 Полученное значение округляется до стандартного значения.

,

где

— общее передаточное число редуктора

Рис. 2.4. Схема двухступенчатого коническо-цилиндрического редуктора.

,

 где

— общее передаточное число редуктора

Полученное значение округляется до стандартного значения.


Рис. 2.5. Схема червячно-цилиндрического редуктора.

,

где

— общее передаточное число редуктора.

Примечание:

=8; 12.5; 16; !8; 20; 25; 32.

Рис. 2.6. Схема цилиндрическо-червячного редуктора.

=2…3.15

=8; 12.5; 16; 18; 20; 25; 32.

Рис. 2.7. Схема двухступенчатого червячного редуктора

Примечание: Полученное значение округляется до стандартного значения.

=8; 12.5; 16; 18; 20; 25; 32.

Рис. 2.8. Схема трехступенчатого цилиндрического редуктора.

;    -передаточное число первой  и третьей ступени совместно.

      — передаточное число первой ступени.

       -передаточное число третьей ступени.


3.  КОЭФФИЦИЕНТЫ ДОЛГОВЕЧНОСТИ ПО КОНТАКТНЫМ И ИЗГИБНЫМ НАПРЯЖЕНИЯМ ДЛЯ ЦИЛИНДРИЧЕСКИХ, ЗУБЧАТЫХ И КОНИЧЕСКИХ ПЕРЕДАЧ.

3.1.  При постоянной нагрузке

; ;

Где

— число циклов нагружения зубьев.

;

Где

 –угловая скорость на ведомом валу w2= π · n230

— срок службы передачи в часах.

3.2.  При переменных режимах нагрузки, заданных циклограммой

; ;

Где

— эквивалентное число нагруженных зубьев

 – базовое число циклов перемен напряжений в зависимости от твердости рабочей  поверхности определяется по Рис.3.1

 – базовое число циклов перемен напряжений для всех сталей.

;

Где

крутящиймомент, соответствующий i-й  ступени циклограммы напряжения.

— наибольший расчетный крутящий момент.

 –число циклов перемен напряжений за время действия момента Ti.

vunivere.ru

Редукторы — Кинематические схемы — Энциклопедия по машиностроению XXL

Если число оборотов выбранного двигателя отличается от числа оборотов расчетного, то следует пересчитать передаточное число редуктора по кинематической схеме.  
[c.78]

Каретка трактора представляет собой шасси на четырех колесах 15 с резиновыми ободами. Задние колеса являются ведущими. Сцепляются и расцепляются они с приводом при помощи рукоятки 17, разводящей две зубчатые полумуфты. Движение каретки осуществляется электродвигателем 18 постоянного тока через червячный редуктор 16. Кинематическая схема каретки показана на рис. 85, б. Трактор может перемещаться непосредственно по изделию или по рельсовому пути.  [c.157]

Редуктор электротали, кинематическая схема которого приведена на фиг. 54, б, состоит из четырех нар цилиндрических шестерен 1—8, насаженных на валах 1—1У, получающих вращение от двигателя 9 через шлицевый вал 1 и передающих его барабану 10, на который навивается грузовой канат 72. В электроталях грузоподъемностью 1—5 т на промежуточном валу редуктора установлен грузоупорный тормоз 12, поэтому опускание груза происходит только при вращении двигателя в обратную сторону.  

[c.93]

Проектирование кинематической схемы многозвенного зубчатого механизма заключается в подборе по заданному общему передаточному отношению основных размеров колес и числа их зубьев. При этом необходимо учитывать и некоторые дополнительные условия, связанные с конструктивными требованиями. Рассмотрим эти условия на примере двухступенчатых зубчатых механизмов редукторов, показанных на рис. 24.1. На рис. 24.1, а  [c.493]

Задание на курсовой проект можно рассматривать как часть реального технического задания. Оно представляет собой кинематическую схему привода (включая схему редуктора) с исходными данными. Студент должен произвести расчеты, выбрать наилучшие кинематические параметры схемы и разработать документацию (чертеж общего вида, рабочие чертежи деталей и др.), предназначенную для изготовления привода.  

[c.4]


Г сли в кинематической схеме кроме зубчатых (червячных) передач имеется цепная или ременная передача, то сначала определяют ее передаточное число. Делают это для того, чтобы обеспечить соразмерность деталей таких передач с остальными деталями привода. Так, для схемы (см. рис. 1.1, ж) диаметр ведомого шкива ременной передачи по соображениям эстетики должен вписываться в размеры сторон торца редуктора. Для схем (см. рис. 1.1, а, б) по тем же соображениям должно выполняться = (0,9…I,2)Д( . ).  [c.6]

Зубья некорригированы, нормальной высоты, с углом зацепления а = 20°. Редуктор предназначен для непрерывной работы. Нагрузка реверсивная. Требуется на основании чертежа составить кинематическую схему, а по данным таблицы определить (из расчета зубьев каждой ступени на контактную прочность) допускаемую мош,ность на ведущем валу. Потери в зубчатых передачах и подшипниках не учитывать. Срок службы неограничен. Коэффициент нагрузки К = 1,25.  

[c.165]

На рис. 10.1 показана кинематическая схема лебедки. Определить передаточное число червячного редуктора, установить число заходов червяка и число зубьев червячного колеса, если скорость наматывания каната v = 0,33 м сек диаметр барабана D = 0,385 м угловая скорость вала электродвигателя ш =  [c.179]

При проектировании привода к ленточному транспортеру (рис. 11.3, а) цепная передача была предусмотрена в кинематической схеме между электродвигателем (п = 720 об/мин) и редуктором расчетом был определен шаг однорядной втулочно-роликовой цепи = 25 мм.  

[c.196]

Р ешение задач компоновки конструктивных элементов высшего иерархического уровня из элементов низшего иерархического уровня в большинстве случаев наиболее трудоемкая часть конструкторского проектирования, и иногда под компоновкой понимают собственно процесс конструирования. Задача компоновки машиностроительных узлов обычно состоит из двух частей эскизной и рабочей [1]. При решении эскизной части задачи компоновки по функциональной схеме разрабатывают общую конструкцию узла. На основе эскизной компоновки составляют рабочую компоновку с более детальной проработкой конструкции узла. Например, процесс компоновки зубчатого редуктора выполняется по его кинематической схеме. Предварительно необходимо рассчитать  [c.9]

В червячных редукторах для повышения КПД необходимо применять многозаходные червяки. Применение червячных редукторов при малых передаточных числах (и Ю) нецелесообразно. После окончательного выбора кинематической схемы привода производится его кинематический расчет.  

[c.16]

Для многоступенчатой передачи, состоящей из нескольких отдельных последовательно соединенных передач (в качестве примера на рис. 3.43 изображена кинематическая схема привода от электродвигателя 1 к, исполнительному механизму (конвейер) 6, состоящая из клиноременной передачи 2, косозубого цилиндрического редуктора 3, открытой конической пары 4 и червячного редуктора 5), общий к. п.д. определяется по формуле  [c.403]

Редукторы широко применяют в различных отраслях машиностроения, и поэтому они весьма разнообразны по своим кинетическим схемам и конструктивному исполнению. На приведенных ниже кинематических схемах буквой Б отмечен входной (быстроходный) вал редуктора, а буквой Т — выходной (тихоходный).  

[c.490]

Пример конструкции одноступенчатого конического редуктора показан на рнс. 3.97, а, кинематическая схема его—на рис. 3.97, б.  [c.491]

Механизм привода антенны самолетной РЛС и кинематическая схема привода изображены на рис. 29.21. Электродвигатель Дв через трехступенчатый редуктор поворачивает на определен-  [c.435]

На рис. 10.5, а изображена кинематическая схема двухступенчатой соосной передачи с цилиндрическими колесами и неподвижными осями вращения. Произведем в ней следующие изменения (рис. 10.5, б). Свяжем корпус подшипников промежуточного вала колес (2—2 ) с выходным валом, который предварительно отсоединим от колеса 3, а само колесо укрепим на корпусе редуктора. Теперь вал, несущий колеса 2—2, будет совершать сложное планетарное движение (вращаясь вокруг своей оси и одновременно вместе с корпусом его подшипников вокруг общей оси входного и выходного валов). Такая передача называется планетарной. Она состоит из двух центральных колес I п 3 (колесо 3 закреплено да корпусе редуктора и потому неподвижно), водила Н назыв К  
[c.277]
Рис. 16.1. Кинематические схемы редукторов Б — быстроходный вал Т — тихоходный вал
Кинематическая схема и блок-схема автомата показаны на рис. XIV.38. Работает он следующим образом. От электродвигателя 1 через ременную 2 и червячную 3 передачи получает вращение вал 4. От этого вала при помощи зубчатого редуктора движение передается винту 13, с которым муф-  [c.309]

Редукторы в приводах машин в зависимости от их кинематической схемы и конструктивного оформления можно разделить на четыре основные группы  

[c.102]

Основным унифицированным узлом машин является кривошипный возбудитель динамических перемещений, кинематическая схема которого представлена на рис. 66. В литом корпусе 1 на двух шариковых подшипниках вращается главный вал 6, играющий одновременно роль маховика и корпуса редуктора, который состоит из двух червячных (Передач 4, 5 и одной цилиндрической передачи 13. В эксцентричной расточке главного вала помещается кривошипный вал 7, угловое положение которого, а следовательно и амплитуда возмущающего перемещения, фиксируется самотормозящей червячной передачей 5 и регулируется  [c.108]

Так, например, в редукторе угольного комбайна, кинематическая схема которого показана на рис. 7. 4, зубчатые колеса 6 и 7 колеблются на своих валах при следующих собственных частотах (в гц)  

[c.246]

Для машин многих типов (к числу которых относятся горные и сельскохозяйственные комбайны, металлорежущие станки и др.) характерны разветвленные кинематические схемы, где от одного двигателя получают движение несколько исполнительных механизмов (см. рис. 7. 4). Определение собственных частот колебаний редукторов подобных машин несколько сложнее.  [c.258]

Кинематическая схема системы доворота и индексации шпинделей представлена на рис. 2. Система включает редуктор А доворота шпинделей с электродвигателем 9, узел Б индексации шпинделей и электротормоз 12, установленные в приводе главного движения. В процессе обработки детали на станке вращение от электродвигателя 14 главного движения через кулачковую муфту 13 и зубчатые колеса шпиндельной коробки передается на шпиндель 5. Одновременно вращаются вал 2 узла индексации шпинделей и выходной вал И редуктора доворота шпинделей. При этом электродвигатель 9 и электромагнитная муфта 10 отключены. После завершения обработки электродвигатель 14 отключается и затормаживается. После остановки привода главного движения тормоз освобождается, и включаются муфта 10 и электродвигатель 9. Вращение последнего через червячную передачу 7—8, муфту 10, вал 11 и зубчатое колесо 6 передается на валы шпиндельной коробки, шпиндель 5 и экран 3 узла индексации шпинделей. Экран 3 взаимодействует с бесконтактными конечными выключателями 1 и 4, управляющими работой электродвигателя 9. Остановка шпинделей в заданном угловом положении обеспечивается электротормозом 12 в момент, когда экран 3 перекрывает оба конечных выключателя. Благодаря  [c.65]

Кинематическая схема реверсивного барабана показана на рис. 19, а. Привод вращения барабана осуществляется гидромотором 13 через червячный редуктор 12, шестерня 14 которого зацеплена с зубчатым венцом 1, прикрепленным к поворотной части барабана. Крайние положения поворотной части барабана определяются упорами  [c.118]

Одноступенчатый планетарный редуктор е двухвенцовыми сателлитами (лист 108), выполняемый по схеме 2K-h, может с естечить передаточное число до 18, а при ишольдавании редуктора в кинематических схемах при кратковременном режиме работы — до 30.  [c.279]

Транспортер-дозатор состоит из сварной рамы, ведушего и ведомого барабанов, резино-тканевой ленты и мотор-редуктора. Дозирование заполнителей осушествляется изменением высоты слоя материала на ленте транспортера (изменением положения заслонки) и установкой различного времени работы транспортера при помоши реле времени, отключающего через заданное время мотор-редуктор транспортера. Кинематическая схема транспортера-дозатора показана на рис. 3, б.  [c.410]

На рис. 6.13, а дана кинематическая схема привода ползунов однокривошипного пресса двойного действия с кулачково-рычажным механизмом прижимного ползуна. Элект[юдвнгатель через планетарный редуктор 9—10—11—Н и фрикционную муфту 12 постоянно вращает маховик 13. Последний вращается на подшипниках качения на приводном валу 14, который закреплен тормозом 15. При выключении тормоза движение от приводного вала через зубчатую передачу 7—8 передается рабсчему валу /, колено которого связано через шатун 2 с вытяжным ползуном 3. Ко1Ш.ы рабочего вала соединены через кулачковый механизм 5 с прижимным ползуном 4.  [c.220]

Если в кинематической схеме кроме редуктора (коробки передач) имеется цепная или ременная передача, то предварительно назначенное передаточное число пepeдa ш не изменяют, принимая = Иц или и = Ир, а уточняют передаточное тасло редуктора  [c.8]

На рис. 8.8, а п б показаны два варианта кинематических схем привода к цепному конвеперу они различаются тем, что по схеме а ременная передача предусмотрена между электродвигателем и редуктором, а по схеме б оиа расположена между редуктором и валом конвейера. Редукторы в обеих схемах отличаются по размерам, так как в первом случае момент, передаваемый на вал редуктора, примерно в ip раз больше, чем во втором ip — передаточное число ременной передачи).  [c.137]

Озставить кинематические схемы червячных редукторов при следующем расположении червячной пары  [c.179]

На рпс. 10.3 изображен двухступенчатый червячный редуктор. Первая червячная пара имеет = 5 мм q = 10 2 = 40 вторая — т, = 8 мм q = 8 и 2, = 36. Обе передачи двухзаход-ные. Материал червяков — сталь, а венцов червячных колес — бронза (/ = 0,05). Требуется составить кинематическую схему и определить общее передаточное число и к. п. д. редуктора, полагая потери в подшипниках и на перемешивание масла равными 3% передаваемой мощности. Найти также угловую скорость ведомого вала (rtj.), если ведущий вал делает 1440 об/мин.  [c.180]

Кинетические схемы зубчатых редукторов. На рис. Ю.З представлены типичные кинематические схемы зубчатых редукторов. Чаще всего применяют редукторы с горизонтальпым  [c.273]

Рис. 171. Кинематическая схема универсальной машины УМЭ-10Т / — динамометр, 2 — образец, 3 —.тензометр, 4 — направляющие втулки, 5 — подвижный траверс, 6 — чер-вячлын редуктор, 7 — разрезная гайка, 8 — установочный двигатель, 9 — муфта, 0 — коробка передач, J1 — двигатель привода, 12 — двигатель силоизмерителя, 13 — двигатель барабана, 14 — циферблат, 15 — барабан, J6 п 17 — выключатели.
Червячный редуктор 7 приводится в движение либо от механического, либо от ручного привода. Его червячное колесо, вращаясь в определенной плоскости, сообщает грузовому винту и нижнему захвату медленное перемещение вниз (при растяжении), либо вверх (при сжатии) в зависимости от направления вращения колеса. Механический привод сообщает нижнему захвату две скорости перемещения—11 и 48 мм/мин. Каждая из них достигается установкой рычага 12 редуктора в одно из двух его рабочих положений наклоненное к станине и отклоненное от нее. Первому соответствует большая скорость движения захвата, второму — меньшая. Среднее (вертикальное) положение рычага является нейтральным, когда механический пр)ивод отключен. Все три положения рычага показа1НЫ на кинематической схеме машины.  [c.20]

Катящаяся по жесткой опорной поверхности гибкая нить мо кет рассматриваться как специфический плоский механизм с одной степенью свободы, кинематическая схема которого описывается уравнением у = Q(x) формы нити, а траектории точек нити представляют собой волно-иды. Функционирование этого механизма является идеализированной моделью многих явлений и процессов используемых в технике и существующих в живой и неживой природе. Известны, например, транспортные средства, передвигающиеся за счет волнообразного движения опорных гибких лент (движителей), шаговые редукторы и электродвигатели, принцип работы которых основан на использовании шагового движения гибкой связи (многозвенной цепи, зубчатого ремня, магниточувствительного гибкого элемента, троса и т. д.), сцепленной с опорной поверхностью (некоторые из этих устройств будут описаны ниже). Поперечные волны на гибких элементах в этих устройствах могут образовываться и перемещаться механическим способом (например, изгибанием ремня или цепи вращающимся роликом), электромагнитным (формированием и движением волны на гибком магниточувствительном элементе под действием электромагнитных сил), гидравлическим, пневматическим и т. д.  [c.99]


mash-xxl.info

Конструкция редукторов. Кинематические схемы — Энциклопедия по машиностроению XXL

Р ешение задач компоновки конструктивных элементов высшего иерархического уровня из элементов низшего иерархического уровня в большинстве случаев наиболее трудоемкая часть конструкторского проектирования, и иногда под компоновкой понимают собственно процесс конструирования. Задача компоновки машиностроительных узлов обычно состоит из двух частей эскизной и рабочей [1]. При решении эскизной части задачи компоновки по функциональной схеме разрабатывают общую конструкцию узла. На основе эскизной компоновки составляют рабочую компоновку с более детальной проработкой конструкции узла. Например, процесс компоновки зубчатого редуктора выполняется по его кинематической схеме. Предварительно необходимо рассчитать  [c.9]
Пример конструкции одноступенчатого конического редуктора показан на рнс. 3.97, а, кинематическая схема его—на рис. 3.97, б.  [c.491]

Конструктивная кинематическая схема ГТУ зависит от параметров термодинамического цикла Брайтона, наличия промежуточного охлаждения воздуха, ступенчатого сжигания топлива, применения регенеративного подогрева циклового воздуха и др. На рис. 4.3 приведены варианты таких схем ряда современных энергетических ГТУ. Простое техническое решение (рис. 4.3, а) основано на наличии общего ротора у компрессора и ГТ (см. также рис. 2.1 2.3). Конструкторы таких установок по возможности отказываются от промежуточного подщипника и разделения валов компрессора и ГТ для упрощения конструкции ГТУ. Использование отработанной конструктивной схемы компрессора и обеспечение соответствующих параметров сжимаемого в нем воздуха связаны в определенных случаях с применением силовых агрегатов с высокой частотой вращения (и = 5000—10 ООО об/мин) и установкой редуктора для подключения электрогенератора (рис. 4.3, б).  [c.87]

Кинематическая схема унифицированного механизма поворота показана на рис. 12, В вертикально расположенном редукторе 5 размещены три одинаковые по конструкции передачи (три ступени). В планетарном редукторе вращение передается от центральной верхней солнечной шестерни 3 к нескольким (обычно трем) шестерням-сателлитам 8 одинакового диаметра, расположенным под углом 120° относительно друг друга в горизонтальной плоскости. С наружной стороны сателлиты находятся в за-  [c.31]

В современном машиностроении существует большое разнообразие кинематических схем редукторов, их форм и конструкций.  [c.262]

Числа зубьев подбирают после выбора передаточного отношения и числа сателлитов в зависимости от кинематической схемы передачи и конструкции (редуктор ши мотор-редуктор).  [c.75]

Червячный редуктор с однозаходным червяком 21 = 1) имеет 5=5 мм д= 10 и гд = 30 (см. рисунок). Определить к. п. д. редуктора, приняв, что потери мощности в опорах и на перемешивание масла в редукторе составляют 5%. Приведенный коэффициент трения между шлифованными витками стального червяка и зубьями бронзового венца / принять равным 0,05. Составить кинематическую схему и указать особенности конструкции.  [c.404]

Применение волновой передачи в захватывающих устройствах объясняется тем, что эти механизмы дают возможность получить большой кинематический эффект при малых габаритах конструкции. На рис. 3.25 изображена кинематическая схема волнового редуктора типа Г—2Ж—Н, у которого имеется одно гибкое звено Г, два жестких звена Ж (звенья 1 и 4) и генератор волн Я. Волновой редуктор типа Г—2Ж—Я при высоких передаточных отношениях обладает малыми осевыми габаритами, так как длина гибкого звена определяется здесь практически шириной двух зубчатых венцов. Поверхность деформации гибких звеньев в механизмах Г—2Ж—Я представляет собой цилиндр, что исключает перекос зубьев при зацеплении.  [c.98]


Число ступеней редуктора выбирают в зависимости от общего передаточного числа Kqq. Одноступенчатые редукторы применяют при передаточных числах до 8 (максимум до 12,5). При передаточных числах от 8 до 40 (максимум до 63) выгоднее, с точки зрения габаритов и массы, применять двухступенчатые передачи. Трехступенчатые редукторы применяют при передаточных числах от 37 до 250 (максимум до 315). Основные кинематические схемы редукторов с цилиндрическими зубчатыми колесами и некоторые их разновидности показаны на рис. 5.1, а примеры конструкций, выполненных по этим схемам,—на рис. 5.2, 5.3, 5.5. Двухступенчатые и трехступенчатые редукторы могут быть выполнены по развернутым (рис. 5.1, б, г, д, ж, з, и, л, м, о) или соосным (рис. 5.1, б, е, к, н) схемам. Наибольшее распространение имеют схемы на рис. 5.1, а, б, ж, о.  [c.119]

Габаритные размеры корпуса определяются размерами расположенных в нем зубчатых колес, а также кинематической схемой редуктора. Основой конструкции корпуса является его коробка. При конструировании ее образуют простым обводом размещенных в корпусе деталей. Поэтому разработка конструкции зубчатых колес, валов и опор предшествует разработке конструкции корпуса или они выполняются совместно. Методические указания по этому вопросу см. в гл. XIV, 3.  [c.339]

Редукторы широко применяют в различных отраслях машиностроения и поэтому они весьма разнообразны по своим кинематическим схемам и конструктивному исполнению. Редукторы бывают с цилиндрическими и коническими зубчатыми колесами, а также с червячными парами. Зубчатые колеса могут быть с прямыми, косыми, круговыми и шевронными зубьями. В червячных редукторах применяют червяки цилиндрической и глобоидальной формы. Вид и конструкция редуктора определяются типом, расположением и количеством отдельных передач (ступеней).  [c.222]

Редукторы широко применяют в различных отраслях. машиностроения и поэтому они весьма разнообразны по своим кинематическим схемам и конструктивному исполнению. Редукторы бывают с цилиндрическими и коническими зубчатыми колесами, а также с червячными парами. Вид и конструкцию редуктора определяют типо.м, расположением и количеством отдельных передач (ступеней).  [c.151]

В табл. 2 приводится техническая характеристика тяжелых токарных станков. На рис. 6 изображена кинематическая схема тяжелого станка. В большинстве конструкций этих станков имеются передние и задние суппорты. Задние бабки снабжены приводом для перемещения по станине и автоматизированным приводом перемещения пиноли от индивидуальных электродвигателей с механическими редукторами.  [c.14]

Передний и задний распределительные редукторы по конструкции и принципу работы аналогичны друг другу. По кинематической схеме  [c.316]


Пример конструкции лебедки и кинематическая схема приведены на рнс- 1.10- Нагрузка переменная, реверсивная. Ресурс работы редуктора не ме-иее 20 10 ч.  [c.19]

Кинематическая схема редуктора подающего механизма может состоять из двух червячных передач. Такое решение позволяет получить значительное снижение скорости вращения при весьма компактной конструкции редуктора. Валы редуктора подающего механизма, так же как и в сварочных автоматах, должны вращаться в подшипниках качения. Применение подшипников скольжения допустимо только для выходного вала.  [c.123]

Кинематическая схема механизма. Схема содержит открытую пару шестерня — венец , а также двигатель, тормоз, редуктор. Кроме того, в кинематическую схему могут входить соединительная муфта, фрикционная предохранительная муфта и открытые зубчатые ступени (цилиндрическая или коническая). Лучшими являются кинематические схемы, не содержащие открытых пар (не считая пары шестерня-венец ). Предпочтительным является применение тех или иных редукторов с вертикальным расположением тихоходного вала, так как при этом исчезает необходимость в открытой конической паре и появляется возможность блочного выполнения механизма (к редуктору можно прикрепить вертикальный фланцевый двигатель). К сожалению, блочные конструкции механизмов поворота пока недостаточно распространены (исключение составляют механизмы поворота башенных и самоходных стреловых кранов). Развитие блочных конструкций сдерживается отсутствием типажа на редукторы с вертикальным 5 расположением валов.  [c.45]

Кинематическая схема спаренного редуктора приведена на рис. 111, на рис. 112 дана конструкция редуктора (без ведущей и паразитной шестерен). На конце вала 3 устанавливается тормозной диск 8. Шестерни переключаются рукояткой 12 (см. рис. ПО), установленной на стойке управления тележкой. При вертикальном ее положении включается редуктор передвижения, при наклонном — гидронасос. На редукторе смонтированы гидронасос и тормоз, который срабатывает на торможение при освобождении педали водителем.  [c.207]

На рис. 130 приведены кинематическая схема и основные размеры по третьей схеме. Конструкция червячно-винтового редуктора показана на рис. 131. В кинематической цепи механизма передвижения двересъемной штанги устанавливается пружинная тяга (рис. 132) по предложению инж. М. Т. Дмитренко. Пружинная тяга обеспечивает более плавную пе-  [c.182]

На рис. 189 (вид по стрелке А) представлена в увеличенном масштабе кинематическая схема червячно-винтового редуктора механизма отвода и подъема. Конструкция узла А, состоящего из тяги 7, червячно-винтового редуктора 4 с осью 8 нижних угловых рычагов обеспечивает передачу усилия от тяги 7 к оси 8 через пружину 13, создавая хорошие условия для работы механизма. Проектом предусмотрена установка конечного выключателя 14, предназначенного для отключения электродвигателя  [c.206]

Рассчитать все передачи, входящие в кинематическую схему привода. Проектировочный расчет передач закончить определением основных геометрических параметров с выполнением эскизной компоновки деталей редуктора (желательно на миллиметровой бумаге и в масштабе 1 1). Эскизная компоновка позволит увидеть недостатки расчета и выбора геометрических параметров колес и найти нути их устранения. Изменяя материал зубчатых или червячных колес и технологию их изготовления, уточняя и изменяя значения расчетных коэффициентов и передаточных чисел соответствующих ступеней, путем повторных расчетов можно добиться лучшей конструкции рассчитываемых передач.  [c.12]

По условиям компоновки приводов оси быстроходного и тихоходного валов редуктора метут находиться на одной линии такие редукторы называют соосными (рис. 1.12). Соосные редукторы компактней несоосных и во многих случаях позволяют получить удачную общую компоновку привода, но из-за необходимости размещения подшипников быстроходного и тихоходного валов внутри корпуса имеют увеличенный размер в осевом направлении и усложненную конструкцию корпуса. Кроме того, наблюдение за работой и контроль состояния внутренних подшипников при эксплуатации затруднены. На рис. 1.12, б показана кинематическая схема соосного редуктора с уменьшенными размерами в осевом направлении за счет отсутствия внутренней стенки. Оба подшипника быстроходного вала размещены в стакане, который одновременно предназначен и для установки одной из опор тихоходного вала. Для увеличения жесткости стакан выполнен с толстыми оребренными стенками колесо тихоходной ступени, в отверстии которого размещен подшипник, изготовлено как одно целое с валом.  [c.37]

Сборочные чертежи коробки передач и редуктора выполняют после разработки кинематической схемы и определения в порядке проектного расчета основных размеров деталей, а также эскизного наброска компоновки общего вида установки. Сборочный чертеж должен давать полное представление о конструкции и взаимодействии деталей, их расположении и служит основой для выполнения рабочих чертежей деталей.  [c.207]

Для проведения лабораторных исследований износа материалов поршневых колец и цилиндров автором совместно с Д. Н. Гарпуиовым была разработана конструкция установки трения с воэвратно-поступа-тельным движением 77МТ 1, состоящей из трех агрегатов электродвигателя, редуктора и собственно машины трения. Кинематическая схема  [c.225]

Различные конструкции механических люфтовыбирающих устройств рассмотрены в [Л. 61]. Так как основная доля люфта механической передачи, как указывалось в 4-2,а, приходится на последнюю от ИД пару шестерен, то в большинстве случаев механическое люфтовыбираю-щее устройс во применяется в этой последней паре шестерен. Какова бы ни была конструкция люфтовыбирающего устройства, его кинематическая схема как элемента механической передачи СП может быть условно представлена в виде, изображенном на рис. 4-33,а. На этом рисунке приняты следующие обозначения Вд — вал ИД ад —угол поворота вала ИД Р — абсолютно жесткий безлюфтовый редуктор с передаточным отношением i УЭМ — упругий элемент, характеризующий 340  [c.340]

Волновая механическая передача в некоторой мере является разновидностью планетарной зубчатой передачи II отличается от нее тем, что одно из колес выполнено с тонкостенным зубчатым венцом его называют гибким колесом. Рассмотрим работу волновой передачи на примере простейшего одноступенчатого редуктора, конструкция которого представлена на рис. 5.6, а, а кинематическая схема — на рис. 5.6, б. Волновая передача состоит из трех основных звеньев жесткого колеса 4 ф) с внутренними зубьям н (в рассматриваемой конструкции жесткое колесо выполнено как единое целое с корпусом из высокопрочного чугуна) гибкого колеса 5 (д), представляющего собой упругий тонкостенный стакан с внешними зубьями. Гибкое колесо 5 соединено с ведомым валом 6. Третьим звеном является генератор волн к, включающий водило 2, на концах которого вмонтированы два шарикоподшипника 3. Водило 2 вьшолнено заодно с ведущим валом 1, имеющим общую ось с ведомым валом б.  [c.166]

Общий вид конструкции простейшего одноступенчатого планетарного редуктора показан на рис. 10.6, а, а его кинематическая схема — на рис. 10.6, б. Редукторы данной конструкции обеспечивают примерно такое же передаточное отношение, как и редукторы с простыми зубчатыми передачами (до и = 8), но масса и габаритные размеры таких редукторов при равных передаваемых моментах значительно меньше, чем те же показатели простых зубчатых. Достигается это благодаря тому, что нагрузка от ведущего центрального колеса 1 передается трем колесам-сателлитам 2, а от них — ведомому звену — водилу Н. Сателлиты находятся в зацеплении с центральньш колесом 3 с внутренними зубьями. При этом зубчатые пары взаимно урав-  [c.266]

Прежде чем приступить к выполнению конструктивной компоновки, нужно выбрать типовую конструкцию редуктора и открытой передачи в соответствии с кинематической схемой привода. При этом следует учесть, что конструкции отдельных деталей и узлов привода во многом зависят от конкретных условий расчета, выполненного в эскизном проекте, и поэтому не могут быть ограничены то.пько примерами конструкций, приведенных в атласе (см, рис. А1…А18), а требуют поиска оптимальных решений и целесообразных изменений.  [c.145]

На фиг. 197 изображены общий вид и кинематическая схема поворотного делительного стола конструкции Научно-исследовательского института технологии и организации производства, а в табл. 53, приведена техническая характеристика рассматриваемых столов. От электродвигателя 9 (Л — 1 кет, п = 1410 об1мин) вращение через редуктор 8, зубчатые колеса 10 и 7 передается червяку 4 и червячному колесу 12. Включение электродвигателя 9 сопровождается поворотом стола в сторону Деление , причем движение осуществляется по упомянутой выше цепи через обгонную муфту 11 и дисковую муфту 6, поджимаемую четырьмя пружинами 5. Вал червяка 4 смещается вправо пружиной 3, находящейся во втулке 2. Скосом диска 13, связанного с червячным колесом 12, фиксатор 14 опускается, и поворот стола осуществляется до момента заскакивания фиксатора 14 под действием пружины 15 в очередной паз диска 13. В это время кулачком 16, воздействующим на путевой переключатель 17, дается команда на реверсирование вращения электродвигателя. Поворот в сторону РеверсУ) сопровождается передачей вращения лишь через дисковую муфту 11.  [c.363]

Выбор кинематической схемы механизма. Чтобы выбрать кинематическую схему механизма, необходимо познакомиться с конструкциями механизмов подъема груза, применяемых на раз шчных машинах заданного типа. При этом следует четко уяснить из каких составных частей собирается механизм назначение данных составных частей их конструктивные особенности как передается сшювой поток от двигателя к рабочему органу. Так, при проектировании мостового крана общего назначения предпочтение можно отдать кине-мат ической схеме механизма подъема груза, в которой двигатель соединен с редуктором при помощи зубчатой муфты с промежуточным валом роль т ормозного шкива выполняет одна из полумуфт отсутствуют открытые зубчатые передачи концы быстроходного и гихоходного валов редуктора выходят в одну сторону уравнитель-  [c.22]

На рис. 182 дана кинематическая схема механизма открывания (закрывания) планирной дверцы, конструкция которого состоит из электродвигателя 1, соединенного при помощи муфты 2 с червячно-винтовым редуктором 3-Электродвигатель установлен на корпусе редуктора 3 и может вместе с ним совершать качательное движение вокруг оси 4. Тяга 5 червячно-винтового редуктора шарнирно соединена с рычагом 6, один конец которого шарнирно закреплен на оси 7. На другом конце рычага 6 шарнирно подвешен захват 8. Соединительное 31вено 9 шарнирно связывает рычаг 6 с рычагом 10, один конец которого шарнирно закреплен на оси И. К рычагу 10 на оси 12 крепится прижимной ролик 13, который в свою очередь шарнирно связан с пружинным устройств-ам 14 и -через него — с 1пружинным демпфером 15.  [c.245]

Общий вид одной из конструкций электрорезьбонарезателя показан в поз. I. Основными частями его являются электродвигатель I, редуктор и реверсивный механизм 2 и нагрудник 3. Принцип работы ясен из кинематической схемы электрорезьбонарезателя, приведенной в поз. //.  [c.215]

На боковом автопогрузчике 7806 (рис. 43) двигатель установлен позади слева. Трансмиссию механизма передвижения образуют унифицированная автоматическая гидромеханическая передача БелАЗ с кинематической схемой 4×4, главная передача и колесные редукторы автомобиля БелАЗ-340. Вследствие недостаточной величины, колеи мостов серийно изготовляемых автомобилей на автопогрузчике применен задний ведущий мост разрезной конструкции с укороченными полуосями этого же автомобиля. Крутящий момент от двигателя (900 Н-мпри2100 об/мин коленчатого вала) сообщается коробке передач и далее — главной передачей — карданными валами автомобилей МАЗ-500 и КрАЗ-235.  [c.93]

Электропогрузчик типа 4015М представляет собой модернизированный вариант электропогрузчика типа 4015 и имеет ту же кинематическую схему. При модернизации улучшена конструкция силового агрегата — изменена схема редуктора и передаточное отношение, предусмотрены три исполнения с грузоподъемниками для высоты подъема 1,8 2,8 и 4,5 м. Увеличена база электропогрузчика, что повысило его устойчивость, улучшен внешний вид, повышена надежность ходовой части и электрооборудования.  [c.52]

Под внутримашиннай унификацией понимают максимальное сокращение числа наименований деталей и узлов в пределах данного рассматриваемого изделия. Например, если в создаваемой машине используют два редуктора, то необходимо стремиться к тому, чтобы их конструкции были одинаковы. Это может быть достигнуто изменением кинематической схемы изделия, которое позволило бы иметь одинаковое передаточное отношение. Унификация редукторов повлечет за собой унификацию муфт, крепежных изделий, а также конструктивных элементов. Возможное при этом усложнение кинематики изделий окупится снижением трудоемкости.  [c.386]

При необходимости получить передаточные отношения, превышающие по величине передаточные отношения, рекомендованные для планетарных передач (см. рис. 11.7), применяются многоступенчатые редукторы с последовательным расположением передач 2к —/г. Так, на.чример, нкзкооборотные ступени многоступенчатых редукторов вертолетных ГТД включают в свою конструкцию последовательно соединенные планетарные передачи (см. рис. 11,7, е). Приэтом водило первой планетарной передачи соединено с центральным колесом внешнего зацепления второй планетарной передачи. Таковы, например, кинематические схемы редукторов, установленных на вертолетах Хью Кобра ,  [c.500]

Назначение и устройство. В конструкцию распределительных редукторов в 1980 г. внесены значительные изменения, направленные на усиление подшипниковых опор BajjoB путем установки дополнительных роликовых подшипников № 32218 на промежуточные валы заднего и переднего распределительных редукторов и на ведомый нижний вал заднего распределительного редуктора роликового подшипника № 32318. Исключена гидромуфта постоянного наполнения с полым валом, через которую осуществлялся привод рабочих колес центробежных вентиляторов охлаждения тяговых электродвигателей. Кинематические схемы передних распределительных редукторов с гидромуфтой и без гидромуфты показаны на рис. 156 и 157.  [c.200]


mash-xxl.info

Планетарные редукторы. | PRO-TechInfo

Редукторы с зубчатыми передачами, в которых имеются колеса с перемещающимися осями, называются планетарными. Планетарные передачи позволяют получить большие передаточные числа редукторов при малом числе зубчатых колес. Габариты планетарных редукторов меньше, чем габариты обычных редукторов при одинаковых передаточных числах и нагрузках. Планетарные передачи несколько сложнее в изготовлении.

Кинематические схемы планетарных редукторов.

Планетарные передачи с одновенцовыми (рис. 1 ) и двухвенцовыми (рис. 3) сателлитами, а также многоступенчатые передачи (рис. 2) имеют средние передаточные числа (2…30) и высокий КПД (0,9…0,97).

Одноступенчатый планетарный редуктор.

Рис.1

Валы расположены параллельно установочной плоскости корпуса.

Центральное колесо 1 — ведущее, водило Н — ведомое. Центральное колесо 3 закреплено в корпусе.

Передаточное число 

Ведущий и ведомый валы вращаются в одну сторону.

Двухступенчатый планетарный редуктор. Схема 1.

Рис.2

Валы расположены параллельно установочной плоскости корпуса.

Центральное колесо 1 — ведущее, водило Н2 — ведомое. Центральные колеса 3 и 6 закреплены в корпусе.

Передаточное число 

Ведущий и ведомый валы вращаются в одну сторону.

Двухступенчатый планетарный редуктор. Схема 2.

Рис.3

Валы расположены параллельно установочной плоскости корпуса.

Центральное колесо 1 — ведущее, водило Н — ведомое. Центральное колесо 4 закреплено в корпусе. Колеса 2 и 3 жестко соединены между собой.

Передаточное число 

Ведущий и ведомый валы вращаются в одну сторону.

Двухступенчатый планетарный редуктор. Схема 3.

Рис. 4

Валы расположены параллельно установочной плоскости корпуса.

Центральное колесо 1 — ведущее, центральное колесо 5 — ведомое. Центральное колесо 3 закреплено в корпусе, колеса 2 и 4 жестко соединены между собой.

Передаточное число 

Ведущий и ведомый валы вращаются при D5<D3 в одну сторону, при D5>D3 — в противоположные стороны.

Планетарные передачи с тремя центральными колесами (рис. 4) имеют большие передаточные числа (100… 200). С увеличением передаточного числа КПД резко снижается.

Двухступенчатый планетарный редуктор с кривошипом.

Планетарные передачи с кривошипами (рис. 5,6) имеют большие передаточные числа (100…200), но сравнительно низкие КПД.

Рис. 5

Валы расположены параллельно установочной плоскости корпуса.

Водило Н — ведущее, центральное колесо 4 — ведомое. Центральное колесо 2 закреплено в корпусе, колеса 1 и 3 жестко соединены между собой.

Передаточное число 

Ведущий и ведомый валы вращаются при D3<D2 в одну сторону, при D3>D2 — в противоположные стороны.

Одноступенчатый планетарный редуктор с кривошипом.

Рис. 6

Валы расположены параллельно установочной плоскости корпуса.

Водило Н — ведущее, вал с кривошипами К — ведомый. Центральное колесо 2 закреплено в корпусе.

Передаточное число 

Ведущий и ведомый валы вращаются в разные стороны.

Кинематическая схема волнового редуктора.

 На рис. 7 дана схема волнового зубчатого редуктора.

Рис. 7

Генератор волн Н (кулачок и подшипник с гибкими кольцами) — ведущий, колесо 1 с гибким венцом — ведомое, колесо 2 закреплено в корпусе.

Передаточное число 

Чертежи и устройство планетарных редукторов.

Соседние страницы

pro-techinfo.ru

КИНЕМАТИЧЕСКИЕ СХЕМЫ РЕДУКТОРОВ — Студопедия.Нет

На рисунках 2, 3 и 4 представлены в аксонометрии кинематические схемы ряда широко распространенных двухступенчатых редукторов различной конструкции, имеющих также различный тип быстроходной передачи, звенья которой обозначены индексом «Б» (размещены ближе к электродвигателю), и тихоходную цилиндрическую косозубую передачу с индексом «Т». В качестве быстроходной ступени выступают следующие передачи: цилиндрическая косозубая, червячная и коническая (схема редуктора с ней не показана). В передачах индекс «1» относится к ведущему звену, а индекс «2» – к ведомому. На быстроходном валу на рисунке 3 установлен ведомый шкив гибкой (ременной) передачи, обозначенный индексом «2Р», а на тихоходном валу на рисунке 4 установлена ведущая звездочка гибкой (цепной) передачи с индексом «1Ц». В точке зацепления передач указаны относящиеся к соответствующим звеньям передачи силы, обозначенные совпадающими со звеньями индексами, а также силы на звеньях от действия гибких передач (  и ). На рисунке 4 силы на промежуточном валу соответствуют кинематической схеме вала, представленной на странице 177 источника [5]. На рисунках 2 и 3 за счет выбора направления зубьев и вращения звеньев осевые силы на быстроходных  и тихоходных  валах направлены в сторону консоли, что соответствует худшему случаю эксплуатации входного подшипника.

ПРИМЕРЫ РАСЧЕТА ВАЛОВ

Ведущий вал одноступенчатого червячного редуктора либо двухступенчатого с быстроходной червячной ступенью (рисунок 5)

Исходные данные

Крутящий момент на ведущем валу T1 = 77,68 Нм; передаточное число передачи u = 8; коэффициент диаметра червяка q = 12,5; модуль зацепления m = 6,3 мм; число витков червяка z1 = 4; число зубьев колеса z2 = 32; коэффициент смещения червячного колеса x = – 0,03; угол трения между червяком и колесом ; кпд передачи ; кпд пары подшипников качения .

Рисунок 2 – Кинематическая схема цилиндрического двухступенчатого соосного редуктора (входной 1Б и выходной 2Т валы находятся на одной оси) с силами в зацеплениях быстроходной (Б) и тихоходной (Т) передач на ведущих (1) и ведомых (2) звеньях

Рисунок 3 – Кинематическая схема цилиндрического двухступенчатого редуктора по развернутой схеме с силами в зацеплениях быстроходной (Б) и тихоходной (Т) передач на ведущих (1) и ведомых (2) звеньях, а также на ведомом шкиве (2Р) от действия ременной передачи

 

Рисунок 4 – Кинематическая схема червячно-цилиндрического редуктора с силами в зацеплениях быстроходной (Б) и тихоходной (Т) передач на ведущих (1) и ведомых (2) звеньях, а также на ведущей звездочке (1Ц) от действия цепной передачи

Определим начальный диаметр червяка

мм

и начальный диаметр колеса

мм.

Определим силы в зацеплении:

а) окружная сила на червяке (равная осевой силе на колесе )

;

б) осевая сила на червяке (равная окружной силе на колесе )

в) радиальная сила на червяке (равная радиальной силе на колесе )

,

– крутящий момент на колесе; – угол исходного контура.

Примечание –При выполнении расчета червячной передачи на прочность с применением пакета программ для ЭВМ, разработанным на кафедре, геометрические характеристики и усилия в зацеплении находятся в результате расчета передачи, и вычислять их по приведенным выше формулам не требуется.

Fp =1036 Н – консольная сила от действия гибкой передачи (ременной), которая также получается в результат расчета гибкой передачи.

Направление силы принято в сторону консоли, что соответствует худшему случаю эксплуатации входного подшипника. Этот случай произойдет, если направление вращения ведущего звена 1Б (червяка) на рисунке 4 изменить на противоположное, при этом силы  и  также поменяют направление. Если теперь на это же звено поместить ведомый шкив ременной передачи аналогично рисунку 3 с соответствующим направлением силы , то получим расчетную схему вала на рисунке 5.

Материал червяка – сталь 45 по ГОСТ 1950–88 улучшенная с механическими характеристиками (таблица А.2):

МПа; МПа; МПа; МПа; МПа.

Ориентировочный расчет вала

Диаметр входного конца вала

мм;

МПа.

Учитывая повышенные требования к жесткости редукторных валов, принимаем диаметр входного конца вала d к=30 мм согласно ГОСТ 6639–69 на нормальные линейные размеры, предпочтительнее по ряду (таблица А.1).

Остальные размеры вала, исходя из схемы компоновки, приведены на рисунке 5.

studopedia.net

Изучение конструкции червячных редукторов

Цель работы: изучить назначение и конструкцию червячных редукторов, определить геометрические, кинематические и энергетические параметры зацепления и редуктора, ознакомиться с конструкцией, особенностями регулировки зацепления, подшипников и их смазкой.

1. Общие сведения о конструкциях червячных редукторов

1.1. Характеристика червячных редукторов

Червячные редукторы предназначены для передачи вращения между перекрещивающимися валами с уменьшением угловых скоростей и увеличением вращающих моментов, когда ведущим является червяк. Реже вращающим может быть колесо, тогда угловая скорость увеличивается, а вращающий момент уменьшается. Червячная передача состоит из червяка и червячного колеса. Червяк является винтом, червячное колесо представляет собой разновидность косозубого колеса. Червячные передачи относят к категории зубчато-винтовых.

Рис. 1. Червячная передача.

Основными характеристиками редуктора являются передаточное число и вращающий момент на тихоходном валу.

Редукторы червячные одноступенчатые универсальные обдуваемые типа Ч обеспечивают передачу вращающих моментов =85…2000Н∙м в диапазоне передаточных чисел=8…80.

Промышленностью серийно выпускаются редукторы Ч-63, Ч-80, Ч-100, Ч-125, Ч-160. Буква Ч обозначает – редуктор червячный одноступенчатый, число – межосевое расстояние в мм.

Серийно выпускаются также и червячные универсальные двухступенчатые редукторы типа Ч2: Ч2-125; Ч2-160; числа – межосевые расстояния тихоходной ступени, которые обеспечивают передачу вращающих моментов на тихоходном валу =1300…2800Н∙м в диапазоне передаточных чисел=100…6300.

Достоинства червячных передач:

  1. большие передаточные числа в одной ступени =8…80 в силовых передачах, до 1000 в приборах;

  2. плавность и бесшумность работы;

  3. высокая кинематическая точность в сравнении с зубчатыми передачами;

  4. возможность передачи вращения между скрещивающимися валами;

  5. возможность самоторможения.

Недостатки червячных передач:

  1. низкий коэффициент полезного действия (=0,4…0,9 для одноступенчатого редуктора) из-за значительного скольжения между поверхностями витков червяка и зубьев колеса;

  2. сравнительно большие габариты передач, особенно при больших вращающих моментах вследствие значительно меньших величин допускаемых контактных напряжений;

  3. необходимость применения дефицитных дорогостоящих сплавов цветных металлов для изготовления червячных колес.

1.2. Основные кинематические схемы червячных редукторов

Одноступенчатый горизонтальный (оси обоих валов горизонтальны) редуктор с нижним расположением червяка и скоростью его вращения до 4-5 м/с. При этом обеспечиваются хорошие условия смазки передачи окунанием червяка.

Одноступенчатый горизонтальный редуктор с верхним расположением червяка. Используется в быстроходных передачах во избежание излишних потерь на разбрызгивание масла быстроходным червяком.

Передача с вертикальным расположением вала червяка. Применяется в исключительных случаях, исходя из требований компоновки машины. При этом ухудшаются условия смазки подшипников вертикального вала.

Двухступенчатая передача для получения больших передаточных чисел (до 3600). Быстроходную пару целесообразно выполнить с верхним расположением червяка, а тихоходную – с нижним, что обеспечивает лучшие условия смазки.

studfile.net

Кинематическая схема редуктора

Кинематическая схема редуктора

Позиции:

1. Электродвигатель;

2. Плоскоременная передача;

3. Соединительные муфты;

4. Зубчатый редуктор;

5. Исполнительный механизм;

I. Ведущий вал привода и ременной передачи;

II. Ведомый вал ременной передачи;

III. Ведущий вал зубчатой передачи;

IV. Ведомый вал зубчатой передачи и привода.

Задание на проект:

= 4,2 кВт, = 78 об/мин, тип — K, Т=20000 ч., режим-const.

Содержание

Кинематическая схема редуктора. 1

Введение.3

1.Выбор электродвигателя и расчет кинематических параметров привода. 4

1.1 Расчет мощности электродвигателя. 4

1.2 Расчет синхронной частоты вращения вала электродвигателя. 4

1.3 Выбор марки электродвигателя, расчет номинальной частоты вращения вала электродвигателя, суммарного передаточного отношения привода, передаточного отношения ременной передачи. 4

1.4 Расчет частоты вращения валов.5

1.5 Расчет мощностей и крутящих моментов на валах редуктора. 5

2. Расчет зубчатой передачи. 5

2.1 Выбор материалов и способов термообработки зубчатых колес. Расчет допускаемых напряжений.5

2.2 Расчет параметров зубчатой передачи……………………………………………..8

2.3 Проверочный расчет косозубой передачи. 9

3. Первый этап эскизной компоновки редуктора. 12

3.1 Компоновка передачи в корпусе редуктора. 12

3.2 Компоновка валов. 13

3.3 Предварительный выбор подшипников. 14

3.4 Компоновка подшипников в корпусе редуктора. 15

4. Расчет валов. 15

4.1 Определение усилий зацепления. 15

4.2 Построение расчетных схем валов, определение опорных реакций, построение эпюр изгибающих и крутящих моментов. 16

4.3 Определение конструкции быстроходного вала.

4.4 Уточненный расчет валов. Расчет запаса прочности в опасных сечениях.18

5. Расчет шпоночных соединений. 21

5.1 Быстроходный вал. 21

5.2 Тихоходный вал. 21

6. Расчет теоретической долговечности подшипниковых опор. 22

6.1 Быстроходный вал. 22

6.2 Тихоходный вал. 23

7. Расчет элементов корпуса редуктора для второго этапа эскизной компоновки. 24

7.1. Разрез редуктора по плоскости разъёма.

7.2 Фронтальная проекция. 26

Библиографический список.27

Приложение. 29

Введение.

В курсовом проекте выполнены расчеты:

· Основных кинематических и энергетических параметров привода;

· Проектный и проверочный расчет зубчатых передач;

· Расчет валов;

· Расчет шпоночных соединений;

· Расчет теоретической долговечности подшипниковых опор.

На основе теоретических расчетов выполнены сборочные чертежи редуктора со спецификацией и рабочие чертежи нескольких деталей.

1.Выбор электродвигателя; расчет основных кинематических и энергетических параметров

1.1 Расчет мощности электродвигателя

P дв =

,

где P — мощность на валу исполнительного механизма, P =4,2 кВт;

ηS – суммарный КПД привода,

ηS =

где

— КПД ременной передачи, = 0,97 — КПД зубчатой передачи, =0,98 -КПД одной пары подшипников качения, = 0,99

р – количество пар подшипников качения, р=3

hS =

Тогда P дв =4,2 ∕ 0,922=4,55 кВт

1.2 Расчет частоты вращения вала электродвигателя

n дв = nIV u ,

где nIV – частота вращения ведомого вала привода, nIV =78 об/мин

u суммарное передаточное отношение привода

,

гдеu1 =2…5 – передаточное отношение ременной передачи

u2 =2…5 – передаточное отношение зубчатой передачи

n дв = 78∙4…78∙25=312…1950об/мин

Электродвигатель является стандартным изделием, nc выбираем из ряда: 750, 1000, 1500, 3000 об/мин

nc =1000 об/мин

1.3 Выбор марки электродвигателя, расчет номинальной частоты вращения вала электродвигателя, суммарного передаточного отношения ременной и зубчатой передачи .

Рн =5,5 кВт

nc =1000 об/мин

Марка электродвидагеля 4A132S2Y3 [1, с 390, т. П1]

S- скольжение электродвигателя, S=3,3%

Номинальная частота вращения

nH = n с (1 –

) = 1000 (1-0,033)=967 об/мин

u S =nH /nIV = 967/78= 12,39

Передаточное отношение зубчатой передачи и2 регламентируется стандартом [1, с.36]

и2 = 3,55

u 1 =

1.4 Расчет частот вращения валов привода

n I =nH =967 об/мин

n II =

об/мин

n III =nII =nI =277,07 об/мин

n2 =nIV =

об/мин

1.5 Расчет мощностей и крутящих моментов, передаваемых валами редуктора

P 1 =

кВт

P 2 1 ∙∙ =4,32∙0,98∙0,99= 4,19 кВт

Крутящие моменты, передаваемые валами, определяется по формуле

Ti =9550

.

T1 =

H×м

T2 =

Н∙м

2. Расчет зубчатой передачи

2.1 Выбор материалов и способов термообработки шестерни и колеса. Расчет допускаемых напряжений.

Выбираем для шестерни и колеса сталь 45 с термообработкой улучшения для шестерни, с нормализацией – для колеса

НВ1 =210 НВ2 =190 [1, c.34, т. 3.3]

2.1.1 Расчет допускаемых контактных напряжения

н ]=

где i=1 для шестерни, i=2 для колеса;

sHi limB — предел контактной выносливости при симметричном цикле нагружения; Мпа

sHi limB =

sh2 limB =

МПа

sh3 limB =

МПа

[ S H j ] — коэффициент безопасности, определяется способом термообработки; [1, с.33]

[S H ] = 1.1..1.2 S H = 1.15

KHLj — коэффициент долговечности;

KHLj =

1,

где NH 0j – базовое число циклов, определяемое твердостью боков поверхности зубьев;

NH0j =

NH 0 1 =

NH 0 2 =

N HEj – эквивалентное число циклов, определяемое сроком службы передачи, числом оборотов вала шестерни и валов колеса, коэффициентом использования;

N HEj = T ∙k∙ni ∙60,

где T – срок службы зубчатой передачи; T =20000 часов

k — коэффициент использования передачи; k=0,8;

ni – частота вращениявалов редуктора, n 1 = 277,07 об/мин, n 2 = 78,05 об/мин;

N HE1 = 20000∙0,8∙277,07∙60=2,6 ∙108

mirznanii.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *