Лямбда зонд это – принципы его работы и особенности замены

инфа про лямбда зонд! — DRIVE2

Лямбда-зонд, что это такое, для чего он нужен и как его проверить?

Лямбда-зонд. Агент экологической разведки

О назначении лямбда-зонда, или кислородного датчика, сегодня хотя бы приблизительно знает большинство автовладельцев. Пополнить багаж знаний позволит информация, предоставленная российским представительством группы компаний Bosch.

Принцип действия лямбда-зонда

При сгорании в бензиновом двигателе происходит физико-химический процесс, в ходе которого углеводородные молекулы топлива реагируют с кислородом, содержащимся в поступающем воздухе. Возникающие при этом химические соединения на 99% безвредны (азот, углекислый газ, водяной пар), но оставшийся процент содержит вредные элементы, такие, как угарный газ CO, несгораемые углеводороды HC и окиси азота NOx. Одной из целей развития автомобильных технологий является устранение этих компонентов эмиссии в максимально возможной степени. Ключевыми факторами при этом являются оптимизация процесса сгорания в двигателе и система очистки выхлопа.

Трехканальный каталитический конвертер по-прежнему остается наиболее эффективным средством преобразования HC и CO в безопасные воду и углекислый газ (окисление) и NOx в азот (восстановление) в бензиновых двигателях. В то же время катализатор работает только в узком диапазоне пропорций воздушно-топливной смеси, близком к 14,7:1 (λ=1). Если смесь перенасыщена топливом (λ«1), коэффициент преобразования NOx остается высоким, но CO и HC окисляются недостаточно. Если смесь слишком бедная (λ>1), ситуация меняется на противоположную.

Для поддержания оптимальной пропорции воздушно-топливной смеси необходим датчик, передающий сведения о составе выхлопных газов в систему управления двигателем. Именно для этого служит лямбда-зонд, измеряющий остаточное содержание кислорода в выхлопном газе и передающий эти данные в блок управления в форме электрического сигнала. В зависимости от сигнала воздушно-топливная смесь обогащается или обедняется. В дизельных двигателях лямбда-зонд выполняет другую функцию: вместе с массовым расходомером воздуха он помогает точно определять степень рециркуляции выхлопных газов для каждого рабочего режима.

Типы зондов

За последние тридцать лет получили распространение два типа лямбда-зондов — стоковые LSH и LSF и широкополосные LSU. В стоковых выхлопные газы проходят по внешней стороне керамического измерительного элемента, внутри которого находится эталонный воздух. В зависимости от остаточного содержания кислорода в выхлопе, на двух полюсах сенсорного элемента возникает разная концентрация молекул кислорода. Поскольку керамический датчик пропускает ионы кислорода, они могут перемещаться между двумя сторонами сенсорной ячейки, создавая электрическое напряжение. Стоковые датчики генерируют высокое напряжение (около 0,9 В) при насыщенной смеси (низкое содержание остаточного кислорода в выхлопных газах) и низкое (около 0,1 В) — при бедной смеси (высокое содержание кислорода). Скачок напряжения между отдельными уровнями происходит при λ=1. Классический стоковый зонд с подогревом или без представляет собой так называемый контактный датчик. В 1994 г. компания Bosch первой в мире начала на базе керамической планарной технологии серийный выпуск стоковых зондов, устойчивых к высоким температурам и воздействиям окружающей среды. Современное поколение зондов LSF4.2 отличается быстрым временем реагирования, готовностью к работе через 10 секунд после пуска двигателя и долгим с

www.drive2.ru

интересная статейка про лямбду(кислородный датчик).Полезно знать. — DRIVE2

Лямбда-зонд является элементом системы питания инжекторных автомобилей. В процессе использования могут встречаться соответствующие проблемы. Что необходимо сделать, чтобы проблемные ситуации не встречались? Данная статья расскажет о назначении датчика лямбда-зонд, эксплуатации, методах его диагностики, также о том, какие известны чаще всего встречающиеся признаки неисправного лямбда зонда.

Предназначение.

Коэффициент перерасхода воздуха в топливовоздушной смеси показывает греческая лямбда в автомобилестроении. Именно поэтому и появилось название устройства, которое измеряет этот коэффициент, а точнее — остаточный кислород в отработавших газах.

Суть устройства заключается в предоставлении ЭБУ двигателя данные, которые помогут определить характер расхода топлива. Это является неотъемлемой частью для образования подходящих условий работы каталитического нейтрализатора выработанных газов. Сущность в том, что «окно» результативной работы катализатора довольно узкое, когда в цилиндрах расходуется 14,6 — 14,8 части воздуха и 1 часть топлива (в таком случае лямбда будет составлять 1±0,01).

Гарантировать такое определенное управление состава топливо-воздушной смеси можно только благодаря системе питания с электронным впрыском топлива. Лямбда-зонд в таких системах способен выполнять функцию контролера в выпускном тракте.

Признаки и проблемы, связанные с повреждениями.
Аварии в работе, или отторжение лямбда-зонда способно произойти в следующих случаях:

отделение электроцепей подключения;
замыкание;
засорение продуктами сгорания бензина;
термические перегрузки в результате перебоев зажигания;
механические поломки (например, во время езды по бездорожью).
Значительно уменьшают срок службы зонда:

некачественное состояние масло-съемных колец,
проникание антифриза в цилиндры и выпускные трубопроводы,
концентрированная топливо-воздушная смесь.
В случае поломанного лямбда-зонда содер

www.drive2.ru

Лямбда-зонд, или датчик кислорода — что это такое, устройство, работа, неисправности

Контакты Menu Menu
  • Главная
  • Авто
      • Audi
      • BMW
      • Cadillac
      • Chevrolet
      • Citroen
      • Ford
      • Geely
      • Honda
      • Hyundai
      • Infiniti
      • Jaguar
      • Kia
      • Lada
      • Land Rover
      • Lexus
      • Mazda
      • Mercedes
      • Mitsubishi
      • Nissan
      • Peugeot
      • Porsche
      • Renault
      • Skoda
      • Subaru
      • Suzuki
      • Toyota
      • Volkswagen
      • Volvo
  • Статьи
      • Устройство автомобиля
      • Обслуживание и ремонт
      • Топливо и масла
      • Полезная информация
      • Тюнинг
  • Двигатели
  • Ретро

avtonam.ru

зонд — это… Что такое Лямбда-зонд?

Лямбда-зонд (λ-зонд) — датчик кислорода в выпускном коллекторе двигателя. Позволяет оценивать количество оставшегося свободного кислорода в выхлопных газах.

Датчик основан на свойствах оксида циркония — ZrO2 и начинает работать только при температурах более 350 °C. Для ускорения прогрева датчика в него монтируют электронагреватель, потому обычно датчик имеет пару сигнальных проводов и пару от подогревателя.

Рабочий элемент датчика — пористый керамический материал на основе двуокиси циркония, покрытый методом напыления платиной. Выхлопные газы обтекают рабочую поверхность. Датчик реагирует на разницу между уровнем кислорода в выхлопных газах и в атмосфере, вырабатывая на выходе соответствующую разность потенциалов. Первые «лямбда-зонды» были резистивными, то есть изменяли свое сопротивление. Современные датчики работают как пороговые элементы.

Сигнал используется системой управления для поддержания оптимального (стехиометрического, около 14,7:1) соотношения воздух/бензин в камерах сгорания. В стехиометрии — λ = (реальное к-во воздуха) / (необходимое к-во воздуха).

  • λ=1 — стехиометрическая (теоретически идеальная) смесь;
  • λ>1 — бедная смесь;
  • λ<1 — богатая смесь (избыток бензина, воздуха не хватает для полного сгорания).

Поскольку некоторое количество кислорода должно присутствовать в выхлопе для нормального дожигания СО и СН на катализаторе, для более точного регулирования используют второй датчик, расположенный за катализатором.

Датчик на основе оксида циркония

В датчике на основе оксида циркония происходит реакция восстановления двуокиси циркония ZrO2 до окиси циркония ZrO, инициируемая платиновым катализатором, покрывающим чувствительный элемент датчика и являющаяся причиной возникновения ЭДС. На поверхности датчика окислительные процессы чередуются с восстановительными, что обеспечивает автоматическое поддержание работоспособности λ-зонда и его высокую чувствительность к изменению концентрации окисляемых компонентов.

Для того что бы подавить реакцию окисления недоокисленных компонентов отработавших газов кислородом чувствительного элемента датчика, то есть прекратить генерацию ЭДС датчиком, необходимо присутствие в отработавших газах избыточного, по отношению к стехиометрическому, количества кислорода, причем количество избыточного кислорода растет обратно пропорционально концентрации недоокисленных компонентов отработавших газов. Используя это свойство λ-зонда, представляется возможным оценить концентрацию в отработавших газах продуктов неполного сгорания топлива и использовать эту информацию для оценки эффективности работы каталитического нейтрализатора.

Широкополосный датчик на основе оксида циркония

Разновидность датчика на основе оксида циркония.

Основная разница зонда с широкой панелью LSU 4 по отношению к обычным λ-зондам — это комбинация сенсорных ячеек и так называемых накачиваемых кислородом ячеек. Ячейки разделены диффузионным зазором шириной от 0,01 до 0,05 мм. Состав его газового содержимого постоянно соответствует λ=1, что для сенсорной ячейки значит напряжение в 450 милливольт. Поддерживается содержание газа и вместе с ним напряжение сенсора посредством различных напряжений сенсора накачиваемых элементов. При бедной смеси и напряжении сенсора ниже 450 милливольт ячейка выкачивает кислород из диффузионного отверстия. Если смесь влажная и напряжение лежит выше 450 милливольт, ток меняет свое направление, и накачивающие ячейки транспортируют кислород в диффузионные расщелины. При этом интегрированный нагревающий элемент устанавливает температуру области от 700 до 800 градусов.

При отказе датчика система переходит в аварийный режим без коррекции содержания воздуха в смеси.

Одной из основных причин отказа датчика в России являлось отравление тетраэтилсвинцом. По мере перехода на качественный неэтилированный бензин эта проблема уходит в прошлое.

Ток широкополосного датчика Ipn и соответствующие значения λ[1]:

Ipn, мА -5.000 -4.000 -3.000 -2.000 -1.000 -0.500 0.000 0.500 1.000 1.500 2.000 2.500 3.000 4.000
λ 0.673 0.704 0.753 0.818 0.900 0.948 1.000 1.118 1.266 1.456 1.709 2.063 2.592 5.211

Примечания

Ссылки

dic.academic.ru

Проверяем лямбда-зонд (датчик кислорода) —

На написание этого материала натолкнуло обилие вопросов на интернет-форуме, связанных с непониманием (или недопониманием) принципа работы датчика кислорода, или лямбда-зонда.

Датчик кислорода: от общего к частному

Прежде всего, нужно идти от общего к частному и понимать работу системы в целом. Только тогда сложится правильное понимание работы этого весьма важного элемента ЭСУД и станут понятны методы диагностики.

Чтоб не углубляться в дебри и не перегружать читателя информацией, поведу речь о циркониевом лямбда-зонде, используемом на автомобилях ВАЗ. Желающие разобраться более глубоко могут самостоятельно найти и прочитать материалы про титановые датчики, про широкополосные датчики кислорода (ШДК) и придумать методы их проверки. Мы же поговорим о самом распространенном датчике, знакомом большинству диагностов.

Когда-то очень давно датчик кислорода представлял собой только лишь чувствительный элемент, без какого-либо подогревателя. Нагрев датчика осуществлялся отработанными газами и занимал весьма продолжительное время. Жесткие нормы токсичности требовали быстрого вступления датчика в полноценную работу, вследствие чего лямбда-зонд обзавелся встроенным подогревателем. Поэтому датчик кислорода ВАЗ имеет 4 вывода: два из них — подогреватель, один — масса, еще один — сигнал.

Из всех этих выводов нас интересует только сигнальный.

Форму напряжения на нем можно увидеть двумя способами:

  • сканером
  • мотортестером, подключив щупы и запустив самописец

Второй вариант предпочтительнее. Почему? Потому, что мотортестер дает возможность оценить не только текущие и пиковые значения, но и форму сигнала, и скорость его изменения. Скорость изменения — это как раз и есть характеристика исправности датчика.

Итак, главное: датчик кислорода реагирует на кислород. Не на состав смеси. Не на угол опережения зажигания. Не на что-либо еще. Только на кислород. Это нужно осознать обязательно.

О физическом принципе работы датчика рассказано во многих книгах, посвященных электронным системам управления двигателем, и мы на нем останавливаться не будем.

На сигнальный вывод датчика с ЭБУ подается опорное напряжение 0.45 В. Чтобы быть полностью уверенным, можно отключить разъем датчика и проверить это напряжение мультиметром или сканером. Все в порядке? Тогда подключаем датчик обратно.

К слову, на старых иномарках опорное напряжение «уплывает», и в итоге нормальная работа зонда и всей системы нарушается. Чаще всего опорное напряжение при отключенном датчике бывает выше необходимых 0.45 В. Проблема решается путем подбора и установки резистора, подтягивающего напряжение к «массе», тем самым возвращая опорное напряжение на необходимый уровень.

Дальше схема работы датчика проста. Если кислорода в газах, омывающих датчик, много, то напряжение на нем упадет ниже опорного 0.45 В, примерно до 0.1В. Если кислорода мало, напряжение станет выше, около 0.8-0.9 В. Прелесть циркониевого датчика в том, что он «перепрыгивает» с низкого на высокое напряжение при таком содержании кислорода в отработанных газах, которое соответствует стехиометрической смеси. Это замечательное его свойство используется для поддержания состава смеси на стехиометрическом уровне.

Методика проверки датчика кислорода

Поняв, как работает датчик кислорода, легко понять методику его проверки.

Предположим, ЭБУ выдает ошибку, связанную с этим датчиком. Например, Р0131 «Низкий уровень сигнала датчика кислорода 1». Нужно понимать, что датчик отображает состояние системы, и если смесь действительно бедная, то он это отразит. И замена его абсолютно бессмысленна.

Как нам выяснить, в чем кроется проблема — в датчике или в системе? Очень просто. Смоделируем ту или иную ситуацию.

  1. Например, при жалобе на бедную смесь и низком напряжении на сигнально выводе датчика увеличим подачу топлива, пережав шланг обратного слива. Или, при его отсутствии, брызнув во впускной коллектор бензина из шприца. Как отреагировал датчик? Показал ли обогащенную смесь? Если да — то нет никакого смысла его менять, нужно искать причину, почему система подает недостаточное количество топлива.
  2. Если же смесь богатая, и зонд это отображает, попробуйте создать искусственный подсос, сняв какой-нибудь вакуумный шланг. Напряжение на датчике упало? Значит, он абсолютно исправен.
  3. Третий вариант (достаточно редкий, но имеющий место). Создаем подсос, пережимаем «обратку» — а сигнал на датчике не меняется, так и висит на уровне 0.45 В, либо меняется, но очень медленно и в небольших пределах. Все, датчик умер. Ибо он должен чутко реагировать на изменения состава смеси, быстро меняя напряжение на сигнальном выводе.

Для более глубокого понимания добавлю, что при наличии небольшого опыта легко установить степень изношенности датчика. Это делается по крутизне фронтов перехода с богатой смеси на бедную и обратно. Хороший, исправный датчик реагирует быстро, переход почти что вертикальный (смотреть, само собой, мотортестером). Отравленный либо просто изношенный датчик реагирует медленно, фронты переходов пологие. Такой датчик требует замены.

Понимая, что датчик реагирует на кислород, можно легко уяснить еще один распространенный момент. При пропусках воспламенения, когда из цилиндра в выпускной тракт выбрасывается смесь атмосферного воздуха и бензина, лямбда-зонд отреагирует на большое количество кислорода, содержащееся в этой смеси. Поэтому при пропусках воспламенения очень возможно возникновение ошибки, указывающей на бедную топливно-воздушную смесь.

Хочется обратить внимание еще на один важный момент: возможный подсос атмосферного воздуха в выпускной тракт перед лямбда-зондом.

Мы упоминали, что датчик реагирует на кислород. Что же будет, если в выпуске будет свищ до него? Датчик отреагирует на большое содержание кислорода, что эквивалентно бедной смеси.

Обратите внимание: эквивалентно

Смесь при этом может быть (и будет) богатой, а сигнал зонда ошибочно воспринимается системой как наличие бедной смеси. И ЭБУ ее обогатит! В итоге имеем парадоксальную ситуацию: ошибка «бедная смесь», а газоанализатор показывает, что она богатая. Кстати сказать, газоанализатор в данном случае — очень хороший помощник диагноста.

Как пользоваться извлекаемой с его помощью информацией, рассказано в статье «Газоанализ и диагностика».

Датчик кислорода: выводы

  1. Нужно совершенно четко отличать неисправность ЭСУД от неисправности лямбда-зонда.
  2. Проверить зонд можно, контролируя напряжение на его сигнальном выводе сканером или подключив к сигнальному выводу мотортестер.
  3. Искусственно смоделировав обедненную или, наоборот, обогащенную смесь и отследив реакцию зонда, можно сделать достоверный вывод о его исправности.
  4. По крутизне перехода напряжения от состояния «богато» к состоянию «бедно» и наоборот легко сделать вывод о состоянии лямбда-зонда и его остаточном ресурсе.
  5. Наличие ошибки, указывающей на дефект лямбда-зонда, отнюдь не является поводом для его замены.

 

pakhomov-school.ru

что это такое, где находится и для чего нужно?

Современный автомобиль — это сложное в техническом плане устройство. Особенно поражает большое количество различных датчиков для измерения всех без исключения параметров работы двигателя.

Информация из этих датчиков поступает на электронный блок управления, в котором обрабатывается по сложным алгоритмам. На основе полученных данных ЭБУ выбирает оптимальный режим работы, передавая электрические импульсы на исполнительные устройства.

Одним из таких датчиков является лямбда-зонд, о котором мы уже несколько раз упоминали на страницах нашего автопортала Vodi.su. Для чего он нужен? Какие функции выполняет? Эти вопросы постараемся рассмотреть в данной статье.

Предназначение

Еще одно название данного измерительного устройства — датчик кислорода.

В большинстве моделей он устанавливается в выпускном коллекторе, в который под высоким давлением и при высоких температурах поступают отработанные газы из мотора автомобиля.

Достаточно сказать, что лямбда-зонд может корректно выполнять свои функции, когда он разогревается до 400 градусов.

Лямбда-зонд анализирует количество О2 в выхлопных газах.

В некоторых моделях имеется два таких сенсора:

  • один в выпускном коллекторе перед катализатором;
  • второй сразу же за катализатором для более точного определения параметров сгорания топлива.

Не сложно догадаться, что при наиболее эффективной работе двигателя, а также системы впрыска, количество О2 в выхлопе должно быть минимальным.

Если датчик определяет, что количество кислорода превышает норму, от него на электронный блок управления поступает сигнал, соответственно ЭБУ выбирает режим работы, при котором уменьшается подача воздушно-кислородной смеси в мотор транспортного средства.

Чувствительность датчика довольно высокая. Оптимальным режим работы силового агрегата считается, если смесь воздуха с горючим, поступающая в цилиндры, имеет такой состав: на 14,7 части воздуха приходится 1 часть горючего. При слаженной работе всех систем, количество остаточного кислорода в отработанных газах должно быть минимальным.

В принципе, если разобраться, лямбда-зонд практической роли не играет. Его установка оправдана лишь жесткими эко-нормами по количеству СО2 в выхлопе. За превышение этих норм в Европе предусмотрены серьезные штрафы.

Устройство и принцип работы

Устройство довольно сложное (для тех людей, которые плохо разбираются в химии). Детально мы его описывать не будем, приведем лишь общую информацию.

Принцип работы:

  • 2 электрода, внешний и внутренний. На внешнем электроде имеется платиновое напыление, которое очень чувствительно к содержанию кислорода. Внутренний датчик сделан из циркониевого сплава;
  • внутренний электрод находится под воздействием отработанных газов, внешний контактирует с атмосферным воздухом;
  • при разогревании внутреннего датчика в керамическом основании из диоксида циркония образуется разница потенциалов и появляется небольшое электрическое напряжение;
  • по данной разнице потенциалов и определяют содержание кислорода в отработанных газах.

В идеально выгоревшей смеси показатель Лямбда или коэффициент избытка воздуха (L) равен единице. Если L больше единицы, значит в смесь поступает слишком много кислорода и мало бензина. Если же L меньше единицы, значит кислород не выгорает полностью из-за избытка бензина.

Одним из элементов зонда является специальный нагревательный элемент, чтобы нагреть электроды до нужных температур.

Неисправности

Если датчик выйдет из строя или будет передавать неправильные данные, то электронные «мозги» автомобиля не смогут подавать корректные импульсы на систему впрыска об оптимальном составе воздушно-топливной смеси. То есть у вас может увеличиться расход топлива, или наоборот уменьшится тяга из-за подачи обедненной смеси.

Это в свою очередь приведет к ухудшению характеристик двигателя, падению мощности, уменьшению скорости и динамических показателей. Также можно будет слышать характерное потрескивание в каталитическом нейтрализаторе.

Причины поломки лямбда-зонда:

  • некачественный бензин с большим содержанием примесей — для России это частая причина, так как в топливе содержится много свинца;
  • попадание моторного масла на датчик из-за износа поршневых колец или их некачественной установки;
  • обрывы проводов, замыкания;
  • посторонние технические жидкости в выхлопе;
  • механические повреждения.

Стоит также сказать, что многие водители в России производят замену катализатора на пламегаситель. На Vodi.su мы уже писали, зачем это делают. После данной операции потребность во втором лямбда-зонде отпадает (который стоял в резонаторе за каталитическим нейтрализатором), так как пламегаситель не способен очищать отработанные газы так же эффективно, как катализатор.

В некоторых моделях отказаться от лямбда-зонда вполне возможно, путем перепрограммирования электронного блока управления. В других же сделать это невозможно.

Если же вы желаете, чтобы топливо расходовалось максимально экономно, а двигатель работал в оптимальном режиме, то лучше все таки лямбда-зонд оставить.

Загрузка…

Поделиться в социальных сетях

vodi.su

Лямбда зонд — Словарь автомеханика

Лямбда зонд, так же называемый датчик кислорода или просто лямбда – это специальный контроллер, измеряющий наличие и количество остаточного кислорода в автомобильных выхлопных газах. Назначение данного устройства – предоставлять электронной системе управления впрыском топлива данные о качестве и полноте сгорания топлива. Она нужна для создания оптимальных условий работы катализатора выхлопа.

Применение катализаторов обусловлено жесткими экологическими нормами, предъявляемыми к автомобильным выхлопам, поскольку данные устройства способствуют снижению содержания там углекислоты. Но для полноценного функционирования нужно, чтобы в цилиндрах сгорало строго определенное количество воздуха с минимальной долей отклонения. Для обеспечения настолько точного регулирования сгорающего состава применяются системы питания с регулируемым электроникой впрыском. Датчик кислорода (лямбда-зонд) в них играет роль контролера в выпускном тракте.


Место установки лямбда-зонда

Для максимально эффективного измерения остатков воздуха в сгоревшей смеси датчик кислорода лямбда зонд монтируется в выпускном коллекторе, располагаясь как можно ближе к катализатору. Информация с него считывается электронным блоком управления топливной системой, которая при необходимости увеличивает или уменьшает интенсивность впрыска топлива в цилиндры.

Современные автомобили оборудованы еще одним лямбда-зондом, размещаемым на выходе катализатора, что позволяет еще больше повысить точность приготовления смеси.

Схема лямбда зонда


Принцип действия

По принципу работы кислородные датчики бываю нескольких типов:

На основе оксида циркония.

На основе оксида титана. При изменении состава выхлопа реагирует изменением электрического сопротивления.

Широкополосный. Изменяется напряжение и полярность тока. Реагирует не только на отклонения состава рабочей смеси, но и на его численное значение.

Работа лямбда зонда основывается на применении гальванического элемента, снабженного парой электродов. Один из них обвевается выхлопными газами, а другой – чистым атмосферным воздухом. В работу датчик лямбда зонд включается только после разогрева до 300 и более градусов, когда циркониевый электролит становится проводником, а различие в количествах поступающего кислорода из выхлопной трубы и атмосферы приводит к появлению напряжения на электродах.

Во время пуска и прогрева двигателя кислородный датчик в управлении топливным впрыском не участвует, а коррекция осуществляется через другие сигнализаторы (датчики температуры системы охлаждения, положения дросселя, числа оборотов и прочими).

Помимо нагреваемых циркониевых, существуют холодные контроллеры на основе двуокиси титана. Они не генерируют электричество, а изменяют сопротивление воздушному потоку, что и становится сигналом для систем управления впрыском. Такой лямбда датчик кислорода хорош тем, что начинает работать сразу после пуска двигателя, но он не получил широкого распространения из-за сложности конструкции и дороговизны. Встретить лямбда зонд данного типа можно на некоторых моделях Nissan, BMW и Jaguar.

Работа лямбда-зонда


Причины выхода из строя

Датчик кислорода может начать работать неправильно или вовсе сломаться по целому ряду причин, среди которых:

  • разрыв в питающей или контрольной электроцепи;
  • замыкание;
  • засорение, что случается при использовании топлива с присадками. Особенно пагубно влияют свинец, силикон, сера;
  • регулярные термические перегрузки, связанные с проблемами зажигания;
  • механическое повреждение, что порой случается после поездок по бездорожью.

По мере службы датчика, замедляется его реакция на изменение состава топливной смеси. Возраст датчика наиболее заметен на моторах с непосредственным впрыском. Датчик лямбда зонд прослужит гораздо меньше положенного при плохом состоянии маслосъемных колец, а также в результате попадание в цилиндры антифриза.

Когда лямбда датчик кислорода выходит из строя, содержание углекислоты в выхлопе резко повышается от значения в 0,1-0,3% до 3%, а часто и 7%. Если кислородный датчик не работает, снизить это значение без его ремонта или замены очень сложно. Даже в моделях с двумя зонтами при выходе из строя одного из них, для нормализации работы потребуется серьезное изменение настроек электроники.


Признаки выхода лямбда-зонда из строя

О том, что датчик кислорода сломался, говорят такие признаки:

    С заменой неисправного датчика не стоит затягивать, иначе чревато выходом из строя катализатора.

  1. ухудшение разгонной динамики;
  2. прерывистый холостой ход;
  3. скачок расхода топлива;
  4. рост токсичности выхлопа, хотя этот параметр без специального оборудования определить невозможно.

Чтобы лямбда зонд внезапно не вышел из строя, его нужно регулярно заменять, примерно через каждые 50-80 тыс. километров не подогреваемые датчики; 100 тыс. – подогреваемые и каждые 160 тыс. км – планарные. Но прежде чем выбрасывать старую лямбду конечно же нужно проверить лямбда-зонд и узнать его реальное состояние

Специалисты рекомендуют производить проверку лямбда датчика и систему, регулирующую топливную смесь, каждые 30 тыс. км.

Это не защитит от поломок вследствие механического повреждения или засорения, но спасет от поломки из-за износа.

Своевременная замена лямбда-зонда, это:

Кроме очистки в кислоте и проверке разъёма питания, датчик лямбда зонда, ремонту не поддается.

  • экономия до 15% топлива;
  • минимизация токсичности выхлопа;
  • продление ресурса катализатора;
  • улучшение динамических характеристик автомобиля.

Устранение неисправностей

Официально технологии ремонта лямбда-зондов нет. То есть, если поломка не в контактной сети, то устройство подлежит замене. Подпольными СТО практикуется восстановление датчиков, переставших работать из-за отложения нагара под защитным колпачком, путем удаления налета. Делается это с помощью промывки датчика в ортофосфорной кислоте, не уничтожающей его электроды.

Мойка помогает далеко не всегда, и если датчик после нее не заработал, его все же придется заменить.

Связанные термины

etlib.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *