Подвижные детали кривошипно шатунного механизма: Подвижные детали кривошипно-шатунного механизма Камаз 4310

Содержание

Подвижные детали кривошипно-шатунного механизма Камаз 4310

Категория:

   Устройство эксплуатация камаз 4310

Публикация:

   Подвижные детали кривошипно-шатунного механизма Камаз 4310

Читать далее:



Подвижные детали кривошипно-шатунного механизма Камаз 4310

Поршень совместно с гильзой и головкой цилнндра образует полость, в которой протекают рабочие процессы. Его днище (рис. 14) воспринимает давление расширяющихся газов и передает его через поршневой палец и шатун на коленчатый вал.

Следовательно, поршни работают в чрезвычайно тяжелых условиях, характеризующихся непосредственным контактом с горячим рабочим телом, воздействием высокого давления газов, а также движением с переменной по величине и направлению скоростью.

Соприкосновение с газами, имеющими температуру 1800… 2000°С при повышенном до 6…8 МПа (60…80 кгс/см2) давлении, вызывает усиленную теплоотдачу в поршень.

Вследствие этого днище поршня воспринимает 10…30% теплоты, отводимой от рабочего тела в систему охлаждения, и нагревается в центральной части до 300…320°С. Значительный нагрев поршня является причиной многих характерных отказов цилиндропорш-невсй группы. Так, локальный перегрев повышает вероятность оплавления кромок на днище поршня. Опасным следствием перегрева поршня является потеря его подвижности — заклинивание, которое обусловлено тепловым расширением юбки и может явиться причиной аварийных задиров поршня и гильзы цилиндра. Кроме этого, при нагреве зоны поршневых колец выше 200… 230 °С окисляется масло, в результате чего в канавках поршня и стенках гильзы цилиндра образуются вязкие смолистые отложения, превращающиеся со временем в твердый кокс. Эти отложения снижают подвижность колец и могут привести к их «залеганию» и заклиниванию, при которых действие уплотнения полностью нарушается.

Рекламные предложения на основе ваших интересов:

Поршень представляет собой металлический стакан сложной геометрической формы, изготовленный из алюминиевого сплава. В поршне, кроме днища, имеется уплотняющая часть (головка) и направляющая часть (юбка). На боковых стенках внутри масла к поверхности поршневого пальца. Стержень шатуна имеет двутавровое сечение.

Рис. 14. Поршень и шатун в сборе:
1 — поршень; 2 — втулка верхней головки; 3 — стопорное кольцо пальца; 4 — поршневой палец: 5, 6 — канавки для компрессионных колец; 7 —канавка для маслосьемного кольца; S — шатунный болт; 9 — шатун; 10 — нижняя крышка шатуна; 11 — нижний вкладыш; 12 — верхний вкладыш; 13 — маслосъемное кольцо; 14 — компрессионные кольца

Нижняя головка шатуна выполнена разъемной. Плоскость разъема перпендикулярна оси шатуна. Съемная часть нижней головки шатуна называется крышкой. Крышка крепится к шатуну двумя болтами с гайками. От проворачивания болты удерживаются лысками, имеющимися на головках болтов. Расточка под вкладыши в нижней головке шатуна выполнена в сборе с крышкой, поэтому крышки шатунов невзаимозаменяемые. Для обеспечения комплектности на стыке выбиты числовые метки, одинаковые для шатуна и крышки, и условный порядковый номер шатуна.

Для снятия крышки шатуна выполнены специальные выступы. В крышке и теле шатуна имеются специальные пазы, в которые входят выступы на вкладышах.

Шатунные и коренные подшипники представляют собой сменные тонкостенные трехслойные вкладыши с рабочим слоем из свинцовистой бронзы. Шатунный подшипник состоит из двух взаимозаменяемых вкладышей. Вкладыши изготавливают из стальной ленты, внутренняя поверхность которой для уменьшения трения и износа шеек коленчатого вала покрыта тонким слоем свинцовистой бронзы, содержащей до 30% свинца. Для улучшения антикоррозионных и противозадирных свойств на рабочие поверхности вкладышей наносится тонкий (15…30 мкм) слой сплава свинца с оловом или свинца с индием. Это покрытие не только улучшает приработку рабочих поверхностей, но и почти в два раза увеличивает усталостную прочность антифрикционного слоя.

В верхнем вкладыше имеются отверстия для подвода масла и канавка для его распределения. Верхний и нижний вкладыши коренного подшипника невзаимозаменяемы.

Предотвращение осевых смещений и проворачиваний вкладышей обеспечивают выступы-усики. Для ремонта коленчатого вала, блока и шатунов предусмотрены ремонтные размеры вкладышей. Обозначение вкладышей соответствующей шейки, диаметр вала и диаметр постели в блоке или шатуне нанесены на тыльной стороне вкладыша.

Коленчатый вал воспринимает усилия со стороны шатунов и преобразует их в крутящий момент, а также обеспечивает перемещение поршней во время вспомогательных тактов и пуска двигателя.

Он изготовлен методом горячей штамповки из высокоуглеродистой легированной стали. Шейки закаливаются с нагревом токами высокой частоты на глубину 2…6 мм или упрочняются азотированием.

Коленчатый вал неразъемный полноопорный крестообразной формы (шатунные шейки расположены под углом 90°) с двумя съемными противовесами. Радиус кривошипа 60 мм.

Коленчатый вал (рис. 15) состоит из следующих основных элементов: коренных шеек, которыми вал опирается на коренные подшипники, расположенные в расточках картера, шатунных шеек, щек, связывающих коренные и шатунные шейки, носка (переднего конца), хвостовика (заднего конца).

Для разгрузки коренных подшипников от действия центробежных сил за одно целое со щеками выполнены противовесы, кроме того, имеется два съемных противовеса.

На каждой шатунной шейке крепят по два шатуна: один — правого ряда цилиндров, второй — левого. Для обеспечения необходимой жесткости число коренных шеек на одну больше, чем шатунных, поэтому такие валы называют полноопорными. С целью повышения прочности вала на изгиб переход от рабочей поверхности шейки к щеке (галтель) должен быть плавным.

На переднем конце вала напрессованы шестерня привода масляного насоса и передний противовес. Их положение фиксируется шпонкой. С торца коленчатого вала установлена шлицевая полумуфта отбора мощности, предназначенная для привода гидромуфты.

На заднем конце вала напрессованы распределительная шестерня и задний противовес. В торцевой части имеются два отверстия для запрессовки штифтов, фиксирующих маховик, и осевое отверстие для опорного подшипника первичного вала коробки передач, а также резьбовые отверстия болтов крепления маховика.

Рис. 15. Коленчатый вал:
1 — полумуфта отбора мощности; 2 — стопорная шайба носка коленчатого вала; 3 — передний противовес; 4 — ведущая шестерня привода масляного насоса; 5 — заглушка полости шатунной шейки; 6 — задний маслоотражатель; 7 — распределительная шестерня; S — задний противовес; 9 — полукольца упорного подшипника коленчатого вала; 10 — крышка коренного подшипника коленчатого вала; 11 — вкладыш коренного подшипника коленчатого вала

В щеках вала просверлены каналы для подвода смазки от коренных подшипников к масляным полостям в шатунных шейках. Масляные полости являются дополнительными грязеуловителями. Грязевые частицы отбрасываются центробежной силой к верхней части полостей, а масло через диаметральные каналы подается к шатунным вкладышам. Так как шатуны цилиндров 1 и 5, 2 и 6, 7 и 3, 8 и 4 расположены попарно на одной шейке коленчатого вала, то масло к ним подается соответственно от коренных подшипников 1, 2, 4, 5. При этом, если от коренных подшипников 2, 4, 5 масло подается непрерывно к шатунным подшипникам, то от первого коренного подшипника к шатунным подшипникам 1 и 5 подача масла пульсирующая.

Кроме того, от первого коренного подшипника масло отводится также к гидравлической муфте привода вентилятора и к топливному насосу высокого давления.

Коленчатый вал фиксируется в осевом направлении четырьмя сталеалюминиевыми полукольцами, установленными в проточке задней коренной опоры. От проворачивания кольца удерживаются выступами нижних полуколец. Выступы входят в пазы крышки подшипника. По торцам полуколец профрезерова-ны смазочные канавки.

Уплотнение коленчатого вала осуществляется самоподжимным сальником, запрессованным в картер маховика.

Маховик предназначен для уменьшения неравномерности вращения коленчатого вала, а также для вывода поршней из мертвых точек благодаря накопленной кинетической энергии во время такта рабочего хода. Кроме того, маховик облегчает работу двигателя при разгоне и преодолении кратковременных перегрузок.

Маховик (рис. 16) отлит из серого специального чугуна, закреплен болтами на заднем торце коленчатого вала и зафиксирован двумя штифтами и установочной втулкой. Для пуска двигателя стартером на маховике напрессован зубчатый венец. На наружной поверхности маховика имеется паз под фиксатор, который используется при выполнении регулировок двигателя. Для проворачивания коленчатого вала по окружности маховика предусмотрено двенадцать отверстий.

Рекламные предложения:


Читать далее: Неисправности и техническое обслуживание кривошипно-шатунного механизма Камаз 4310

Категория: — Устройство эксплуатация камаз 4310

Главная → Справочник → Статьи → Форум


Назначение и устройство кривошипно-шатунного механизма ДВС

Двигатели внутреннего сгорания, используемые на автомобилях, функционируют за счет преобразования энергии, выделяемой при горении горючей смеси, в механическое действие – вращение. Это преобразование обеспечивается кривошипно-шатунным механизмом (КШМ), который является одним из ключевых в конструкции двигателя автомобиля.

Устройство КШМ

Кривошипно-шатунный механизм двигателя состоит из трех основных деталей:

  1. Цилиндро-поршневая группа (ЦПГ).
  2. Шатун.
  3. Коленчатый вал.

Все эти компоненты размещаются в блоке цилиндров.

ЦПГ

Назначение ЦПГ — преобразование выделяемой при горении энергии в механическое действие – поступательное движение. Состоит ЦПГ из гильзы – неподвижной детали, посаженной в блок в блок цилиндров, и поршня, который перемещается внутри этой гильзы.

После подачи внутрь гильзы топливовоздушной смеси, она воспламеняется (от внешнего источника в бензиновых моторах и за счет высокого давления в дизелях). Воспламенение сопровождается сильным повышением давления внутри гильзы. А поскольку поршень это подвижный элемент, то возникшее давление приводит к его перемещению (по сути, газы выталкивают его из гильзы). Получается, что выделяемая при горение энергия преобразуется в поступательное движение поршня.

Для нормального сгорания смеси должны создаваться определенные условия – максимально возможная герметичность пространства перед поршнем, именуемое камерой сгорания (где происходит горение), источник воспламенения (в бензиновых моторах), подача горючей смеси и отвод продуктов горения.

Герметичность пространства обеспечивается головкой блока, которая закрывает один торец гильзы и поршневыми кольцами, посаженными на поршень. Эти кольца тоже относятся к деталям ЦПГ.

Шатун

Следующий компонент КШМ – шатун. Он предназначен для связки поршня ЦПГ и коленчатого вала и передает механических действий между ними.

Шатун представляет собой шток двутавровой формы поперечного сечения, что обеспечивает детали высокую устойчивость на изгиб. На концах штока имеются головки, благодаря которым шатун соединяется с поршнем и коленчатым валом.

По сути, головки шатуна представляют собой проушины, через которые проходят валы обеспечивающие шарнирное (подвижное) соединение всех деталей. В месте соединения шатуна с поршнем, в качестве вала выступает поршневой палец (относится к ЦПГ), который проходит через бобышки поршня и головку шатуна. Поскольку поршневой палец извлекается, то верхняя головка шатуна – неразъемная.

В месте соединения шатуна с коленвалом, в качестве вала выступают шатунные шейки последнего. Нижняя головка имеет разъемную конструкцию, что и позволяет закреплять шатун на коленчатом валу (снимаемая часть называется крышкой).

Коленчатый вал

Назначение коленчатого вала — это обеспечение второго этапа преобразования энергии. Коленвал превращает поступательное движение поршня в свое вращение. Этот элемент кривошипно-шатунного механизма имеет сложную геометрию.

Состоит коленвал из шеек – коротких цилиндрических валов, соединенных в единую конструкцию. В коленвале используется два типа шеек – коренные и шатунные. Первые расположены на одной оси, они являются опорными и предназначены для подвижного закрепления коленчатого вала в блоке цилиндров.

В блоке цилиндров коленчатый вал фиксируется специальными крышками. Для снижения трения в местах соединения коренных шеек с блоком цилиндров и шатунных с шатуном, используются подшипники трения.

Шатунные шейки расположены на определенном боковом удалении от коренных и к ним нижней головкой крепится шатун.

Коренные и шатунные шейки между собой соединяются щеками. В коленчатых валах дизелей к щекам дополнительно крепятся противовесы, предназначенные для снижения колебательных движений вала.

Шатунные шейки вместе с щеками образуют так называемый кривошип, имеющий П-образную форму, который и преобразует поступательного движения во вращение коленчатого вала. За счет удаленного расположения шатунных шеек при вращении вала они движутся по кругу, а коренные — вращаются относительно своей оси.

Количество шатунных шеек соответствует количеству цилиндров мотора, коренных же всегда на одну больше, что обеспечивает каждому кривошипу две опорных точки.

На одном из концов коленчатого вала имеется фланец для крепления маховика – массивного элемента в виде диска. Основное его назначение: накапливание кинетической энергии за счет которой осуществляется обратная работа механизма – преобразование вращения в движение поршня. На втором конце вала расположены посадочные места под шестерни привода других систем и механизмов, а также отверстие для фиксации шкива привода навесного оборудования мотора.

Принцип работы механизма

Принцип работы кривошипно-шатунного механизма рассмотрим упрощенно на примере одноцилиндрового мотора. Такой двигатель включает в себя:

  • коленчатый вал с двумя коренными шейками и одним кривошипом;
  • шатун;
  • и комплект деталей ЦПГ, включающий в себя гильзу, поршень, поршневые кольца и палец.

Воспламенение горючей смеси выполняется когда объем камеры сгорания минимальный, а обеспечивается это при максимальном поднятии вверх поршня внутри гильзы (верхняя мертвая точка – ВМТ). При таком положении кривошип тоже «смотрит» вверх. При сгорании выделяемая энергия толкает вниз поршень, это движение передается через шатун на кривошип, и он начинает двигаться по кругу вниз, при этом коренные шейки вращаются вокруг своей оси.

При провороте кривошипа на 180 градусов поршень достигает нижней мертвой точки (НМТ). После ее достижения  выполняется обратная работа механизма. За счет накопленной кинетической энергии маховик продолжает вращать коленвал, поэтому чему кривошип проворачивается и посредством шатуна толкает поршень вверх. Затем цикл полностью повторяется.

Если рассмотреть проще, то один полуоборот коленвала осуществляется за счет выделенной при сгорании энергии, а второй – благодаря кинетической энергии, накопленной маховиком. Затем процесс повторяется вновь.

Ещё кое-что полезное для Вас:

Особенности работы двигателя. Такты

Выше описана упрощенная схема работы КШМ. В действительности чтобы создать необходимые условия для нормального сгорания топливной смеси, требуется выполнение подготовительных этапов – заполнение камеры сгорания компонентами смеси, их сжатие и отвод продуктов горения. Эти этапы получили название «такты мотора» и всего их четыре – впуск, сжатие, рабочий ход, выпуск. Из них только рабочий ход выполняет полезную функцию (именно при нем энергия преобразуется в движение), а остальные такты – подготовительные. При этом выполнение каждого этапа сопровождается проворотом коленвала вокруг оси на 180 градусов.

Конструкторами разработано два типа двигателей – 2-х и 4-тактный. В первом варианте такты совмещены (рабочий ход с выпуском, а впуск – со сжатием), поэтому в таких моторах полный рабочий цикл выполняется за один полный оборот коленвала.

В 4-тактном двигателе каждый такт выполняется по отдельности, поэтому в таких моторах полный рабочий цикл выполняется за два оборота коленчатого вала, и только один полуоборот (на такте «рабочий ход») выполняется за счет выделенной при горении энергии, а остальные 1,5 оборота – благодаря энергии маховика.

Основные неисправности и обслуживание КШМ

Несмотря на то, что кривошипно-шатунный механизм работает в жестких условиях, эта составляющая двигателя  достаточно надежная. При правильном проведении технического обслуживания, механизм работает долгий срок.

При правильной эксплуатации двигателя ремонт кривошипно-шатунный механизма потребуется только из-за износа ряда составных деталей – поршневых колец, шеек коленчатого вала, подшипников скольжения.

Поломки составных компонентов КШМ происходят в основном из-за нарушения правил эксплуатации силовой установки (постоянная работа на повышенных оборотах, чрезмерные нагрузки), невыполнения ТО, использования неподходящих горюче-смазочных материалов. Последствиями такого использования мотора могут быть:

  • залегание и разрушение колец;
  • прогорание поршня;
  • трещины стенок гильзы цилиндра;
  • изгиб шатуна;
  • разрыв коленчатого вала;
  • «наматывание» подшипников скольжения на шейки.

Такие поломки КШМ очень серьезны, зачастую поврежденные элементы ремонту не подлежат их нужно только менять. В некоторых случаях поломки КШМ сопровождаются разрушениями иных элементов мотора, что приводит мотор в полную негодность без возможности восстановления.

Чтобы кривошипно-шатунный механизм двигателя не стал причиной выхода из строя мотора, достаточно выполнять ряд правил:

  1. Не допускать длительной работы двигателя на повышенных оборотах и под большой нагрузкой.
  2. Своевременно менять моторное масло и использовать смазку, рекомендованную автопроизводителем.
  3. Использовать только качественное топливо.
  4. Проводить согласно регламенту замену воздушных фильтров.

Не стоит забывать, что нормальное функционирование мотора зависит не только от КШМ, но и от  смазки, охлаждения, питания, зажигания, ГРМ, которым также требуется своевременное обслуживание.

Работа кривошипно-шатунного механизма

Как авторитетно свидетельствуют историки техники, еще за много лет до того, как появился самый первый автомобиль, был изобретен кривошипно-шатунный механизм. Когда именно произошло это событие, пока не установлено, зато точно известно, что эти конструкции активно использовались в таких машинах, как швейные, паровозы, а также штамповочные прессы.

Еще задолго до того, как был изобретен двигатель внутреннего сгорания, задача преобразования возвратно-поступательного движения в движение вращательное была весьма актуальна. Например, без ее эффективного решения не могла функционировать паровая машина, которая послужила настоящим «локомотивом» промышленной революции. Способ преобразования движения поршней во вращение был изобретен еще в средине XVIII века, и именно он был взят за основу двигателей внутреннего сгорания.

Интересно, что с тех пор, как появились первые ДВС, прошло уже очень немало времени. Они претерпели массу изменений, однако кривошипно-шатунный механизм в них остался практически таким же, как и был изначально.

Что касается принципа его действия, то он основан на том, что некие детали (а именно – поршни), с помощью шарниров соединяются с некоторыми частями вала, представляющими собой его «ступени». Сами поршни совершают возвратно-поступательные движения, благодаря чему оказывают соответствующие механические нагрузки на «колена» вала. Последний в результате этого совершает вращательное движение.

Таким образом, та задача, которую решет кривошипно-шатунный механизм, состоит в том, чтобы возвратно-поступательное движение поршней преобразовать во вращательное движение коленчатого вала. Что касается конструкции, то все детали кривошипно-шатунного механизма можно разделить на две категории: неподвижные подвижные.

К разряду неподвижных относятся блоки цилиндров, поддоны, прокладки и головки. Подвижными частями являются сами поршни с установленными на них кольцами, маховики, коленчатые валы, а также шатуны. И подвижные, и неподвижные составляющие кривошипно-шатунного механизма имеют в своей конструкции различные крепежные детали.

Шатун и коленчатый вал

Роль шатуна состоит в том, чтобы обеспечивать трансляцию того усилия, которое обеспечивает поршень, коленчатому валу, причем как при рабочем, так и при обратном ходе во время вспомогательных тактов. Его составными частями являются стержень двутаврового сечения, верхняя головка и разъемная нижняя головка, которая закрепляется на шатунной шейке коленчатого вала. Материалом для изготовления шатуна и крышки является углеродистая или легированная сталь. В конструкции верхней головки шатуна содержится одна или две втулки, которые в нее запрессовываются и изготавливаются из такого материала, как оловянистая бронза. В нижней головке шатуна наличествуют вкладыши, изготавливаемые из тонкого стального листа, причем они заливаются слоем антифрикционного сплава.

Между собой верхняя и нижняя головки шатуна соединяются парой болтов и гаек, причем для обеспечения надежности фиксации они или снабжаются контргайками, или же шплинтуются.

Коленвал, который воспринимает оказываемые на него усилия поршней посредством шатунов, преобразует их во вращение. На нем располагаются шатунные и коренные шейки, противовесы, фланец, маховик. На коленчатых валах некоторых двигателей внутреннего сгорания устанавливается также храповик. Кроме того, на коленвалах монтируются шкивы приводов вентилятора и водяного насоса.

Коленчатые валы двигателей современных автомобилей вращаются со скоростью от 3000 до 6000 оборотов в минуту. Поэтому коренные подшипники, в которых они закрепляются, испытывают ускоренный износ. Чтобы его уменьшить, применяются специальные противовесы.

 

 

 

Что такое КШМ

27. 12.2017 | 297 просмотров

Весь процесс работы силового агрегата автомобиля обеспечивает кривошипно-шатунный механизм. Его сокращенное название «КШМ», знакомо практически каждому технически грамотному автомобилисту. Механизм является соединяющим звеном между поршнями двигателя и коленчатым валом, преобразует их возвратно-поступательное движение, заставляя вращаться коленчатый вал.

Все детали КШМ разделяют на подвижные и неподвижные, к подвижным относятся:

Неподвижные:

  • Блок цилиндров;

  • головка блока;

  • цилиндры;

  • прокладка головки блока;

  • картер;

  • поддон.

При изготовлении двигателей блок цилиндров обычно отливают совместно с горловиной картера, поэтому часто встречается второе название этой детали – блок-картер. К КШП также относят некоторые крепежные детали, шатунные и коренные подшипники.

Главный элемент бензинового и дизельного двигателя внутреннего сгорания – поршень, по конструкции это металлический стакан, имеющий сложную форму. Состоит он из двух частей, утолщенная верхняя – головка поршня, нижняя направляющая – юбка. В стенках головки поршней имеются канавки, в каждую из верхних канавок вставляется компрессионное кольцо (от двух до трех). В свободном состоянии диаметр кольца несколько превышает диаметр цилиндра. Когда оно сжимается соединение становиться максимально плотным.

Под компрессионными кольцами также в канавках установлены маслосъемные кольца(одно-два), они собирают масло со стенок цилиндров не давая попасть ему в камеру сгорания. Поршни в цилиндрах двигателя посредством кривошипно-шатунного механизма заставляют крутиться коленчатый вал, обеспечивая движение автомобиля.

Устройство кривошипно-шатунного механизма довольно сложное, любая неисправность отдельного его элемента может грозить автовладельцу серьезными затратами на ремонт вплоть до замены всего силового агрегата, поэтому за состоянием всего силового агрегата нужно обязательно тщательно следить, на появление различных посторонних стуков и шумов в двигатели нужно обращать внимание немедленно. Лучше вовремя заменить одну деталь, чем в последствии весь механизм.

Многие из автолюбителей задаются серьезным вопросом – можно ли покупать отдельные детали КШП бу? Ну, а почему нет, например, владелец недорогого Hyundai или Kia, шкив коленвала может купить по самой доступной цене вложив в ремонт минимум средств.


Тест на знание КШМ

Дополните

1. KШM ПРЕДНАЗНАЧЕН ДЛЯ ПРЕОБРАЗОВАНИЯ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ ШАТУНА ВО_____ ДВИЖЕНИЕ ВАЛА.

2. ШАТУН СОЧЛЕНЕН С ПОРШНЕМ ПРИ ПОМОЩИ ПОРШНЕВОГО ______.

Выберите номера всех правильных ответов

3. МАТЕРИАЛ ИЗГОТОВЛЕНИЯ ГОЛОВОК БЛОКА ЦИЛИНДРОВ:

1) серый чугун;

2) углеродистая сталь;

3) легированная сталь;

4) алюминиевый сплав.

5) высокопрочная легированная сталь.

МАТЕРИАЛ ИЗГОТОВЛЕНИЯ ШАТУНОВ

6) серый чугун;

7) углеродистая сталь;

8) легированная сталь;

9) алюминиевый сплав;

10) высокопрочная легированная сталь.

4. ДЕЗАКСАЖ:

1) уплотнение камеры сгорания;

2) ограничение частоты вращения;

3) смещение оси поршневого пальца относительно оси цилиндра

С ЦЕЛЬЮ ИСКЛЮЧЕНИЯ

4) разноса двигателя;

5) прорыва газов в картер;

6) стука поршня о стенку цилиндра.

5. ГИЛЬЗА ЦИЛИНДРА МОКРОГО ТИПА, ТАК КАК ОНА:

1) контактирует с топливом;

2) омывается горячими газами;

3) смазывается моторным маслом;

4) запрессовывается в блок со смазкой;

5) омывается охлаждающей жидкостью.

6. БАЗОВОЙ ДЕТАЛЬЮ КШМ И ВСЕГО ДВИГАТЕЛЯ ЯВЛЯЕТСЯ:

1) шатун;

2) маховик;

3) головка блока;

4) коленчатый вал;

5) блок цилиндров.

7. ПОДВИЖНЫЕ ДЕТАЛИ КШМ:

1) шатун;

2) маховик;

3) клапаны;

4) поршень;

5) головка блока;

6) поддон картера;

7) блок цилиндров;

8) коленчатый вал;

9) поршневой палец;

10) пружины клапанов;

11) поршневые кольца;

12) прокладка головки блока.


8. НЕПОДВИЖНЫЕ ДЕТАЛИ КШМ:

1) шатун;

2) маховик;

3) клапаны;

4) поршень;

5) головка блока;

6) поддон картера;

7) блок цилиндров;

8) коленчатый вал;

9) поршневой палец;

10) пружины клапанов;

11) поршневые кольца;

12) прокладка головки блока.

9. ПРОРЕЗИ НА ЮБКЕ ПОРШНЯ ДЛЯ:

1) снижения нагрева;

2) уменьшения массы поршня;

3) увеличения прочности поршня;

4) компенсации теплового расширения;

5) отвода масла со стенок цилиндра.

10. МАССЫ РАЗЛИЧНЫХ ПОРШНЕЙ ДВИГАТЕЛЯ НЕ ДОЛЖНЫ ОТЛИЧАТЬСЯ БОЛЕЕ ЧЕМ НА:

1) 1-2 г;

2) 2-8 г;

3) 10-15 г;

4) 20-30 г.

11. ЗАМКИ ТРЕХ КОМПРЕССИОННЫХ КОЛЕЦ РАСПОЛАГАЮТ ПОД УГЛОМ ДРУГ К ДРУГУ:

1) 45°;

2) 90°;

3) 100°;

4) 120°;

5) 180°;

6) 270°.

12. СПОСОБЫ УПЛОТНЕНИЯ ГИЛЬЗЫ ЦИЛИНДРА

1) прокладкой головки блока;

2) асбестовым шнуром;

3) резиновыми кольцами;

4) самоподжимным сальником;

5) медным кольцом.

13. МАТЕРИАЛ АНТИФРИКЦИОННОГО СПЛАВА ВКЛАДЫШЕЙ КОЛЕНЧАТОГО ВАЛА:

1) сталь;

2) медь;

3) свинцовистая бронза;

4) оловянистый алюминиевый сплав.

Установите соответствие


14. НОМЕРА ПОЗИЦИИ И НАЗВАНИЯ ЭЛЕМЕНТА КОЛЕНЧАТОГО ВАЛА (РИС. 2.1):

№ ПОЗИЦИИ

a) 1;
b) 2;
c)  3
d) 4
е) 5.

НАЗВАНИЕ

I. Щека;

II. Носок;

III. Хвостовик;

IV. Шатунная шейка;

V. Коренная шейка.

 


Рис. 2.1. Коленчатый вал

Выберите номера всех правильных ответов

15. ОТВЕРСТИЯ В КОЛЕНЧАТОМ ВАЛУ ВЫПОЛНЯЮТСЯ ДЛЯ ПОДАЧИ К ШАТУННЫМ ПОДШИПНИКАМ:

1) масла;

2) воздуха;

3) охладителя;

4) горючей смеси;

5) картерных газов;

6) сжиженного газа.

16. КОЛЕНЧАТЫЙ ВАЛ ФИКСИРУЕТСЯ ОТ ОСЕВОГО СМЕЩЕНИЯ:

1) стопорной шайбой;

2) упорными кольцами;

3) упорными вкладышами;

4) упорными шарикоподшипниками

СО СТОРОНЫ

5) центральной части;

6) носка или хвостовика.

17. МАТЕРИАЛ БЛОКА ЦИЛИНДРОВ:

1) сталь;

2) чугун;

3) титан;

4) алюминиевый сплав.


18. ТЕМПЕРАТУРА («с) НАГРЕВА ПОРШНЯ В МАСЛЕ ПРИ ЕГО СБОРКЕ С ПАЛЬЦЕМ:

1) 45-50;

2) 80-100;

3) 120-150;

4) 180-200.


19. МАСЛОСЪЕМНОЕ КОЛЬЦО СЛУЖИТ ДЛЯ:

1) упрочения поршня;

2) снижения детонации;

3)уплотнения цилиндра;

4) уменьшения массы поршня;

5) снятия излишка масла со стенок;

6) уменьшения расхода масла на угар.

Установите соответствие

20. НОМЕРА ПОЗИЦИИ И НАЗВАНИЯ ЭЛЕМЕНТА ПОРШНЯ (РИС. 2.2):

№ ПОЗИЦИИ

a) 1;

b) 2;

с ) 3

d) 4.

НАЗВАНИЕ

I. Юбка;

II. Днище;

III. Головка;

IV. Уплотняющий пояс.


21. КОЛЕНЧАТЫЕ ВАЛЫ ИЗГОТАВЛИВАЮТ ИЗ:

1) серого чугуна;

2) легированной стали;

3) низкоуглеродистой стали;

4) среднеуглеродистой стали;

5) модифицированного чугуна

МЕТОДОМ:

6) литья;

7)сварки;

8) штамповки.

22. ШЕЙКИ КОЛЕНЧАТОГО ВАЛА:

1) шлифуют;

2) полируют;

3) азотируют;

4) хромируют;

5) цементируют;

6) закаливают ТВЧ;

7) подвергают отпуску

С ЦЕЛЬЮ:

8) придания товарного вида;

9) повышения жесткости вала; 10) повышения износостойкости.

23. ФОРМА КОЛЕНЧАТОГО ВАЛА ОПРЕДЕЛЯЕТСЯ

1) числом цилиндров

2) тактностью двигателя

3) способом воспламенения

4) материалом изготовления

5) расположением цилиндров

6) способом смесеобразования

7) порядком работы цилиндров

8) максимальной мощностью двигателя

           
ОТВЕТЫ

Применение антифрикционных покрытий для деталей кривошипно-шатунного механизма автомобильных двигателей

Рассмотрено применение антифрикционных покрытий MODENGY для деталей кривошипно-шатунного механизма автомобильных двигателей: поршней и поршневых колец, шеек коленчатого вала, прокладок головки блока цилиндров.

Содержание: Особенности работы кривошипно-шатунного механизма автомобильных двигателей
Потери на трение в кривошипно-шатунном механизме автомобильных двигателей
Неисправности кривошипно-шатунного механизма автомобильных двигателей, связанные с износом узлов трения и неисправностями системы смазки
Применение антифрикционных покрытий для деталей кривошипно-шатунного механизма автомобильных двигателей
Опыт применения антифрикционных покрытий для деталей кривошипно-шатунного механизма автомобильных двигателей

Особенности работы кривошипно-шатунного механизма автомобильных двигателей

Автомобильные поршневые двигатели внутреннего сгорания (ДВС) преобразуют энергию сгорания топлива в механическую энергию путем совершения работы расширения газов. ДВС включает в себя ряд механизмов и систем, условия функционирования которых существенно различаются. Кривошипно-шатунный механизм (КШМ) непосредственно воспринимает давление образующихся при сгорании топлива газов и преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала.
КШМ является самым энергоемким механизмом двигателя. Он состоит из деталей, традиционно подразделяемых на две группы.
  • Подвижные детали КШМ: поршень с поршневыми кольцами, поршневой палец, шатун, коленчатый вал с подшипниками, маховик
  • Неподвижные детали КШМ: блок цилиндров, гильзы цилиндров, головка блока цилиндров, картер, картер маховика и сцепления, поддон, крышка блока, прокладки крышки блока и головки блока цилиндров, полукольца коленчатого вала

Детали КШМ подвержены действию знакопеременных нагрузок и работают в условиях реверсирования движения, повышенного нагрева и недостатка смазочного материала в зоне трения. Указанные факторы обусловливают высокий уровень механических потерь в КШМ и повышенную интенсивность изнашивания его деталей.

Потери на трение в кривошипно-шатунном механизме автомобильных двигателей

Особенности движения подвижных деталей КШМ для ряда его основных сопряжений определяют существование сразу нескольких режимов трения: граничного, гидродинамического и смешанного. Для сопряжений «кольцо поршня – цилиндр» и «поршень – цилиндр» доминирующим является граничный режим трения. Для подшипниковых узлов КШМ вследствие однонаправленного вращательного характера движения шеек коленчатого вала – гидродинамическое трение, отклонения от которого являются либо следствием недостатка смазочного материала (при запуске двигателя или нарушениях в работе системы смазки) либо перегрева двигателя в связи с превышением допустимых значений нагрузок.

В общем случае механические потери на трение между поршневой группой и цилиндром составляют 45. ..55 %, а потери в подшипниковых узлах – до 20 % от всех механических потерь двигателя. Рост механических потерь в КШМ сопровождается снижением КПД и мощности двигателя, увеличением удельного расхода топлива, повышением теплонапряженности работы и всегда является причиной снижения долговечности соответствующих деталей и узлов.

Поскольку в тепло превращается наибольшая часть (до 99 %) энергии трения в сопряжениях, для оценки механических потерь часто используют величину температуры трения. Поэтому для более детального исследования и оценки механических потерь в КШМ автомобильных двигателей применяется метод снятия температурных полей трения при прокрутке двигателя без сжатия, сгорания и охлаждения. По относительной величине температуры трения в этих условиях можно судить об изменении мощности трения в соответствующих сопряжениях КШМ, причем измерение температуры трения (особенно неподвижного тела) в рассматриваемом случае является наиболее простой процедурой.

Исследования показывают, что наиболее эффективным методом снижения потерь на трение в ДВС современных автомобилей является применение антифрикционных покрытий на основе твердых смазочных материалов (дисульфид молибдена, графит и др. ). Широкий ассортимент таких материалов выпускает компания «Моденжи» — под брендом MODENGY. Многие из АТСП успешно применяются автомобильными производителями в узлах трения ДВС с целью обеспечения энергосбережения силовых установок и повышения их долговечности.

Неисправности кривошипно-шатунного механизма автомобильных двигателей, связанные с износом узлов трения и неисправностями системы смазки

Износ основных деталей КШМ вызывает увеличение зазоров в сопряжениях, что приводит к возникновению стуков и шумов при работе двигателя. Это позволяет диагностировать большинство неисправностей КШМ по внешним признакам или с помощью простейших приборов. Так при износе поршня и цилиндра работа двигателя (в особенности непрогретого) сопровождается звонким металлическим стуком. Увеличение зазора между поршневыми пальцами и втулкой верхней головки шатуна вызывает резкий металлический стук на всех режимах работы двигателя. Износ поршневых колец приводит к перерасходу масла, потере компрессии и снижению мощности двигателя. Большой износ вкладышей подшипников коренных и шатунных шеек коленчатого вала сопровождается резким снижением давления масла в системе смазки двигателя, при котором его дальнейшая эксплуатация невозможна.

Поскольку около 70 % износа двигателя приходится на режим пуска, характеризующийся недостатком смазочного материала в сопряжениях и доминированием граничного режима трения, для повышения долговечности деталей КШМ и двигателя в целом необходимо применение антифрикционных покрытий, сохраняющих эффективность после продолжительных простоев и обеспечивающих эффективное снижение трения при запуске двигателя в холодное время года.

При эксплуатации автомобильных двигателей нередко возникают аварийные ситуации работы цилиндропоршневой группы КШМ без наличия жидкой смазки в зоне трения. 

Местный перегрев рабочей поверхности цилиндра вызывает разрыв масляной пленки, а неисправности системы смазки двигателя сопровождаются общим уменьшением слоя масла между рабочей поверхностью цилиндра и поршня. В этих случаях возможно заклинивание поршней в цилиндрах, причем схватывания происходят, как правило, в направляющей части поршня (юбке) и реже распространяются в область кольцевого пояса.

Износ поршневых колец характеризуется уменьшением наружного диаметра и увеличением зазора в замке. Интенсивнее остальных изнашивается первое компрессионное кольцо, что обусловлено большей работой трения о стенку цилиндра и о стенку канавки поршня вследствие большего давления газов. Износ поршневых колец негативно сказывается на их уплотняющих и теплопередающих свойствах, что приводит к перегреву поршня и повреждению его рабочих поверхностей, снижению мощности двигателя, перерасходу топлива, появлению дыма в отработавших газах (при нормальном уровне масла в картере). Повышенный износ поршневых колец наблюдается в процессе приработки двигателя.

Сильный износ и задиры на поверхностях коренных и шатунных шеек коленчатого вала возникают вследствие неисправностей системы смазки двигателя, недостаточного уровня или низких эксплуатационных свойств применяемого моторного масла. Задиры всегда сопровождаются увеличением зазора в подшипниках, износом рабочих поверхностей с глубокими кольцевыми рисками, местным перегревом поверхности шейки. 

Опасность эксплуатации коленчатого вала с задирами и износом шеек связана с перегревом и возможностью изгиба коленчатого вала, нарушением соосности шеек и возникновением биения. В результате, как правило, требуется капитальный ремонт двигателя, шлифовка шеек коленчатого вала и установка утолщенных вкладышей, а в некоторых случаях – дорогостоящая замена вала.

Небольшое давление масла в системе смазки двигателя или его абсолютное отсутствие приводит к разогреву подшипников скольжения. Разрыв масляной пленки между вкладышами и шейками коленчатого вала влечет за собой приваривание вкладыша к шейке и его проворачиванию в опорах коленчатого вала (подшипники коренных шеек) или же нижней головке шатуна (подшипники шатунных шеек) с образованием глубоких задиров и катастрофического износа отверстий.

Прокладки головки блока цилиндров с металлическими поверхностями обладают устойчивостью при действии высоких температур и применяются для уплотнения соединений, подверженных высокому нагреву и давлению. При нагреве и охлаждении деталей КШМ в процессе работы двигателя происходят смещения блока относительно прокладки.

Это обусловливает ее постепенный износ. Кроме того, при длительной работе может происходить прикипание прокладки к поверхности блока или головки блока цилиндров и ее тепловое разрушение, вследствие чего ухудшается герметизация соединения указанных деталей и затрудняется демонтаж прокладки при ремонте автомобильного двигателя.

Таким образом, при повышенном износе деталей КШМ и неисправностях системы смазки эксплуатация автомобиля категорически запрещена и зачастую приводит к его заклиниванию и дорогостоящему ремонту.

Антифрикционные твердосмазочные покрытия MODENGY обеспечивают снижение интенсивности изнашивания узлов трения КШМ и уплотнительных прокладок при работе ДВС в экстремальных температурных условиях, под высокой нагрузкой и в случае возникновения неполадок системы смазки.

Снизить износ деталей КШМ автомобильного двигателя и повысить надежность его работы в аварийных режимах возможно путем нанесения антифрикционных покрытий на участки сопряжений подвижных деталей КШМ (направляющую часть рабочей поверхности поршней, поршневые кольца, шейки коленчатого вала) и рабочие поверхности уплотнительных элементов.

Применение антифрикционных покрытий для деталей кривошипно-шатунного механизма автомобильных двигателей

Антифрикционные твердосмазочные покрытия (АТСП) представляют собой дисперсии твердых смазочных веществ с очень малым размером частиц (дисульфид молибдена, графит и др.) в неорганических или органических связующих агентах. Твердые смазочные материалы при нанесении связываются между собой и с поверхностью детали с помощью полимерной связующей матрицы и образуют после испарения растворителя сухую пленку со смазочными защитными функциями толщиной 5…20 мкм.
Типичный состав АТСП включает в себя:
  • Твердые смазочные материалы – 30 %
  • Связующие агенты – 12 %
  • Присадки – 3 %
  • Растворители – 55 %

Твердые смазки (пигменты) обеспечивают требуемое смазывание деталей сопряжения и выбираются в зависимости от требований к несущей способности и контактным нагрузкам в узлах. При высоких нагрузках (до 1000 Н/мм2 и более) в качестве смазочного материала применяется дисульфид молибдена MoS2 и/или графит. Связующие агенты (смолы) обеспечивают адгезию твердых смазок к поверхности металлов, обеспечивают химическую стойкость образованной антифрикционной пленки и защиту от коррозии. При  рабочих температурах сопряжения до 250 °С используются органические связующие, а при более высоких (до 600 °С) – неорганические. Присадки удаляют нежелательные, улучшают существующие либо придают покрытию новые свойства. Растворители (органические либо водные) удерживают АТСП в жидкой форме до нанесения на материал, регулируют вязкость в процессе нанесения и непосредственно процесс создания антифрикционной пленки, а также улучшают смачиваемость пигментов смолами.

При нанесении АТСП большое внимание уделяется предварительной обработке поверхности детали, призванной обеспечить условия для хорошей адгезии твердых смазочных материалов с основой.

В ассортименте компании Моденжи имеются специальные очистители на основе органических растворителей с добавлением функциональных компонентов. Очиститель&nbspметалла&nbspMODENGY используется для удаления любых загрязнений, включая нефтепродукты, адсорбированные пленки газа. Специальный&nbspочиститель&nbsp-&nbspактиватор&nbspMODENGY применяется для финишной подготовки поверхностей, обеспечивая наносимому следом АТСП лучшую адгезию и долговечность.

Хорошее сцепление с поверхностью обеспечивается механическим закреплением за ее микронеровности (увеличение шероховатости поверхности перед нанесением покрытия при этом приводит к увеличению площади контакта детали и твердых смазочных веществ). Улучшению адгезии также способствует поляризация частиц твердых смазочных материалов и образование между ними и материалом детали химических связей.

Способность к пленкообразованию АТСП ограничивается загрязнениями поверхности:
  • Пыль, мелкие частицы и частицы износа на поверхности детали приводят к образованию дефектов в образующемся антифрикционном слое
  • Органические загрязнители (масла, жировые следы от пальцев рук и т. п.) и частицы с низким поверхностным натяжением приводят к ухудшению адгезии
  • Неорганические загрязнители (например, соли, образующиеся на поверхности в результате процесса очистки) также приводят к ухудшению адгезии и образованию пузырьков в образующейся после отвердения АТСП антифрикционной пленке

Основными методами подготовки поверхности детали к нанесению АТСП являются обезжиривание, пескоструйная очистка (для очистки от следов коррозии и образования равномерной шероховатости поверхности), фосфатирование (для улучшения коррозионной защиты, адгезии и смазывания), травление, активирование, пассивирование, полоскание и сушка. При этом необходимо учитывать, что различные материалы деталей требуют применения различных методов предварительной обработки.

После нанесения жидкого АТСП на поверхность, оно подвергается отверждению и превращается в сухую пленку. В зависимости от состава покрытия отверждение происходит либо при комнатной температуре, либо при нагревании до +250 °С. Основными методами нанесения АТСП являются распыление, погружение, окунание с вращением (центрифугирование), нанесение покрытия валиком, трафаретная печать. Выбор метода нанесения является важным фактором образования прочного и стабильного антифрикционного слоя.

В узлах трения кривошипно-шатунного механизма АТСП MODENGY применяются для обеспечения высоких антифрикционных свойств пар трения и обеспечивают надежную работу сопряжений в режиме граничной смазки при высоких контактных давлениях, знакопеременном движении, запусках после продолжительного простоя. Дополнительным преимуществом применяемых антифрикционных твердосмазочных покрытий является обеспечение ими антиаварийной смазки, позволяющей избежать заклинивания двигателя при его работе в критических условиях перегрева, разрыва масляной пленки или при отсутствии жидкого смазочного материала в зоне трения.

Для защиты деталей цилиндропоршневой группы от задиров и износа при тяжелых условиях работы широко применяются антифрикционные покрытия MODENGY&nbspдля&nbspдеталей&nbspДВС, MODENGY&nbsp1006, MODENGY&nbsp1007. Покрытия поршней обладают высокой несущей способностью, длительной устойчивостью к бензину, моторным маслам и растворителям, обеспечивают защиту деталей от задиров и коррозии. 

Материалы пригодны к эксплуатации в широком диапазоне рабочих температур, являются идеальными средствами для получения долгосрочной смазочной пленки, уменьшающей износ поршней и стенок цилиндров ДВС. Антифрикционные твердосмазочные покрытия MODENGY поставляются в виде вязкой жидкости для нанесения способом трафаретной печати, погружением и другими способами. Аэрозольное АТСП MODENGY для деталей ДВС наносится методом распыления. Рекомендуемая толщина пленки составляет 10…20 мкм.

Покрытие MODENGY для деталей ДВС с высокодисперсным дисульфидом молибдена высокой степени очистки и графитом используется в юбках поршней дизельных и бензиновых двигателей, подшипниках скольжения (коренных подшипниках коленвала, втулках пальцев, распредвалов) в ДВС, дроссельной заслонке (для восстановления зазора), а также в других узлах трения цилиндро-поршневой группы с парами трения металл-металл. Оно обладает высокой адгезией, эффективно снижает потери на трения, препятствует износу и возникновению задиров на деталях. Покрытие устойчиво к длительному воздействию моторного масла, обладает свойствами антиаварийной смазки. Это АТСП является единственным покрытием для поршней, которое отверждается без нагрева, при комнатной температуре.

MODENGY&nbsp1006 представляет собой антифрикционное твердосмазочное покрытие с дисульфидом молибдена и поляризованным графитом на полимерном связующем, отверждаемое при нагреве. Используется в поршнях, подшипниках, кулачках и других деталях ДВС, эксплуатируемых в экстремальных условиях. АТСП обладает высокой износостойкостью при динамических нагрузках, низким коэффициентом трения и антикоррозионными свойствами. Покрытие устойчиво к воздействию моторных масел и других технических жидкостей.

Антифрикционное покрытие MODENGY&nbsp1007 на основе поляризованного графита и полимерного связующего отверждается при нагреве. Оно применяется для защиты поршней двигателя от скачкообразного движения, износа, задиров. Нанесение покрытия на юбки поршней способствует снижению шума и повышению плавности работы деталей.

Рекомендации по применению антифрикционных покрытий MODENGY  для деталей кривошипно-шатунного механизма автомобильных двигателей

Сервисные материалы для применения на юбках поршней должны соответствовать следующим требованиям:
  • Защита поршня и цилиндра от задиров и износа при тяжелых условиях работы (пуск при пониженных температурах, недостаток смазки, перегрев и т.п.)
  • Высокая несущая способность поверхности, износостойкость и термостойкость
  • Ускорение приработки
  • Долговременное смазывание
  •  Устойчивость к воздействию моторных масел
Для этого применения подойдут АТСП MODENGY для деталей ДВС на основе мелкодисперсного дисульфида молибдена высокой очистки и графита, отверждаемое при комнатной температуре, АТСП MODENGY&nbsp1006 на основе дисульфида молибдена и графита на полимерном связующем, отверждаемое при нагреве и АТСП MODENGY&nbsp1007 на основе поляризованного графита и полимерного связующего, отверждаемое при нагреве (для нанесения методом трафаретной печати).

Шейки коленчатого вала обрабатывают АТСП MODENGY для деталей ДВС, характеризующимся высокой износостойкостью и термостойкостью, устойчивостью к воздействию моторных масел.

На вкладыши коленчатого вала необходимо наносить покрытия с высокой смазывающей и несущей способностью, устойчивостью к нефтепродуктам, ускоряющими приработку. Здесь можно использовать АТСП  MODENGY для деталей ДВС и MODENGY&nbsp1006.

Шлицевые соединения, дроссельная заслонка и штоки клапанов обрабатываются АТСП MODENGY для деталей ДВС с высокой смазывающей и несущей способностью,
износостойкостью и термостойкостью, устойчивостью к воздействию моторных масел. 

Прокладка головки блока цилиндров обслуживается АТСП MODENGY&nbsp1006. Характеристики:

  • Высокие противоизносные свойства
  • Высокая прочность на сжатие
  • Термостойкость
  • Устойчивость к воздействию нефтепродуктов и охлаждающих жидкостей
  • Облегчение демонтажа
  • Увеличение герметичности 
Важно учесть, что этом материал подходит для применения только на металлических прокладках.

Опыт применения антифрикционных покрытий для деталей кривошипно-шатунного механизма автомобильных двигателей

Антифрикционные покрытия MODENGY для деталей кривошипно-шатунного механизма автомобильных двигателей доказали свою эффективность многочисленными испытаниями и опытом эксплуатации.

Антифрикционные твердосмазочные покрытия MODENGY были использованы при серийном производстве поршней на крупнейшем моторном заводе. Покрытия наносились методом трафаретной печати.

Опытом эксплуатации установлено очевидное уменьшение потерь на трение и снижение интенсивности изнашивания деталей кривошипно-шатунного механизма автомобильных двигателей при использовании антифрикционных покрытий MODENGY. Они позволяют снизить расход топлива, повысить мощность и надежность двигателя, а также существенно сократить расходы на ремонтные работы.

Подвижные и неподвижные детали кшм


Кривошипно-шатунный механизм (КШМ). Назначение, устройство, принцип действия

Видео: Кривошипно-шатунный механизм (КШМ). Основы

Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала.

Детали кривошипно-шатунного механизма можно разделить на:

  • неподвижные — картер, блок цилиндров, цилиндры, головка блока цилиндров, прокладка головки блока и поддон. Обычно блок цилиндров отливают вместе с верхней половиной картера, поэтому иногда его называют блок-картером.
  • подвижные детали КШМ — поршни, поршневые кольца и пальцы, шатуны, коленчатый вал и маховик.

Кроме того, к кривошипно-шатунному механизму относятся различные крепежные детали, а также коренные и шатунные подшипники.

Блок-картер

Блок-картер — основной элемент остова двигателя. Он подвергается значительным силовым и тепловым воздействиям и должен обладать высокой прочностью и жесткостью. В блок-картере устанавливают цилиндры, опоры коленчатого вала, некоторые устройства механизма газораспределения, различные узлы смазочной системы с ее сложной сетью каналов и другое вспомогательное оборудование. Блок-картер изготавливают из чугуна или алюминиевого сплава литьем.

Цилиндр

Цилиндры представляют собой направляющие элементы ⭐ кривошипно-шатунного механизма. Внутри их перемещаются поршни. Длина образующей цилиндра определяется ходом поршня и его размерами. Цилиндры работают в условиях резко изменяющегося давления в надпоршневой полости. Их стенки соприкасаются с пламенем и горячими газами, имеющими температуру до 1500… 2 500 °С.

Цилиндры должны быть прочными, жесткими, термо- и износостойкими при ограниченном количестве смазки. Кроме того, материал цилиндров должен обладать хорошими литейными свойствами и легко обрабатываться на станках. Обычно цилиндры изготавливают из специального легированного чугуна, но могут применяться также алюминиевые сплавы и сталь. Внутреннюю рабочую поверхность цилиндра, называемую его зеркалом, тщательно обрабатывают и покрывают хромом для уменьшения трения, повышения износостойкости и долговечности.

В двигателях с жидкостным охлаждением цилиндры могут быть отлиты вместе с блоком цилиндров или в виде отдельных гильз, устанавливаемых в отверстиях блока. Между наружными стенками цилиндров и блоком имеются полости, называемые рубашкой охлаждения. Последняя заполняется жидкостью, охлаждающей двигатель. Если гильза цилиндра своей наружной поверхностью непосредственно соприкасается с охлаждающей жидкостью, то ее называют мокрой. В противном случае она называется сухой. Применение сменных мокрых гильз облегчает ремонт двигателя. При установке в блок мокрые гильзы надежно уплотняются.

Цилиндры двигателей воздушного охлаждения отливают индивидуально. Для улучшения теплоотвода их наружные поверхности снабжают кольцевыми ребрами. У большинства двигателей воздушного охлаждения цилиндры вместе с их головками крепят общими болтами или шпильками к верхней части картера.

В V-образном двигателе цилиндры одного ряда могут быть несколько смещены относительно цилиндров другого ряда. Это связано с тем, что на каждом кривошипе коленчатого вала крепятся два шатуна, один из которых предназначен для поршня правой, а другой — для поршня левой половины блока.

Блок цилиндров

На тщательно обработанную верхнюю плоскость блока цилиндров устанавливают головку блока, которая закрывает цилиндры сверху. В головке над цилиндрами выполнены углубления, образующие камеры сгорания. У двигателей жидкостного охлаждения в теле головки блока предусмотрена рубашка охлаждения, сообщающаяся с рубашкой охлаждения блока цилиндров. При верхнем расположении клапанов в головке имеются гнезда для них, впускные и выпускные каналы, отверстия с резьбой для установки свечей зажигания (у бензиновых двигателей) или форсунок (у дизелей), магистрали смазочной системы, крепежные и другие вспомогательные отверстия. Материалом для головки блока обычно служит алюминиевый сплав или чугун.

Плотное соединение блока цилиндров и головки блока обеспечивается с помощью болтов или шпилек с гайками. Для герметизации стыка с целью предотвращения утечки газов из цилиндров и охлаждающей жидкости из рубашки охлаждения между блоком цилиндров и головкой блока устанавливается прокладка. Она обычно изготавливается из асбестового картона и облицовывается тонким стальным или медным листом. Иногда прокладку с обеих сторон натирают графитом для защиты от пригорания.

Нижняя часть картера, предохраняющая детали кривошипно-шатунного и других механизмов двигателя от загрязнения, обычно называется поддоном. В двигателях сравнительно малой мощности поддон служит также резервуаром для моторного масла. Поддон чаще всего выполняется литым или изготавливается из стального листа штамповкой. Для устранения подтекания масла между блок-картером и поддоном устанавливается прокладка (на двигателях небольшой мощности для уплотнения этого стыка часто используется герметик — «жидкая прокладка»).

Остов двигателя

Соединенные друг с другом неподвижные детали кривошипно-шатунного механизма являются остовом двигателя, воспринимающим все основные силовые и тепловые нагрузки, как внутренние (связанные с работой двигателя), так и внешние (обусловленные трансмиссией и ходовой частью). Силовые нагрузки, передающиеся на остов двигателя от несущей системы ТС (рама, кузов, корпус) и обратно, существенно зависят от способа крепления двигателя. Обычно он крепится в трех или четырех точках так, чтобы не воспринимались нагрузки, вызванные перекосами несущей системы, возникающими при движении машины по неровностям. Крепление двигателя должно исключать возможность его смещения в горизонтальной плоскости под действием продольных и поперечных сил (при разгоне, торможении, повороте и т. д.). Для уменьшения вибрации, передающейся на несущую систему ТС от работающего двигателя, между двигателем и подмоторной рамой, в местах крепления, устанавливаются резиновые подушки разнообразных конструкций.

Поршневую группу кривошипно-шатунного механизма образует поршень в сборе с комплектом компрессионных и маслосъемных колец, поршневым пальцем и деталями его крепления. Ее назначение заключается в том, чтобы во время рабочего хода воспринимать давление газов и через шатун передавать усилие на коленчатый вал, осуществлять другие вспомогательные такты, а также уплотнять надпоршневую полость цилиндра для предотвращения прорыва газов в картер и проникновения в него моторного масла.

Поршень

Поршень представляет собой металлический стакан сложной формы, устанавливаемый в цилиндре днищем вверх. Он состоит из двух основных частей. Верхняя утолщенная часть называется головкой, а нижняя направляющая часть — юбкой. Головка поршня содержит днище 4 (рис. а) и стенки 2. В стенках проточены канавки 5 для компрессионных колец. Нижние канавки имеют дренажные отверстия 6 для отвода масла. Для увеличения прочности и жесткости головки ее стенки снабжены массивными ребрами 3, связывающими стенки и днище с бобышками, в которых устанавливается поршневой палец. Иногда оребряют также внутреннюю поверхность днища.

Юбка имеет более тонкие стенки, чем у головки. В ее средней части расположены бобышки с отверстиями.

Рис. Конструкции поршней с различной формой днища (а—з) и их элементов:
1 — бобышка; 2 — стенка поршня; 3 — ребро; 4 — днище поршня; 5 — канавки для компрессионных колец; 6 — дренажное отверстие для отвода масла

Днища поршней могут быть плоскими (см. а), выпуклыми, вогнутыми и фигурными (рис. б—з). Их форма зависит от типа двигателя и камеры сгорания, принятого способа смесеобразования и технологии изготовления поршней. Самой простой и технологичной является плоская форма. В дизелях применяются поршни с вогнутыми и фигурными днищами (см. рис. е—з).

При работе двигателя поршни нагреваются сильнее, чем цилиндры, охлаждаемые жидкостью или воздухом, поэтому расширение поршней (особенно алюминиевых) больше. Несмотря на наличие зазора между цилиндром и поршнем, может произойти заклинивание последнего. Для предотвращения заклинивания юбке придают овальную форму (большая ось овала перпендикулярна оси поршневого пальца), увеличивают диаметр юбки по сравнению с диаметром головки, разрезают юбку (чаще всего выполняют Т- или П-образный разрез), заливают в поршень компенсационные вставки, ограничивающие тепловое расширение юбки в плоскости качания шатуна, или принудительно охлаждают внутренние поверхности поршня струями моторного масла под давлением.

Поршень, подвергающийся воздействию значительных силовых и тепловых нагрузок, должен обладать высокой прочностью, теплопроводностью и износостойкостью. В целях уменьшения инерционных сил и моментов у него должна быть малая масса. Это учитывается при выборе конструкции и материала для поршня. Чаще всего материалом служит алюминиевый сплав или чугун. Иногда применяют сталь и магниевые сплавы. Перспективными материалами для поршней или их отдельных частей являются керамика и спеченные материалы, обладающие достаточной прочностью, высокой износостойкостью, низкой теплопроводностью, малой плотностью и небольшим коэффициентом теплового расширения.

Поршневые кольца

Поршневые кольца обеспечивают плотное подвижное соединение поршня с цилиндром. Они предотвращают прорыв газов из надпоршневой полости в картер и попадание масла в камеру сгорания. Различают компрессионные и маслосъемные кольца.

Компрессионные кольца (два или три) устанавливают в верхние канавки поршня. Они имеют разрез, называемый замком, и поэтому могут пружинить. В свободном состоянии диаметр кольца должен быть несколько больше диаметра цилиндра. При введении в цилиндр такого кольца в сжатом состоянии оно создает плотное соединение. Для того чтобы обеспечить возможность расширения установленного в цилиндре кольца при нагревании, в замке должен быть зазор 0,2…0,4 мм. С целью обеспечения хорошей приработки компрессионных колец к цилиндрам часто применяют кольца с конусной наружной поверхностью, а также скручивающиеся кольца с фаской на кромке с внутренней или наружной стороны. Благодаря наличию фаски такие кольца при установке в цилиндр перекашиваются в сечении, плотно прилегая к стенкам канавок на поршне.

Маслосъемные кольца (одно или два) удаляют масло со стенок цилиндра, не позволяя ему попадать в камеру сгорания. Они располагаются на поршне под компрессионными кольцами. Обычно маслосъемные кольца имеют кольцевую канавку на наружной цилиндрической поверхности и радиальные сквозные прорези для отвода масла, которое по ним проходит к дренажным отверстиям в поршне (см. рис. а). Кроме маслосъемных колец с прорезями для отвода масла используются составные кольца с осевыми и радиальными расширителями.

Для предотвращения утечки газов из камеры сгорания в картер через замки поршневых колец необходимо следить за тем, чтобы замки соседних колец не располагались на одной прямой.

Поршневые кольца работают в сложных условиях. Они подвергаются воздействию высоких температур, а смазывание их наружных поверхностей, перемещающихся с большой скоростью по зеркалу цилиндра, недостаточно. Поэтому к материалу для поршневых колец предъявляются высокие требования. Чаще всего для их изготовления применяют высокосортный легированный чугун. Верхние компрессионные кольца, работающие в наиболее тяжелых условиях, обычно покрывают с наружной стороны пористым хромом. Составные маслосъемные кольца изготавливают из легированной стали.

Поршневой палец

Поршневой палец служит для шарнирного соединения поршня с шатуном. Он представляет собой трубку, проходящую через верхнюю головку шатуна и установленную концами в бобышки поршня. Крепление поршневого пальца в бобышках осуществляется двумя стопорными пружинными кольцами, расположенными в специальных канавках бобышек. Такое крепление позволяет пальцу (в этом случае он называется плавающим) проворачиваться. Вся его поверхность становится рабочей, и он меньше изнашивается. Ось пальца в бобышках поршня может быть смещена относительно оси цилиндра на 1,5…2,0 мм в сторону действия большей боковой силы. Благодаря этому уменьшается стук поршня в непрогретом двигателе.

Поршневые пальцы изготавливают из высококачественной стали. Для обеспечения высокой износоустойчивости их наружную цилиндрическую поверхность подвергают закалке или цементации, а затем шлифуют и полируют.

Поршневая группа состоит из довольно большого числа деталей (поршень, кольца, палец), масса которых по технологическим причинам может колебаться; в некоторых пределах. Если различие в массе поршневых групп в разных цилиндрах будет значительным, то при работе двигателя возникнут дополнительные инерционные нагрузки. Поэтому поршневые группы для одного двигателя подбирают так, чтобы они несущественно отличались по массе (для тяжелых двигателей не более чем на 10 г).

Шатунная группа кривошипно-шатунного механизма состоит из:

  • шатуна
  • верхней и нижней головок шатуна
  • подшипников
  • шатунных болтов с гайками и элементами их фиксации

Шатун

Шатун соединяет поршень с кривошипом коленчатого вала и, преобразуя возвратно-поступательное движение поршневой группы во вращательное движение коленчатого вала, совершает сложное движение, подвергаясь при этом действию знакопеременных ударных нагрузок. Шатун состоит из трех конструктивных элементов: стержня 2, верхней (поршневой) головки 1 и нижней (кривошипной) головки 3. Стержень шатуна обычно имеет двутавровое сечение. В верхнюю головку для уменьшения трения запрессовывают бронзовую втулку 6 с отверстием для подвода масла к трущимся поверхностям. Нижнюю головку шатуна для обеспечения возможности сборки с коленчатым валом выполняют разъемной. У бензиновых двигателей разъем головки обычно расположен под углом 90° к оси шатуна. У дизелей нижняя головка шатуна 7, как правило, имеет косой разъем. Крышка 4 нижней головки крепится к шатуну двумя шатунными болтами, точно подогнанными к отверстиям в шатуне и крышке для обеспечения высокой точности сборки. Чтобы крепление не ослабло, гайки болтов стопорят шплинтами, стопорными шайбами или контргайками. Отверстие в нижней головке растачивают в сборе с крышкой, поэтому крышки шатунов не могут быть взаимозаменяемыми.

Рис. Детали шатунной группы:
1 — верхняя головка шатуна; 2 — стержень; 3 — нижняя головка шатуна; 4 — крышка нижней головки; 5 — вкладыши; 6 — втулка; 7 — шатун дизеля; S — основной шатун сочлененного шатунного узла

Для уменьшения трения в соединении шатуна с коленчатым валом и облегчения ремонта двигателя в нижнюю головку шатуна устанавливают шатунный подшипник, который выполнен в виде двух тонкостенных стальных вкладышей 5, залитых антифрикционным сплавом. Внутренняя поверхность вкладышей точно подогнана к шейкам коленчатого вала. Для фиксации вкладышей относительно головки они имеют отогнутые усики, входящие в соответствующие пазы головки. Подвод масла к трущимся поверхностям обеспечивают кольцевые проточки и отверстия во вкладышах.

Для обеспечения хорошей уравновешенности деталей кривошипно-шатунного механизма шатунные группы одного двигателя (как и поршневые) должны иметь одинаковую массу с соответствующим ее распределением между верхней и нижней головками шатуна.

В V-образных двигателях иногда используются сочлененные шатунные узлы, состоящие из спаренных шатунов. Основной шатун 8, имеющий обычную конструкцию, соединен с поршнем одного ряда. Вспомогательный прицепной шатун, соединенный верхней головкой с поршнем другого ряда, нижней головкой шарнирно крепится с помощью пальца к нижней головке основного шатуна.

Коленчатый вал

Коленчатый вал, соединенный с поршнем посредством шатуна, воспринимает действующие на поршень силы. На нем возникает вращающий момент, который затем передается на трансмиссию, а также используется для приведения в действие других механизмов и агрегатов. Под влиянием резко изменяющихся по величине и направлению сил инерции и давления газов коленчатый вал вращается неравномерно, испытывая крутильные колебания, подвергаясь скручиванию, изгибу, сжатию и растяжению, а также воспринимая тепловые нагрузки. Поэтому он должен обладать достаточной прочностью, жесткостью и износостойкостью при сравнительно небольшой массе.

Конструкции коленчатых валов отличаются сложностью. Их форма определяется числом и расположением цилиндров, порядком работы двигателя и числом коренных опор. Основными частями коленчатого вала являются коренные шейки 3, шатунные шейки 2, щеки 4, противовесы 5, передний конец (носок 1) и задний конец (хвостовик 6) с фланцем.

К шатунным шейкам коленчатого вала присоединяют нижние головки шатунов. Коренными шейками вал устанавливают в подшипниках картера двигателя. Соединяются коренные и шатунные шейки при помощи щек. Плавный переход от шеек к щекам, называемый галтелью, позволяет избежать концентрации напряжений и возможных поломок коленчатого вала. Противовесы предназначены для разгрузки коренных подшипников от центробежных сил, возникающих на кривошипах вала во время его вращения. Их, как правило, изготавливают как единое целое со щеками.

Для обеспечения нормальной работы двигателя к рабочим поверхностям коренных и шатунных шеек необходимо подавать моторное масло под давлением. Масло поступает из отверстий в картере к коренным подшипникам. Затем оно через специальные каналы в коренных шейках, щеках и шатунных шейках попадает к шатунным подшипникам. Для дополнительной центробежной очистки масла в шатунных шейках имеются грязеуловительные полости, закрытые заглушками.

Коленчатые валы изготавливают методом ковки или литья из среднеуглеродистых и легированных сталей (может применяться также чугун высококачественных марок). После механической и термической обработки коренные и шатунные шейки подвергают поверхностной закалке (для повышения износостойкости), а затем шлифуют и полируют. После обработки вал балансируют, т. е. добиваются такого распределения его массы относительно оси вращения, при котором вал находится в состоянии безразличного равновесия.

В коренных подшипниках применяют тонкостенные износостойкие вкладыши, аналогичные вкладышам шатунных подшипников. Для восприятия осевых нагрузок и предотвращения осевого смещения коленчатого вала один из его коренных подшипников (обычно передний) делают упорным.

Маховик

Маховик крепится к фланцу хвостовика коленчатого вала. Он представляет собой тщательно сбалансированный чугунный диск определенной массы. Кроме обеспечения равномерного вращения коленчатого вала маховик способствует преодолению сопротивления сжатия в цилиндрах при пуске двигателя и кратковременных перегрузок, например, при трогании ТС с места. На ободе маховика закреплен зубчатый венец для пуска двигателя от стартера. Поверхность маховика, которая соприкасается с ведомым диском сцепления, шлифуют и полируют.

Рис. Коленчатый вал:
1 — носок; 2 — шатунная шейка; 3 — коренная шейка; 4 — щека; 5 — противовес; 6 — хвостовик с фланцем

Видео-уроки о КШМ

Кривошипно-шатунный механизм (КШМ): назначение, устройство, принцип работы

Если есть что-то, что прочно ассоциируется с любым автомобилем, это механизм двигателя. Как ни странно, принцип его действия мало изменился с тех пор, как 120 лет назад Карл Бенц запатентовал свой первый автомобиль. Система усложнялась, обрастала сложной электроникой, совершенствовалась, но кривошипно-шатунный механизм (КШМ) остался самым узнаваемым “портретом” любого мотора.

Что такое КШМ и для чего он нужен?

Двигатель в процессе работы должен давать какое-то постоянное движение, и удобней всего, чтобы это было равномерное вращение. Однако силовая часть (цилиндро-поршневая группа, ЦПГ) вырабатывает поступательное движение. Значит, нужно сделать так, чтобы один тип движения преобразовался в другой, причем с наименьшими потерями. Вот для этого и был создан кривошипно-шатунный механизм.
По сути, КШМ – это устройство для получения и преобразования энергии и передачи ее дальше, другим узлам, которые уже эту энергию используют.

Устройство КШМ

Строго говоря, КШМ автомобиля состоит из самого кривошипа, шатунов и поршней. Однако говорить о части, не рассказав о целостной конструкции, было бы в корне неправильно. Поэтому схема и назначение КШП и смежных элементов будет рассматриваться в комплексе.

Устройство КШМ: (1 — коренной подшипник на коренной шейке; 2 — шатунный подшипник на шатунной шейке; 3 — шатун; 4 — поршневой палец; 5 — поршневые кольца; 6 — поршень; 7 — цилиндр; 8 — маховик; 9 — противовес; 10 — коленчатый вал.)
  1. Блок цилиндров – это начало всего движения в моторе. Его составляющие – поршни, цилиндры и гильзы цилиндров, в которых эти поршни движутся;
  2. Шатуны – это соединительные элементы между поршнями и коленвалом. По сути, шатун представляет собой прочную металлическую перемычку, которая одной стороной крепится к поршню с помощью шатунного пальца, а другой фиксируется на шейке коленвала. Благодаря пальцевому соединению поршень может двигаться относительно цилиндра в одной плоскости. Точно так же шатун охватывает посадочное место коленвала – шатунную шейку, и это крепление позволяет ему двигаться в той же плоскости, что и соединение с поршнем;
  3. Коленвал – коленчатый вал вращения, ось которого проходит через носок вала, коренные (опорные) шейки и фланец маховика. А вот шатунные шейки выходят за ось вала, и благодаря этому при его вращении описывают окружность;
  4. Маховик – обязательный элемент механизма, накапливающий инерцию вращения, благодаря которой двигатель работает ровней и не останавливается в “мертвой точке”.

Эти и другие элементы КШМ можно условно разделить на подвижные, те, что выполняют непосредственную работу, и неподвижные вспомогательные элементы.

Подвижная (рабочая) группа КШМ

Как понятно из названия, к подвижной группе относятся элементы, которые активно задействованы в работе двигателя.

  1. Поршень. При работе двигателя поршень перемещается в гильзе цилиндра под действием выталкивающей силы при сгорании топлива – с одной стороны, и поворотом коленвала – с другой. Для уплотнения зазора между ним и цилиндром на боковой поверхности поршня находятся поршневые кольца (компрессионные и маслосъемные), которые герметизируют промежуток и препятствуют потере мощности во время сгорания топлива.

    Устройство поршневой группы: (1 — масляно-охлаждающий канал; 2 — камера сгорания в днище поршня; 3 — днище поршня; 4 — канавка первого компрессионного кольца; 5 — первое (верхнее) компрессионное кольцо; 6 — второе (нижнее) компрессионное кольцо; 7 — маслосъемное кольцо; 8 — масляная форсунка; 9 — отверстие в головке шатуна для подвода масла к поршневому пальцу; 10 — шатун; 11 — поршневой палец; 12 — стопорное кольцо поршневого пальца; 13 и 14 — перегородки поршневых колец; 15 — жаровой пояс.)

  2. Шатун. Это соединительный элемент между поршнем и коленвалом. Верхней головкой шатун крепится к поршню с помощью пальца. Нижняя головка имеет съемную часть, так что шатун можно надеть на шейку коленвала. Для уменьшения трения между шейкой коленвала и головкой шатуна ставятся шатунные вкладыши – подшипники скольжения в виде двух пластин, изогнутых полукругом.

    Устройство шатуна

  3. Коленвал. Это центральная часть двигателя, без которой сложно представить себе его принцип работы. Основной его частью является ось вращения, которая одновременно служит опорой для коленвала в блоке цилиндров. Выступающие за ось вращения элементы предназначены для присоединения к шатунам: когда шатун движется вниз, коленвал позволяет ему описать нижней частью окружность одновременно с движением поршня. Так же, как и в случае с шатунами, опорные шейки коленвала лежат на подшипниках скольжения – вкладышах.

    Устройство коленвала

  4. Маховик. Он крепится к фланцу на торцевой части коленвала. Маховик вращается вместе с валом двигателя и частично демпфирует неизбежные в любом ДВС рывковые нагрузки. Но основная задача маховика – раскручивать коленвал (а с ним и цилиндро-поршневую группу), чтобы поршни не замерли в “мертвой точке”. Таким образом, часть мощности двигателя расходуется на поддержку вращения маховика.
Устройство маховика
Неподвижная группа КШМ

Неподвижной группой можно назвать внешнюю часть двигателя, в которой находится КШП.

  1. Блок цилиндров. По сути, это корпус, в котором располагаются непосредственно цилиндры, каналы системы охлаждения, посадочные места распредвала, коленвала и т.д. Он может выполняться из чугуна или алюминиевого сплава, и сегодня производители всё чаще используют алюминий, чтобы облегчить конструкцию. Для этой же цели вместо сплошного литья используются ребра жесткости, которые облегчают конструкцию без потери прочности. На боковых сторонах блока цилиндров располагаются посадочные места для вспомогательных механизмов двигателя.

    Блок цилиндров

  2. Головка блока цилиндров (ГБЦ). Устанавливается на блок цилиндров и закрывает его сверху. В ГБЦ предусмотрены отверстия для клапанов, впускного и выпускного коллекторов, крепления распредвала (одного или больше), крепления для других элементов двигателя. К ГБЦ, снизу, крепится прокладка (1) — пластина, которая герметизирует стык между блоком цилиндров и ГБЦ. В ней предусмотрены отверстия для цилиндров и крепежных болтов. А сверху — клапанная крышка (5), — ею закрывается ГБЦ сверху, когда двигатель собран и готов к запуску. Прокладка клапанной крышки. Это тонкая пластина, которая укладывается по периметру ГБЦ и герметизирует стык.
Устройство ГБЦ: (1 — прокладка ГБЦ; 2 — ГБЦ; 3 — сальник; 4 — прокладка крышки ГБЦ; 5 — крышка клапанная; 6- прижимная пластина; 7 — пробка маслозаливной горловины; 8 — прокладка пробки; 9 — направляющая втулка клапана; 10 — установочная втулка; 11 — болт крепления головки блока.)

Принцип работы КШМ

Работа механизма двигателя основана на энергии расширения при сгорании топливно-воздушной смеси. Именно эти “микровзрывы” являются движущей силой, которую кривошипно-шатунный механизм переводит в удобную форму. На видео, ниже, подробно описанный принцип работы КШМ в 3Д анимайии.

Принцип работы КШМ:

  1. В цилиндрах двигателя сгорает распыленное и смешанное с воздухом топливо. Такая дисперсия предполагает не медленное горение, а мгновенное, благодаря чему воздух в цилиндре резко расширяется.
  2. Поршень, который в момент начала горения топлива находится в верхней точке, резко опускается вниз. Это прямолинейное движение поршня в цилиндре.
  3. Шатун соединен с поршнем и коленвалом так, что может двигаться (отклоняться) в одной плоскости. Поршень толкает шатун, который надет на шейку коленвала. Благодаря подвижному соединению, импульс от поршня через шатун передается на коленвал по касательной, то есть вал делает поворот.
  4. Поскольку все поршни по очереди толкают коленвал по тому же принципу, их возвратно-поступательное движение переходит во вращение коленвала.
  5. Маховик добавляет импульс вращения, когда поршень находится в «мертвых» точках.

Интересно, что для старта двигателя нужно сначала раскрутить маховик. Для этой цели нужен стартер, который сцепляется с зубчатым венцом маховика и раскручивает его, пока мотор не заведется. Закон сохранения энергии в действии.

Остальные элементы двигателя: клапаны, распредвалы, толкатели, система охлаждения, система смазки, ГРМ и прочие – необходимые детали и узлы для обеспечения работы КШМ.

Основные неисправности

Учитывая нагрузки, как механические, так и химические, и температурные, кривошипно-шатунный механизм подвержен различным проблемам. Избежать неприятностей с КШП (а значит, и с двигателем) помогает грамотное обслуживание, но всё равно от поломок никто не застрахован.

Стук в двигателе

Один из самых страшных звуков, когда в моторе вдруг появляется странный стук и прочие посторонние шумы. Это всегда признак проблем: если что-то начало стучать, значит, с ним проблема. Поскольку в двигателе элементы подогнаны с микронной точностью, стук свидетельствует об износе. Придется разбирать двигатель, смотреть, что стучало, и менять изношенную деталь.

Основной причиной износа чаще всего становится некачественное ТО двигателя. Моторное масло имеет свой ресурс, и его регулярная замена архиважна. То же относится и к фильтрам. Твердые частички, даже мельчайшие, постепенно изнашивают тонко пригнанные детали, образуют задиры и выработку.

Стук может говорить и об износе подшипников (вкладышей). Они также страдают от недостатка смазки, поскольку именно на вкладыши приходится огромная нагрузка.

Снижение мощности

Потеря мощности двигателя может говорить о залегании поршневых колец. В этом случае кольца не выполняют свою функцию, в камере сгорания остается моторное масло, а продукты сгорания прорываются в двигатель. Прорыв газов говорит и о пустой растрате энергии, и это чувствует автовладелец как снижение динамических характеристик. Продолжительная работа в такой ситуации может только ухудшить состояние двигателя и довести стандартную, в общем-то, проблему до капремонта двигателя.

Проверить состояние мотора можно самостоятельно, измерив компрессию в цилиндрах. Если она ниже нормативной для данной модификации двигателя, значит, предстоит ремонт двигателя.

Повышенный расход масла

Если двигатель начал “жрать” масло, это явный признак залегания поршневых колец или других проблем с цилиндро-поршневой группой. Масло сгорает вместе с топливом, из выхлопной трубы идет черный дым, температура в камере сгорания превышает расчетную, и это не добавляет двигателю здоровья. В некоторых случаях может помочь очистка без демонтажа двигателя, но в большинстве случаев предстоит разборка и дефектовка двигателя.

Нагар

Отложения на поршнях, клапанах и свечах зажигания говорят о том, что с двигателем есть проблема. Если топливо не сгорает полностью, нужно искать причину неисправности и устранять ее. В противном случае мотору грозит перегрев из-за ухудшения теплопроводности поверхностей со слоем нагара.

Белый дым из выхлопной трубы

Появляется, когда в камеру сгорания попадает антифриз. Причиной чаще всего бывает износ прокладки ГБЦ или микротрещины в рубашке охлаждения двигателя, и для устранения проблемы необходима ее замена.

Медлить в этой ситуации нежелательно: маленькая протечка может обернуться гидроударом. Камера сгорания наполняется жидкостью, поршень движется вверх, но жидкость, в отличие от воздуха, не сжимается, и получается эффект удара о твёрдую поверхность. Последствия такой катастрофы могут быть любые, вплоть до “кулака дружбы” и продажи машины на запчасти.

Заключение

Несмотря на высокие нагрузки, критические условия работы и даже небрежность владельцев, кривошипно-шатунный механизм отличается завидной живучестью. Вывести его из строя можно неправильным обслуживанием, нештатными нагрузками, поломкой смежных элементов. Да, двигатель почти всегда можно починить, но эта услуга обойдётся в разы дороже, чем просто грамотное регулярное ТО. Недаром же есть двигатели “миллионники”, которые способны служить десятилетиями, не доставляя проблем владельцу машины.

Устройство КШМ

 

 

 

 

 КШМ ВАЗ 2110, 2111, 2112

Основные размеры КШМ ВАЗ 2110, 2111, 2112

показаны на рисунке. Хорошо зарекомендовали

себя двигателя ВАЗ 2110, они имеют много

взаимозаменяемых деталей КШМ с двигателями

ВАЗ 2108, ВАЗ 2109

Кривошипно-шатунный механизм (КШМ) преобразует прямолинейное возвратно-поступательные движения поршней, воспринимающих давление газов, во вращательное движение коленчатого вала.

Устройство КШМ можно разделить на две группы: подвижные и неподвижные.

Подвижные детали: 

поршень, поршневые кольца, поршневые пальцы и шатуны, коленчатый вал, маховик.

Блок-картер, головка блока цилиндров, гильзы цилиндров. Имеются также фиксирующие и крепежные детали.

Поршневая группа

Поршневая группа включает в себя поршень, поршневые кольца, поршневой палец с фиксирующими деталями. Поршень воспринимает усилие расширяющихся газов при рабочем ходе и передает ею через шатун па кривошип коленчатого вала; осуществляет подготовительные такты; уплотняет над поршневую полость цилиндра как от прорыва газов в картер, так и от излишнего проникновения в нее смазочного материала.

Коренные подшипники

Для коренных подшипников применяются подшипники скольжения, выполненные в виде вкладышей, основой которых является стальная лента толщиной 1,9—2,8 мм для карбюраторных двигателей и 3—6 мм для дизелей. В качестве антифрикционного материала вкладышей используют высокооловянистый алюминиевый сплав для карбюраторных двигателей и трехслойные с рабочим слоем из свинцовой бронзы.

Маховик

Маховик служит для уменьшения неравномерности вращения коленчатого вала, накопления энергии во время рабочего хода поршня, необходимой для вращения вала в течение подготовительных тактов, и вывода деталей КШМ из ВМТ (верхней мертвой точки) и НВТ (нижней мертвой точки).
В многоцилиндровых двигателях маховик является, в основном, накопителем кинетической энергии, необходимой для пуска двигателя и обеспечения плавного трогания автомобиля с места.


Маховики отливают из чугуна в виде лиска с массивным ободом и проводят его динамическую балансировку в сборе с коленчатым валом. На ободе маховика имеется посадочный поясок для напрессовки зубчатого венца для электрического пуска стартером. На цилиндрической поверхности маховика находятся метки или маркировочные штифты и надписи, определяющие момент прохождения ВМТ поршнем первого цилиндра. На торцевую рабочую поверхность опирается фрикционный диск сцепления. Для крепления его кожуха имеются резьбовые отверстия. Маховик центрируют по наружной поверхности фланца с помощью выточки, а положения его относительно коленчатого вала фиксируют установочным штифтом или несимметричным расположением отверстий крепления маховика.

Поршни

Форма и конструкция поршня, включая днище поршня и отверстие под поршневой палец, в значительной степени определяются формой камеры сгорания.

 Устройство шатуна

Шатун необходим для соединения поршня с коленчатым валом и передачи усилия от поршня к коленчатому валу

 

 

Устройство КШМ автомобиля. 

1 — стопорное кольцо, 2 — поршневой палец, 3 — маслосьемные кольца, 4 — компрессионные кольца, 5 — камера сгорания, 6 — днище поршня, 7 — головка поршня:     8 — юбка поршня;  9 —  поршень: 10 — форсунка; 11- шатун; 12  — вкладыш;  13 — шайба , 14 — длинный болт; 15 — короткий болт; 16 — крышка шатуна, 17  —  втулка шатуна;  18 — номер на шатуне; 19 — метка на крышке шатуна; 20 —  шатунный болт.

 

Поршень состоит из головки поршня и направляющей части — юбки поршня. С внутренней стороны имеются приливы — бобышки с гладкими отверстиями под поршневой палец. Для фиксации пальца в отверстиях проточены канавки под стопорные кольца. В зоне выхода отверстий на внешних стенках юбки выполняются местные углубления, где стенки юбки не соприкасаются со стенками цилиндров. Таким образом получаются так называемые холодильники. Для снижения температуры нагрева направляющей поршня в карбюраторных двигателях головку поршня отделяют две поперечные симметричные прорези, которые препятствуют отводу теплоты от днища.

Нагрев, а следовательно, и тепловое расширение поршня по высоте неравномерны. Поэтому поршни выполняют в виде конуса овального сечения. Головка поршня имеет диаметр меньше, чем направляющая. В быстроходных двигателях, особенно при применении коротких шатунов, скорость изменения боковой силы довольно значительна. Это приводит к удару поршня о цилиндр. Чтобы избежать стуков, при перекладке поршневые пальцы смещают на 1,4—1,6 мм в сторону действия максимальной боковой силы, что приводит к более плавной перекладке и снижению уровня шума.


Головка поршня состоит из днища и образующих ее стенок, в которых именно канавки под поршневые кольца. В нижней канавке находятся дренажные отверстия для отвода масла диаметром 2,5—3 мм. Днище головки является одной из стенок камеры сгорания и воспринимает давление газов, омывается открытым пламенем и горячими газами. Для увеличения прочности днища и повышения обшей жесткости головки се стенки выполняются с массивными ребрами. Днища поршней изготовляют плоскими, выпуклыми, вогнутыми и фигурными. Форма выбирается с учетом типа двигателя, камеры сгорания, процесса смесеобразования и технологии изготовления поршней.

Поршневые кольца

Поршневые кольца — элементы уплотнения поршневой группы, обеспечивающие герметичность рабочей полости цилиндра и отвод теплоты от головки поршня.

По назначению кольца подразделяются на:

Компрессионные кольца — препятствующие прорыву газов в картер и отводу теплоты в стенки цилиндра.

Маслосъемные кольца — обеспечивающие равномерное распределение масла по поверхности цилиндра и препятствующие проникновению масла в камеру сгорания.


Изготовляются кольца из специальною легированною чугуна или стали. Разрез кольца, называемый замком, может быть прямым, косым или ступенчатым. По форме и конструкции поршневые кольца дизелей делятся на трапециевидные, с конической поверхностью, и подрезом, маслосъемные, пружинящие с расширителем; поршневые кольца карбюраторных двигателей — на бочкообразные, с конической поверхностью со скосом, с подрезом; маслосьемные — с дренажными отверстиями и узкой перемычкой, составные предсталяют собой два стальных лиска (осевой и радиальный расширители).

Составное маслосъемное поршневое кольцо (а) и его установка в головке поршня двигателя: 1 — дискообразное кольцо; 2 — осевой расширитель; 3 — радиальный расширитель; 4— замок кольца; 5 — компрессионные кольца; 6 — поршень; 7 — отверстие в канавке маслосъемного кольца.

Для повышения износостойкости первого компрессионного кольца, работающего и условиях высоких температур  и граничного трения, его поверхность покрывают пористым хромом. Устанавливая на поршень поршневые кольца, необходимо следить за тем, чтобы замки соседних колец были смещены один относительно другого на некоторый угол (90 —180 градусов).

Поршневой палец обеспечивает шарнирное соединение шатуна с поршнем. Поршневые пальцы изготовляют из малоуглеродистых сталей. Рабочую поверхность тщательно обрабатывают и шлифуют. Для уменьшения массы палец выполняют пустотелым.

Установка поршневого пальца

Шатун шарнирно соединяет поршень с кривошипом коленчатого вала. Он воспринимает от поршня и передает коленчатому валу усилие давления газов при рабочем ходе, обеспечивает перемещение поршней при совершении вспомогательных тактов. Шатун работает в условиях значительных нагрузок действующих по его продольной оси.

Шатун состоит из верхней головки, в которой имеется гладкое отверстие под подшипник поршневого пальца; стержня двутаврового сечения и нижней головки с разъемным отверстием для крепления с шатунной шейкой коленчатого вата. Крышка нижней головки крепится с помощью шатунных болтов. Шатун изготавливают методом гарячей штамповки из высокочественной стали. Для более подробного изучения создан раздел «Устройство шатуна«.

Устройство шатуна

Для смазывания подшипника поршневого пальца (бронзовая втулка) в верхней головке шатуна имеются отверстие или прорези. В двигателях марки «ЯМЗ» подшипник смазывается под давлением, для чего в стержне шатуна имеется масляный канал. Плоскость разъема нижней головки шатуна может располагаться под различными углами к продольной оси шатуна. Наибольшее распространение получили шатуны с разъемом перпендикулярным к оси стержня, В двигателях марки «ЯМЗ» имеющим больший диаметр,  чем диаметр цилиндра, pазмер нижней головки шатуна, выполнен косой разъем нижней головки, так как при прямом разъеме монтаж шатуна через цилиндр при сборке двигателя становится невозможным. Для подвода масла к стенкам цилиндра на нижней головке шатуна имеется отверстие. С целью уменьшения трения и изнашивания в нижние головки шатунов устанавливают подшипники скольжения, состоящие из двух взаимозаменяемых вкладышей (верхнего и нижнею).

Вкладыши изготовляются из стальной профилированной ленты толщиной 1,3—1,6 мм для карбюраторных двигателей и 2—3,6 мм для дизелей. На ленту наносят антифрикционный сплав толщиной 0,25—-0,4 мм — высокооловянистый алюминиевый сплав (для карбюраторных двигателей). На дизелях марки «КамАЗ» применяют трехслойные вкладыши, залитые свинцовистой бронзой. Шатунные вкладыши устанавливаются в нижнюю головку шатуна с натягом 0,03—0,04 мм. От осевого смешения и провертывания вкладыши удерживаются в своих гнездах усиками, входящими в пазы, которые при сборке шатуна и крышки должны располагаться на одной стороне шатуна.

Устройство двигателя автомобиля не сложно для обучения, главное изучать материал последовательно и систематизированно.

СОДЕРЖАНИЕ:

1. Устройство КШМ двигателя

1.1 Подвижные детали КШМ

1.2 Неподвижные детали КШМ

2. Неисправности КШМ двигателя

2.1 Звуки неисправностей двигателя (стуки двигателя)

2.2 Признаки и причины неисправностей двигателя автомобиля

3. Капитальный ремонт двигателя автомобиля

 

Кривошипно-шатунный механизм: устройство, детали, принцип работы

Практически в любом поршневом двигателе, установленном в автомобиле, тракторе, мотоблоке, используется кривошипно- шатунный механизм. Стоят они и компрессорах для производства сжатого воздуха. Энергию расширяющихся газов, продуктов сгорания очередной порции рабочей смеси, кривошипный механизм преобразует во вращение рабочего вала, передаваемое на колеса, гусеницы или привод мотокосы. В компрессоре происходит обратное явление: энергия вращения приводного вала преобразуется в потенциальную энергию сжимаемого в рабочей камере воздуха или другого газа.

Устройство механизма

Первые кривошипные устройства были изобретены в античном мире. На древнеримских лесопилках вращательное движение водяного колеса, вращаемого речным течением, преобразовывалось в возвратно-поступательной движение полотна пилы. В античности большого распространения такие устройства не получили по следующим причинам:

  • деревянные части быстро изнашивались и требовали частого ремонта или замены;
  • рабский труд обходился дешевле высоких для того времени технологий.

В упрощенном виде кривошипно-шатунный механизм использовался с XVI века в деревенских прялках. Движение педали преобразовывалось во вращение прядильного колеса и других частей приспособления.

Разработанные в XVIII веке паровые машины тоже использовали кривошипный механизм. Он располагался на ведущем колесе паровоза. Давление пара на поршневое дно преобразовывалось в возвратно- поступательное движение штока, соединенного с шатуном, шарнирно закрепленном на ведущем колесе. Шатун придавал колесу вращение. Такое устройство кривошипно-шатунного механизма было основой механического транспорта до первой трети XX века.

Паровозная схема была улучшена в крейцкопфных моторах. Поршень в них жестко прикреплен к крейцкопфу- штоку, скользящему в направляющих взад и вперед. На конце штока закреплен шарнир, к нему присоединен шатун. Такая схема увеличивает размах рабочих движений, позволяет даже сделать вторую камеру с другой стороны от поршня. Таким образом каждое движение штока сопровождается рабочим тактом. Такая кинематика и динамика кривошипно-шатунного механизма позволяет при тех же габаритах удвоить мощность. Крейцкопфы применяются в крупных стационарных и корабельных дизельных установках.

Элементы, составляющие кривошипно-шатунный механизм, разбивают на следующие типы:

  • Подвижные.
  • Неподвижные.

К первым относятся:

  • поршень;
  • кольца;
  • пальцы;
  • шатун;
  • маховик;
  • коленвал;
  • подшипники скольжения коленчатого вала.

К неподвижным деталям кривошипно-шатунного механизма относят:

  • блок цилиндров;
  • гильза;
  • головка блока;
  • кронштейны;
  • картер;
  • другие второстепенные элементы.

Поршни, пальцы и кольца объединяют в поршневую группу.

Каждый элемент, равно как и подробная кинематическая схема и принцип работы заслуживают более подробного рассмотрения

Блок цилиндров

Это одна из самых сложных по конфигурации деталь двигателя. На схематическом объемном чертеже видно, что внутри он пронизан двумя непересекающимися системами каналов для подачи масла к точкам смазки и циркуляции охлаждающей жидкости. Он отливается из чугуна или сплавов легких металлов, содержит в себе места для запрессовки гильз цилиндра, кронштейны для подшипников коленвала, пространство для маховика, систем смазки и охлаждения. К блоку подходят патрубки системы подачи топливной смеси и удаления отработанных газов.

Снизу к блоку через герметичную прокладку крепится масляный картер- резервуар для смазки. В этом картере и происходит основная работа кривошипно- шатунного механизма, сокращенно КШМ.

Гильза должна выдерживать высокое давление в цилиндре. Его создают газы, образовавшиеся после сгорания топливной смеси. Поэтому и то место блока, куда гильзы запрессованы, должно выдерживать большие механические и термические нагрузки.

Гильзы обычно изготавливают из прочных сортов стали, реже — из чугуна. В ходе работы двигателя они изнашиваются при капитальном ремонте двигателя могут быть заменены. Различают две основных схемы их размещения:

  • сухая, внешняя сторона гильзы отдает тепло материалу блока цилиндров;
  • влажная, гильза омывается снаружи охлаждающей жидкостью.

Второй вариант позволяет развивать большую мощность и переносить пиковые нагрузки.

Поршни

Деталь представляет из себя стальную или алюминиевую отливку в виде перевернутого стакана. Скользя по стенкам цилиндра, он принимает на себя давление сгоревшей топливной смеси и превращает его в линейное движение. Далее через кривошипный узел она превращается во вращение коленчатого вала, а затем передается на сцепление и коробку передач и через кардан к колесам. Силы, действующие в кривошипно-шатунном механизме, приводят транспортное средство или стационарный механизм в движение.

Деталь выполняет следующие функции:

  • на такте впуска, двигаясь вниз (или в направлении от коленчатого вала, если цилиндр расположен не вертикально) на, он увеличивает объем рабочей камеры и создает в ней разрежение, затягивающее и равномерно распределяющее по объему очередную порцию рабочей смеси;
  • на такте сжатия поршневая группа движется вверх, сжимая рабочую смесь до необходимой степени;
  • далее идет рабочий такт, деталь под давлением идет вниз, передавая импульс вращения коленчатому валу;
  • на такте выпуска он снова идет вверх, вытесняя отработанные газы в выхлопную систему.

На всех тактах, кроме рабочего, поршневая группа движется за счет коленчатого вала, забирая часть энергии его вращения. На одноцилиндровых двигателях для аккумуляции такой энергии служим массивный маховик, на многоцилиндровые такты цилиндров сдвинуты во времени.

Конструктивно изделие подразделяется на такие части, как:

  • днище, воспринимающее давление газов;
  • уплотнение с канавками для поршневых колец;
  • юбка, в которой закреплен палец.

Палец служит осью, на которой закреплено верхнее плечо шатуна.

Поршневые кольца

Назначение и устройство поршневых колец обуславливается их ролью в работе кривошипных- устройств. Кольца выполняются плоскими, они имеют разрез шириной в несколько десятых частей миллиметра. Их вставляют в проточенные для них кольцевые углубления на уплотнении.

Кольца выполняют следующие функции:

  • Уплотняют зазор между гильзой и стенками поршня.
  • Обеспечивают направление движения поршня.
  • Охлаждают. Касаясь гильзы, компрессионные кольца отводят избыточное тепло от поршня, оберегая его от перегрева.
  • Изолируют рабочую камеру от смазочных материалов в картере. С одной стороны, кольца задерживают капельки масла, разбрызгиваемые в картере ударами противовесов щек коленвала, с другой, пропускают небольшое его количество для смазки стенок цилиндра. За это отвечает нижнее, маслосъемное кольцо.

Смазывать необходимо и соединение поршня с шатуном.

Отсутствие смазки в течение нескольких минут приводит детали цилиндра в негодность. Трущиеся части перегреваются и начинают разрушаться либо заклиниваются. Ремонт в этом случае предстоит сложный и дорогостоящий.

Поршневые пальцы

Осуществляют кинематическую связь поршня и шатуна. Изделие закреплено в поршневой юбке и служит осью подшипника скольжения. Детали выдерживают высокие динамические нагрузки во время рабочего хода, а также смены такта и обращения направления движения. Вытачивают их из высоколегированных термостойких сплавов.

Различают следующие типы конструкции пальцев:

  • Фиксированные. Неподвижно крепятся в юбке, вращается только обойма верхней части шатуна.
  • Плавающие. Могут проворачиваться в своих креплениях.

Плавающая конструкция применяется в современных моторах, она снижает удельные нагрузки на компоненты кривошипно- шатунной  группы и увеличивает их ресурс.

Шатун

Эта ответственный элемент кривошипно-шатунного механизма двигателя выполнен разборным, для того, чтобы можно было менять вкладыши подшипников в его обоймах. Подшипники скольжения используются на низкооборотных двигателях, на высокооборотных устанавливают более дорогие подшипники качения.

Внешним видом шатун напоминает накидной ключ. Для повышения прочности и снижения массы поперечное сечение сделано в виде двутавровой балки.

При работе деталь испытывает попеременно нагрузки продольного сжатия и растяжения. Для изготовления используют отливки из легированной или высокоуглеродистой стали.

Коленчатый вал

Преобразование осуществляет с помощь.

Из деталей кривошипно-шатунной группы коленчатый вал имеет наиболее сложную пространственную форму. Несколько коленчатых сочленений выносят оси вращения его сегментов в сторону от основной продольной оси. К этим вынесенным осям крепятся нижние обоймы шатунов. Физический смысл конструкции точно такой же, как и при закреплении оси шатуна на краю маховика. В коленвала «лишняя», неиспользуемая часть маховика изымается и заменяется противовесом. Это позволяет существенно сократить массу и габариты изделия, повысить максимально доступные обороты.

Основные части, из которых состоит коленвал, следующие:

  • Шейки. Служат для крепления вала в кронштейнах картера и шатунов на валу. Первые называют коренными, вторые — шатунными.
  • Щеки. Образуют колена, давшие узлу свое название. Вращаясь вокруг продольной оси и толкаемые шатунами, преобразуют энергию продольного движения поршневой группы во вращательную энергию коленвала.
  • Фронтальная выходная часть. На ней размещен шкив, от которого цепным или ременным приводом крутятся валы вспомогательных систем мотора- охлаждения, смазки, распределительного механизма, генератора.
  • Основная выходная часть. Передает энергию трансмиссии и далее — колесам.

Тыльная часть щек, выступающая за ось вращения коленвала, служит противовесом для основной их части и шатунных шеек. Это позволяет динамически уравновесит вращающуюся с большой скоростью конструкцию, избежав разрушительных вибраций во время работы.

Для изготовления коленвалов используются отливки из легких высокопрочных чугунов либо горячие штамповки (поковки) из упрочненных сортов стали.

Картер двигателя

Служит конструктивной основой всего двигателя, к нему крепятся все остальные детали. От него отходят внешние кронштейны, на них весь агрегат прикреплен к кузову. К картеру крепится трансмиссия, передающая от двигателя к колесам крутящий момент. В современных конструкциях картер исполняется единой деталью с блоком цилиндров. В его пространственных рамках и происходит основная работа узлов, механизмов и деталей мотора. Снизу к картеру крепится поддон для хранения масла для смазки подвижных частей.

Принцип работы кривошипно-шатунного механизма

Принцип работы кривошипно — шатунного механизма не изменился за последние три столетия.

Во время рабочего такта воспламенившаяся в конце такта сжатия рабочая смесь быстро сгорает, продукты сгорания расширяются и толкают поршень вниз. Он толкает шатун, тот упирается в нижнюю ось, разнесенную в пространстве с основной продольной осью.  В результате под действием приложенных по касательной сил коленвал проворачивается на четверть оборота в четырехтактных двигателях и на пол-оборота в двухтактных. таким образом продольное движение поршня преобразуется во вращение вала.

Расчет кривошипно-шатунного механизма требует отличных знаний прикладной механики, кинематики, сопротивления материалов. Его поручают самым опытным инженерам.

Неисправности, возникающие при работе КШМ и их причины

Сбои в работе могут случиться в разных элементах кривошипно-шатунной группы. Сложность конструкции и сочетания параметров шатунных механизмов двигателей заставляет особенно внимательно относить к их расчету, изготовлению и эксплуатации.

Наиболее часто к неполадкам приводит несоблюдение режимов работы и технического обслуживания мотора. Некачественная смазка, засорение каналов подачи масла, несвоевременная замена или пополнение запаса масла в картере до установленного уровня- все эти причины приводят к повышенному трению, перегреву деталей, появлению на их рабочих поверхностях задиров, потертостей и царапин. При каждой замене масла обязательно следует менять масляный фильтр. В соответствии с регламентом обслуживания также нужно менять топливные и воздушные фильтры.

Нарушение работы системы охлаждения также вызывает термические деформации деталей вплоть до их заклинивания или разрушения. Особенно чувствительны к качеству смазки дизельные моторы.

Неполадки в системе зажигания также могут привести к появлению нагара на поршне и п\его кольцах Закоксовывание колец вызывает снижение компрессии и повреждение стенок цилиндра.

Бывает также, что причиной поломки становятся некачественные либо поддельные детали или материалы, примененные при техническом обслуживании. Лучше приобретать их у официальных дилеров или в проверенных магазинах, заботящихся о своей репутации.

Перечень неисправностей КШМ

Наиболее распространенными поломками механизма являются:

  • износ и разрушение шатунных и коренных шеек коленвала;
  • стачивание, выкрашивание или плавление вкладышей подшипников скольжения;
  • загрязнение нагаром сгорания поршневых колец;
  • перегрев и поломка колец;
  • скопление нагара на поршневом днище приводит к его перегреву и возможному разрушению;
  • длительная эксплуатация двигателя с детонационными эффектами вызывает прогорание днища поршня.

Сочетание этих неисправностей со сбоем в системе смазки может вызвать перекос поршней в цилиндрах и заклинивание двигателя. Устранение всех этих поломок связано демонтажом двигателя и его частичной или полной разборкой.

Ремонт занимает много времени и обходится недешево, поэтому лучше выявлять сбои в работе на ранних стадиях и своевременно устранять неполадки.

Признаки наличия неисправностей в работе КШМ

Для своевременного выявления сбоев и начинающих развиваться негативных процессов в кривошипно- шатунной группе полезно знать из внешних признаков:

  • Стуки в двигателе, непривычные звуки при разгоне.  Звенящие звуки часто бывают вызваны детонационными явлениями. Неполное сгорание топлива во время рабочего такта и взрывообразное его сгорание на такте выпуска приводят к скоплению нагара на кольцах и днище поршня, к ухудшению условий их охлаждения и разрушению. Необходимо залить качественное топливо и проверит параметры работы системы зажигания на стенде.
  • Глухие стуки говорят об износе шеек коленвала. В этом случае следует прекратить эксплуатацию, отшлифовать шейки и заменить вкладыши на более толстые из ремонтного комплекта.
  • «Поющий» на высокой звонко ноте звук указывает на возможное начало плавления вкладышей или на нехватку масла при повышении оборотов. Также нужно срочно ехать в сервис.
  • Сизые клубы дыма из выхлопного патрубка свидетельствуют о избытке масла в рабочей камере. Следует проверить состояние колец и при необходимости заменить их.
  • Падение мощности также может вызываться закоксовыванием колец и снижением компрессии.

При обнаружении этих тревожных симптомов не стоит откладывать визит в сервисный центр. Заклиненный двигатель обойдется намного дороже, и по деньгам, и по затратам времени.

Обслуживание КШМ

Чтобы не повредить детали КШМ, нужно соблюдать все требования изготовителя по периодическому обслуживанию и регулярному осмотру автомобиля.

Уровень масла, особенно на не новом автомобиле, следует проверять ежедневно перед выездом. Занимает это меньше минуты, а может сэкономить месяцы ожидания при серьезной поломке.

Топливо нужно заливать только с проверенных АЗС известных брендов, не прельщаясь двухрублевой разницей в цене.

При обнаружении перечисленных выше тревожных симптомов нужно незамедлительно ехать на СТО.

Не стоит самостоятельно, по роликам из Сети, пытаться растачивать цилиндры, снимать нагар с колец и выполнять другие сложные ремонтные работы. Если у вас нет многолетнего опыта такой работы- лучше обратиться к профессионалам. Самостоятельная установка шатунного механизма после ремонта- весьма сложная операция.

Применять различные патентованные средства «для преобразования нагара на стенках цилиндров», «для раскоксовывания» разумно лишь тогда, когда вы точно уверены и в диагнозе, и в лекарстве.

Устройство КШМ

 

 

 

 

 КШМ ВАЗ 2110, 2111, 2112

Основные размеры КШМ ВАЗ 2110, 2111, 2112

показаны на рисунке. Хорошо зарекомендовали

себя двигателя ВАЗ 2110, они имеют много

взаимозаменяемых деталей КШМ с двигателями

ВАЗ 2108, ВАЗ 2109

Кривошипно-шатунный механизм (КШМ) преобразует прямолинейное возвратно-поступательные движения поршней, воспринимающих давление газов, во вращательное движение коленчатого вала.

Устройство КШМ можно разделить на две группы: подвижные и неподвижные.

Подвижные детали: 

поршень, поршневые кольца, поршневые пальцы и шатуны, коленчатый вал, маховик.

Блок-картер, головка блока цилиндров, гильзы цилиндров. Имеются также фиксирующие и крепежные детали.

Поршневая группа

Поршневая группа включает в себя поршень, поршневые кольца, поршневой палец с фиксирующими деталями. Поршень воспринимает усилие расширяющихся газов при рабочем ходе и передает ею через шатун па кривошип коленчатого вала; осуществляет подготовительные такты; уплотняет над поршневую полость цилиндра как от прорыва газов в картер, так и от излишнего проникновения в нее смазочного материала.

Коренные подшипники

Для коренных подшипников применяются подшипники скольжения, выполненные в виде вкладышей, основой которых является стальная лента толщиной 1,9—2,8 мм для карбюраторных двигателей и 3—6 мм для дизелей. В качестве антифрикционного материала вкладышей используют высокооловянистый алюминиевый сплав для карбюраторных двигателей и трехслойные с рабочим слоем из свинцовой бронзы.

Маховик

Маховик служит для уменьшения неравномерности вращения коленчатого вала, накопления энергии во время рабочего хода поршня, необходимой для вращения вала в течение подготовительных тактов, и вывода деталей КШМ из ВМТ (верхней мертвой точки) и НВТ (нижней мертвой точки).
В многоцилиндровых двигателях маховик является, в основном, накопителем кинетической энергии, необходимой для пуска двигателя и обеспечения плавного трогания автомобиля с места.


Маховики отливают из чугуна в виде лиска с массивным ободом и проводят его динамическую балансировку в сборе с коленчатым валом. На ободе маховика имеется посадочный поясок для напрессовки зубчатого венца для электрического пуска стартером. На цилиндрической поверхности маховика находятся метки или маркировочные штифты и надписи, определяющие момент прохождения ВМТ поршнем первого цилиндра. На торцевую рабочую поверхность опирается фрикционный диск сцепления. Для крепления его кожуха имеются резьбовые отверстия. Маховик центрируют по наружной поверхности фланца с помощью выточки, а положения его относительно коленчатого вала фиксируют установочным штифтом или несимметричным расположением отверстий крепления маховика.

Поршни

Форма и конструкция поршня, включая днище поршня и отверстие под поршневой палец, в значительной степени определяются формой камеры сгорания.

 Устройство шатуна

Шатун необходим для соединения поршня с коленчатым валом и передачи усилия от поршня к коленчатому валу

 

 

Устройство КШМ автомобиля. 

1 — стопорное кольцо, 2 — поршневой палец, 3 — маслосьемные кольца, 4 — компрессионные кольца, 5 — камера сгорания, 6 — днище поршня, 7 — головка поршня:     8 — юбка поршня;  9 —  поршень: 10 — форсунка; 11- шатун; 12  — вкладыш;  13 — шайба , 14 — длинный болт; 15 — короткий болт; 16 — крышка шатуна, 17  —  втулка шатуна;  18 — номер на шатуне; 19 — метка на крышке шатуна; 20 —  шатунный болт.

 

Поршень состоит из головки поршня и направляющей части — юбки поршня. С внутренней стороны имеются приливы — бобышки с гладкими отверстиями под поршневой палец. Для фиксации пальца в отверстиях проточены канавки под стопорные кольца. В зоне выхода отверстий на внешних стенках юбки выполняются местные углубления, где стенки юбки не соприкасаются со стенками цилиндров. Таким образом получаются так называемые холодильники. Для снижения температуры нагрева направляющей поршня в карбюраторных двигателях головку поршня отделяют две поперечные симметричные прорези, которые препятствуют отводу теплоты от днища.

Нагрев, а следовательно, и тепловое расширение поршня по высоте неравномерны. Поэтому поршни выполняют в виде конуса овального сечения. Головка поршня имеет диаметр меньше, чем направляющая. В быстроходных двигателях, особенно при применении коротких шатунов, скорость изменения боковой силы довольно значительна. Это приводит к удару поршня о цилиндр. Чтобы избежать стуков, при перекладке поршневые пальцы смещают на 1,4—1,6 мм в сторону действия максимальной боковой силы, что приводит к более плавной перекладке и снижению уровня шума.


Головка поршня состоит из днища и образующих ее стенок, в которых именно канавки под поршневые кольца. В нижней канавке находятся дренажные отверстия для отвода масла диаметром 2,5—3 мм. Днище головки является одной из стенок камеры сгорания и воспринимает давление газов, омывается открытым пламенем и горячими газами. Для увеличения прочности днища и повышения обшей жесткости головки се стенки выполняются с массивными ребрами. Днища поршней изготовляют плоскими, выпуклыми, вогнутыми и фигурными. Форма выбирается с учетом типа двигателя, камеры сгорания, процесса смесеобразования и технологии изготовления поршней.

Поршневые кольца

Поршневые кольца — элементы уплотнения поршневой группы, обеспечивающие герметичность рабочей полости цилиндра и отвод теплоты от головки поршня.

По назначению кольца подразделяются на:

Компрессионные кольца — препятствующие прорыву газов в картер и отводу теплоты в стенки цилиндра.

Маслосъемные кольца — обеспечивающие равномерное распределение масла по поверхности цилиндра и препятствующие проникновению масла в камеру сгорания.


Изготовляются кольца из специальною легированною чугуна или стали. Разрез кольца, называемый замком, может быть прямым, косым или ступенчатым. По форме и конструкции поршневые кольца дизелей делятся на трапециевидные, с конической поверхностью, и подрезом, маслосъемные, пружинящие с расширителем; поршневые кольца карбюраторных двигателей — на бочкообразные, с конической поверхностью со скосом, с подрезом; маслосьемные — с дренажными отверстиями и узкой перемычкой, составные предсталяют собой два стальных лиска (осевой и радиальный расширители).

Составное маслосъемное поршневое кольцо (а) и его установка в головке поршня двигателя: 1 — дискообразное кольцо; 2 — осевой расширитель; 3 — радиальный расширитель; 4— замок кольца; 5 — компрессионные кольца; 6 — поршень; 7 — отверстие в канавке маслосъемного кольца.

Для повышения износостойкости первого компрессионного кольца, работающего и условиях высоких температур  и граничного трения, его поверхность покрывают пористым хромом. Устанавливая на поршень поршневые кольца, необходимо следить за тем, чтобы замки соседних колец были смещены один относительно другого на некоторый угол (90 —180 градусов).

Поршневой палец обеспечивает шарнирное соединение шатуна с поршнем. Поршневые пальцы изготовляют из малоуглеродистых сталей. Рабочую поверхность тщательно обрабатывают и шлифуют. Для уменьшения массы палец выполняют пустотелым.

Установка поршневого пальца

Шатун шарнирно соединяет поршень с кривошипом коленчатого вала. Он воспринимает от поршня и передает коленчатому валу усилие давления газов при рабочем ходе, обеспечивает перемещение поршней при совершении вспомогательных тактов. Шатун работает в условиях значительных нагрузок действующих по его продольной оси.

Шатун состоит из верхней головки, в которой имеется гладкое отверстие под подшипник поршневого пальца; стержня двутаврового сечения и нижней головки с разъемным отверстием для крепления с шатунной шейкой коленчатого вата. Крышка нижней головки крепится с помощью шатунных болтов. Шатун изготавливают методом гарячей штамповки из высокочественной стали. Для более подробного изучения создан раздел «Устройство шатуна«.

Устройство шатуна

Для смазывания подшипника поршневого пальца (бронзовая втулка) в верхней головке шатуна имеются отверстие или прорези. В двигателях марки «ЯМЗ» подшипник смазывается под давлением, для чего в стержне шатуна имеется масляный канал. Плоскость разъема нижней головки шатуна может располагаться под различными углами к продольной оси шатуна. Наибольшее распространение получили шатуны с разъемом перпендикулярным к оси стержня, В двигателях марки «ЯМЗ» имеющим больший диаметр,  чем диаметр цилиндра, pазмер нижней головки шатуна, выполнен косой разъем нижней головки, так как при прямом разъеме монтаж шатуна через цилиндр при сборке двигателя становится невозможным. Для подвода масла к стенкам цилиндра на нижней головке шатуна имеется отверстие. С целью уменьшения трения и изнашивания в нижние головки шатунов устанавливают подшипники скольжения, состоящие из двух взаимозаменяемых вкладышей (верхнего и нижнею).

Вкладыши изготовляются из стальной профилированной ленты толщиной 1,3—1,6 мм для карбюраторных двигателей и 2—3,6 мм для дизелей. На ленту наносят антифрикционный сплав толщиной 0,25—-0,4 мм — высокооловянистый алюминиевый сплав (для карбюраторных двигателей). На дизелях марки «КамАЗ» применяют трехслойные вкладыши, залитые свинцовистой бронзой. Шатунные вкладыши устанавливаются в нижнюю головку шатуна с натягом 0,03—0,04 мм. От осевого смешения и провертывания вкладыши удерживаются в своих гнездах усиками, входящими в пазы, которые при сборке шатуна и крышки должны располагаться на одной стороне шатуна.

Устройство двигателя автомобиля не сложно для обучения, главное изучать материал последовательно и систематизированно.

СОДЕРЖАНИЕ:

1. Устройство КШМ двигателя

1.1 Подвижные детали КШМ

1.2 Неподвижные детали КШМ

2. Неисправности КШМ двигателя

2.1 Звуки неисправностей двигателя (стуки двигателя)

2.2 Признаки и причины неисправностей двигателя автомобиля

3. Капитальный ремонт двигателя автомобиля

 

Как устроен и для чего служит кривошипно-шатунный механизм? 7 основных неисправностей, которые могут возникнуть в его работе

Если у вас есть автомобиль, то с вероятностью 99.99%, в нём есть кривошипно-шатунный механизм (КШМ). Его нет только в «чистых» электромобилях, а также автомобилях с роторно-поршневым двигателем, а также в газотурбинных двигателях. Все остальные автомобильные двигатели внутреннего сгорания построены именно на базе КШМ, и неважно, дизельные они или бензиновые. Данная система передаёт энергию горения рабочей смеси через коленчатый вал и далее трансмиссию на колёса автомобиля, преобразуя возвратно-поступательное (туда и обратно) движение поршней в цилиндрах мотора во вращательное движение коленчатого вала.

Содержание статьи

Устройство механизма

Классический кривошипно-шатунный механизм был известен ещё в Древнем Риме. Использовался похожий принцип в Римской пилораме, только там вращение, под воздействием течения реки, водяного колеса превращалось в возвратно-поступательное движение пилы.

В паровых машинах также использовался КШМ, похожий на использующийся сейчас в автомобильных двигателях внутреннего сгорания (ДВС). Только в нём поршень был соединён с шатуном через шток и цилиндр низкого давления. Схожая конструкция используется иногда в ДВС и по сей день.

В так называемых крейцкопфных двигателях поршень жёстко соединён с крейцкопфом – деталью, движущейся по неподвижным направляющим в одном измерении, как и поршень, через шток, а далее по привычной схеме – шатун с коленвалом. Это позволяет увеличить рабочий ход поршня, а иногда делает цилиндр двусторонним, в таких конструкциях добавлена ещё одна камера сгорания. Такой тип КШМ применяется чаще всего в судовых дизелях и другой крупной технике.

Кривошипно-шатунный механизм состоит из двух основных групп деталей – подвижных и неподвижных:

  1. К подвижным частям КШМ относятся следующие детали: поршни, которые вместе с кольцами и пальцами объединены в поршневую группу, шатуны, коленчатый вал (в просторечном сокращении — коленвал), подшипники коленвала и маховик.
  2. Неподвижные – это картер, объединённый с блоком цилиндров, гильзы цилиндров, головка блока цилиндров. Также к ним относятся поддон (нижний картер), полукольца коленвала, картер маховика и сцепления, а также кронштейны и детали крепежа.

Иногда выделяют и цилиндропоршневую группу, в которую входит поршневая и гильза цилиндра.

Блок цилиндров

Блок цилиндров сейчас неотделим от картера блока. Так, кстати, было не всегда – на старых двигателях (у «Запорожца», например) они могли быть изготовлены раздельно. Именно картер вместе с блоком цилиндров – основной узел конструкции двигателя автомобиля.

Внутри блока и происходит вся полезная работа двигателя. К блоку цилиндров крепятся внизу — нижний картер (поддон), сверху — головка блока, сзади — картер маховика, топливная, выпускная системы и другие детали двигателя. Сам блок прикреплён к шасси автомобиля через специальные «подушки».

Материал, из которого изготовлена эта важная часть двигателя – чаще всего либо алюминий, либо чугун. На спортивных автомобилях могут применяться и композитные материалы. В блок запрессованы съёмные гильзы, которые облегчают ход поршней и ремонтопригодность блока – то есть его расточку под «ремонтные» поршни и кольца. Гильзы делают из чугуна, стали или композитных сплавов. Существует два вида гильз:

  • «сухие» — когда внешняя поверхность гильз не омывается охлаждающей жидкостью;
  • «мокрые» — когда гильзу снаружи охлаждает поток жидкости.

Каждый вариант имеет свои достоинства и недостатки.

Поршни

Поршень – это металлическая деталь, которая имеет форму стакана, и в некоторых автопредприятиях водители и автослесари со стажем старые поршни, очищенные от нагара, в качестве стаканов и использовали. Однако основное его предназначение, естественно, не в этом, а для того, чтобы преобразовывать потенциальную энергию давления и термическую энергию температуры газов в кинетическую энергию вращения коленчатого вала в момент рабочего хода.

Во время тактов впуска он служит в качестве насоса, затягивающего воздух или горючую смесь, в ходе такта сжатия сжимает её, а в ходе такта выпуска — помогает удалению отработанных газов. Во время рабочего хода (точнее, чуть раньше) смесь воспламеняется (или форсунка впрыскивает топливо на дизельных двигателях), и горящие газы давят на поршень, заставляя его выполнять работу по преобразованию термической энергии в кинетическую.

Поршень современного автомобильного двигателя выполнен чаще всего из сплавов на основе алюминия. Они обеспечивают хороший отвод лишнего тепла, к тому же довольно лёгкие.

Составные части поршня автомобильного двигателя – это днище, уплотняющяя часть и юбка. Поршень соединяется с шатуном при помощи находящегося в юбке пальца. Для обеспечения плотности соединения поршня со стенкой цилиндра применяются поршневые кольца.

Поршневые кольца

Это плоские незамкнутые (с разъёмом в несколько десятых долей миллиметра) стальные или чугунные кольца, надеваемые в специальные канавки на уплотнительную часть поршня. Они служат для нескольких целей:

  1. Уплотнение. Качественные, неизношенные кольца повышают компрессию (давление в цилиндре).
  2. Теплопередача. Компрессионные кольца передают лишнее тепло гильзе цилиндра, предотвращая перегрев двигателя.
  3. Не пропускают моторное масло из картера в камеру сгорания, но оставляют на стенках гильзы небольшой слой масла для смазки цилиндра. Самое нижнее кольцо называется маслосъёмным. Его конструкция специально разработана под эту задачу.
Поршневые пальцы

Поршневой палец нужен для того, чтобы связать поршень с шатуном. Он находится во внутренней части юбки поршня и представляет собой металлический цилиндр, отдалённо похожий на палец (отсюда и название). Шатун не крепится жёстко на пальце, ведь надо обеспечивать максимально ровную передачу крутящего момента от поршня к шатуну и далее. Выполнены пальцы обычно из легированной стали.

Пальцы делятся на фиксированные и плавающие. Фиксированный жёстко прикреплён к юбке поршня, и двигается на нём только шатун, а плавающий палец как в поршневой юбке, и на шатуне может крутиться. Сейчас в конструкциях автомоторов преобладают плавающие пальцы, обеспечивающие более полную и плавную передачу крутящего момента и снижающие нагрузку на детали КШМ.

Шатун

Для того, чтоб передать крутящий момент с поршня на коленвал, служит шатун, соединяющий две этих важных детали. Для того, чтобы ремонт шатуна не вызывал особых трудностей, в нём применяются специальные вкладыши, фактически разборный подшипник скольжения, хотя в некоторых двигателях с малой скоростью вращения коленвала по-прежнему применяются баббитовые вкладки, а в быстроходных моторах в обеих головках шатуна (как нижней, так и верхней) установлены подшипники качения. По форме шатун похож на рычаг или гаечный ключ с двутавровым сечением. Его верхняя, обычно неразъёмная головка соединяет его с пальцем поршня, а нижняя, разъёмная соединяет шатун с коленчатым валом. Делают шатуны чаще всего из легированной, иногда из углеродистой стали.

Коленчатый вал

Коленчатый вал, или сокращённо коленвал – одна из важнейших деталей мотора, впрочем, лишних деталей не бывает. Он имеет форму вала с «искривлениями» в сторону, к которой через оси прикреплены шатуны двигателя. Он состоит из следующих деталей:

  1. Шейки. Они нужны для того, чтобы закрепить коленвал на картере и шатуны на нём. Подразделяются на коренные и шатунные. На коренных крепится к картеру сам коленчатый вал, на шатунных шейках к коленвалу крепятся шатуны.
  2. Щёки – они и являются своего рода «коленями» коленчатого вала, именно они крутятся вокруг оси коленчатого вала. Щёки коленвала соединяют коренные и шатунные шейки.
  3. Передняя выходная часть вала. К ней присоединены шкивы отбора мощности для привода через ремень, цепь или шестерни распредвала, системы охлаждения генератора и других агрегатов.
  4. Задняя выходная часть вала. Она соединена с маховиком и служит для отбора мощности для «основного предназначения» автомобиля – для движения.

В конструкции коленчатого вала также предусмотрены дополнительные детали, например, противовесы, предназначенные для компенсации вибраций вала, возникающих при ударных нагрузках.

Коленчатые валы чаще всего изготавливаются либо из стали, либо из высококачественного лёгкого чугуна. Чугунные коленвалы изготавливаются при помощи литья, стальные – при помощи штамповки.

Картер двигателя

Картер, отливаемый вместе с блоком цилиндров – основная деталь двигателя автомобиля, можно сказать, что рама двигателя. Именно на картере закреплены основные части двигателя, в нём крутится коленчатый вал, в цилиндрах двигаются поршни и происходит непосредственный процесс превращения энергии сгорания топлива в энергию вращения колёс вашего автомобиля.

Ещё картер является основным местом для размещения моторного масла, которое смазывает двигатель. Для хранения масла также предназначен поддон – нижняя часть картера.

Принцип работы кривошипно-шатунного механизма

Во время основного такта работы автомобильного двигателя – рабочего хода (расширения), горящие газы давят на поршень, а тот двигается вниз — от верхней мёртвой точки к нижней, тем самым передавая энергию посредством пальца и шатуна на коленчатый вал. Шатун может ограниченно поворачиваться и вокруг оси пальца поршня, и вокруг шатунной шейки коленвала, и таким образом поступательное движение поршня превращается во вращательное.

Стоит заметить, что при остальных тактах коленчатый вал через шатун, наоборот, сообщает возвратно-поступательное движение поршню. Где он его берёт? Из «рабочих» цилиндров, энергии коленвала и маховика, а при запуске – стартера.

Неисправности, возникающие при работе КШМ и их причины

Неполадки и поломки в кривошипно-шатунном механизме могут произойти в самых разных его узлах. Чтобы свести риск возникновения этих неприятностей до минимума, необходимо знать, отчего они происходят. Чаще всего это нагар на деталях и их износ. Наиболее часто происходят поломки КШМ от использования некачественного автомобильного топлива и масла. Особенно это чревато для дизелей, которые требовательны к качеству горюче-смазочных материалов, что может вывести из строя не только КШМ. Редкая смена масла, несвоевременная замена топливных, воздушных и масляных фильтров – всё это также несёт потенциальную угрозу поломок. Может послужить причиной неисправности перегрев двигателя, а также утечка и снижение уровня моторного масла в двигателе.

Перегрев двигателя может привести даже к заклиниванию. Чтобы этого не случилось, заливайте качественную охлаждающую жидкость и следите за состоянием системы охлаждения.

Бывает, что проблема в системе питания или в зажигании. Тогда смесь сгорает не полностью или неравномерно.

Ещё одна распространённая причина поломок – это использование некачественных запчастей. Не покупайте фейк и пользуйтесь услугами проверенных автосервисов.

Перечень неисправностей КШМ

Главные неприятности, которые могут случится с кривошипно-шатунным механизмом:

  1. Как шатунные, так и коренные шейки коленчатого вала подвержены износу и механическим повреждениям.
  2. Износ, механические повреждения и даже расплавление могут угрожать и вкладышам (подшипникам) шеек коленвала.
  3. «Болезни» поршневых колец – это закоксовывание не до конца сгоревшими продуктами горения (углеводороды окисляются только до углерода), их залегание и даже поломки, что может привести к фатальным последствиям.
  4. Цилиндропоршневая группа также подвержена износу. В современных «движках» это не так заметно, всё-таки они созданы по последнему слову техники, но у каждой детали имеется конечный ресурс.
  5. На днище поршня может отложиться нагар.
  6. В деталях могут появиться трещины, они могут прогореть, обломиться и даже расплавиться.
  7. Двигатель может даже заклинить.

Признаки наличия неисправностей в работе КШМ

Могут насторожить посторонние стуки в двигателе. Возможно, это связано с детонацией или вам попалось не слишком качественное топливо. Последствия как детонации, так и некачественного топлива могут быть печальными. Звук при детонации более звонкий, а вот глухой звук может свидетельствовать о том, что износились шейки коленвала. Если же он совсем звонкий и происходит не только при резком увеличении оборотов (например, если вы быстро тронулись с места), то вполне возможно, что вкладыши шейки коленвала начинают плавиться. Возможно, причиной масляное голодание, но так или иначе – в сервис.

Также многое может сказать дым из двигателя. Если он сизый, то значит, что в камеру сгорания попадает масло. Возможно, виной тому маслосъёмные колпачки ГРМ, а возможно, проблема в поршневых кольцах. Накопление нагара на поршнях и цилиндрах приводит к увеличению трения и повышенному износу деталей. Если проблема в кольцах, то будет снижена компрессия, хотя понижение компрессии может быть связано и с другими причинами.

Обслуживание КШМ

Прежде всего, общие советы: «машина любит ласку, чистоту и смазку». Следует вовремя проверять уровень масла, не допускать перегрева двигателя и заправляться только качественным горючим. Серьёзные проблемы с КШМ решаются только в автосервисе. Разумеется, есть автолюбители, которые самостоятельно могут расточить цилиндр до ремонтного размера, но это всё же характерно для не самых новых автомобилей.

В «закоксованных» двигателях можно провести раскоксовку, которая делается как с разбором двигателя, так и при помощи специальных средств – без такового. Однако, подобные манипуляции лучше доверить профессионалам. Соблюдайте сроки ТО.

Заключение

Кривошипно-шатунный механизм – это важнейший агрегат в автомобиле. От его функционирования зависит состояние всего автомобиля и настроение его владельца. Следите за его технической исправностью, и двигатель будет работать долго, радуя вас мощностью и экономичностью.

мьютексов — как мне работать с мьютексами в подвижных типах в C ++?

Переполнение стека
  1. Около
  2. Продукты
  3. Для команд
  1. Переполнение стека Общественные вопросы и ответы
  2. Переполнение стека для команд Где разработчики и технологи делятся частными знаниями с коллегами
  3. Вакансии Программирование и связанные с ним технические возможности карьерного роста
  4. Талант Нанимайте технических специалистов и создавайте свой бренд работодателя
.

Балки — закреплены на одном конце и поддерживаются на другом

Балка закреплена на одном конце и поддерживается на другом — одноточечная нагрузка
Изгибающий момент

M A = — F ab (L + b) / (2 L 2 ) (1a)

где

M A = момент на неподвижном конце (Нм, фунт f футов)

F = нагрузка (Н, фунт f )

M F = R b b (1b)

где

M F = момент в точке нагрузки F (Нм, фунт f футов)

R b = опорная нагрузка на опоре B (Н, фунт f )

Прогиб

δ F = F a 3 b 2 (3 L + b) / ( 12 л 3 EI) (1c) 9 0073

где

δ F = прогиб (м, фут)

E = Модуль упругости (Па (Н / м 2 ), Н / мм 2 , psi)

I = Момент инерции площади (м 4 , мм 4 , дюйм 4 )

Реакции опоры

R A = F b (3 л 2 — b 2 ) / (2 л 3 ) (1d)

где

R A = опорная сила в A (Н, фунт f )

R B = F a 2 (b + 2 L) / (2 L 3 ) (1f)

где

R B = сила опоры в B (Н, фунт f )

Балка, закрепленная на одном конце и поддерживаемая на другом — постоянная нагрузка
Изгибающий момент

M A = — q L 2 /8 (2a)

где

M A = момент на неподвижном конце (Нм, фунт на футов)

q = длительная нагрузка (Н / м, фунт на / фут)

M 1 = 9 q L 2 / 128 (2b)

где

M 1 = максимальный момент при x = 0.625 L (Нм, фунт f футов)

Прогиб

δ max = q L 4 / (185 EI) (2c)

где

δ max = максимальный прогиб при x = 0,579 L (м, фут)

δ 1/2 = q L 4 / (192 EI) (2d)

где

δ 1/2 = прогиб при x = L / 2 (м, фут)

Реакции опоры

R A = 5 q L / 8 (2e)

R B = 3 q L / 8 (2f)

Балка, закрепленная на одном конце и поддерживаемая на другом — непрерывная уменьшающаяся нагрузка
Изгибающий момент

M A = — q L 2 /15 (3a)

, где

M A = момент на неподвижном конце (Нм, фунт f футов)

q = непрерывно снижающаяся нагрузка (Н / м, фунт f / футов)

M 1 = q L 2 /33.6 (3b)

где

M 1 = максимальный момент при x = 0,553 L (Нм, фунт f фут)

Прогиб

δ max = q L 4 / (419 EI) (3c)

где

δ max = максимальный прогиб при x = 0,553 L (м, фут)

δ 1/2 = q L 4 / (427 EI) (3d)

где

δ 1/2 = прогиб при x = L / 2 (м, фут)

Реакции опоры

R A = 2 q L / 5 (3e)

R B = q L / 10 (3f)

Балка, закрепленная на одном конце и поддерживаемая на другом — Момент на поддерживаемом конце
Изгибающий момент

M A = -M B /2 (4a)

где

M A = момент на неподвижном конце (Нм, фунт f футов)

Прогиб

δ max = M B L 2 / (27 EI) (4b)

где

δ max = max прогиб при x = 2/3 L (м, фут)

Реакции опоры

R A = 3 M B / (2 L) (4c)

R B = — 3 м B / (2 л) (4d)

.

Лезвия челюсти, фиксированные и подвижные

Поиск решений Интернет-магазин en
  • английский
  • Deutsch
.

% PDF-1.4 % 14 0 объект > endobj xref 14 62 0000000016 00000 н. 0000001586 00000 н. 0000001733 00000 н. 0000002052 00000 н. 0000002270 00000 н. 0000002350 00000 н. 0000002447 00000 н. 0000002557 00000 н. 0000002982 00000 н. 0000003031 00000 н. 0000003080 00000 н. 0000003293 00000 н. 0000003481 00000 н. 0000003520 00000 н. 0000003569 00000 н. 0000003618 00000 н. 0000003667 00000 н. 0000003689 00000 н. 0000007038 00000 п. 0000007060 00000 п. 0000010296 00000 п. 0000010318 00000 п. 0000012975 00000 п. 0000012997 00000 п. 0000015852 00000 п. 0000015874 00000 п. 0000018750 00000 п. 0000018772 00000 п. 0000021667 00000 п. 0000022001 00000 п. 0000022428 00000 п. 0000022642 00000 п. 0000022864 00000 п. 0000022886 00000 п. 0000025941 00000 п. 0000025963 00000 п. 0000029232 00000 п. 0000044523 00000 п. 0000045374 00000 п. 0000053122 00000 п. 0000053979 00000 п. 0000054641 00000 п. 0000057318 00000 п. 0000058175 00000 п. 0000059032 00000 н. 0000072221 00000 п. 0000132349 00000 н. 0000135453 00000 п. 0000139595 00000 п. 0000141689 00000 н. 0000143944 00000 н. 0000147063 00000 н. 0000151908 00000 н. 0000155139 00000 н. 0000164393 00000 н. 0000172397 00000 н. 0000178517 00000 н. 0000180853 00000 п. 0000185648 00000 н. 0000185726 00000 н. 0000001784 00000 н. 0000002031 00000 н. трейлер ] >> startxref 0 %% EOF 15 0 объект > endobj 16 0 объект > endobj 74 0 объект > поток Hb«a«tv.6Ā # Vp? 2A0K? 10py30p [2Z0Ne8pȾ _oVN ٙ + ٙ 8). / qr -e`EraJ @

.

Кривошипный механизм — обзор

14.1 Гидравлическая система шагового винта корабля

Судовой гребной винт преобразует энергию главного двигателя корабля в кинетическую энергию корабля. Как показано на рис. 14.1, когда главный двигатель тянет гребной винт для вращения с угловой скоростью w, гребной винт отталкивает воду слева от судна в направлении корабля, так что корабль получает тягу p , что перемещает вправо.

Рисунок 14.1. Принципиальная схема винта шага.

Чтобы более эффективно отбрасывать воду и создавать большую тягу, лопасть гребного винта должна иметь спиральную поверхность. Таким образом, пересечение цилиндрической поверхности, которая соосна гребному винту и лопасти гребного винта на рис. 14.1F, представляет собой спиральную линию. Если треугольник с основанием 2p r и высотой H 1 , как показано на рис. 14.1G, катится по цилиндрической поверхности с радиусом r , скошенная кромка этого треугольника становится спиралью. изображенный на рис.14.1F. H 1 и q 1 называются углом наклона спирали и углом наклона спирали соответственно.

На рис. 14.1F поперечное сечение лопасти, прорезанное цилиндрической поверхностью, соосной с гребным винтом, известно как сечение лопасти. Некоторые лопасти гребных винтов могут регулировать свое вращение вокруг гребного вала r. До и после вращения, если поверхность цилиндра с радиусом r открывается в плоскость, то профиль лопасти будет таким, как показано на рис.14.1G 1, 2. Сравнение показывает, что шаг переносится с H 1 на H 2 , а угол тангажа переносится с q 1 на q 2 . От этого происходит название винт шага.

Как показано на рис. 14.1E, кривошипно-шатунный механизм ползуна представляет собой обычно используемый поворотно-лопастной механизм. Когда толкатель 1 движется в осевом направлении, скользящий блок 2 приводится в движение, чтобы скользить в канавке, затем ползун 2 приводит в движение кривошип 3 и лопасть, соединенную с кривошипом 3, для вращения вокруг вала гребного винта с помощью вала штифта для регулировки шага лезвие.Когда весло настроено на состояния, показанные на рис. 14.1A, B, C и D, соответствующая скорость корабля — вперед, замедление, остановка и отступление. Вышеуказанные характеристики шагового винта дают ему следующие основные преимущества:

1.

В любых навигационных условиях мощность главного двигателя может быть полностью использована для увеличения выносливости корабля.

2.

При условии, что направление и скорость главного двигателя постоянны, гребной винт шага может изменять навигационное состояние судна, регулируя шаг.Таким образом, время и расстояние, необходимое для изменения состояния плавания корабля, сокращаются, а маневренность корабля значительно улучшается.

3.

Когда судно меняет навигационное состояние, скорость и управляемость главного двигателя могут быть полностью неизменными. Таким образом, можно значительно уменьшить количество запусков и регулировку частоты вращения основного двигателя, что продлевает срок службы основного двигателя.

4.

После использования гребного винта шага, если на судне в качестве главного двигателя используется дизельный двигатель, весь набор реверсивного оборудования может быть исключен; если в качестве основного двигателя используется газовая турбина, нет необходимости устанавливать отдельный реверсивный двигатель.В результате легко реализовать автоматизацию управления главным двигателем.

Недостаток заключается в том, что механизм сложен и, следовательно, создает ряд проблем. Это необходимо учитывать при проектировании гидравлической системы.

Требования к гидравлической системе винта шага следующие:

1.

Жизнеспособность силового агрегата требует, чтобы гидравлическая система гребного винта шага приняла соответствующие технические меры для его удовлетворения.Например, для устранения сбоев питания всего корабля, сбоев управления и других серьезных сбоев обычно используется несколько источников энергии. Кроме того, должны быть созданы взаимные помехи между источниками энергии и устройствами защиты.

2.

Гидравлическая система гребного винта с регулируемым шагом является более крупной силовой системой на корабле, и внешняя нагрузка сильно варьируется. Как показано на рис. 14.2, давление в системе относительно высокое, когда шаг изменяется, и давление низкое, когда шаг стабильный, особенно когда скорость нормальная, давление масла приближается к нулю.Когда шаг регулируется, производительность насоса большая, но когда шаг стабильный, насосу нужно только компенсировать утечку в системе. Следовательно, необходимо настроить схему разгрузки, чтобы уменьшить потери мощности и нагрев масла в системе.

Рисунок 14.2. Напорные характеристики гидросистемы винта шага на регулируемом и стабильном шаге.

3.

Когда лопасть отрегулирована на требуемый шаг, она должна иметь возможность «заблокироваться» для достижения «стабильного шага», поэтому следует установить схему блокировки.Когда лопасть переходит от положительного шага к нулевому, гидродинамический момент представляет собой активный крутящий момент (состояние отрицательного крутящего момента), который должен быть в состоянии предотвратить чрезмерное вращение лопасти вокруг вала гребного винта.

4.

Чтобы уменьшить массу и размер системы (особенно размер корпуса гребного винта), в большинстве гидравлических систем используется среднее и высокое давление, поэтому необходимо решить некоторые технические проблемы большого масштаба. диаметр высокоскоростного поворотного шарнира.

5.

Существуют определенные требования к диапазону шага, времени и точности винта шага.

В дополнение к вышесказанному, гидравлический удар системы должен быть небольшим, способным предотвратить проникновение морской воды в корпус гребного винта, простым в обслуживании и экономичным. Кроме того, следует установить индикатор угла наклона спирали.

Гидравлическая система винта шага такая же, как гидравлическая система рулевого двигателя; бывают также открытого типа, закрытого типа, открытого и закрытого контура.Обычно используется замкнутая система. В следующих разделах анализируются две типичные гидравлические системы гребного винта шага.

14.1.1 Открытая система

На рис. 14.3 показана открытая гидравлическая система гребного винта шага. Эта открытая система была представлена ​​компанией KAMEWA, Швеция. Схема системы представлена ​​на рис. 14.3А. Фактический угол винта q 2 , управляемый гидроцилиндром 15 шага, сравнивается с требуемым углом спирали q 1 основной команды после обратной связи и преобразуется в сигнал напряжения u q , который отражает ошибку угла наклона спирали. q 1 — q 2 900 16.После того, как сигнал напряжения u q усилен фазочувствительным выпрямителем, можно управлять коммутацией и размером открытия пропорционального электромагнитного реверсивного клапана 8, чтобы контролировать положительный и отрицательный полюс угла спирали и скорость шага винт регулируемого шага.

Рисунок 14.3. Открытая гидравлическая система с гребным винтом регулируемого шага.

Например, ручка используется для поворота потенциометра на угол в определенном направлении.Если есть ошибка между желаемым углом спирали и фактическим углом спирали — то есть сигнал ошибки u q с определенной полярностью вводится в систему — тогда пропорциональный электромагнит D 2 входов клапана 8 ток I 2 соответствует u q . Клапан 8 смещен вправо и открывается пропорционально I 2 , а масло, выпускаемое насосом 1 и 2 , поступает в правую камеру цилиндра 15 с правой стороны клапанов 8, 10. и 14.Возвратное масло в левой камере цилиндра 15 проходит через клапан 9 и правую сторону клапана 8 в топливный бак. Шток поршня цилиндра 15 регулировки шага выдвигается, чтобы толкать шток механизма поворотной лопасти на фиг. 14.1E, заставляя лопасти вращаться вокруг вала гребного винта до тех пор, пока лопасть не будет отрегулирована на желаемый угол спирали q 1 . Затем сигнал ошибки u q исчезает, клапан 8 возвращается в среднее положение, а клапан 14 блокирует правую камеру гидроцилиндра 15 шага для поддержания стабильного шага.

На рис. 14.3 клапан 13 используется для определения управляющего давления цилиндра шага. Рабочее давление цилиндра шага в стабильном шаге ниже; максимальное — 3 МПа. Следовательно, управляющее давление масла регулируемого насоса 1 и 2 низкое, и насос 1 и 2 работают с небольшой производительностью, чтобы дополнить потребность в утечке цилиндра с регулируемым шагом. При регулировке расстояния рабочее давление цилиндра 15 выше, а максимальное — 7.5 МПа. В это время более высокое управляющее давление заставляет насосы 1 и 2 достичь максимальной производительности для удовлетворения потребности в быстром регулировании. Следовательно, система представляет собой систему, адаптирующуюся к потоку, с меньшими потерями энергии.

При фиксированном шаге гидравлический обратный клапан 14 используется для блокировки правой камеры цилиндра 15. Если шаг остается стабильным в течение длительного времени, угол спирали лопасти уменьшается из-за утечки масла под давлением правого цилиндра. камера, клапан 8 переставляется в нужное положение, затем насос 1 и 2 с небольшим потоком через правую сторону клапана 8 заполняет правую камеру цилиндра маслом.

В системе используется конструкция с резервированием, и надежность системы относительно высока. Даже если насос 1 или 2 поврежден, система все равно может работать; односторонние клапаны 2 и 3 используются для предотвращения столкновения двух насосов. Если пропорциональный электромагнитный направляющий клапан 8 поврежден, пока электромагнит D 3 и D 4 находятся под напряжением, то клапаны 9 и 10 закрываются, а клапан 7 находится в управлении. Когда электромагнит клапана 7 поврежден, клапан 7 также может управляться вручную.Когда вся система повреждена, весло для измерения расстояния можно отрегулировать на положительный шаг с помощью ручного насоса 3 . Клапан 16 служит предохранительным клапаном для системы, а клапан 1 является предохранительным клапаном для насоса с регулируемым контуром регулирования 1 и 2 . Клапаны 1 и 16, челночный клапан 13 и клапаны 9 и 10 — все вставные, вставленные в один и тот же блок клапанов картриджа. Клапаны 7 и 8 и реле давления 5 и 6 соединены пластинчатым типом и также расположены на поверхности блока плунжерных клапанов.Поэтому степень интеграции этой системы очень высока.

14.1.2 Замкнутая система

На рис. 14.4 показана замкнутая гидравлическая система двухшагового гребного винта с замкнутым контуром управления. Ниже анализируется принцип работы одной гидравлической системы гребного винта.

Рисунок 14.4. Закрытая гидросистема с винтом регулируемого шага.

Гидравлическое масло, отводимое вспомогательным насосом C 1 и C 2 , делится на три маршрута: один используется для управления регулируемым механизмом главного насоса A 1 , A 2 и A 3 ; через односторонний клапан 1 или 2 масло заливается в низковольтную сторону главной цепи; а левый переливается через предохранительный клапан 8, а затем возвращается в резервуар после прохождения через корпус насоса основного насоса для охлаждения основного насоса.Клапан 8 используется для регулировки рабочего давления вспомогательного насоса.

Когда поступает сигнал полярной ошибки, соленоидный клапан 10 меняет направление влево. Масло, выпускаемое вспомогательным насосом, поступает в цилиндр 12 через клапан 10 и заставляет регулируемый механизм насоса A 1 отклоняться из нулевого положения в другое направление. Таким образом, масло, выпускаемое правой камерой насоса A 1 , разделяется на два пути: первый — в малую камеру цилиндра B 1 ; а другие плечи открывают клапан 5 через масляный контур гидравлического обратного клапана 5 (пунктирная линия на рисунке), таким образом возвращая масло в цилиндр B 1 большая полость, за исключением насоса A 1 всасывание масла, излишек масла может обратный поток в бак через клапан 5 и обратный клапан 7.Шток цилиндра B 1 перемещается вправо для регулировки шага. Когда лопасть гребного винта достигает желаемого шага, сигнал ошибки исчезает, клапан 10 возвращается в среднее положение, а пружина в цилиндре 12 заставляет регулируемый механизм главного насоса A 1 вернуться в нулевое положение. На этом этапе насос A1 эквивалентен запорному клапану для поддержания шага.

В условиях отрицательного момента насос A 1 находится в состоянии гидравлического двигателя. Он затягивает вращение гребного винта вместе с основным тянущим насосом, чтобы избежать превышения скорости вращения лопастей вокруг вала гребного винта.Это также называется «ограничением скорости регенерации», и эффективность системы высока.

Односторонние клапаны на вспомогательном насосе C 1 и выход C 2 используются для предотвращения взаимного влияния двух насосов. Односторонние клапаны 3 и 4 и перепускной клапан 6 вместе образуют двунаправленный предохранительный клапан. При выходе из строя основного насоса A 1 или A 2 вместо него можно использовать основной насос A 3 . Когда соленоидный клапан 10 выходит из строя, ручной реверсивный клапан 11 может использоваться в аварийном режиме.Следовательно, надежность системы относительно велика.

Механизмы: кривошипно-поршневые — BirdBrain Technologies

В этом уроке вы расширите кривошипно-шатунный механизм, чтобы создать кривошипно-поршневой механизм. Посмотрите это видео, чтобы увидеть, как это будет выглядеть.

Этот механизм состоит из четырех частей:

  • Кривошип прикреплен к двигателю, который его вращает.
  • Шток прикреплен к кривошипу, а поршень на шарнирах , которые могут свободно вращаться.
  • Направляющая зафиксирована на месте; его цель — заставить поршень двигаться по прямой. Поршень может свободно двигаться вверх и вниз по прямой, но не может вращаться.

При вращении кривошипа поршень движется вверх и вниз в линейном возвратно-поступательном движении. Кривошипно-поршневая система преобразует вращательное движение в поступательное. Линейное движение может быть вертикальным или горизонтальным (или в другом направлении), в зависимости от ориентации направляющей.

Необходимые материалы
Бумажный шаблон (см. Материалы для учителей)

При печати шаблона обязательно распечатайте его в реальном размере (без масштабирования) на 8.Бумага 5 x 11 дюймов. Вы будете использовать шаблон, чтобы вырезать картон, как показано в приведенных ниже инструкциях. Обязательно используйте картон толщиной менее дюйма.

Другие материалы
  • кривошипно-шатунный механизм (из урока кривошипа)
  • 1 Фрикционный колышек оси Technic
  • 1 Балка Technic 13M
  • очиститель труб
  • линейка или рулетка
  • секундомер
Сборка кривошипно-поршневого механизма
  1. Для этого урока вам понадобится кривошипно-шатунный механизм.Если вы еще не закончили урок по маневрированию, сделайте это в первую очередь.
  2. Затем используйте это видео, чтобы собрать кривошипно-поршневой механизм.

  3. Присоедините двигатель к порту двигателя 1 на доске Hummingbird. Напишите простую программу для включения мотора. Наблюдайте за движением механизма.
Графическое изображение положения поршня

Подумайте о запуске таймера при включении двигателя. По прошествии секунд кривошип вращается, а поршень перемещается вверх и вниз.Мы могли бы построить график со временем по оси абсцисс и положением поршня по оси ординат. Этот график будет выглядеть примерно так, как изображенная ниже кривая.

На рисунке выше показан только один оборот кривошипа. По мере того как кривошип вращается снова и снова, эта кривая будет повторяться. Этот тип периодического движения называется волной.

  1. Самая высокая точка волны называется пиком , а самая низкая точка называется минимумом . Обозначьте один пик и одну впадину на графике выше.
  2. Расстояние между пиком и впадиной называется высотой волны . Обозначьте высоту волны на графике выше.
  3. Как определить высоту волны поршня? Измерьте это значение, а затем сравните свой метод и ответ со своими одноклассниками.
  4. Волну часто описывают по амплитуде, а не по высоте. Амплитуда составляет половину высоты волны. Найдите амплитуду поршневой волны.
Изменение длины кривошипа

Теперь вы исследуете, как можно изменить волну поршня, изменив длину кривошипа.Вы можете изменить длину рукоятки, используя другие отверстия по ее длине.

  1. Переместите соединительный штифт на конце кривошипа в соседнее отверстие.

  2. Измерьте амплитуду поршневой волны.
  3. Снова измените длину рукоятки. На этот раз поместите соединительный штифт между двумя соединительными штифтами, которые соединяют кривошип с адаптером двигателя.
  4. Измерьте амплитуду поршневой волны.
  5. Как амплитуда поршневой волны связана с длиной кривошипа?
  6. Может ли шток быть короче кривошипа? Почему или почему нет?
Период поршневой волны

Период времени между одним пиком и следующим называется периодом волны.

  1. Установите 20 оборотов двигателя.
  2. Воспользуйтесь секундомером, чтобы измерить, сколько времени нужно кривошипу, чтобы повернуться 10 раз.
  3. Какой период волны?
  4. Заполните таблицу ниже.
  5. Как период волны связан со скоростью двигателя? Угадайте период скорости 50 и подтвердите свой ответ.
  6. Проверьте свой ответ на предыдущий вопрос. Насколько близко было ваше предсказание?
Использование кривошипов и поршней для создания роботов

Кривошипно-поршневые механизмы используются в роботах для линейного движения в определенном направлении.Например, в этом видео показан проект, в котором поршень используется для перемещения персонажа вверх и вниз. Можете ли вы определить детали механизма на видео? Эта роботизированная черепаха также использует кривошип и поршень. Что может быть внутри панциря черепахи?

А теперь попробуйте это на собственном роботе! Как далеко вы хотите переместить поршень? Какой длины должны быть кривошип и шатун, чтобы это произошло? Помните, что поршень не должен двигаться только вертикально или горизонтально. Он может двигаться по прямой в любом направлении!

Получение дополнительной информации
  • Кривошипно-ползунковый механизм: на этом веб-сайте показано движение кривошипно-поршневого механизма и описаны его части.
  • Дизельный двигатель: В этом видео показано, как дизельный двигатель использует кривошипно-поршневой механизм в автомобиле или грузовике. В этом случае взрыв топлива вызывает поступательное движение поршня, и механизм преобразует это движение для вращения колес транспортного средства.

Конструкция кривошипно-шатунного механизма | Строительство автомобилей

Кривошипный механизм предназначен для преобразования возвратно-поступательного движения поршней во вращение коленчатого вала на .

Детали кривошипно-шатунного механизма можно разделить на две группы: стационарные, и подвижные.

Подвижные элементы кривошипно-шатунного механизма: поршни, поршневые кольца, поршневые пальцы, шатуны, коленчатый вал, маховик.

Стационарные компоненты кривошипно-шатунного механизма : блок цилиндров двигателя , блок головки двигателя, поддон, цилиндры .

Стационарные детали двигателя

Поршень — деталь двигателя внутреннего сгорания .Назначение поршня — передавать усилие от расширяющегося газа в цилиндре на коленчатый вал через шатун.

Поршневые кольца — это разрезное кольцо, которое входит в канавку на внешнем диаметре поршня в двигателе внутреннего сгорания .

Шатун — это элемент, который соединяет поршень с коленчатым валом в поршневом двигателе.

Коленчатый вал — — это механическая часть, выполняющая преобразование между возвратно-поступательным движением поршня и шатуна во вращательное движение.Когда дефект коленчатого вала невозможно избежать дорогостоящего ремонта, вы можете увидеть здесь стоимость ремонта коленчатого вала .

Маховик — механическое устройство, предназначенное для эффективного хранения энергии вращения коленчатого вала .

Блок цилиндров двигателя — это конструкция, которая содержит цилиндров и другие части двигателя внутреннего сгорания.

Головка блока цилиндров двигателя — находится над цилиндрами в верхней части блока цилиндров в двигателе.

Цилиндр — центральная рабочая часть двигателя , пространство, в котором перемещается поршень .

Глава 5. Планарные рычаги

Yi Zhang
с
Susan Finger
Stephannie Behrens

Содержание

5.1 Введение

5.1.1 Что такое механизмы связи?

Вы когда-нибудь задумывались, какой механизм вызывает появление ветрового стекла? стеклоочиститель на передней вдове автомобиля для качания (рис. 5-1а)? Механизм, показанный на рисунке 5-1b, преобразует вращательное движение двигателя в колебательное движение стеклоочистителя.

Рисунок 5-1 Стеклоочиститель

Сделаем простой механизм с похожим поведением. Возьми немного картона и сделайте четыре полоски, как показано на рисунке 5-2а.

Возьмите 4 штифта и соберите их, как показано на рисунке. 5-2b.

Теперь держите 6 дюймов. полоса, чтобы он не мог двигаться и повернуть 3 дюйма полоска. Вы увидите, что 4in. полоска колеблется.

Рисунок 5-2 Самостоятельный четырехзвенный рычажный механизм

Четырехзвенная связь — это самый простой и часто самый полезный механизм.Как мы упоминали ранее, механизм, состоящий из твердых тел и нижние пары называются связкой (Охота 78). В планарных механизмах есть только два вида нижние пары — революционные пары и призматические пары.

Простейшая связь с замкнутым контуром — это четырехзвенная связь, которая имеет четыре стержня, три подвижных звена, одно фиксированное звено и четыре штифта суставы. Связь, имеющая хотя бы одно фиксированное звено, является механизмом. Следующий пример связи с четырьмя стержнями был создан в SimDesign в simdesign / fourbar.sim

Рисунок 5-3 Соединение с четырьмя стержнями в SimDesign

Этот механизм имеет три подвижных звена. Две ссылки прикреплены к кадр, который не показан на этом рисунке. В SimDesign ссылки могут быть прибитыми к фону, тем самым превратив их в рамку.

Сколько степеней свободы у этого механизма? Если мы хотим, чтобы у него был только один, мы можем наложить одно ограничение на связь, и он будет иметь определенное движение. Четыре стержня рычага это самый простой и полезный механизм.

Напоминание: механизм состоит из твердых тел и нижних пар. называемые связями (Хант 78). В В планарных механизмах всего два вида нижних пар: поворотные пары и призматические. пары.

5.1.2 Функции рычагов

Функция рычажного механизма состоит в том, чтобы производить вращение, колебание, или возвратно-поступательное движение от вращения кривошипа или тисков наоборот (Ham и др. 58). Заявленные более конкретно связи могут использоваться для преобразования:

  1. Непрерывное вращение в непрерывное вращение с постоянной или переменное отношение угловой скорости.
  2. Непрерывное вращение в колебательное или возвратно-поступательное движение (или обратный), с постоянным или переменным соотношением скоростей.
  3. Колебание в колебание или возвратно-поступательное движение в возвратно-поступательное движение, с постоянным или переменным соотношением скоростей.

Связи выполняют множество различных функций, которые можно классифицировать. в соответствии с основной задачей механизма:

  • Генерация функции : относительное движение между звеньями подключен к раме,
  • Создание пути : путь точки трассировки, или
  • Генерация движения : движение соединительного звена.

5.2 Четырехзвенный механизм

Один из простейших примеров ограниченной связи — это механизм четырехзвенный . Разнообразные полезные механизмы могут быть сформированным из четырехзвенного механизма с помощью небольших изменений, таких как как изменение характера пар, пропорций ссылок, и т. Д. . Кроме того, многие сложные механизмы связи представляют собой комбинации двух и более таких механизмов. Большинство четырехзвенных механизмов попадают в один из следующих двух классов:

  1. четырехзвенный рычажный механизм и
  2. кривошипно-шатунный механизм.
5.2.1 Примеры

Механизм параллелограмма

В параллелограммной четырехзвенной навеске ориентация муфты не меняется во время движения. На рисунке изображен загрузчик. Очевидно, что поддержание параллелизма важно в погрузчик. Ковш не должен вращаться при подъеме и опускании. Соответствующий файл SimDesign — simdesign / loader.sim.

Рисунок 5-4 Механизм фронтального погрузчика

Кривошипно-шатунный механизм

Механизм с четырьмя стержнями имеет особые конфигурации, созданные создание одной или нескольких ссылок бесконечной длины.Ползунок-кривошип (или кривошип и ползун), показанный ниже, представляет собой четырехзвенный рычажный механизм с слайдер, заменяющий бесконечно длинную выходную ссылку. Соответствующие Файл SimDesign — simdesign / slider.crank.sim.

Рисунок 5-5 Кривошипно-ползунковый механизм

Эта конфигурация переводит вращательное движение в поступательное. один. Большинство механизмов приводится в движение двигателями, а кривошипы-ползунки часто используется для преобразования вращательного движения в линейное движение.

Кривошипно-поршневой

Вы также можете использовать ползунок как входное звено, а рукоятку — как выходная ссылка.В этом случае механизм передает трансляционные движение во вращательное движение. Поршни и кривошип во внутреннем двигатель внутреннего сгорания является примером этого типа механизма. В соответствующий файл SimDesign — simdesign / сжигание.sim.

Рисунок 5-6 Коленчатый вал и поршень

Вы можете спросить, почему слева есть еще один слайдер и ссылка. У этого механизма есть две мертвые точки. Слайдер и ссылка слева помогите механизму преодолеть эти мертвые точки.

Устройство подачи блоков

Одно интересное применение ползунка-кривошипа — это устройство подачи блоков.В Файл SimDesign можно найти в simdesign / block-feeder.sim

.
Рисунок 5-7 Устройство подачи блоков
5.2.2 Определения

В ряду планарных механизмов простейшая группа нижней пары механизмы — четырехзвенные связи. A четырехшарнирный рычажный механизм состоит из четырех стержневых звеньев и четырех поворотных пар, как показано на Рисунке 5-8.

Рисунок 5-8 Четырех стержневой рычажный механизм

Ссылка напротив рамки называется соединительное звено , и звенья шарнирно прикреплены к раме называются боковыми звеньями .Ссылка, которую можно свободно перемещать 360 градусов по отношению ко второму звену будет сказано вращается на относительно второго звена (не обязательно Рамка). Если возможно, чтобы все четыре бара стали одновременно выровнено, такое состояние называется точкой изменения .

Некоторые важные концепции в механизмах ссылок:

  1. Кривошип : Боковое звено, которое вращается относительно рамы, назвал кривошип .
  2. Коромысло : Любое звено, которое не вращается, называется коромыслом .
  3. Кривошипно-качающийся механизм : В четырехзвенном рычаге, если более короткое боковое звено вращается, а другое качается (, т.е. , колеблется), она называется кривошипно-коромысла .
  4. Двухкривошипный механизм : В четырехзвеночном рычаге, если оба боковые звенья вращаются, это называется двухкривошипным механизмом .
  5. Механизм с двумя коромыслами : В четырехзвенной рычажной системе, если оба Боковые звенья рок-н-ролла, он называется двухкамерным механизмом .
5.2.3 Классификация

Перед тем как классифицировать четырехстержневые связи, нам необходимо ввести некоторые основная номенклатура.

В соединении с четырьмя стержнями мы обращаемся к отрезку линии между петли на заданном звене как стержень , где:

  • s = длина самого короткого стержня
  • l = длина самого длинного стержня
  • p, q = длина промежуточного стержня

Теорема Грасгофа утверждает, что четырехзвенный механизм имеет при не менее одно вращающееся звено, если

s + l

(5-1)

и все три мобильных ссылки будут качаться, если

s + l> p + q

(5-2)

Неравенство 5-1 — это критерий Грасгофа .

Все механизмы с четырьмя стержнями попадают в одну из четырех категорий, перечисленных в Таблица 5-1:

Таблица 5-1 Классификация механизмов с четырьмя стержнями
Чемодан л + с исп. р + д Самый короткий стержень Тип
1 Рама Двухкривошипная
2 Сторона Коромысло
3 Муфта Двойной рокер
4 = Любые Изменить точку
5 > Любые Двойной рокер

Из Таблицы 5-1 видно, что для механизма, имеющего кривошип, сумма длины его самого короткого и самого длинного звеньев должна быть меньше, чем или равна сумме длин двух других ссылок.Тем не мение, это условие необходимо, но недостаточно. Механизмы, удовлетворяющие это состояние делится на следующие три категории:

  1. Когда самая короткая ссылка — боковая, механизм — кривошипно-качающийся. Кратчайший звено — кривошип в механизме.
  2. Когда самая короткая ссылка — это кадр механизм, механизм — двухкривошипный.
  3. Когда самая короткая ссылка — сцепное звено, механизм — двухклавишный.
5.2.4 Угол передачи

На рисунке 5-11, если AB является входной ссылкой, сила, приложенная к выходному звену, CD , передается через соединительное звено BC . (То есть нажатие на ссылку CD прикладывает усилие к звену AB , которое передается по ссылке BC .) Для достаточно медленных движений (незначительные силы инерции), сила в соединительном звене чисто растяжение или сжатие (незначительное изгибающее действие) и направлено вдоль г. до н.э. г.Для заданной силы в соединительном звене крутящий момент передаваемая на выходную планку (около точки D ) максимальна при угол между соединительный стержень BC и выходной стержень CD составляют / 2. Следовательно, угол BCD равен называется угол передачи .

(5–3)

Рисунок 5-11 Угол передачи
Когда угол передачи значительно отклоняется от / 2, крутящий момент на выходном стержне уменьшается и может оказаться недостаточным для преодоления трения в система.По этой причине угол отклонения = | / 2- | не должно быть слишком большим. В На практике нет определенного верхнего предела для, поскольку существование силы инерции могут устранить нежелательные силовые отношения который присутствует в статических условиях. Тем не менее следующие критерию можно следовать.
5.2.5 Мертвая точка

Когда боковое звено, такое как AB на Рисунке 5-10, выравнивается с соединительным звеном BC , оно может только сжиматься или удлиняется муфтой.В этой конфигурации крутящий момент, приложенный к звено на другой стороне, CD , не может вызвать вращение звена АБ . Поэтому считается, что эта ссылка находится в мертвой точке (иногда называется точкой переключения ).

Рисунок 5-10 Мертвая точка

На рисунке 5-11, если AB — кривошип, он может быть совмещен с BC в полное выдвижение по линии AB 1 C 1 или в сгибание с AB 2 в сложенном состоянии В 2 С 2 .Обозначим угол АЦП через и угол DAB на. Мы используем индекс 1 для обозначают расширенное состояние и 2 для обозначения изогнутого состояния ссылок AB и BC . В расширенном состоянии ссылка CD не может вращать по часовой стрелке, не растягивая и не сжимая теоретически жесткая линия AC 1 . Следовательно, ссылку CD нельзя перейти в запрещенную зону ниже C 1 D , и должен быть на одном из двух крайние позиции; Другими словами, ссылка CD находится в экстремуме.А Второй экстремум звена CD происходит с = 1 .

Обратите внимание, что крайние положения бокового звена возникают одновременно. с мертвыми точками противоположного звена.

В некоторых случаях мертвая точка может быть полезна для таких задач, как работа. крепление (рисунок 5-11).

Рисунок 5-11 Рабочее приспособление

В других случаях мертвая точка должна быть преодолена с помощью момент инерции звеньев или при несимметричном развертывании механизм (рисунок 5-12).

Рисунок 5-12 Преодоление мертвой точки асимметричным развертывание (V-образный двигатель)
5.2.6 Ползунок кривошипно-шатунный механизм

Кривошипно-ползунный механизм, широко известный в двигателей, является частным случаем кривошипно-коромысла механизм. Обратите внимание, что если качелька 3 на рис. 5-13а очень длинный, можно заменить блокировкой, скользящей в изогнутую прорезь или направляющую, как показано. Если длина качельки бесконечна, направляющей и колодки больше нет изогнутый. Скорее, они кажутся прямыми, как показано на рис. 5-13b, а соединение принимает форму обычный кривошипно-ползунковый механизм .

Рисунок 5-13 Кривошипно-скользящий механизм
5.2.7 Переворачивание шатунно-ползункового механизма

Инверсия — термин, используемый в кинематике для реверсирования или взаимообмен формы или функции применительно к кинематическим цепям и механизмам. Для Например, взяв другое звено в качестве фиксированного звена, ползунок-кривошип механизм, показанный на рисунке 5-14a, можно перевернуть в механизмы, показанные на рис. 5-14b, c и d. Разные примеры можно найти в применении этих механизмов.Для Например, механизм насосного устройства на рисунке 5-15 такой же, как на рисунке 5-14b.

Изображение 5-14 Инверсии кривошипно-скользящего механизма
Рисунок 5-15 Насосное устройство

Помните, что переворот механизма не меняет движения его звеньев относительно друг друга, но не изменяет их абсолютные движения.

Содержание
Полное содержание
1 Физические принципы
2 Механизмы и простые машины
3 Подробнее о машинах и механизмах
4 Основная кинематика жестких тел с ограничениями
5 планарных рычагов
5.1. Введение
5.1.1 Что такое механизмы связи?
5.1.2 Функции рычагов
5.2 Четыре рычажных механизма
5.2.1 Примеры
5.2.2 Определения
5.2.3 Классификация
5.2.4 Угол передачи
5.2.5 Мертвая точка
5.2.6 Ползунок-кривошипно-шатунный механизм
5.2.7 Переворачивание шатунно-ползункового механизма
6 кулачков
7 передач
8 Прочие механизмы
Индекс
Ссылки


sfinger @ ri.cmu.edu

Примеры механизмов

Yi Zhang
с
Susan Finger
Stephannie Behrens

1.1 Четыре рычажных механизма

Связь состоит из ссылок и нижние пары. Простейший Замкнутая связь — это четырехзвенная связь, имеющая три подвижных звенья, одно фиксированное звено и четыре шарнирных соединения. Связь с одной ссылкой фиксируется механизм . Вы можете загрузить следующие четыре бара подключение к SimDesign из файловых механизмов / fourbar.сим.

Этот механизм имеет три подвижных звена. Два из них прикреплены к кадр, который не показан на этом рисунке. В SimDesign вы можете прибейте эти две ссылки к фону.

Сколько степеней свободы (DOF) есть ли у этого механизма? Если есть, можно наложить ограничение на механизм для того, чтобы он имел определенное движение. Для Например, вы можете перетащить прикрепленную ссылку слева (сделав ее входное звено ), и он повернется вокруг гвоздя.Правильная ссылка (теперь выходное звено ) совершит колебательное движение. Предполагать вы кладете ручку на вершину треугольного звена. (Треугольник также называется ссылкой. Ссылка не обязательно должна быть простой линией. тело). Перо проследит свой путь. Треугольное звено соединяет два движущихся шарнира и соединяют входное и выходное движение; следовательно, он называется соединителем .

Связи имеют разные функции. Функции классифицированы в зависимости от основной цели механизма:

  • Генерация функции : относительное движение между звеньями подключен к раме,
  • Создание пути : путь точки трассировки, или
  • Генерация движения : движение соединительного звена.
1.1.1 Кран

Приложение построения пути — кран, в котором нужен горизонтальный след.

1.1.2 Капот

Примером движения является открывающийся и закрывающийся капот.

1.1.3 Механизм параллелограмма

В четырехзвенной навеске параллелограмма, ориентация муфты не меняется во время движения. На рисунке изображен загрузчик.

1.2 кривошипно-шатунных механизма

Механизм с четырьмя стержнями имеет особые конфигурации, созданные создание одной или нескольких ссылок бесконечной длины. Ползунок-кривошип (или кривошип и слайдер), показанный ниже, представляет собой четырехзвенную связь с ползунком, заменяющим бесконечно длинное выходное звено.

Потяните кривошип этого механизма, и вы увидите, что он переходит. вращательное движение в поступательное. Большинство механизмов приводится в движение двигателями, и кривошипные ползунки часто используются для преобразования вращательного движения в линейное движение.

1.2.1 Кривошип и поршень

Вы также можете использовать ползунок в качестве входного звена, а кривошип — как выходная ссылка. В этом случае механизм передает поступательное движение во вращательное движение. Поршни и кривошип во внутреннем двигатель внутреннего сгорания является примером этого типа механизма. Соответствующие Файл SimDesign механизмы / горение.сим.

Вы можете спросить, почему есть еще один слайдер и ссылка на оставил. Этот механизм имеет два мертвые точки.В слайдер и ссылка слева помогают механизму преодолеть эти мертвые точки.

1.2.2 Устройство подачи блоков

Интересное применение кривошипа — блок кормушка. Файл SimDesign можно найти в механизмы / block.feeder.sim

Связи, хотя и полезны, не могут обеспечить всех возможных движений. Для Например, если выходное звено должно оставаться неподвижным в течение определенный период времени, в течение которого входная ссылка продолжает вращаться, связи нельзя использовать. Кулачковые механизмы могут реализовать любой требуемый выход движение.Состав кулачковых механизмов прост: кулачок, кулачок. последователь и рама. (Вы можете найти пружины, используемые в кулачковом механизме для держите толкатель и кулачок в контакте, но он не является частью кулачковый механизм.)

2.1 Поворотный кулачок / движущийся толкатель

Если повернуть кулачок, ведомый движется. Вес последователь поддерживает с ними контакт. Это называется гравитацией ограничение кулачок.

2.2 Поворотный кулачок / Поворотный толкатель

Файл SimDesign — механизмы / кулачок.осциллирующий. сим. Уведомление это ролик используется на конце толкателя. Кроме того, пружина используется для поддержания контакта кулачка и ролика.

Если попытаться вычислить градусы свобода (DOF) механизма, вы должны представить, что ролик приваривается к толкателю, потому что вращение ролика не влиять на движение ведомого.

Есть много видов шестерен. В следующие примеры — эвольвентные прямозубые шестерни. Мы используем слово эвольвента , потому что контур зубьев шестерни загибается внутрь.Существует множество терминов, параметров и принципов для шестерен. Одна из важных концепций — это соотношение скоростей , — это соотношение скоростей. отношение скорости вращения ведущей шестерни к скорости вращения ведомые шестерни.

Количество зубьев этих шестерен равны 15 и 30 соответственно. Если шестерня с 15 зубьями является ведущей а шестерня с 30 зубьями — ведомая шестерня, их передаточное отношение равно 2.

Пример набора зубчатых колес есть в механизмах / gear10.30.sim.

3.1 Рейка и шестерня

Когда количество зубьев шестерни становится бесконечным, центр передача уходит в бесконечность. Шестерня становится стойкой. Следующие На картинке изображена рейка и шестерня. Соответствующий файл SimDesign механизмы / gear.rack.sim.

Вы можете потянуть шестерню, чтобы она вращалась и приводила в движение рейку. Ты также можно тянуть рейку по направляющей и приводить в движение шестерню.

3.2 Обычные зубчатые передачи

Зубчатые передачи состоят из двух или более шестерен, передающих движение от одна ось к другой.Обычные зубчатые передачи имеют оси относительно рама для всех шестерен, входящих в состав поезда.

3.3 Планетарная зубчатая передача

Файл SimDesign — механизмы / gear.planet.sim. С солнцем механизм (наибольшая шестерня) фиксируется, степень свободы указанного механизма равна единице. Когда вы тянете за руку или планету, механизм имеет определенный движение. Если солнечная шестерня не замерзла, относительное движение трудно контролировать.

4.1 Храповой механизм

Колесо с зубьями подходящей формы, получающее прерывистый круговой движение от колеблющегося элемента, является храповое колесо .На рисунке ниже изображена простая трещотка. механизм.

A — храповое колесо, а B — колеблющееся звено. Прикреплен к B собачка , которая представляет собой звено, предназначенное для зацепления с храповым механизмом зубьями, чтобы колесо не двигалось в одном направлении. Этот механизм имеет дополнительную защелку в D. Когда звено B перемещается в против часовой стрелки, защелка C толкает колесо через частичное вращение. Когда звено B движется по часовой стрелке, защелка C скользит по точкам зубья, когда колесо остается в покое из-за фиксированной защелки D.Величина возможного обратного движения зависит от высоты звука зубы. Чем меньше зубы, тем меньше обратное движение. В контактные поверхности колеса и собачки должны быть наклонены так, чтобы они не отключайтесь под давлением.

Соответствующий файл SimDesign — механизмы / ratchet.sim. В четырехзвенная навеска справа генерирует колебательное вращение для ссылка B. Потяните рукоятку, чтобы посмотреть, как работает храповик.

4.2 Женева Колесо

Интересным примером прерывистой передачи является Женевское колесо.

В этом механизме на каждый оборот ведущего колеса A ведомое колесо B делает четверть оборота. Штифт, прикрепленный к ведущему колесу А, перемещается в пазах, вызывая движение колеса В. Контакт между нижняя часть привода А с соответствующей полой частью колеса B, удерживает его на месте, когда штифт выходит из паза. Колесо А срежьте возле штифта, как показано, чтобы обеспечить зазор для колесо B, когда оно движется. Если один из слотов закрыт, A может заработать меньше больше одного оборота в любом направлении до того, как штифт коснется закрытый слот, останавливающий движение.Ранние часы, музыкальные шкатулки и т. Д., использовали Женевские колеса для предотвращения перемотки. Из этого приложения их также называют остановками в Женеве. В качестве упора колесо А крепится к вал пружины, а B поворачивается на оси ствола пружины. В количество пазов в B зависит от того, сколько раз пружинный вал следует повернуть.

Файл SimDesign для Женевского колеса: « geneva.sim «.

Вы можете попробовать этот механизм, потянув за Женевское колесо.

Полное содержание


sfinger @ ri.cmu.edu

Microsoft Word — final mmse (1)

% PDF-1.4 % 1 0 объект > эндобдж 7 0 объект /Заголовок /Предмет / Автор /Режиссер / CreationDate (D: 20210510182001-00’00 ‘) / ModDate (D: 20150

1635 + 03’00 ‘) >> эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 obj > эндобдж 5 0 obj > эндобдж 6 0 obj > поток PScript5.dll Версия 5.2.22015-09-09T16: 16: 35 + 03: 002015-09-09T16: 16: 35 + 03: 00application / pdf

  • Microsoft Word — final mmse (1)
  • больной
  • Элементы Acrobat 9.0.0 (Windows) uuid: c84b8937-b0ec-47fe-a877-920638bb04b5uuid: 14c25d1d-c4f5-4661-89e6-6b54c8624424 конечный поток эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > / ProcSet [/ PDF / Text / ImageC / ImageB / ImageI] >> эндобдж 19 0 объект > поток x ڝ XɎ # 7 + H -%! ȂoA.] u9%] Zga> Kn, Cp7 + z | g: ˯ˏ / XX] h./67 [V} i $ _hk ‘») NPO / nbK] 5h4NEHl $ u: aA`A # 4 / G6 و (! ny8 .WHH nze «(a4 ~ HY> \ 2kHx9z qXJgfEbO, CqP | V

    Кривошипно-шатунный механизм

    7.2 Кривошипные механизмы ползуна

    Другой механизм, который очень широко используется в машиностроении, — это кривошипно-шатунный механизм. Он в основном используется для преобразования вращательного движения в возвратно-поступательное или наоборот. Ниже показан ее кривошипно-ползунковый механизм и приведены параметры, которые используются для определения углов и длин звеньев.Как и в механизме с четырьмя стержнями, мёртвая точка в выдвинутом и сложенном состоянии — это когда кривошип и муфта коллинеарны (звено муфты обычно называется шатуном в кривошипно-ползунковых механизмах). Полное вращение кривошипа возможно, если эксцентриситет c меньше разницы между длинами шатуна и кривошипа, а длина кривошипа меньше длины шатуна (например, c3-a 2 ) и 3 > а 2 ).

    Используя прямоугольные треугольники, сформированные в мертвых точках:

    с учетом s = se-sf = ход = ползунок расстояния перемещается между мертвыми точками. Если мы положим l = a2 / a3 и e = c / a3, ход будет определяться как:

    Если эксцентриситет c (или a1) равен нулю (c = 0), кривошипно-шатунный механизм называется рядный кривошипно-ползунковый , а ход в два раза превышает длину кривошипа (s = 2a 2 ).Если эксцентриситет не равен нулю (c ¹0), его обычно называют кривошипно-кривошипным механизмом со смещением .

    Угол передачи можно определить из уравнения:

    a 3 cos = a 2 sin 12 -c (1)

    Максимальное отклонение угла передачи происходит, когда производная m по q 12 равна нулю.Следовательно, дифференцируя уравнение (1) по q 12 :

    (2)

    Максимальное или минимальное отклонение возникает, когда q 12 составляет 90 0 или 270 0 (рис. 7.19), а значение максимального или минимального угла передачи определяется как:

    (3)

    Если c положительно, как показано ниже, угол передачи критичен, когда q 12 = 270 0 .Если c отрицательно, то наиболее критический угол передачи равен

    .

    q 12 = 90 0 .

    Если эксцентриситет c равен нулю, максимальное значение угла передачи равно:

    (4)

    В поршневых насосах соотношение коленчатого вала и шатуна составляет менее 1/4, что соответствует 14.48 0 максимальное отклонение угла передачи от 90 0 . Поскольку длина кривошипа фиксируется требуемым ходом ( 2 = s / 2), необходимо увеличить длину шатуна для получения лучших углов передачи. Однако это увеличит размер механизма.

    Подобно проблеме угла трансмиссии в механизмах с четырьмя стержнями, проблему угла трансмиссии в кривошипно-ползунковых механизмах можно сформулировать следующим образом:

    «Определите пропорции ползуна-кривошипа с заданным ходом s и соответствующим вращением кривошипа между мертвыми точками, f, так чтобы максимальное отклонение угла трансмиссии от 90 0 было минимальным.”

    Задачу снова можно рассматривать в двух частях. Первая часть — определение кривошипных механизмов ползуна с заданным ходом и соответствующим поворотом кривошипа. Вторая часть — определение одного конкретного кривошипно-ползункового механизма с оптимальным изменением угла передачи.

    Для первой части задачи обратите внимание, что ход s является функцией соотношений длин звеньев, т.е. если мы удвоим длину звеньев, ход будет удвоен.Поэтому без ограничения общности пусть s = 1 (найденные таким образом длины звеньев будут умножены на длину хода, чтобы получить фактические значения).

    Что касается рисунка, на котором кривошипно-шатунный механизм нарисован в мертвых точках, уравнения векторной петли в мертвых точках:

    (5)

    (6)

    или комплексными числами:

    (7)

    (8)

    Вычитая ур.(8) из ур. (7) и принимая во внимание s e -s f = s = 1:

    (9)

    Если мы положим Z = и l = a 2 / a 3 , уравнение (8) можно переписать в виде:

    (10)

    Для полного вращения кривошипа необходимое (но не достаточное) условие l

    (11)

    Если l принять в качестве свободного параметра, поскольку он изменяется, вершина Z, заданная (7), будет генерировать окружность, которая является геометрическим местом всех возможных движущихся точек поворота для кривошипа, когда кривошип и муфта находятся в выдвинутом положении ( к по кругу ).Геометрическое место всех возможных фиксированных точек поворота — это другой круг (круг k 0 ), который задается как Z (1 + l) (начало координат обоих векторов — B e с действительной осью, параллельной оси ползунка) . . Любая линия, проведенная из точек B и , пересекает эти круги в точках A , e и A 0 соответственно, в результате чего кривошипно-ползунный механизм находится в положении выдвинутой мертвой точки. Ниже эти кружки показаны для f = 160 0 .

    Эксцентриситет c может быть получен как мнимая составляющая вектора B e A 0 = B e A e + A e A 0 , который можно записать как:

    (12)

    или используя Z и l:

    (13)

    и подставив значение Z:

    (14)

    Теперь длины звеньев можно выразить как:

    (15)

    (16)

    Уравнения (14-16) дают по отдельности бесконечный набор решений для кривошипно-ползунковых механизмов, удовлетворяющих заданному вращению кривошипа (ход = 1 единица).Можно также использовать эксцентриситет, длину кривошипа или соединительного звена в качестве свободного параметра для определения других длин звеньев.

    Для геометрического решения:

    Пример 4.6 :

    Определите длины звеньев кривошипно-шатунного механизма ползуна с ходом s = 120 мм, соответствующим вращением кривошипа f = 160 0 и отношением коленвала к звену сцепления l = 0,5.

    Используя единичный ход, из уравнений (14), (15) и (16) длины звеньев составляют:

    a 2 = 0.47881, a 3 = 0,95762 и c = 0,23523. Для s = 120:

    a 2 = 114,91 мм, a 3 = 57,46 мм и c = 28,23 мм.

    Минимальный угол передачи для этого механизма составляет м мин = 41,79 0 .

    Пример 4.7:

    Определите длину звеньев кривошипно-ползункового механизма, имеющего такой же ход и соответствующее вращение кривошипа, как в примере 1, но вместо указанного отношения кривошипа к звену муфты эксцентриситет указан как c = 20 мм.

    Для единичного хода c = 20/120 = 0,16667. Решая уравнение (10) для л , получаем:

    (17)


    Для c = 0,16667 l 2 = 0,325635. Подставляя в уравнения (15) и (16), получаем 2 = 0,48508 и 3 = 0,85006. Для s = 120 мм, c = 20 мм, 2 = 58,21 мм и 3 = 102,01 мм. Минимальный угол передачи для этого механизма составляет м мин = 39.94 0 . Обратите внимание, что аналогичная процедура может быть выполнена, если указана длина кривошипа или соединительного звена.

    Минимальный угол передачи равен при q = p / 2:

    (18)


    Для полного вращения кривошипа c + a 2 3 или c 3-a 2 . В крайнем положении (c = a 3 — a 2 ) m min = 0. Используя уравнения (14), (15) и (16), это условие дает пределы f для вращения кривошипа как:

    и (19)


    Выражая m мин через l и f (замените уравнения 14,15 и 16 уравнениями.18 и упростить)

    (20)

    , поскольку l является свободным параметром конструкции, необходимое условие для того, чтобы минимальный угол передачи был максимальным, составляет

    Если значение l , которое делает производную равной нулю, равно l = l opt , дифференцируя уравнение (20) и устанавливая

    урожая.


    (21)


    Где Q = l 2 opt t 2 и t = tan (f / 2).Корни уравнения (21):



    (22)


    Поскольку Q должно быть положительным, Q > 2 не является решением. В соответствии с Q 3 , l = 1 / t 2 отклонение минимального угла передачи 90 0 является максимальным (cosm min = 1). Корень Q 1 дает значение l opt в пределах диапазона (1 / t 2 , l), и это значение удовлетворяет необходимому и достаточному условию для кривошипно-шатунного механизма с оптимальными характеристиками угла передачи.Следовательно:


    (23)
    это единственное оптимальное решение.


    Пример 4.8:
    Для хода ползуна с = 120 мм и соответствующего поворота кривошипа f = 160 0 определите кривошипно-шатунный механизм ползуна с оптимальными характеристиками передачи усилия.


    Из уравнения (20). Используя уравнения (14), (15) и (16) для единичного хода, длины звеньев равны 2 = 0.465542; a 3 = 1,14896; c = 0,377378 и для хода 120 мм:

    a 2 = 55,87 мм; a 3 = 137,88 мм; c = 42,81 мм

    Минимальный угол передачи для механизма составляет м мин = 42,81 0 .

    Результаты приведены на диаграмме 2. Длины звеньев ползуна и кривошипа ( a 2 , a 3 , c) и оптимальные значения и минимальный угол передачи м мин в зависимости от кривошипа дано вращение между мертвыми точками.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *