Масса маховика – ?

типы, преимущества, недостатки и требования

В статье расскажем про маховик — накопитель энергии, расчеты и требования к ротору, типы маховиков, его преимущества недостатки и применение.

Техника накопления энергии с использованием маховика насчитывает тысячи лет. Просто возьмите пример колеса Поттера и подумайте, что оно делает. Он просто использует инерцию колеса и продолжает вращаться с минимальными усилиями. Концепция маховика, который будет использоваться в качестве устройства накопления энергии, используется с 1950-х годов. Их можно было легко заметить на автобусных остановках для зарядки общественного транспорта. Однако эта идея не может быть широко принята ввиду ее громоздкости и излишнего веса.

Расчет накопления энергии в маховике

Запас энергии в Маховике можно рассчитать:

E = ½ Iω 2

или же

E = ½ (kMr 2 )ω2

где:

  • I выступает за момент инерции махового колеса
  • ω обозначает вращающуюся скорость. Он измеряется в радианах в секунду.
  • M обозначает масса маховика
  • R обозначает Радиус Маховика
  • K обозначает инерционную постоянную

Примечание. Значение «k» зависит от формы маховика. Например, если маховик вращается вокруг своей оси (например, велосипедное колесо или полый цилиндр), значение k будет равно 1. Однако, если колесо маховика имеет сплошную цилиндрическую форму, то значение k будет ½ .

Требование маховика (ротор)

Постепенно с развитием технологий маховики стали более совершенными. В наши дни современные маховики содержат кинетическую энергию в быстро движущемся, вращающемся барабане, который действует как ротор генератора. В то время, когда дополнительная энергия остается неизрасходованной, она используется для увеличения скорости вращающегося барабана. Всякий раз, когда есть потребность в энергии, этот барабан приводит в движение генератор.

Картинка маховика с внутренними элементами

Роторы этих супер маховиков изготовлены из материала с очень высокой прочностью и плотностью, например, из углеродного волокна. Для ротора требуется высокопрочный материал, так как он обычно вращается со средней скоростью 100000 оборотов в минуту и ​​должен выдерживать воздействие высокой центробежной силы. Эти роторы установлены в вакуумной полости, чтобы минимизировать потери из-за трения воздуха. Эти потери на трение могут быть дополнительно сведены на нет с помощью подшипников с магнитной левитацией.

Тип маховиков

На рынке представлены два типа маховиков в зависимости от их функций и областей применения. Преимущества маховика делают их жесткими конкурентами в приложениях электросети.

Есть в основном два типа маховиков, доступных на рынке. Далее мы рассмотрим их

Высокоскоростной маховик

Угловая скорость маховиков этого типа находится в диапазоне от 30000 до 60000 об/мин, что может быть доведено до 100000 об/мин. Они содержат подшипники с магнитной левитацией и требуют меньшего ухода. Они легче по весу, если сравнивать размер/мощность с маховиками с низкой скоростью. Они дорогостоящие по сравнению с маховиками с низкой скоростью.

Маховик с низкой скоростью

Угловая скорость этого типа маховиков достигает 10000 об/мин. Они громоздкие и тяжелые по сравнению с высокоскоростными маховиками. Они нуждаются в периодическом обслуживании и не используют подшипники с магнитной левитацией. Их установка требует специальной бетонной конструкции, чтобы выдержать ее вес. Они дешевле по сравнению с высокоскоростными маховиками.

Картинка в разрезе маховик с низкой скоростью

Преимущества маховика

Эти типы маховиков более эффективны, чем обычные батареи (только если мы пренебрегаем стоимостью установки), и поэтому им отдают предпочтение перед обычными батареями. Вот список немногих преимуществ Маховика перед аккумуляторами:

  • Большая способность хранить энергию
  • Большая продолжительность жизни
  • Способность хранения не зависит от цикла зарядки/разрядки
  • Меньше технического обслуживания
  • Меньшие тепловые потери
  • Более высокая эффективность в оба конца
  • Больше пиковой нагрузки
  • Простота эксплуатации

Применение маховиков

  • в ветряных турбинах
  • наряду с двигателем с приводом от генератора для хранения энергии
  • в автомобильных двигателях
  • в электромобилях для ускорения (на экспериментальной стадии)
  • В современных локомотивах
  • В передовых технологиях транзитных автобусов
  • В спутниках контролировать направление
  • В Большие электрические сети для защиты от перебоев

meanders.ru

Определение массы маховика — Энциклопедия по машиностроению XXL

П. ОПРЕДЕЛЕНИЕ МАССЫ МАХОВИКА  [c.173]

ОПРЕДЕЛЕНИЕ МАССЫ И РАЗМЕРОВ МАХОВИКА ПО ЕГО МОМЕНТУ ИНЕРЦИИ  [c.110]

При большой равномерности хода машин и, следовательно, при малых значениях б точка О3 пересечения крайних касательных получается обычно за пределами чертежа. Для определения приведенной массы маховика в этом случае поступаем так. По-прежнему проводим к диаграмме масс и работ крайние касательные под вычисленными по формулам (59) углами и Фтт- Отмечаем их  

[c.239]


Для динамической балансировки автомобильных двигателей в сборе используют переоборудованный стенд для приработки и испытания с устранением дисбаланса в двух плоскостях (маховика и шкива коленчатого вала) постановкой уравновешивающих грузиков-болтов определенной массы в резьбовые отверстия маховика и шкива.  [c.251]

При определении размеров маховика приходится также считаться 1) с чувствительностью регулировки скоростными регуляторами, которая облегчается с увеличением аккумулирующей массы (см. также стр. 666).  [c.643]

Важно отметить, что при определении кинетической энергии погрузчика мы пренебрегаем незначительной инерцией ходовых колес в их вращательном движении. Кинетическая энергия быстроходных масс маховика двигателя при внедрении ковша в штабель не используется, так как в начале внедрения муфта сцепления выключается.  

[c.136]

Важно отметить, что при определении кинетической энергии погрузчика пренебрегают незначительной инерцией ходовых колес в их вращательном движении. Кинетическая энергия быстроходных масс маховика двигателя при внедрении ковша в штабель не исполь-  [c.144]

Инерционная сварка начинается с разгона одного или нескольких маховиков 4 (рис. 156, б), соединенных с приводом череа электромагнитную муфту 3. При накоплении в маховиках определенной энергии муфта отключается, детали сжимаются механизмом 9, и начинается интенсивное тепловыделение. Накопленную энергию можно изменять за счет массы маховика и более точно — ограничением числа оборотов при медленном разгоне.  

[c.188]

Для определения момента трения в цапфах на вал насажен маховик массы 500 кг радиус инерции маховика р = = 1,5 м. Маховику сообщена угловая скорость, соответствующая п = 240 об/мин предоставленный самому себе, он остановился через 10 мин. Определить момент трения, считая его постоянным.  [c.278]

Пример 1.28. Маховик массой т=600 кг и диаметром 1=3 м укреплен на валу, установленном в подшипниках, и помещен в герметичном кожухе. Для определения момента трения М-гр в подшипниках маховику придали частоту вращения По= 2400 об/мин, а затем отсоединили привод. Спустя =10 мин маховик перестал вращаться. Определить M p, считая его постоянным. Радиус инерции маховика 2=0,46 й.  [c.149]

Чтобы колебания скорости не выходили за определенные пределы, в соответствии с заданной степенью неравномерности 6, маховик должен обладать определенным маховым моментом зависящим от его массы и диаметра  

[c.196]


При заданной механике технологического процесса, осуществляемого в рабочей машине, известных характеристиках двигателя, средней угловой скорости ср и допустимой величине коэффициента неравномерности вращения б решение задачи регулирования угловой скорости вращения главного вала машинного агрегата при периодическом установившемся движении сводится к определению приведенного момента инерции маховика (или маховых масс) и махового момента, которыми характеризуется инертность маховика GDl = 4gJ t где G —вес маховика Do —средний. диаметр обода маховика.  [c.187]

Решение задачи определения маховых масс, хорошо выявляющее ее физическую сущность, предложено в 1914 г. проф. Н. И. Мерцаловым, который рассматривал изменения кинетической энергии маховика за цикл периодического установившегося движения. Так как момент инерции маховика есть величина постоянная, то максимальное изменение кинетической энергии маховой массы равно  

[c.381]

Расчет маховика с электроприводом характерен определением момента инерции маховых масс при движущем моменте, зависящем от скорости.  [c.383]

Проектирование маховика заключается в определении величины его момента инерции, при которой обеспечивается заданный коэффициент неравномерности движения [б], а также основных размеров маховика. Существует ряд методов определения момента инерции маховика, например метод касательных усилий, метод приведенных масс и работ и др.  [c.178]

Проверим, сможет ли на угле поворота Ах(р холостого хода восстановиться максимальная угловая скорость кривошипа. Для этого надо было бы решить уравнение (102) относительно Однако решить это уравнение аналитическим путем невозможно и потому задачу будем решать иначе, а именно определим величину / момента инерции маховых масс, создающих заданный перепад скоростей при холостом ходе. Если эта величина получится больше величины J момента инерции маховика, благодаря которому происходит заданный перепад угловой скорости при рабочем ходе, то решение рассматриваемой задачи можно будет признать удовлетворительным. В противном случае придется выбрать двигатель большей мощности. Для определения искомого момента инерции представим формулу (102) в следующем виде  

[c.114]

Для этого предварительно разгоняют поступательно движущуюся массу или маховик до определенной скорости. Только после этого они сцепляются специальным механизмом с активным захватом, и образец деформируется. При этом движение активного захвата в общем случае является синусоидальным. При достаточно малом отношении времени до разрушения /р к периоду колебаний деформирование происходит с постоянной скоростью, т. е. на прямолинейном, восходящем участке синусоиды. Поскольку период колебаний конструктивно может быть снижен увеличением массы только до определенного предела, этот режим постоянной скорости деформирования может быть достигнут при скоростях захвата 3—5 м/с и более.  

[c.107]

Определив 1 , перейдем к определению веса обода маховика. Найденный момент инерции 1 можно представить как сумму моментов инерции самого махового колеса, момента инерции главного вала, момента инерции кривошипа и момента инерции массы /Паа, представляющей часть массы шатуна, отнесенной к пальцу кривошипа.  [c.222]

Физико-химические свойства. Удельный вес материала представляет интерес при оценке общего веса конструкции и ее отдельных узлов, а также для составления сводных материальных спецификаций. Первостепенное значение имеет вес при конструировании деталей, в которых приходится считаться с инерцией движущихся масс, например маховики, детали механизмов возвратно-поступательного движения, детали центробежных муфт, регуляторов и т. д. Знание веса необходимо при конструировании различных контргрузов (противовесов) и в тех случаях, когда при определении нагрузок учитывается собственный вес. Важное значение имеет вес материалов в авиационных конструкциях.  

[c.20]

Вибратор 7 состоит из редуктора, маховика, муфты и электродвигателя. Основанием вибратора служит плита, установленная на роликовые опоры. Для изменения веса вибратора на кожух муфты надеваются сменные грузы. Редуктор разделен на три отсека в двух крайних находятся парные эксцентриковые грузы, в среднем — винтовые зубчатые колеса, с помощью которых вращение вала электродвигателя передается на параллельные валики эксцентриковых грузов. Величина эксцентриситета изменяется перемещением грузов вдоль их осей. На верхней стенке редуктора укреплена планка с риской для определения величины растяжения образца, а также фазового сдвига между перемещением груза и силой, создаваемой вращением неуравновешенных масс. К редуктору слева крепится захват 6. На входном валу редуктора установлен маховик с кулачком. При вращении вала кулачок прерывает контакты устройства подачи импульсов тока на лампу стробоскопа.  [c.154]

В гасителе молекулярного трения (фиг. 81, в) инерционная масса 1 соединена слоем резины 2 с диском 3, насаженным на вал. Колебания вала при резонансе ослабляются вследствие деформации слоя резины и возникающего при этом внутреннего (молекулярного) трения в резине. Так как гасители молекулярного трения эффективно гасят колебания только при определенном числе оборотов, иногда с валом соединяют не одну, а две массы в виде маховиков, имеющих различные частоты собственных колебаний.  [c.121]

При определении сил инерции очень часто пользуются системой дискретных масс, сосредоточенных в точках невесомого звена. Действие этой системы на другие звенья механизма должно быть эквивалентно реальному звену, имеющему распределенную массу (рис. 16.10). Способ замены массы звена сосредоточенными массами применим также н в других случаях, например, при уравновешивании механизмов, определении момента инерции маховика, расчете коленчатых валов на колебания.  [c.367]

В этой формуле изменение кинетической энергии масс механизма не учитывается. Более точным будет определение момента инерции маховика из уравнения движения, записанного в форме  [c.515]

Применим изложенный прием к определению динамических напряжений в ободе быстро вращающегося махового колеса. Будем предполагать, что маховое колесо вращается равномерно с угловой скоростью О). Пренебрегая массой спиц, будем рассматривать маховик как кольцо радиуса  [c.163]

Приложим ко Всем элементам, на которые мысленно разобьем это кольцо, центробежную силу инерции — тНш , где т — масса данного элемента (черт. 96). Вводя эти силы инерции, мы получаем право рассматривать наш маховик как находящийся в покое. Мы приходим к задаче об определении напряжений в кольце, которое растягивается радиально направленными и равномерно распределен-  [c.163]

Определение угловой частоты кривошипного вала затрудняется тем, что в баланс работы действующих сил входит работа переменной силы инерции, величина которой зависит от ускорения. Приближенное значение углового ускорения вала можно определить следующим образом [52]. Представим кинетическую энергию периодически движущихся деталей поршневого компрессора в виде суммы двух слагаемых постоянной части кинетической энергии То, т. е. энергии масс, вращающихся на коленчатом валу (ротор двигателя, маховик, массы коленчатого вала), и переменной части кинетической энергии Тф, зависящей от угла поворота кривошипа (р. Приведенный к валу кривошипа момент инерции масс кривошипного механизма /пр компрессора также представим в виде суммы постоянной части /о и переменной /ф  [c.13]

К системам, требующим для своей работы определенной энергии, запасаемой на борту КА, или массы, т.е. активным системам, относятся реактивные двигатели ориентации, инерционные маховики, электромагнитные устройства и др.  [c.242]

Долговечность бесконечных лент при ленточном шлифовании и полировании во многом зависит от свойств ведуш,их роликов, так как они передают крутящий момент с электропривода станка на ленту, определяют предварительное натяжение ленты и КПД передачи. Для этого ведущие ролики должны обладать определенной массой и высокой надежностью сцепления с основой ленты. Масса ведущего ролика в ленточно-шлифовальных и полировальных станках обычно выполняет роль маховика и определяет плавность работы бесконечной ленты и всего ленточного механизма. Надежность сцепления обычно обеспечивается варьированием угла охвата и обрезиниванием рабочей поверхности роликов. Применяются также бочкообразные или двухконусные ролики, формы которых приведены на рис. 8.1, б—ж. Для уменьшения перегрузки краев и повышения стойкости лент авторами разработана конструкция ведущих роликов переменной жесткости из фрикционных материалов. С этой целью ролик выполняют наборным из нескольких дисков 1—4, закрепленных на общей ступице 5 (рис. 8.4,6). Диски изготовляют из высокофрикционных материалов различной жесткости (резины разной твердости, полиуретана и т. д.). При этом диск 1 имеет наибольшую, а диски 4 наименьшую жесткость (по сравнению с досками 2, 3), т. е. жесткость ролика уменьшается от его середины к краям. В этом случае эпюра напряжений в поперечном сечении абразивной ленты будет иметь вид, указанный на рис. 8.4,6. Снижение напряжений по краям ленты по сравнению с напряжениями в ленте на ролике одной постоянной жесткости (рис. 8.4, е) объясняется тем, что под действием приложенной нагрузки Н края ленты могут смещаться в направлении приложенной силы вследствие большой податливости ролика в местах его контакта с краями ленты.  [c.189]

Определение массы. Если Stg обозначает аккумулируе мую работу, т. е. избыток или недостаток работы, которая обусловливает ускорение или замедлёние вращающихся масс, u rt Д — окружную скорость весов G (лгг) или масс М, отнесенных к определенному диаметру D (D большей частью равно среднему диаметру обода маховика), Mv — накопленную энергию масс маховика, GD- — вращающий момент в кгм вращающихся масс, то вообще имеем  [c.641]

Определение размеров маховика. По полученной массе обода. маховика и его среднему диаметру определяем площадь поперечно1 о сечения обода  [c.234]

В многоколенном валу число колеблющихся масс равно числу кривошпиов плюс масса маховика. При наличии т масс число собственных частот колебаний системы вала может быть т—1 соответственно числу степеней свободы. Одновременно могут возникнуть собственные колебания различной частоты, наложенные одно па другое. Каждое из этих колебаний имеет определенную форму, под которой понимают диаграмму угловых отклонений отдельных масс от положения покоя по длине пала с присущим этой форме числом узлов колебаний (одно зловая, двухузловая, т—1 — узловая). Под УЗЛ01М колебаний понимают сечение вала, находящееся в положении покоя.  [c.468]

Инерционная сварка трением (рис. 8.12) -это сварка, при которой относительное движение заготовок обеспечивается массивным маховиком, предварительно разогаанным до определенной скорости специальным двигателем небольшой мощности. При прижатии свариваемых торцов заготовок друг к другу энергия, накопленная во вращающейся массе маховика, трансформируется в теплоту, выделяющуюся в процессе трения в стыке.  [c.503]

При расчете крутильных колебаний коленчатого вала после ний приводится к круглому валу постоянного сечения. Движ щиеся вместе с ним массы (маховика, генератора, пропеллерг кривошипных механизмов) приводятся к сосредоточенным н определенных местах дискам с постоянными моментами ине1 ции. Если не учитывать массы отрезков вала между дисками, т угловые отклонения дисков полностью определят деформаци системы при крутильных колебаниях. Мы снова приходим к ут рощенной приведенной системе с конечным числом степеней чс боды.  [c.102]

Для сообщения ударнику требуемой скорости используются ударные машины копры различной конструкции и пневмо-газовые пущки. Копры бывают трех типов с падающим грузом, маятниковые и ротационные. Работа копра первого типа основана на использовании энергии удара падающего с определенной высоты груза. Такой копер может иметь любую мощность, однако конструкция его громоздка и неудобна в эксплуатации, поэтому практически скорость удара от 3 до 10 м/с. В маятниковых копрах по телу ударяет маятник массы т, имеющий заданную скорость движения. Такие копры, в основном, используются при испытаниях образцов на ударное разрушение. Измеряемой величиной является энергия, поглощаемая образцом при разрушении, которая равна разности между энергией удара, определяемой по начальному положению маятника, и основной энергией маятника, определяемой по наивысшему положению маятника, которое достигается им после разрушения образца. Скорость удара обычно не превышает 10 м/с, хотя можно достигнуть и больших значений. Копры, в которых удар по телу осуществляется за счет вращения маховика, называются ротационными. Он имеет неподвижную наковальню, образец крепится на маховике. Энергия удара определяется по изменению скорости вращения маховика до и после удара. Скорость удара не превышает 60 м/с.  [c.13]

В книге изложена общая теория описания винтов с помощью особых комплексных чисел и даны приложения теории к определению конечных поворотов твердого тела (сложение и разложение поворотов), к анализу и синтезу пространственных механизмов. Рассмотрены задачи, решаемые методом винтов о движении тела под действием расположенных на нем маховиков или других произвольно движущихся масс, об измерении пространственного движения тела с помощью инерционных датчиков, пространственное обобщение теоремы Эйлера-Савари, играющей большую роль в теории зацепления задача о колебаниях упруго подвешенного тела и ряд других.  [c.2]

Кременштейн Л. И. К определению закона движения машины и момента инерции маховика при силах и массах, зависящих от положения, скорости и времени. Прикладная механика , 1958. Т. 4, вып. 2.  [c.234]

Каждая из рассмотренных выше систем стабилизации угловой скорости собственного вращения имеет определенные недостатки. Так, к недостаткам системы с маховиками, которая применялась на спутниках США типа Тирос , следует отнести трущиеся детали, снижающие долговечность устройства, значительные электропотребление, масса и габариты.  [c.164]

Сила, еопротивления разгону. Часть тяговой силы при разгоне затрачивается на ускорение вращающихся масс, главным образом маховика коленчатого вала двигателя и колес автомобиля. Для того чтобы автомобиль начал двигаться с определенной скоростью, ему необходимо преодолеть силу сопротивления разгону, равную произведению массы автомобиля на ускорение. При разгоне автомобиля сила сопротивления разгону направлена в сторону, обратную движению. При торможении автомобиля и замедлении его движения эта сила направлена в сторону движения автомобиля. Бывают случаи, когда прн резком разгоне груз или пассажиры падают из открытого кузова, о сидений мотоцикла, а при резком торможении пассажиры ударяются о лобовое стекло или о передний борт автомобиля. 10 291  [c.291]

При составлении дпиамических моделей при первоначальном анализе следует пренебречь нелинейностью характеристики жесткости отдельных узлов и деталей пресса, для приближенного расчета можно воспользоваться значением общей характеристики жесткости, взятой для отдельнЕях элементов кривошипно-ползунного механизма или привода. Обычно к сосредоточенным маховым массам. могут быть отнесены вращающиеся детали, размер которых вдоль оси не превышает их полуторного диаметра. Величина распределенных масс (валов), как правило, пренебрежимо мала по сравнению с величиной сосредоточенных. Учет распределенных масс осуществляется путем отнесения их поровну к сосредоточенным масса.м, размещенным на концах данной распределенной массы. Ош ибка в определении собственных частот, имеющая место прн такой замене, зависит от соотношения величин, сосредоточенных н распределенных масс, причем ошибка будет больше при определении более высоких частот колебательной системы. Сосредоточенными массами в приводе пресса являются маховик, зубчатые колеса, диски муфты и тормоза, кривошип коленчатого вала. В исполнительном. механизме — это масса ползуна с нижней частью шатуна и деталями регулирования штампового пространства, а также кривошип с верхней частью шатуна. При этом поступательно перемещающиеся массы приводят к эквивалентным массам крутильной системы, аналогично приводят и коэффициенты линейной жесткости.  [c.121]

Прн определении динамических явлений только в приводе модель крутильной системы лучше строить, приводя все. массы и коэффициенты податливости к валу маховика. Следует иметь в БНду труд1ЮС1И решения систем с пятью и более массами, поэтому необходимо ограничиваться выбором моделей с числом масс не более пяти, объединяя малые массы нли массы, соединенные связями с большим коэффнциенто.м жесткости.  [c.121]

Коленчатый вал двигателя вместе с поршнями и шатуналги можно рассматривать как некоторую упругую систему со свободным передним концом и закрепленным в плоскости маховика задним концом. При заданных размерах вала и значениях масс такая система будет иметь вполне определенную частоту собственных колебаний.  [c.63]


mash-xxl.info

Маховик велотренажера и вес

Маховик велотренажера и вес

Маховик — очень важная деталь велотренажера. Когда Вы крутите педали, то раскручиваете маховик. А система создания нагрузки — это то, с помощью чего затрудняется вращение маховика. Напоминаю: это может быть электромагнит, ремень или колодки. Вес маховика очень влияет на: плавность хода (чем больше, тем лучше), количество уровней нагрузки, наибольшее сопротивление, максимальный вес тренирующегося.

Чем больше весит маховик, тем выше качество и, соответственно, цена тренажера. В большинстве случаев для высокой эффективности тренировок нужен аппарат с маховиком весом больше четырех килограмм.

FexfitFexfit

Естественно, это не относится к мини велотренажерам, на то они и мини.

Тренажеры с маховиком от 10 кг имеют особо стабильный ход и множество уровней нагрузки. Но и цена таких моделей соответствует их высокому качеству.

Расшифровываем вес велотренажера

При покупке тренажера среди прочих причин выбора или «не выбора» определенной модели выступает вес велотренажера. Что же нужно учитывать?

Чем массивнее тренажер, тем больше механическая прочность, а следовательно, и надежность.

Аналогично, более массивный (и надежный) тренажер выдерживает и более тяжелого пользователя.

Большая часть веса велотренажера — это вес маховика. А чем тяжелее маховик, тем качественнее тренировки и плавнее ход.

Негативным большой вес тренажера становится при перемещении аппарата с места на место.

Из вышеперечисленного следует, что при выборе велотренажера нужно учитывать следующие моменты:

Для кого покупается устройство (масса пользователя),

Часто ли придется его перемещать,

Основной это будет тренажер или нет (сколько времени будете тренироваться).

start-health.ru

Маховики для маховичного накопителя

 

В настоящее время, существуют пять основных типов маховиков:

Рис.3.1. Диск с отверстием;

Рис.3.2. Обод со спицами;

Рис.3.3. Диск равной прочности;

Рис.3.4. Кольцевой маховик;

Рис.3.5. Супермаховик.

 

 

Общеизвестно, что энергия каждого килограмма маховика зависит от его формы и прочности. Если сравнивать вышеуказанные типы маховиков по этим критериям, то сразу отпадает маховик в виде диска с отверстием как наиболее неэффективный. Как правило, это малая прочность материала, из которого он обычно изготавливается, т.е. стальные поковки или отливки. А крупные отливки или поковки даже из лучших сортов стали не слишком прочны. В таких изделиях невозможно избежать мельчайших дефектов, сильно уменьшающих прочность всего маховика. Чем прочнее литой или кованый маховик, тем опаснее его разрыв, если он приключится, и тем больший запас прочности понадобится, чтобы уберечь маховик от разрыва.

Далее по эффективности накопления энергии идет маховик в виде обода со спицами. Такой маховик накапливал энергии в каждом килограмме своей массы раза в полтора больше.

Однако потом точные расчеты показали, что выгоднее помещать массу не дальше от центра, а, наоборот, ближе к центру, вследствие чего появились маховики, тонкие по краям и утолщающиеся к середине, — диски «равной прочности». Энергии они могут накопить в два раза больше, чем обод со спицами, и в три раза больше, чем диск с отверстием, при той же массе маховика.

Рассмотрим следующий вариант из нашего списка. Это супермаховик. Простейший пример, это кусок троса, зажатый в кольцевом зажиме – оправке, которая в свою очередь посажена на вал.

В чем преимущества такого супермаховика? Если вращать вал с оправкой и тросом в ней, то трос, как и обычный маховик, накопит кинетическую энергию. При этом частицы троса, стремясь двигаться по инерции, будут все сильнее растягивать его, пытаясь разорвать. Наибольшая нагрузка тут приходится на середину троса. При увеличении скорости сверх меры трос начнет рваться, но рваться по частям, по одной проволочке, а тоненькие проволочки не способны пробить даже легкий защитный кожух, т.е. разрыв супермаховика происходит безопасно.

Так как прочность проволоки (стальной струны) выше прочности монолитного стального куска примерно в пять раз, то супермаховик из струны при прочих равных условиях накопит энергии во столько же раз больше, чем обычный маховик стой же массой. Благодаря же большей безопасности, супермаховику не нужен слишком большой запас прочности, и его следует уменьшить примерно вдвое по сравнению с маховиком. Следовательно, супермаховик из троса может накопить в каждом килограмме массы в десять раз больше энергии, чем обычный стальной маховик.

Большие перспективы сулят так называемые кольцевые супермаховики. Такой супермаховик представляет собой кольцо, навитое из высокопрочного волокна и помещенное в вакуумную камеру в форме бублика – тора. Поскольку кольцевой супермаховик лишен центра, в нем наиболее полно реализуются прочностные свойства волокон. Кольцевой супермаховик удерживается в камере в подвешенном состоянии с помощью магнитных опор, размещенных в нескольких местах по окружности. Само кольцо служит ротором мотор — генератора, а те места, в которых стоят обмотки магнитов, — статором. Это упрощает отбор энергии и зарядку супермаховика.

Если сравнивать кольцевой супермаховик со стальным маховиком из самой прочной стали, плотность энергии кольцевого супермаховика в 2 – 3 раза больше и достигает 0,5 мегаджоуля на килограмм массы. Потери на вращение у него в 50 – 100 раз меньше, чем у стального. Так как отсутствуют самые большие потери – потери на трение в подшипниках.

К сожалению, в нашем случае кольцевые маховики мы вынуждены исключить из рассмотрения по двум причинам: сложность подвесной системы и дороговизна изготовления.

С учетом всего вышеизложенного из всех вариантов выбираем супермаховик.

Опыт показал, что для супермаховиков, кроме прочности и размеров решающее значение имеет их масса. Как ни парадоксально, но чем легче супермаховик, тем лучше.

Плотность энергии маховика определяется удельной прочностью, то есть отношением прочности к удельному весу материала.

Поэтому в качестве материала маховика выберем борное волокно, как наиболее выгодное по показателю удельной прочности.

Таблица 3.1.

Материал

Предел прочности,

109,(Н/м2)

Плотность,

 103,( кг/м3)

Линейная скорость, Vmax (м/с)

Стальная проволока

3,1

7,8

632

Стекловолокно

2,1

2,1

1000

Угольное волокно

1,22

1,1

1049

Борное волокно

5,9

2,0

1673

 

 

Известно, что емкость супермаховика определяется частотой вращения, массой и его геометрическими размерами (внешним и внутренним радиусом).

Энергия, запасенная супермаховиком, определяется по формуле:

 

W=E/3600, Вт*ч

где Е определяется по формуле:

 

E=J/2*(w12-w22), Дж

 

где w12 – максимальная угловая скорость вращения супермаховика, рад/с;

w22 – минимальная угловая скорость вращения супермаховика, рад/с;

J – момент инерции, кг*м2;

Момент инерции определяется по формуле:

 

J=M/2*(R2+r2), кг*м2;

 

где М – масса, определяется по формуле:

 

M=(p*(R2-r2)*h*g)/2, кг

 

где R – внешний радиус супермаховика, м;

r – внутренний радиус супермаховика, м;

h – толщина, м;

g — плотность материала, из которого изготовлен супермаховик, кг/м3;

Отсюда энергию, запасенную супермаховиком, можно определить по формуле:

 

W=(p*(R4-r4)*h*g*(w12-w22))/(8*3600), кВт*ч;

 

Супермаховик из борного волокна конструктивно представляет собой обод со ступицей, на который определенным образом намотано борное волокно (Рис.3.6.).

Основной проблемой в данном случае является то, что на высоких оборотах предъявляются высокие требования к качеству и точности изготовления.

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                    Борное волокно

 

                                                    Металлическая ступица

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Наиболее важным моментом в изготовлении супермаховика является способ намотки борного волокна на металлическую ступицу, потому что намотка супермаховика должна начинаться со ступицы и на ней должна заканчиваться (Рис.3.7.).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Это объясняется тем, что крайние наружные витки подвергаются при вращении более сильным растягивающим усилиям, чем внутренние витки. Поэтому чтобы уменьшить вероятность разрыва волокна, намотка должна осуществляться подобным образом.

 

 

<< К оглавлению  Дальше>>

sersalaev.narod.ru

Расчет маховика. Задачи динамического анализа. Диаграммы сил и приведенных моментов. Графическое интегрирование, страница 6

7.10. Конструирование маховика

Маховики проектируют в двух конструктивных формах: стальной диск при диаметре D1 < 300 мм (рис. 7.5, а) или чугунная конструкция с ободом, диском или спицами и ступицей (рис. 7.5, б). Момент инерции стального диска:

,              (7.24)

где mс — масса маховика;  — коэффициент ширины маховика, ; b — ширина маховика, м; r — плотность,  кг/м3, D1 — максимальный диаметр, м.

Рис. 7.5

Диаметр стального маховика, необходимый для назначения той или иной конструкции:

.                                                             (7.25)

          Для оптимизации маховика по габаритам и массе рекомендуется принимать несколько значений  из ряда: 0,05; 0,1; 0,15; 0,2; 0,25; 0,3. Для стальных маховиков плотность r = 7800 кг/м3, для чугунных — r = 7100 кг/м3. В чугунной литой конструкции предполагается, что необходимый момент инерции маховика обеспечивается массой обода, а масса ступицы и спиц составляет 20 % от массы обода. Момент инерции обода маховика:

                                          (7.26)

откуда

.                                               (7.27)

В формулах (7.26) и (7.27):

ψD — коэффициент диаметра, который рекомендуется принимать из ряда 0,6; 0,7; 0,8.

ψD = D2/D1,                                             (7.28)

где D2 — внутренний диаметр обода.

.                                            (7.29)

Ширину обода определяют из формулы:

.                                               (7.30)

Все принятые размеры необходимо округлять до стандартного значения. Масса чугунного маховика, кг:

.                                       (7.31)

Диаметр отверстия ступицы принимают равным диаметру коренной шейки d01. Диаметр ступицы dст = 1,8 d01, толщина спицы c = 0,25b. Расчетные размеры D1, b, dст, c округляют по стандарту в большую сторону, D2 — в меньшую.

Расчеты по формулам (7.24)…(7.31) следует выполнить на ПЭВМ с помощью программы ТММ-16 в системе Quick BASIC. Цель расчетов: определение размеров маховика по его моменту инерции с оптимизацией по массе при  ограничении  по габаритам (D1).

Пример 7.2. Рассчитать параметры чугунного маховика (D1, D2, b, mч, Iмч) по программе ТММ-16, если момент инерции маховика Iмч = 6,5 кг∙м2.

Решение:

Принимаем последовательно коэффициенты ψb = 0,1; 0,15; 0,2 и ψD = 0,6; 0,7; 0,8. Компьютерная распечатка содержит 9 вариантов расчетов (рис. 7.6).

Рис. 7.6

Выводы:

1. Задавая ограничение по диаметру (D1 ≤ 600 мм), из оставшихся 5 вариантов выбираем вариант с наименьшей массой и с моментом инерции Iмч ≥ 6,5 кг∙м2:D1 = 600 мм; D2 = 360 мм; b = 90 мм; mч = 115,6 кг; Iм = 7, 08 кг∙м2.

2. С увеличением отношения b/D масса маховика увеличивается.

3. С увеличением D2/D1 масса маховика уменьшается.

Вопросы для подготовки к защите проекта

1. Чем характеризуется размах колебаний угловой скорости начального звена?

2. К чему приводит непостоянство скорости движения звеньев?

3. Какая конструктивная мера принимается для обеспечения вращения звена приведения с неравномерностью, не превышающей заданную?

4. Как Вы представляете динамическую модель машинного агрегата?

5. К какому объекту относятся приведенный момент сил и приведенный момент инерции?

6. Из какого условия определяется приведенный момент сил?

7. Из какого условия определяется приведенный момент инерции?

8. Как получается диаграмма работ из диаграммы приведенных моментов?

9. Как определяется приращение кинетической энергии (избыточная работа)?

10. Как определяется момент инерции маховика по методу Мерцалова?

11. Как влияет коэффициент неравномерности на момент инерции и габариты маховика?

12. Укажите диаграмму угловой скорости кривошипа и прокомментируйте её.

13. Как строится диаграмма угловых ускорений кривошипа?

14. Как конструктивно выполняются маховики?

vunivere.ru

Материал для маховика — Libtime

  1. Главная
  2. Наука
  3. Материал для маховика
Елена Голец 6828 Материал для маховика —это для примера. С таким же успехом можно было задать вопрос: из какого материала делать ракеты и теннисные ракетки, лодки и шесты для прыжков, топливные баки и корпуса автомобилей? И ответить: рациональнее всего из композитов.

Что такое маховик

Что такое маховик и для чего он нужен? В политехническом словаре за 1977 год сказано, что маховик — это колесо с массивным ободом, устанавливаемое на валу машины с неравномерной нагрузкой для выравнивания ее хода. Если иметь в виду только эту цель, то для изготовления маховиков целесообразно выбирать как можно более тяжелый материал, чтобы они справлялись со своей задачей при сравнительно небольших размерах. Маховик — колесо с массивным ободом. С тех пор роль маховиков в технике существенно расширилась.  Во всяком  случае,  приведенное определение явно  неполное. Сегодня повышенный интерес к маховикам связан не только и не столько с их традиционным использованием для выравнивания нагрузки на валах поршневых двигателей, компрессоров, насосов и других машин, сколько с проблемой рекуперации механической энергии, то есть использования энергии, погашаемой при торможении машин. Суть проблемы состоит в следующем. Движущиеся поезда, автомобили, трамваи, троллейбусы, автобусы периодически (и довольно часто) нужно останавливать. Для этого, как известно, служат тормоза. Но при каждом торможении кинетическая энергия транспортного средства переходит в тепло, нагревая тормозные колодки, диски и безвозвратно рассеиваясь в окружающей среде. При современном энергетическом кризисе такое расточительство недопустимо. Как показывают подсчеты, примерно половина энергии, развиваемой двигателями, теряется при торможении.

Маховик — аккумулятор механической энергии

Вот маховики-то и могут помочь резко снижать эти потери. Маховик — аккумулятор механической энергии, то есть устройство, позволяющее накапливать механическую энергию, хранить ее и при необходимости опять выделять. Если массивный маховик заставить вращаться с большой скоростью, он может за счет своей инерции развить мощность, достаточную для того, чтобы привести в движение автобус или поезд. Это его свойство и навело на мысль: вместо того, чтобы тратить кинетическую энергию машины на нагрев тормозов, ее нужно расходовать на раскручивание маховика, установленного на машине. Маховик — аккумулятор механической энергии. При торможении маховик накапливает энергию, а когда возникнет необходимость снова тронуться с места, эта энергия будет передаваться с помощью специальных механизмов на ведущие колеса. Иными словами, разгон будет осуществлять энергия, накопленная при торможении. Это позволит на 30— 50 % сэкономить горючее, значительно уменьшить количество токсичных выхлопных газов, повысить проходимость. В наше время все это настолько важно, что имеет прямой смысл заняться разработкой транспортных средств, снабженных маховиками, которые играют роль дополнительных источников энергии. И во всем мире такими разработками усиленно занимаются. Основное требование, предъявляемое к маховику, вытекает из его назначения: он должен накапливать при вращении как можно больше энергии. Если маховик представить в виде тонкого кольца, величина этой энергии Е оценивается формулой:

Е=0,5 mV2,                                       (1)

где m— масса кольца, V — линейная скорость его вращения. Из этой формулы следует, что для увеличения энергоемкости маховик следует делать как можно тяжелее и вращать с максимально возможной скоростью.

Какой применить материал для маховика

Возникает вопрос, какой применить материал для маховика? Нужно взять материал с максимально высокой плотностью γ, чему соответствует вольфрам, плотность которого 19 300 кг/м3. Большую плотность имеют только осмий (γ=22 500 кг/м3), иридий (γ=22 400 кг/м3) и платина (γ=21 450 кг/м3), но это очень дорогие металлы. Рассмотрим вариант применения вольфрама. До какой скорости можно раскручивать маховик? Ясно, что не до бесконечно большой. Предельная скорость вращения ограничена прочностью материала. Известно, что при достижении определенной скорости вращения маховик может разорваться. Поскольку эти скорости составляют десятки и сотни метров в секунду, от такого разрушения ничего хорошего ждать не приходится. В лучшем случае дело кончится поломкой вала и ходовой части машины. Но при разрыве маховика разлетающиеся с огромной скоростью обломки могут разрушить близлежащие постройки и, что самое страшное, привести к человеческим жертвам. Так что допускать разрушения ни в коем случае нельзя.

Какие силы разрывают маховик

Знаете ли вы, какие силы разрывают маховик? Часто можно  услышать  ответ:   силы  ине

libtime.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *