Насос форсунка фото – Особенности устройства систем питания дизелей с насос-форсунками

Содержание

Проблемы моторов с насос-форсункой на примере 1.9 TDI (AWX) — АвтоСтронг-М на DRIVE2

В начале 2000-х концерн VAG начал эксперимент с насос-форсунками. Да, именно эксперимент, так как насос-форсунки продержались на рынке не более 10 лет. Так, первый 1.9-литровый 115-сильный TDI (код AJM) с насос-форсункой дебютировал в конце 1998 года на VW Bora. В 2008 году производство дизелей с насос-форсунками концерн VAG свернул. Тем не менее, сегодня дизели с такой системой питания используются на моторах тяжелой коммерческой техники.

Полный размер

О болячках моторов VAG с насос-форсунками мы поговорим на примере двигателя 1.9 TDI (AWX). Мы сняли видео об этом двигателе.

Мотор 1.9 TDI AWX устанавливался на следующие автомобили:

-Audi A4 с 09/2000 до 06/2003
-Audi A6 c 04/2001 до 01/2005
-Passat B5 c 10/2000 до 05/2005
-Superb с 12/2001 до 03/2008

Мощность мотора составляет 130 л.с., крутящий момент – 285 Нм. У этого мотора есть практически брат-близнец – AVF, с такой же мощностью, но крутящий момент повыше – 310 Нм. «Наш» AWX более тяговит «на низах», а AVF резвее тянет со средних оборотов. Разница в отдаче кроется на самом деле в прошивке – разных углах впрыска. Прошивка у AWX более тяговитая и начальный УОЗ отличен от AVF. Момент мотора AWX урезан, но он работает мягче. Таким образом, у концерна VAG получились два очень похожих, но слегка разных по характеру двигателя. Впрочем, все 1.9 TDI с насос-форсункой очень близки друг другу по деталям и узлам.

Моторы с насос-форсункой имеют ременной привод ГРМ.

Полный размер

Ремень ГРМ на дизеле с насос-форсункой очень прочный и широкий.

Причем ремень ГРМ здесь очень мощный: он как минимум на 5 мм шире ремня ГРМ на дизельном моторе с другой системой впрыска. В приводе ГРМ присутствует демпфер и гидравлический натяжитель

Полный размер

Для компенсации растяжения ремня ГРМ и уменьшения его износа на зубчатом колесе коленвала предусмотрено увеличенное расстояние между отдельными зубьями для уменьшения износа ремня ГРМ

Самые распространенные проблемы мотора 1.9 TDI

Вообще этот двигатель получился достаточно надежным и неприхотливым. Большинство его проблем и неполадок связано с пробегом и экономией на обслуживании.

Двигатель 1.9 TDI может перестать тянуть. В этом случае сразу необходимо делать компьютерную диагностику, которая более или менее точно указывает на причину проблемы. Разумеется, в большинстве случаев оказывается виновата турбина и все, что с ней связано. Может заклинивать «геометрия» турбины, а могут порваться-прохудиться вакуумные трубки, соединяющие ее актуатор и управляющий клапан N75. Если проблема с тягой пропадает на время после запуска мотора, то, скорее всего, «глюк» где-то в электронной части.

Полный размер

Геометрия турбины 1.9 TDI может заклинивать. Могут случаться проблемы по части вакуумного управления.

Еще мотор 1.9 TDI может неуверенно заводиться. Тут причин может быть много. Могут протекать уплотнительные колечки насос-форсунок: меняем (по регламенту – раз в 150 000 км) целиком весь комплект резиновых и медных колец. Могут быть проблемы по датчику положения коленвала. Также износ тандемного насоса, который создает вакуум и качает топливо. При его износе подача топлива будет недостаточной

Полный размер

Насос-форсунки – далеко не самый проблемный узел мотор 1.9 TDI (AWX).

И, самое печально, когда все поменяли, но в начале забыли померить компрессию. Обычно наблюдается износ поршневых колец и стенок цилиндров.

Параметры компрессии (избыточного давления) следующие:
-для двигателя без износа: от 25 до 31 бар;
-минимальное значение: 19 бар;
-допустимая разница между цилиндрами: 5 бар.

Если с компрессией все плохо, люди обычно покупают контрактный мотор.

Насос-форсунки крепятся в ГБЦ прижимной планкой с одним болтом. Это архаичная конструкция, которая также перекочевала на немалое количество версий мотора 2,0 TDI (B-серию). Со временем такое ненадежное однобокое крепление приводит к расшатыванию форсунок, которые разбивают в ГБЦ свое посадочное место. Но прежде чем это произойдет, случится другая неприятность. Насос-форсунка, разбалтывающаяся в своем «гнезде» теряет герметичность. Топливо в нее поступает по каналам, проделанным в ГБЦ. В сопряжениях насос-форсунки и ГБЦ предусмотрены резиновые колечки-прокладки. При проявлении малейшего люфта прокладки теряют герметичность. Топливо начнет стекать в цилиндр или будет просачиваться на верхнюю поверхность головки блока. Вдобавок происходит завоздушивание насос-форсунок.

Полный размер

Единственная прижимная планка насос-форсунок не обеспечивает надежной фиксации. Со временем или после неквалифицированной установки форсунки разбалтываются, протекают

www.drive2.ru

Насос форсунка пъезо

Насос-форсунка (пьезо и электро)

«победном шествии» систем непосредственного впрыска топлива говорить не будем — наговорились.Поговорим о небольшой конкретике: о насосе-форсунке, которые уже успешно применяет не только фирма Mitsubishi, но и BOSCH. Для наглядности посмотрим на фото:

Здесь показаны насос-форсунки разных поколений, если так можно сказать. Слева — «вчерашний день», это насос-форсунка с электромагнитным клапаном. Справа «день сегодняшний», насос-форсунка с пьезоэлектрическим клапаном модели PPD 1/1.

Именно о ней и поговорим. Но для начала приведем сравнительные характеристики этих двух типов форсунок, откуда станет понятным причина перехода на насос-форсунки нового поколения.

За счет применения композитных материалов и уменьшения размеров плунжера повышено быстродействие и точность работы: диаметр плунжера в НФ ( насос-форсунке) с электромагнитным клапаном=8мм, а в НФ с пьезоэлектрическим клапаном диаметр плунжера намного меньше и равняется 6.35мм.

Но не это главное, другое: быстродействие пьезоэлектрического клапана в 3 — 5 раз превосходит быстродействие клапана с электромагнитным управлением.

Как мы знаем, система управления таких насос-форсунок может предусматривать несколько так называемых «дополнительных впрысков». Так вот, НФ электромагнитного типа может осуществлять их до 2 едениц.

НФ пьезоэлектрического типа — тоже, но с таким приятным «нюансиком» — время и количество дополнительных впрысков топлива может варироваться как по числу, так и по времени:

,- то есть, система управления теперь может управлять и количествами дополнительного впрыска топлива и временем между ними, в зависимости от условий работы двигателя. Если по условиям работы требуется после основного впрыска сделать только один дополнительный впрыск — так и делается. Если больше — это тоже в силах системы управления. Кроме того, если по тем же условиям работы требуется сократить или удлиннить временной разрыв между дополнительными впрысками — система управления способна это осуществить.

«Пилотный впрыск».

Насос-форсунка электромагнитного типа в силу своих конструктивных особенностей практически не способна изменить объем топлива для «пилотного» впрыска , он равняется приблизительно от 1 до 3 мм3. Насос-форсунка пьезоэлектрического типа стала «умнее», и в зависимости от требуемых условий может менять объем «пилотного»впрыска, правда, с одним только ограничением — минимальный объем может составлять не менее 0.5 мм3.

Кроме того, если НФ электромагнитного типа может осуществлять только один «пилотный» впрыск, то НФ пьезоэлектрического типа в зависимости от условий работы может делать их до 2 едениц, и притом — изменяемых по времени и объему.

Точность и, значит, качество работы определяется еще и условиями управления подачей топлива. НФ электромагнитного типа для этого использует гидромеханику, при помощи компенсанционного поршня, а НФ пьезоэлектрического типа использует электронное управление посредством пьезоэлектрического клапана.

Ну вот, теперь мы подошли к самой конкретике — к самому пьезоэлектрическому клапану.

Греческий язык нам подсказывает, что слово «пьезо» означает «давить, давлю». Обычно пьезоэлементы применяются в датчиках давления.

При воздействии давления на обкладках пьезоэлемента появляется разность потенциалов, которую можно измерить и использовать при дальнейших расчетах. В нашем же случае применяется так называемый «обратный пьезоэффект», когда при приложении напряжения к пьезоэлементу изменяются его геометрические размеры:

(металические обкладки на рисунке не показаны)

При отсутствии напряжения пьезоэлемент имеет один геометрический размер, при подаче на него напряжения — другой.

Приращение (изменение) длины пьезоэлемента прямо пропорционально прилагаемому напряжению:

Разбирающийся в электронике человек сразу же задаст такой вопрос: — Уважаемый, а насколько произойдет приращение длины пьезоэлемента при подаче на него напряжения? Хватит ли этого приращения для управления чем-либо? И хитро так улыбнется. Все правильно, не хватит. Толщина одного элемента пьезопривода приблизительно равняется 0.08мм, а приращение составит всего около 0.11 — 0.16%. Этого мало. И поэтому, например, что бы получить перемещение около 0.05мм требуется делать «наборный блок» из пьезоэлементов. Такие блоки получили название PIEZO-STACK, где отдельные пьезоэлементы разделены между собой металическими прокладками, служащими для подвода к ним напряжения.

Но и этого — мало! «Рабочий» ход пьезопривода приблизительно равняется 0.05мм. Нам же по техническим условиям нужно иметь ход перемещения около 0.09 — 1.1мм. Для «выравнивания» этого несоответствия и был придуман так называемый рычажной мультипликатор со специально подобранным передаточным отношением. Все, теперь «механическая» задача решена, дело осталось за малым: создать требуемое электронное управление для всего этого придуманного.

На фото: насос-форсунка с пьезоприводом (стрелка).

Владимир Петрович

dizelist.ru

Алгоритм работы насос-форсунки — Автомодерн

Алгоритм работы насос-форсунки дизельного двигателя

      Качество распыления дизельного топлива в цилиндре, во многом определяет процесс его горения, и образования токсичных веществ в отработавших газах. Более качественное распыление достигается при высоком давлении, порядка 1800 бар и выше. Однако устаревшие системы дизельных двигателей не могут обеспечить подачу топлива к форсункам под таким давлением, т.к. в таком случае потребовались бы делать топливопроводы высокого давления, с очень большим наружным диаметром из-за увеличения толщины стенок. Чтобы не применять громоздких топливопроводов при увеличении давления впрыска, многие ведущие автомобильные фирмы начали применять насос-форсунки с электронным управлением.

Насос-форсунка представляет собой впрыскивающий насос с узлом управления и форсунку в едином узле индивидуально на каждый цилиндр двигателя.

Система дизельной топливной аппаратуры (электронно управляемая насос-форсунка) начала применяться на грузовых автомобилях с 1994 года, а на легковых четырьмя годами позже. Модульная конструкция систем питания дизельных двигателей с насос-форсунками, позволяет устанавливать их без особых затрат времени, на двигатели различных конструкций.

Обозначение по BOSCH
UIS (UNIT-INJECTOR-SYSTEM) UPS (UNIT-PUMP-SYSTEM)
Обозначение по Delphi
EUI (Electronic Unit Injectors) EUP, (Electronic Unit Pumps)

Элемент EUI (насос- форсунка с электронным управлением) в сборе представляет собой механизм — с механическим созданием давления;

  • электронным управлением впрыска, что означает управление и контроль бортовым компьютером времени начала впрыска (угла по отношению к положению коленвала) и продолжительности впрыска, тем самым обеспечивается возможность изменять количество впрыскиваемого топлива;
  • надлежащим распылом топлива (высокого давления до 2 200 бар)

Ниже приведен наиболее упрощенный алгоритм работы насос- форсунки с электронным управлением, но именно он позволяет наилучшим образом понять схематику работы узла.

В этой позиции плунжер находится в верхней точке, а клапан управления открыт. Топливо идет через всю насос- форсунку (заполнены все полости) Кулачек давит вниз и плунжер начинает перемещаться, перекрывая входное отверстие. Впрыска не происходит, т.к. клапан все еще открыт и топливо вытесняется через него.
На актуатор (электромагнит) подается напряжение и клапан закрывается с большой скоростью. Плунжер продолжает движение вниз и давление быстро нарастает. Давление топлива преодолевает силу пружины и игла распылителя начинает открытие при давлении ~ 300 бар. Давление продолжает быстро нарастать до 1800…2200 бар и происходит впрыск топлива После окончания подачи электричества на актуатор электромагнитный клапан открывается, давление резко падает, игла форсунки по воздействием пружины  закрывает отверстие распылителя процесс впрыска заканчивается

      Таким образом, работу насос- форсунки можно условно разделить на 4 хода плунжера: ход впуска и наполнения, предварительный ход, ход нагнетания и впрыска топлива, окончание процесса впрыска. Более подробно алгоритм приведен ниже

1.    Ход впуска и наполнения.
При движения плунжера вверх, под воздействием возвратной пружины, топливо при постоянном давлении поступает по каналу 7 от  насоса низкого давления в полость клапана управления 6, который открыт под воздействием прижимной пружины, так как напряжение на соленоиде отсутствует. По каналам топливо попадает в полость высокого давления 4.
2. Предварительный ход.
Поворачиваясь кулачек кулачкового вала начинает оказывать давление на плунжер 2, который перемещается вниз. Клапан управления все еще открыт и топливо, под давлением движущегося вниз плунжера 2, вытесняется через выпускной канал 8 в систему низкого давления.
3. Ход нагнетания и процесс впрыска топлива
От блока управления на электромагнит 9 клапана управления подается напряжение, и якорь соленоидного клапана под воздействием созданного электромагнитного поля закрывает клапан, преодолевая при этом сопротивление пружины клапана. Сила магнитного потока при этом должна быть достаточно большой, чтобы обеспечить достаточное уплотнение между плоскостями 10. Чем ближе якорь расположен к ярму, тем больше сила прижатия клапана к седлу, что позволяет снизить величину тока управления соленоидным клапаном, уменьшая расход электроэнергии, и сохраняя при этом закрытое положение клапана. Сообщение между полостями высокого и низкого давления при этом перекрывается. Закрытие соленоидного клапана приводит к изменению тока катушки 9, что определяется блоком управления, как начало подачи топлива. Давление топлива в полости высокого давления при движении плунжера возрастает. Одновременно возрастает давление и в полости распылителя форсунки. При достижении давления начала подъема иглы распылителя около 300 бар игла распылителя слегка приподнимается и начинается впрыск топлива в камеру сгорания (фактическое начало впрыска или начало подачи). Давление впрыска постоянно увеличивается по мере хода плунжера насоса. . Давление продолжает быстро нарастать до 1800…2200 бар и происходит впрыск топлива
4. Окончание процесса впрыска
После полного открытия электромагнитного клапана давление резко падает, игла форсунки при этом закрывает отверстие распылителя, усилием пружины клапан управления возвращается в исходное положение и процесс впрыска заканчивается.

Примечание: 1 – кулачек кулачкового вала; 2 – плунжер; 3 – возвратная пружина; 4 – полость высокого давления; 5 – клапан соленоида; 6 – полость клапана управления; 7 – впускной канал; 8 – выпускной канал; 9 – обмотка соленоида; 10 – седло клапана; 11 – игла форсунки

Обязательным условием эффективного сгорания дизельного топлива является хорошее смесеобразование. Для этого топливо должно подаваться в цилиндр в нужном количестве, в нужный момент и как можно более высоким давлением. Уже при незначительных отклонениях от требуемых параметров распыления топлива отмечается увеличение содержания вредных веществ в отработавших газах, повышение шумности процесса сгорания и увеличение расхода топлива. Важным моментом для процесса сгорания в дизельном двигателе является малая величина задержки самовоспламенения (Задержка самовоспламенения — промежуток времени между началом впрыска топлива и началом повышения давления в цилиндре). Если в этот временной промежуток подается большое количество топлива, то это ведет к резкому повышению давления  в цилиндре, повышению нагрузок на цилиндро- порщневую группу и к резкому увеличению уровня шума процесса сгорания.

Увеличение рабочих циклов

Для достижения большей плавности протекания процесса сгорания, снижения шума и выброса токсичных веществ в насос-форсунках перед основным впрыском осуществляется предварительный впрыск (впрыск под небольшим давлением небольшого количества топлива). Благодаря сгоранию этого малого количества топлива в камере сгорания повышаются давление и температура. Вследствие чего происходит ускоренное самовоспламенение топлива, поданного в ходе основного впрыска. Предварительный впрыск и наличие паузы между предварительным и основным впрыском способствует тому, что давление в камере сгорания повышается не скачкообразно, а относительно равномерно. Вследствие этого достигается снижение шумности процесса сгорания и уменьшение эмиссии окислов азота. В таких форсунках дополнительно устанавливается разгрузочный поршень. Примитивная схема каналов и элементов у такой насос-форсунки дана ниже.

Заполнение камеры высокого давления

В процессе заполнения камеры высокого давления плунжер под действием основной пружины движется кверху, что ведет к увеличению объема камеры высокого давления. Клапан управления насос-форсунки под действием пружины клапана в момент отсутствия магнитного поля от соленоида находится в открытом состоянии и соединяет питающую магистраль и камеру высокого давления. Топливо под давлением из питающей магистрали заполняет камеру высокого давления.

Начало предварительного впрыска

Кулачек кулачкового вала поджимает плунжер книзу. Плунжер, в свою очередь, отжимает топливо из камеры высокого давления в питающую магистраль. Протекание процесса впрыска топлива происходит под управлением блока управления двигателя через соленоид и клапан управления. По сигналу от блока управления двигателем на электромагните (соленоиде) форсунки возникает магнитное поле и клапан управления прижимается к седлу, перекрывая путь топливу из камеры высокого давления в питающую магистраль. Вследствие этого происходит повышение давления в камере высокого давления. Когда давление достигает 180 бар, оно становится выше, чем усилие пружины распылителя. Игла распылителя приподнимается, и начинается предварительный впрыск.

Демпфирование хода иглы распылителя

В процессе предварительного впрыска ход иглы распылителя демпфируется гидравлическим буфером, что дает возможность точно дозировать количество впрыскиваемого топлива.

Это происходит таким образом:
на первой трети хода ничто не мешает ходу иглы. При этом в камеру сгорания предварительно впрыскивается топливо (рис А)

Как только демпферный клапан начнет перемещаться по отверстию в корпусе распылителя (рис В), топливо над иглой распылителя сможет поступать под давлением в зону размещения пружины только через зазор снизу демпферного клапана. Вследствие этого возникает гидравлический буфер, который ограничивает ход иглы распылителя при предварительном впрыске.

Конец предварительного впрыска

Под действием увеличивающегося давления перепускной клапан движется книзу, тем самым увеличивая объем камеры высокого давления. Вследствие этого давление на короткое время падает, и игла распылителя закрывается. Предварительный впрыск закончился. Вследствие перемещения вниз перепускного клапана пружина распылителя сжимается сильнее. Поэтому для повторного открытия иглы распылителя при последующем – основном — впрыске необходимо давление топлива больше, чем при предварительном впрыске.

Начало основного впрыска

Вскоре после запирания иглы распылителя давление в камере высокого давления опять поднимается. Клапан управления под воздействием электромагнита закрыт, а плунжер насос-форсунки движется вниз. Когда давление достигает примерно 300 бар, оно становится больше, чем давление пружины распылителя. Игла распылителя снова поднимается, и в камеру сгорания впрыскивается основная порция топлива. Давление при этом поднимается до 2050 бар, поскольку в камере высокого давления сжимается больше топлива, чем может его выйти через распылитель. При достижении двигателем максимальной мощности, а также при наибольшем крутящем моменте и одновременно самом большом количестве впрыскиваемого топлива давление максимально.

Конец основного впрыска

Конец впрыска, когда с блока управления двигателя перестает поступать сигнал на электромагнитный клапан. При этом клапан управления под действием пружины отходит от седла, и сжимаемое плунжером топливо может поступает во внешнюю магистраль. Давление топлива падает. Игла распылителя закрывается, и перепускной клапан под действием пружины распылителя возвращается в исходное положение. Основной впрыск закончен.

Соленоидный клапан управления

Соленоидный клапан управления можно разделить на две группы – соленоидную (электромагнитную) и непосредственно клапанную. Клапанная группа состоит из клапана управления 2 (рис.), корпуса 12 клапана составляющего единое целое с корпусом насос- форсунки и пружины клапана 1.

Соленоидный клапан управления (принципиальная схема):
1 – пружина клапана управления; 2 – клапан управления; 3 – полость высокого давления; 4 – полость низкого давления; 5 – компенсационная шайба; 6 – катушка актуатора; 7 – кожух; 8 – штекер; 9 – щель для прохода топлива; 10 – уплотнительная плоскость корпуса клапана; 11 – уплотнительная плоскость клапана; 12 – корпус; 13 – накидная гайка; 14 – магнитный диск; 15 – магнитный сердечник; 16 – якорь; 17 – уравнительная пружина

Уплотнительная плоскость 10 корпуса клапана имеет конусообразную форму. Посадочная поверхность клапана 11 имеет точно такую форму, однако угол конуса клапана немного больше угла конуса его корпуса. Когда клапан закрыт и прижат к корпусу, корпус и клапан соприкасаются только по линии седла клапана, благодаря чему достигается очень хорошее уплотнение клапана. Клапан управления и его корпус составляют прецизионную пару и очень плотно подогнаны друг к другу. Магнит состоит из ярма магнитопровода и подвижного якоря 16. Ярмо в свою очередь состоит из магнитного сердечника 15, катушки 6 и штекеров выводных контактов 8. Якорь соединен с клапаном. Между магнитным ярмом и якорем в исходном положении имеется зазор.

Последние поколения насос-форсунок

Указанные выше схемы работы имеют свое развитие в насос- форсунках следующих поколений и других производителей. Так в насос- форсунках производства компаний Delphi, Cummins, CAT клапан управления представляет собой единый узел ни с корпусом насос- форсунки, о непосредственно пару «клапан – обойма клапана», которые при необходимости заменяются в процессе ремонта. Последние поколения насос- форсунок (например, Delphi серии «Е-3») имеют ни один клапан управления, а два, что обеспечивает возможность осуществления до 5 впрысков в пределах предварительного – основного – дожигого. Данные возможности вкупе с дополнительными мерами (например установкой систем EGR, SCR) делают возможным выполнение строжайших норм по экологии («Евро 5», перспективные «Евро 6»). В перспективе разработки по объединению систем Common Rail и насос- форсунок в единую систему.

Схема управления топливной системой «насос-форсунка»

Пример схемы управления топливной системой «насос- форсунка» грузового автомобиля (VOLVO).

www.automodern-msk.ru

Изучаем вместе, как работают насос-форсунки

Насос-форсунки С развитием и распространением дизельных двигателей, к ним начали выдвигать все большие и большие требования, выражающиеся в увеличении удельной мощности мотора, увеличении давления впрыска и улучшении процесса смесеобразования. Немаловажным фактором также являются компактные размеры самого устройства и соблюдение экологических норм. Все это, вместе с бурным развитием электроники, поспособствовало созданию индивидуальных насос-форсунок и отдельных насосных секций для каждого цилиндра дизельного двигателя, оборудованного электронным блоком, который и управляет его работой.

1. Как работает насос-форсунка?

Система впрыска топлива, снабженная насос-форсунками, устанавливается на дизельных двигателях внутреннего сгорания и была разработана еще в конце 30-х годов ХХ века. Впервые такую систему применили на морских, железнодорожных и грузовых дизельных моторах, характеризующихся сравнительно низкой скоростью. Главной особенностью таких силовых агрегатов является наличие отдельного впрыскивающего топливного насоса, использующегося для каждого цилиндра мотора и обладающего очень короткими напорными линиями к форсунке. В движение такие насосы приводятся механическим путем, при помощи толкателя и буферов.

В корпусе насос-форсунки объединены насос высокого давления, сама форсунка, дозирующий клапанный узел и силовой привод, благодаря которым данный элемент имеет преимущества в сокращении продолжительности движения топливной жидкости, находящейся под высоким давлением, а также в увеличении гидравлической эффективности и уменьшении своей массы.

Устройство насос-форсунки

Представители последнего поколения насос-форсунок обладают большим рабочим давлением впрыска (до 2500 бар) и способны мгновенно реагировать на команды управляющего блока, в задачу которого входит сбор и анализ текущей информации, поступающей от внешних датчиков. Именно эти данные определяют требуемые количественные и временные характеристики впрыска топлива, что дает возможность получения оптимальных значений мощности при заданном режиме работы, существенно экономит топливную жидкость, обеспечивает минимальные выбросы в атмосферу и способствует снижению уровня шумности от работающего силового агрегата. Кроме того, насос-форсунка достаточно компактна, за счет чего в головке двигателя образуется дополнительное свободное пространство, использующееся для установки других деталей двигателя.

Конструкция насос-форсунки позволяет обеспечить эффективное образование топливно-воздушной смеси, для чего в процессе впрыска предусмотрены фазы предварительного, основного и дополнительного впрыска топлива. Предварительный впрыск помогает достичь плавности сгорания смеси в ходе основного впрыска, обеспечивающего качественное смесеобразование при разных рабочих режимах мотора, а дополнительный служит для очистки сажевого фильтра от накопленных отложений сажи (процесс регенерации).

Процесс работы насос-форсунки проходит следующим образом:

1) Кулачок распредвала посредством коромысла перемещает плунжер вниз, и топливо начинает перетекать по каналам форсунки. В момент закрытия клапана топливо как бы отсекается, и его давление начинает возрастать, а при достижении показателя в 13 мПа игла распылителя преодолевает усилие пружины, вследствие чего происходит предварительный впрыск топлива.

2) Как только клапан открывается, предварительный впрыск прекращается, а топливо переходит в питающую магистраль, и его давление снижается. В зависимости от рабочих режимов силового агрегата, может производиться один или два предварительных впрыска.

Насос-форсунка 3) При продолжении движения плунжера вниз происходит основной впрыск. Клапан опять закрывается, и давление топлива снова возрастает. Достигнув значения в 30 мПа, игла распылителя преодолевает силу давления топлива, и усилие пружины поднимается вверх, вызывая основной впрыск. Чем выше будет давление, тем большее количество топлива сожмется, а значит, в итоге получится больший впрыск в камеру сгорания. Наибольшее количество топлива (что способствует максимальной мощности двигателя) впрыскивается при давлении в 220 мПа. Завершение этапа основного впрыска происходит с открытием клапана, причем давление топлива падает, а игла распылителя закрывается.

4) Дополнительный впрыск топлива происходит при дальнейшем движении плунжера вниз, а принцип действия устройства на этом этапе аналогичен основному впрыску и обычно производится в два захода.

2. Типичные неисправности насос-форсунок, их диагностика и устранение

Автовладельцам, на автомобилях которых установлена описанная система впрыска топлива, наверняка не раз приходилось иметь дело с проблемами, относящимися к следующим группам: проблемы с запуском мотора или полный рабочий отказ агрегата, перерасход топливной жидкости, нестабильная работа мотора, повышенный уровень «дымности» выхлопных газов и потеря мощности. Все эти признаки указывают на нарушения работы в EUI или EUP-секциях – наиболее распространенных видах насос-форсунок в странах Европы и СНГ (в том числе и Украины).

Среди причин нарушения точной работы указанных элементов можно выделить несколько наиболее частых, а чтобы лучше понять их, надо сказать, что составляющие элементы механической части управления насос-форсункой – это отдельные «родственники» деталей газораспределительного механизма, который функционирует в головке блока двигателя внутреннего сгорания. Разница только в природе рабочего тела, в роли которого, в данном случае, выступает не воздушная смесь, а дизельное топливо, находящееся под высоким давлением и обладающее определенными физическими свойствами.

К наиболее типичным неисправностям электронной насос-форсунки относят неисправности клапанного узла (встречаются примерно в 63% случаев), проблемы в работе распылителя (примерно 30% случаев), поломки электромагнитной части (5%) и выход из строя плунжера, пружины или корпуса (2%).

Насос-форсунки Другими словами, наиболее частой причиной неисправности насос-форсунок есть разрушение клапанного механизма и его механические повреждения. Этой причине следует уделять особое внимание, так как клапан при закрытии отсекает топливо, то есть на седло клапана и отсекающую кромку тарелки клапана создается достаточно большая нагрузка. Однако, надо сказать, что указанный механизм отличается достаточно высоким уровнем надежности, конечно, при условии применения качественного топлива. Точность изготовления элементов описанного механизма может достигать 0,25 мкм, с зазорами прецизионных узлов в 1,5-2 мкм, а чтобы лучше представить себе данную величину, достаточно отметить, что толщина волоса человека составляет около 50 мкм.

На следующем месте по частоте выхода из строя находится распылитель, нарушения в работе которого сказываются на «дымности» двигателя, существенном увеличении расхода топлива и общем ухудшении экологических показателей. Зачастую, проблемы с распылителем не влияют на мощностные характеристики силового агрегата, а замена этой составляющей не составит особой сложности.

Далее, в списке характерных причин поломки насос-форсунок находятся неполадки в электромагнитной части управления работой механизма. Поломка данного узла вызывает неточности в работе насос-форсунки на определенном рабочем режиме мотора, вплоть до полного прекращения его деятельности. Правда, благодаря надежности деталей этой части и при соблюдении водителем требований производителя относительно применяемого топлива, поломки такого рода встречаются достаточно редко.

На последнем месте по частоте проявления находятся неполадки в работе плунжера, связанные с механическими разрушениями, а также разрушение пружины и корпуса детали. В принципе, ничего сложного в восстановлении работоспособности форсунки нет, ведь так же, как и капитальный ремонт силового агрегата, капремонт указанной детали основывается на восстановлении рабочих поверхностей всех трущихся элементов и уплотняющих фасок, но вот только допуски и посадки всех деталей насос-форсунок измеряются в микронах.

Насос-форсунка Все виды ремонтных работ принято начинать с диагностики ремонтируемого устройства, и насос-форсунка в этом вопросе не исключение. После ее демонтажа проводится соответствующее тестирование детали на специальном стенде. Для осуществления процесса, на форсунку устанавливают новый распылитель, а затем стенд «гоняет» ее на разных рабочих режимах силового агрегата: на холостом ходу, номинальном режиме (условное передвижение транспортного средства с крейсерской скоростью) и при разгоне.

Если установка нового распылителя будет способствовать «недоливу» положенной порции топлива (до 10%), значит, клапан и плунжерная пара пока находятся в нормальном состоянии, и можно будет обойтись лишь заменой распылителя, что позволит автомобилю спокойно ездить еще 100 000 километров. Более 10% «недолива» свидетельствуют о критическом износе клапана, а при самом худшем варианте развития событий неисправной может оказаться еще и плунжерная пара (когда клапан не держит те самые 1500 кг/кв.см, в результате чего цилиндр недополучает топливо). В таком случае, избежать капитального ремонта форсунки уже не получится.

Восстановление работоспособности пары трения клапан-втулка выполняется следующим путем. Втулку расшлифовывают до следующего ремонтного размера (принятые стандарты подразумевают увеличение диаметра на 50 мкм, чего более чем достаточно для удаления всей выработки). Сам клапан покрывают хромом, после чего его шлифуют до нужного размера. Вместе с ним шлифовке поддаются и поверхности втулки и клапана. Аналогичным образом восстанавливается и плунжер, но только он покрывается не хромом, а нитратом титана, путем вакуумного напыления. Нитрат титана обладает вдвое меньшим коэффициентом трения по стали, нежели сама сталь и вдвое большей микротвердостью поверхности. Таким же составом покрывается и клапан.

3. Преимущества и недостатки насос-форсунок

Среди преимуществ использования насос-форсунок выделяют следующие:

1) Данные элементы позволяют впрыскивать топливо под давлением больше 2000 бар, благодаря чему распыление топливной жидкости выполняется более эффективно, а значит, и сгорает полнее. Поэтому моторы с установленными на них насос-форсунками отличаются высокими мощностными характеристиками и экономичностью.

Насос-форсунки 2) Кроме того, учитывая, что давление в системе с насос-форсункой и давление впрыска регулируется при помощи кулачкового механизма распредвала, энергия привода должна применяться только по отношению к области впрыска. Такие системы являются более отказоустойчивыми, нежели их аналоги без насоса и без рампы, поэтому появление проблем в работе насос-форсунок совсем не означает остановку двигателя.

3) Наличие высокого давления гарантирует более тонкое распыление топливной жидкости, а небольшие капли означают меньший объем по отношению к площади поверхности, что само по себе может вызвать появление меньшего количества сажи.

4) Дизельный мотор, обустроенный насос-форсунками, обеспечивает наиболее «горизонтальную» полку крутящего момента.

5) Помимо этого, моторы с такой системой впрыска работают значительно тише аналогичных устройств с механическими форсунками и гораздо компактнее их.

Однако, в описанной системе есть и свои минусы. Основной из них – это необходимость использования качественного топлива, так как любые примеси в виде воды, грязи или использование суррогатного топлива для нее губительны. Вторым серьезным недостатком является высокая стоимость самой насос-форсунки, а ремонт данного узла практически невозможен в «домашних условиях», из-за чего автовладельцам приходится сразу покупать новые детали.

Насос-форсунки Также стоит учитывать тот факт, что кулачковая зависимость чаще всего вызывает впрыск лишь тогда, когда кулачок задействует насос, а значит, диапазон возможных моментов впрыска обусловлен определенным диапазоном вокруг ВМТ (верхней мертвой точки), что не может обеспечить плавность хода. Поскольку момент и количество впрыска не могут постепенно меняться, то такой процесс является ограниченным. Более того, для соблюдения стандартов EURO 4, температуру выхлопных газов также не получится быстро изменить.

Если резко выполнить восстановление давления в системе впрыска с насос-форсункой, то необходимая при этом движущая энергия будет применяться только лишь в области впрыска. Соответственно, высокие динамические нагрузки, возникающие в результате роста давления, требуют определенного размера распредвала и соответствующую конструкцию его привода. Привод должен быть оборудован широким зубчатым ремнем или цилиндрическим зубчатым колесом, так как высокая жесткость на растяжение и низкая демпфирующая способность цепных приводов в условиях предельных нагрузок часто приводят к их разрыву.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

auto.today

Насос-форсунка (пьезо и электро)

О «победном шествии» систем непосредственного впрыска топлива говорить не будем — наговорились.
Поговорим о небольшой конкретике: о насосе-форсунке, которые уже успешно применяет не только фирма Mitsubishi, но и BOSCH.
Для наглядности посмотрим на фото:

Здесь показаны насос-форсунки разных поколений, если так можно сказать.
Слева — «вчерашний день», это насос-форсунка с электромагнитным клапаном.
Справа «день сегодняшний», насос-форсунка с пьезоэлектрическим клапаном модели PPD 1/1.

Именно о ней и поговорим.
Но для начала приведем сравнительные характеристики этих двух типов форсунок, откуда станет понятным причина перехода на насос-форсунки нового поколения.

За счет применения композитных материалов и уменьшения размеров плунжера повышено быстродействие и точность работы: диаметр плунжера в НФ ( насос-форсунке) с электромагнитным клапаном=8мм, а в НФ с пьезоэлектрическим клапаном диаметр плунжера намного меньше и равняется 6.35мм.
Но не это главное, другое: быстродействие пьезоэлектрического клапана в 3 — 5 раз превосходит быстродействие клапана с электромагнитным управлением.

Как мы знаем, система управления таких насос-форсунок может предусматривать несколько так называемых «дополнительных впрысков». Так вот, НФ электромагнитного типа может осуществлять их до 2 едениц.
НФ пьезоэлектрического типа — тоже, но с таким приятным «нюансиком» — время и количество дополнительных впрысков топлива может варироваться как по числу, так и по времени:

,- то есть, система управления теперь может управлять и количествами дополнительного впрыска топлива и временем между ними, в зависимости от условий работы двигателя.
Если по условиям работы требуется после основного впрыска сделать только один дополнительный впрыск — так и делается. Если больше — это тоже в силах системы управления.
Кроме того, если по тем же условиям работы требуется сократить или удлиннить временной разрыв между дополнительными впрысками — система управления способна это осуществить.

«Пилотный впрыск». 
Насос-форсунка электромагнитного типа в силу своих конструктивных особенностей практически не способна изменить объем топлива для «пилотного» впрыска , он равняется приблизительно от 1 до 3 мм3.
Насос-форсунка пьезоэлектрического типа стала «умнее», и в зависимости от требуемых условий может менять объем «пилотного»впрыска, правда, с одним только ограничением — минимальный объем может составлять не менее 0.5 мм3.
Кроме того, если НФ электромагнитного типа может осуществлять только один «пилотный» впрыск, то НФ пьезоэлектрического типа в зависимости от условий работы может делать их до 2 едениц, и притом — изменяемых по времени и объему.

Точность и, значит, качество работы определяется еще и условиями управления подачей топлива.
НФ электромагнитного типа для этого использует гидромеханику, при помощи компенсанционного поршня, а НФ пьезоэлектрического типа использует электронное управление посредством пьезоэлектрического клапана.

Ну вот, теперь мы подошли к самой конкретике — к самому пьезоэлектрическому клапану.

Греческий язык нам подсказывает, что слово «пьезо» означает «давить, давлю».
Обычно пьезоэлементы применяются в датчиках давления.
При воздействии давления на обкладках пьезоэлемента появляется разность потенциалов, которую можно измерить и использовать при дальнейших расчетах.
В нашем же случае применяется так называемый «обратный пьезоэффект», когда при приложении напряжения к пьезоэлементу изменяются его геометрические размеры:

 (металические обкладки на рисунке не показаны)

При отсутствии напряжения пьезоэлемент имеет один геометрический размер, при подаче на него напряжения — другой.

Приращение (изменение) длины пьезоэлемента прямо пропорционально прилагаемому напряжению:

 

Разбирающийся в электронике человек сразу же задаст такой вопрос: 
— Уважаемый, а насколько произойдет приращение длины пьезоэлемента при подаче на него напряжения? Хватит ли этого приращения для управления чем-либо?
И хитро так улыбнется.
Все правильно, не хватит.
Толщина одного элемента пьезопривода приблизительно равняется 0.08мм, а приращение составит всего около 0.11 — 0.16%.
Этого мало.
И поэтому, например, что бы получить перемещение около 0.05мм требуется делать «наборный блок» из пьезоэлементов.
Такие блоки получили название PIEZO-STACK, где отдельные пьезоэлементы разделены между собой металическими прокладками, служащими для подвода к ним напряжения.

Но и этого — мало!
«Рабочий» ход пьезопривода приблизительно равняется 0.05мм.
Нам же по техническим условиям нужно иметь ход перемещения  около 0.09 — 1.1мм.
Для «выравнивания» этого несоответствия и был придуман так называемый  рычажной мультипликатор со специально подобранным передаточным отношением.
Все, теперь «механическая» задача решена, дело осталось за малым: создать требуемое электронное управление для всего этого придуманного.

На фото: насос-форсунка с пьезоприводом (стрелка).

 

Владимир Петрович

Книги по ремонту автомобилей

autodata.ru

Принцип работы насоса-форсунки

Современные дизельные моторы с момента своего появления на протяжении последних нескольких десятков лет эволюционировали и развивались. Если первые силовые агрегаты, работающие на дизельном топливе, отличались повышенной шумностью и значительной вибрацией, то последние модели мало уступают традиционно малошумным бензиновым моторам.

Это произошло во многом из-за изменения способа подачи топлива в камеру сгорания силового агрегата. Современный дизельный мотор невозможно себе представить без насоса-форсунки. Именно они отвечают за дозированную подачу горючего, экономичность и плавность работы двигателя.

Что собой представляет насос-форсунка?

Насос-форсунка одна из самых важных элементов подачи топлива в камеры сгорания каждого цилиндра мотора. Используются они только лишь в дизельных моторах. Различаются между собой по размеру, форме, модели и способу управления.

Отличия обусловлены использованием разных систем управления впрыска топлива и видов распылителей. Необходимо отметить, что эти детали топливной системы автомобиля в наибольшей степени подвержены загрязнению.

Низкое качество топлива, содержащее примеси может привести к выходу из строя насоса-форсунки. Это потребует от владельца автомобиля существенных материальных затрат для восстановления их работоспособности или замены.

На что влияет работа насоса-форсунки?

Внедрение насоса-форсунки в современный дизельный двигатель позволило значительно увеличить эффективность использования топлива.Применение подобного рода системы даёт возможность увеличить мощность двигателя, оптимизировать расход топлива, уменьшить уровень загрязняющих веществ в отработанных газах и понизить шумность мотора.

Именно насос-форсунка обеспечивает централизацию подачи и распределения топлива при работе силового агрегата. Она помещена в индивидуальный цилиндр, выполняющий защитные функции и нивелирующий воздействие внешних факторов.

Насос-форсунка позволила сделать существующие ныне дизельные моторы экономными и выгодными для использования в первую очередь грузоперевозчиками. Дизельный мотор, оснащённый этим устройством системы подачи топлива, позволяет экономно расходовать топливо при поездках на длительные расстояния.

Устройство насоса-форсунки

Механизм насоса-форсунки довольно сложен, но при желании можно разобраться. Удивительно, как небольшое по размеру изделие сочетает в себе множество технологий и обеспечивает топливом массивный двигатель.

Можно выделить следующие основные компоненты главного механизма топливной системы:

Плунжер

Нагнетает уровень давления внутри форсунки до рабочих величин

Управляющий клапан

Главная задача заключается в точной регулировке поступления топлива и впрыска смеси в камеру сгорания

Пружина распылителя

Удерживает надёжно иглу распылителя в зафиксированном положении

Игла распылителя

Распыляет топливную смесь под высоким давлением в камеру сгорания

Блок управления двигателя

Обеспечивает непрерывный мониторинг и контроль работы форсунки.

Принцип работы насоса-форсунки

Поступление и распределение топливно-воздушной смеси устройством происходит в 3 этапа:

Предварительный этап

Обеспечивает равномерное сгорание топливно-воздушной смеси. Он даёт возможность бесперебойного поступления топлива в необходимом количестве для работы мотора в различных режимах.

Механическое усилие, передаваемое кулачком распределительного вала на коромысло, влечёт плунжер вниз. Топливная смесь перемещается по каналам форсунки. На следующем этапе поступление ТВС (топливно-воздушной смеси) временно останавливается.

Это приводит к образованию высокого давления в замкнутом пространстве. В идеальном варианте оно должно доходить до 13Мпа. Давление заставляет иглу, преодолевая сопротивление, оказываемое пружиной выполнить предварительную подачу ТВС.

Заключительный этап предварительного впрыска прекращается на открытии входного клапана. После поступления топлива в магистраль давление снижается.

Основной этап

Начало этапа стартует с момента опускания плунжера. После закрытия клапана давление ТВС начинает стремительно увеличиваться и достигает потолка в 30Мпа.

Игла при достижении рабочего давления поднимается и выполняет главный впрыск топлива в камеру сгорания. Наибольший объём ТВС направляемый в камеру сгорания достигается на пределе мощности работы мотора. Расход топлива в этом случае значительно увеличивается,если сравнивать с обычным ритмом работы силового агрегата.

Дополнительный этап

Осуществляет дополнительный впрыск ТВС для очистки сажевого фильтра, удаления копоти и прочих загрязнений.

Можно ли ремонтировать самостоятельно насоса-форсунки?

Как и любой современный механизм, насос-форсунка имеет довольно сложное устройство и поэтому «кулибины» из ближайшего гаража капитулируют перед ней без сопротивления. Её ремонт возможен только лишь при помощи использования специального профессионального оборудования.

«Кривые пальцы» доморощенных мастеров, если попытаются вмешаться в работу устройства, потерпят полное фиаско. Необходимо помнить, что неквалифицированное обслуживание системы в большей массе попыток приводит к безвозвратной потере работоспособности.

Детальный разбор принципа работы насоса-форсунки показывает, что это достаточно надёжная в работе система подачи топлива. Её ахиллесовой пятой является требовательность к качеству дизельного топлива и снижение эффективности работы при загрязнении.

Спасибо за внимание, удачи вам на дорогах. Читайте, комментируйте и задавайте вопросы. Подписывайтесь на свежие и интересные статьи сайта.

Это интересно

www.avtogide.ru

Принцип действия насос-форсунки

Работу насос форсунки можно разделить на 4 хода плунжера:

  • ход впуска
  • предварительный ход
  • ход нагнетания и впрыска топлива
  • окончание процесса впрыска

Рис. Принцип действия насос-форсунки:
а – ход наполнения; b – предварительный ход; c – ход нагнетания и процесс впрыска топлива; d – окончание процесса впрыска; 1 – кулачок приводного вала; 2 – плунжер; 3 – возвратная пружина; 4 – полость высокого давления; 5 – клапан соленоида; 6 – полость соленоидного клапана; 7 – впускной канал; 8 – выпускной канал; 9 – обмотка соленоида; 10 – седло клапана; 11 – игла форсунки; Is – сила тока в – ток в обмотке электромагнита; hм – ход электромагнитного клапана; pe – давление впрыска; hN – ход иглы форсунки

Ход наполнения

При движения плунжера вверх, под воздействием возвратной пружины, топливо при постоянном давлении поступает по каналу 7 от подкачивающего насоса в полость соленоидного клапана 6, который открыт, так как на него не подается напряжение. По каналам топливо попадает в полость высокого давления 4.

Предварительный ход

Кулачок приводного вала поворачиваясь, начинает оказывать давление на плунжер 2, который движется вниз. Соленоидный клапан открыт и топливо, под давлением движущегося вниз плунжера 2, вытесняется через выпускной канал 8 в систему низкого давления.

Ход нагнетания и процесс впрыска топлива

От блока управления на катушку 9 соленоидного клапана подается напряжение и якорь соленоидного клапана под воздействием созданного электромагнитного поля закрывает клапан, преодолевая при этом сопротивление пружины клапана. Сила магнитного потока при этом должна быть достаточно большой, чтобы обеспечить достаточное уплотнение между плоскостями 10 и 11. Чем ближе якорь расположен к ярму, тем больше сила прижатия клапана к седлу, что позволяет снизить ток управления соленоидным клапаном, уменьшая расход электроэнергии, и сохранить при этом закрытое положение клапана. Сообщение между полостями высокого и низкого давления при этом перекрывается. Закрытие соленоидного клапана приводит к изменению тока катушки 9, что определяется блоком управления, как начало подачи топлива.

Давление топлива в полости высокого давления при движении плунжера возрастает. Одновременно возрастает давление и в полости распылителя форсунки. При достижении давления начала подъема иглы распылителя около 300 кгс/см2 игла распылителя слегка приподнимается и начинается впрыск топлива в камеру сгорания (фактическое начало впрыска или начало подачи). Давление впрыска постоянно увеличивается по мере хода плунжера насоса.

Окончание процесса впрыска

При прекращении подачи тока на обмотку соленоида клапан приоткрывается и сообщение между полостями высокого и низкого давления снова восстанавливается. В момент переходной фазы между ходом нагнетания и окончанием процесса впрыска достигается наибольшее давление нагнетания. В зависимости от типа насоса форсунки оно составляет 1800…2050 кгс/см2. После полного открытия электромагнитного клапана давление резко падает, игла форсунки при этом закрывает отверстие распылителя, усилием пружины клапан устанавливается в исходное положение и процесс впрыска заканчивается.

ustroistvo-avtomobilya.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о