Принцип турбины: Принцип работы турбины. Турбонаддув в автомобиле, плюсы.

Содержание

Принцип работы турбины – как она работает


Турбокомпрессор или попросту турбина – это дополнительное устройство двигателя, которое для своей работы использует энергию отработавших газов. Что позволяет увеличить мощность двигателя на величину от 25% до 100%. Прежде чем понять, как работает турбокомпрессор, стоит рассмотреть функционирование двигателя внутреннего сгорания.

Принцип работы ДВС

Любой двигатель внутреннего сгорания, дизельный или бензиновый, работает на принципе получения энергии, образующейся от воспламенения топливовоздушной смеси в камерах сгорания. Через впускные клапаны в цилиндр подается отфильтрованный внешний воздух и впрыскивается топливо, причем при пассивной подаче воздуха, в цилиндр подается дозированное количество топлива. Именно эта смесь сгорает в цилиндре и заставляет двигаться поршень, который передает свою кинетическую энергию на ходовую систему автомобиля. Чем больше такой смеси подается и сгорает в цилиндрах, тем больше выходной крутящий момент и соответственно выше общая мощность мотора.

Принцип работы турбины

Для увеличения подачи воздуха в цилиндр, без изменения объема самого цилиндра, используют турбокомпрессор. При работе турбины используются продукты сгорания топливной смеси, которые приводят в действие роторный механизм турбокомпрессора, с помощью которого атмосферный воздух принудительно нагнетается в цилиндры (турбонаддув). И, благодаря этому, в цилиндр подается и большая дозировка топлива. Во время нагнетания, воздух может нагреваться, из-за чего уменьшается его плотность и масса в цилиндрах. Для подачи большего количества воздуха, его необходимо охладить. Для лучшего охлаждения используется радиаторное устройство, называемое интеркулером, который устанавливается на выходе из холодной части турбокомпрессора и через который проходит воздух перед попаданием в цилиндры. На следующем этапе поршень всасывает этот охлажденный воздух через впускные клапаны и одновременно в камеру сгорания подается топливо, образуется топливовоздушная смесь. Возгорание топливной смеси происходит от искры (бензиновые двигатели), либо от сжатия (дизельные двигатели). После того, как произошло сгорание порции смеси, продукты горения выбрасываются через выпускной клапан и попадают снова в турбину, на ее ротор. Таким образом, она работает без участия движущих частей двигателя, используя энергию потока выхлопных газов.

Для каждого двигателя турбокомпрессор подбирается индивидуально, исходя из его собственной мощности и объема. Причем величина наддува зависит от геометрических параметров (размеров) улиток, компрессорного колеса, ротора турбины. Некоторые конструкции двигателей оборудуют не одной турбиной, а двумя: одинакового размера – би-турбо, разного размера – твин-турбо. В последнее время широкое распространение получили турбокомпрессоры с механизмом изменяемой геометрии. Стоит отметить, что сложность, а соответственно и стоимость ремонта турбины зависит от ее конструктивных особенностей и модификации.

Механизм изменяемой геометрии

Такой механизм позволяет дозировать подачу отработавших газов на колесо в турбине (ротор). Тем самым, позволяет оптимизировать работу турбокомпрессора на различных оборотах.

Это достигается за счет движения специальных лопаток, смонтированных на кольце геометрии. Они синхронно передвигаются, получая движение от вакуумного актуатора или электронного сервопривода в определенный момент, и контролируют наддув. Как правило, устанавливаются они на дизельных ДВС, потому как температура выхлопных газов у бензиновых моторов выше, чем у дизеля, соответственно лопатки геометрии могут деформироваться. Такие турбины позволяют оптимизировать процесс турбонаддува, что приводит к уменьшению расхода топлива и вредных выбросов при одновременном повышении мощности и крутящего момента.

Многие автомобилисты ошибочно полагают, что турбокомпрессор начинает включаться в работу с оборотов мотора от 1500-2000 об/мин. На самом деле, он запускается сразу после заводки автомобиля и работает на холостом ходу. А оптимальных оборотов достигает в диапазоне свыше 1500 об/мин.

Турбокомпрессор достаточно надежный агрегат, однако если Вы столкнулись с его поломкой, решить проблему Вам помогут специалисты ТурбоМикрон. Мы производим замену турбины на автомобиле, а также ремонт снятых с авто турбокомпрессоров.

Принцип работы турбины на дизеле

Принцип работы турбины на дизельном двигателе

Мотор, на который установлен турбонаддув, называется турбодизелем.

Устройство турбины дизельного двигателя

Турбокомпрессор выполняет задачу по нагнетанию воздуха под давлением в цилиндры мотора: чем больше будет воздуха, тем больше топлива силовой агрегат сможет сжечь, что, в свою очередь, приведет к увеличению мощности двигателя без увеличения объема имеющихся цилиндров.

Турбонаддув имеет особую конструкцию из двух элементов:

  • турбина;
  • компрессор.

Компрессор усиливает поступление воздуха в топливную систему. Составные части компрессора находятся в алюминиевом корпусе. Внутри находится ротор, закрепленный на оси турбины. Вращаясь, ротор вбирает воздух: большая скорость вращения приводит к большему количеству попавшего внутрь воздуха. Для набора скорости существует турбина.

Турбина состоит из корпуса с ротором внутри. Поскольку все элементы устройства взаимодействуют с газами высокой температуры, они изготавливаются из специальных материалов, невосприимчивых к такому воздействию.

Как работает турбина на дизельном двигателе

Ротор и ось, на которой он закреплен, вращаются в разных направлениях. Частота вращения довольно велика, поэтому элементы плотно прижимаются друг к другу.

Принцип работы турбины на дизельном двигателе следующий:

  • компрессор обеспечивает поступление воздуха из окружающей среды, который смешивается с дизельным топливом и затем направляется в цилиндры;
  • топливно-воздушная смесь загорается, начинают двигаться поршни. По ходу этого процесса образуются газы, поступающие в выпускной коллектор;
  • скорость движения газов, оказавшихся в корпусе, значительно возрастает. Вступая во взаимодействие с ротором, они приводят его во вращающееся положение;
  • вращение передается компрессорному ротору (за это отвечает вал), который снова втягивает новую порцию воздуха.

Таким образом, принцип работы основывается на взаимосвязи: чем сильнее вращается ротор, тем больше поступает воздуха, но при этом ротор увеличивает скорость вращения, если количество воздуха возрастает.

Как работает турбонаддув

Чтобы разобраться в работе турбонаддува, для начала следует уяснить понятия турбоподхвата и турбоямы.

Турбоподхват – ситуация, когда набравший скорость ротор увеличивает поступление воздуха в цилиндры, следствием чего становится повышение мощности двигателя.

Турбояма – момент небольшой задержки, наблюдаемый в работе турбины при увеличении количества поступившего горючего, что достигается нажатием на педаль газа. Задержка вызвана временем, которое нужно ротору для его разгона газами.

Турбонаддув увеличивает давление отработанных газов за счет более интенсивной работы двигателя. В то же самое время повышается и давление наддува: этот процесс требует контроля и регулировки, поскольку при достижении высоких значений велика вероятность поломки. Функции регулировки давления возложены на клапан, контролем предельно возможных значений занимаются мембрана и пружина с определенными значениями жесткости (когда достигается максимально допустимая величина, мембрана открывает клапан).

Работа турбины дизельного двигателя также требует контроля давления:

  1. компрессор через клапан, дабы снизить давление, сбрасывает лишний забранный воздух;
  2. когда давление поступившего воздуха достигает максимально допустимой величины, клапан выпускает газы, и ротор вращается с требуемой скоростью, а компрессор всегда забирает только нужное количество воздуха.

Минусы использования турбокомпрессора

У устройства есть определенные недостатки:

  1. возрастает расход топлива, что особенно ощущается при неправильной регулировке системы;
  2. температура в процессе сжатия повышается, что может привести к детонации. Чтобы избежать такой неприятности, необходим монтаж регуляторов, охладителей и ряда других элементов.

Турбированный мотор: правила эксплуатации

Чтобы дизельная турбина работала с максимальным КПД и как можно дольше не выходила из строя, нужно придерживаться определенных правил в процессе эксплуатации автомобиля:

  • придерживаться графика замены масла, что позволит не допустить засорения маслопровода абразивами;
  • использовать качественное моторное масло, соответствующее по характеристикам в паспорте двигателя;
  • не трогаться сразу после включения мотора – движок должен быть прогрет;
  • сразу после прекращения движения не выключать двигатель, дав ему хотя бы 10 секунд поработать на холостых оборотах.

Как работает турбина: видео

Что такое турбо-яма?

Крыльчатка турбокомпрессора способна развивать до двухсот тысяч оборотов в минуту, благодаря чему данное устройство отличается большой инерционностью или, говоря иначе, имеет «турбо-яму», которая проявляется при резком нажатии на педаль газа. В этот момент крыльчатка медленно приводится в движение, и приходится некоторое время ждать, чтобы автомобиль начал набирать скорость.

Этот эффект имеет продолжительность всего несколько секунд, но, тем не менее, он не доставляет особого удовольствия при разгоне машины. На сегодняшний день производители смогли устранить эффект «турбо-ямы» путем установки двух перепускных клапанов. Один предназначен для выработанных газов, задача второго состоит в том, чтобы перепускать избыток воздуха в трубопровод турбокомпрессора из впускного коллектора.

Благодаря этой системе обороты крыльчатки при сбросе газа уменьшаются в замедленном темпе, в то время как при резком нажатии на педаль акселератора происходит поступление воздушной массы в двигатель в полном объеме.

Функция турбины, настройка

Функция турбокомпрессора заключается в том, чтобы увеличивать выходную мощность и крутящий момент двигателя. Благодаря турбине производители могут уменьшать количество рабочих цилиндров в двигателе без снижения мощности и крутящего момента.

Также все чаще стали выпускаться дизельные двигатели с двумя турбинами (Bi-Turbo), что позволяет производителям не только добиваться потрясающий мощности от дизельных автомобилей, но снижать уровень вредных веществ в выхлопе до рекордных значений.

Недавно также стали появляться турбины, которые могут работать, как от электричества, так и традиционно от газа, поступающего из выхлопной системы. Благодаря этому инженеры добились максимальной мощности и крутящего момента при небольших оборотах двигателя. 

Использование двух турбокомпрессоров и других турбо деталей

На некоторые двигатели устанавливается два турбокомпрессора разного размера. Малый турбокомпрессор быстрее набирает обороты, снижая тем самым задержку ускорения, а большой обеспечивает больший наддув при высокой скорости вращения двигателя.

Когда воздух сжимается, он нагревается, а при нагревании воздух расширяется. Поэтому повышение давления от турбокомпрессора происходит в результате нагревания воздуха до его впуска в двигатель. Для того, чтобы увеличить мощность двигателя, необходимо впустить в цилиндр как можно больше молекул воздуха, при этом не обязательно сжимать воздух сильнее.

Охладитель воздуха или охладитель наддувочного воздуха является дополнительным устройством, которое выглядит как радиатор, только воздух проходит как внутри, так и снаружи охладителя. При впуске воздух проходит через герметичный канал в охладитель, при этом более холодный воздух подается снаружи по ребрам при помощи вентиляторов охлаждения двигателя.

Охладитель увеличивает мощность двигателя, охлаждая сжатый воздух от компрессора перед его подачей в двигатель. Это значит, что если турбокомпрессор сжимает воздух под давлением 7 фунт/дюйм2 (0,5 бар), охладитель осуществит подачу охлажденного воздуха под давлением 7 фунт/дюйм2 (0,5 бар), который является более плотным и содержит больше молекул, чем теплый воздух.   Турбокомпрессоры также обладают преимуществом на большой высоте, где плотность воздуха ниже. Обычные двигатели будут работать слабее на большой высоте над уровнем моря, т.к. на каждый ход поршня подаваемая масса воздуха будет меньше. Мощность двигателя с турбокомпрессором также снизится, но менее заметно, т.к. разреженный воздух легче сжимать.

При установке мощного турбокомпрессора на двигатель с впрыском топлива, система может не обеспечить необходимое количество топлива — либо программное обеспечение контроллера не допустит, либо инжекторы и насос не смогут осуществить необходимую подачу. В этом случае необходимо осуществлять уже другие модификации для максимального использования преимуществ турбокомпрессора.

Схема турбины с изменяемой геометрией (VNT)

Она также известна под названием – трубина с переменным соплом. Данный тип турбины используется в дизельных двигателях. Девять подвижных лопастей, установленных в турбокомпрессоре, регулируют прохождение потока газов к турбине. Увеличение и блокировка потока газов достигается при помощи привода, регулирующего угол наклона девяти лопастей. Скорость потока газов и давление нагнетаемого воздуха согласуются с количеством оборотов двигателя во время изменения угла наклона лопастей. 

Некоторые двигатели используют несколько турбокомпрессоров. Возможно использование двух (Твин Турбо), трех или же четырёх. В таких конструкциях они устанавливаются последовательно. Первый используется при низких оборотах, а второй — при высоких. Также существует схема установки компрессоров, при которой они располагаются параллельно друг другу. Она используется на V-образных двигателях. На каждый ряд цилиндров приходится по компрессору. Бытует мнение, что один большой турбокомпрессор менее производителен, чем два маленьких.

Система смазки

Это неотъемлемая составляющая любой турбины. Принцип работы системы смазки простой. Масло подается между подшипником и корпусом компрессора через множество каналов под давлением. Также она охлаждает нагретые детали компрессора. На некоторых двигателях турбина сопряжена с общей системой охлаждения. Благодаря этому достигается лучшее охлаждение.

Типы турбин

  • Раздельный. Он имеет два сопла для каждой пары цилиндров и два входа для отработавших газов. Первое сопло предназначено для быстрого реагирования, второе служит для максимальной производительности. В конструкции есть разделенные выпускные каналы. Сделано это для предотвращения перекрытия каналов при выпуске выхлопных газов.
  • Компрессор с переменным соплом. Также он известен, как турбина с изменяемой геометрией. Применяется на моторах с маркировкой TDI от «Фольксваген». Здесь в конструкции имеется 9 подвижных лопастей. Они могут регулировать поток выхлопных газов, что идут к турбине. Угол наклона лопастей – регулируемый, что позволяет согласовать давление нагнетаемого воздуха и скорость движения газов с оборотами ДВС.

Для большей производительности на автомобиль может быть установлено два компрессора. Такие системы получили маркировку «Твин-турбо».

Устанавливаются данные механизмы последовательно. При этом первая турбина работает на низких оборотах, а вторая на высоких. На V-образных моторах нагнетатели устанавливаются параллельно (на каждый ряд по одной турбине). Как показывает практика, установка двух небольших компрессоров значительно эффективнее, чем применение одного, но большого.

Паровая турбина

Принцип работы ее немного иной. Пар, который образуется в котле, под давлением попадает на крыльчатку турбины. Последняя совершает обороты, тем самым, вырабатывая механическую энергию. Обычно такая турбина соединена с генератором и применяется на электростанциях. Благодаря механической энергии, генератор производит электричество. Мощность таких агрегатов может достигать 1000 МВт.

Однако данный показатель существенно зависит от перепада давления пара на входе и выходе. Также подобные турбины применяются для привода питательного насоса, на кораблях и судах с ядерной установкой. Что касается военных кораблей, здесь применяется газовая турбина. Принцип работы ее заключается в следующем. Газ поступает через сопловой аппарат компрессора в область низкого давления. При этом он расширяется и ускоряется. Затем поток газа двигает лопатки турбины. Последние передают усилия на вал через диски. Таким образом создается полезный крутящий момент.

Источники:

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 2 чел.
Средний рейтинг: 5 из 5.

Принцип работы турбины самолета

Как работает авиационный двигатель — простым языком.

 То что вы видите под крылом — это не турбина, а именно авиационный двигатель, а турбина — это его составная часть.

Авиационный турбовентиляторный реактивный двигатель необходим для создания тяги, которая преодолеет сопротивление воздуха, сопротивление самолета и его частей, разгонит самолет до скорости, на которой вырастет подъемная сила, способная оторвать самолет от земли и унести его с полной загрузкой в небо.

Передняя часть двигателя называется воздухозаборник. Воздух, попадая в него, начинает частично сжиматься. Далее воздух попадает на ступени вентилятора и ряд лопаток, где его давление и температура от сжимания начинает расти.

Воздух дальше идет по двум контурам. Внешний контур сжимает воздух благодаря своей форме. Воздух, который пошел во внутренний контур все больше сжимается, проходя каждый ряд статичных и крутящихся лопаток, сделанных из титана.

В компрессоре высокого давления он сжимается и его температура растет. И вот воздух попадает в камеру сгорания, где он смешивается с топливом. В результате этого резко растет тепловая энергия.⠀

Разогретые до огромной температуры газы выходят с бешеной скоростью из камеры сгорания и расширяются. Попадая на колесо турбины, они приводят ее в вращение.Турбина сидит на одном валу с компрессором. Компрессор начинает вращаться и получается замкнутая цепь. Воздух вновь засасывается компрессором и процесс продолжается.

Далее происходит следующее: разогретые до огромной температуры газы выходят с бешеной скоростью из камеры сгорания и расширяются. Попадая на колесо турбины, они приводят ее во вращение.

Турбина сидит на одном валу с компрессором. Компрессор начинает вращаться. Получается замкнутая цепь: воздух вновь засасывается компрессором, и процесс повторяется.

Выходящие газы попадают в сопло и на выходе из него смешиваясь с воздухом с внешнего контура создают реактивную струю, которая и толкает самолет сквозь воздушную среду. 

Турбореактивный двигатель (ТРД)

ТРД стал самым распространённым в авиации воздушно-реактивным двигателем. Он является базой для создания целого семейства двигателей, объединяемых под общим названием газотурбинных двигателей. ТРД используют в качестве горючего керосин, находящийся в топливных баках, а в качестве окислителя – кислород воздуха.

Поток воздуха, попадающего в двигатель, тормозится во входном устройстве (1), в результате чего давление воздуха перед осевым компрессором (2) повышается. Ротор (вращающаяся часть) объединяет ряд рабочих колёс компрессора (3), представляющих собой диски с закреплёнными на них рабочими лопатками.

 Сжатый воздух из компрессора попадает в камеру сгорания (7). Примерно 25–35% от общего потока воздуха направляется непосредственно в жаровые трубы, где происходит основной процесс сгорания керосина, поступающего в распылённом состоянии через форсунки (5).

Другая часть воздуха обтекает наружные поверхности жаровых труб, и на выходе из камеры сгорания смешивается с продуктами сгорания для их охлаждения, что позволяет поддерживать температуру газовоздушной смеси в камере сгорания на уровне, определяемом допустимой теплопрочностью стенок камеры сгорания, лопаток ротора (8) и лопаток спрямляющего аппарата турбины (9). 

Часть механической мощности отбирается от вала (6) для привода агрегатов двигателя  и привода электрогенераторов, обеспечивающих энергией различные бортовые системы. Основная часть энергии продуктов сгорания идёт на ускорение газового потока в выходном устройстве ТРД – реактивное сопло (10), т. е. на создание реактивной тяги.

Стартовая закрутка вала (5) осуществляется стартером, приводимым при запуске двигателя от наземного или бортового электроагрегата, при дальнейшей работе двигателя вращение вала поддерживается вращением ротора турбины.

 Турбонаддув

Турбонаддув – это система, позволяющая увеличить максимальную мощность двигателя, используя для этого энергию выхлопных газов. 

Первые турбины хотя и давали весьма ощутимую прибавку в мощности, но из-за своей громоздкости во много раз увеличивали и без того немаленький вес двигателей автомобилей тех лет.

Конструкторы со временем усовершенствовали технологию, сделав элементы системы более легковесными, одновременно повысив ее производительность. Но одним из существенных недостатков оставался повышенный расход топлива.

Конструкторам удалось решить одну из главных проблем турбодвигателя – расход топлива, ведь, как известно, дизельный агрегат менее «прожорливый», чем бензиновый.

Еще один несомненный плюс дизельного топлива – его отработанные газы имеют температуру ниже, чем бензиновые, стало быть, основные агрегаты системы турбонаддува можно было производить из менее тяжеловесных и жаростойких материалов. 

Работа реактивного двигателя

Реактивное движение – это такой процесс, при котором от определенного тела с некоторой скоростью отделяется одна из его частей. Сила, которая возникает при этом, работает сама по себе, без малейшего контакта с внешними телами. Реактивное движение стало толчком к созданию реактивного двигателя.

Представим выстрел из любого огнестрельного оружия. Струя раскаленного газа, который образовался в процессе сгорания заряда в патроне, отталкивает оружие назад. Чем мощнее заряд, тем сильнее будет отдача.

В качестве горючего для реактивных двигателей вначале применяли дымный порох. Реактивные двигатели требовали топлива с основой из нитроцеллюлозы, которая растворялась в нитроглицерине. В больших агрегатах сегодня используют специальную смесь полимерного горючего с перхлоратом аммония в качестве окислителя.

Принцип действия РД

В качестве топлива в реактивных двигателях используется жидкий кислород либо азотная кислота. В качестве горючего применяют керосин. 

Компоненты поступают в камеру сгорания из двух отдельных баков. После смешивания они превращаются в массу, которая при сгорании выделяет огромное количество тепла и десятки тысяч атмосфер давления. Окислитель подается в камеру сгорания.

Топливная смесь по мере прохождения между сдвоенными стенками камеры и сопла охлаждает эти элементы. Далее горючее попадет через огромное количество форсунок в зону воспламенения. Струя вырывается наружу. За счет этого и обеспечивается толкающий момент.

Несмотря на то что жидкостные двигатели потребляют очень много горючего, их до сих пор используют в качестве маршевых агрегатов для ракеты-носителей и маневровых для орбитальных станций.

Устройство

Устроен РД следующим образом:

— компрессор;

— камера для сгорания;

— турбины;

— выхлопная система.

Компрессор представляет собой несколько турбин. Их задача – всасывать и сжимать воздух по мере того, как он проходит через лопасти. В процессе сжатия повышается температура и давление воздуха. 

Смесь выходит из камеры сгорания на высокой скорости, а затем расширяется. Далее она следует через турбину, лопасти которой вращаются за счет воздействия газов. Эта турбина, соединяясь с компрессором, находящимся в передней части агрегата, и приводит его в движение. Воздух, нагретый до высоких температур, выходит через выпускную систему. 

Двухконтурный РД

Эти агрегаты имеют массу преимуществ перед турбореактивными (меньший расход топлива при той же мощности).

Воздух, захватываемый турбиной, частично сжимается и подается в первый контур на компрессор и на второй – к неподвижным лопастям. Турбина при этом работает в качестве компрессора низкого давления.

В первом контуре двигателя воздух сжимается и подогревается, а затем подается в камеру сгорания. Здесь происходит смесь с топливом и воспламенение. Образуются газы, которые подаются на турбину высокого давления, за счет чего и вращаются лопасти турбины.

Затем газы проходят через турбину низкого давления. Она приводит в действие вентилятор, и газы попадают наружу, создавая тягу.

Турбовинтовой двигатель 

Конструкция и принцип работы были взяты из механизма турбореактивного мотора, а от поршневого — воздушные винты. Таким образом, стало возможным совмещение небольших габаритов, экономичности и высокого коэффициента полезного действия.

Однако для сверхзвуковой скорости они годными не были. Поэтому с появлением таких мощностей в военной авиации от них отказались. Зато гражданские самолеты в основном снабжаются именно ими.

Схема турбовинтового двигателя выглядит следующим образом: после нагнетания и сжатия компрессором воздух попадает в камеру сгорания. Туда же впрыскивается топливо. Полученная смесь воспламеняется и создает газы, которые при расширении поступают в турбину и вращают ее. Нерастраченная энергия выходит через сопло, создавая реактивную тягу.

Турбина

Турбина способна развить скорость до 20 тысяч оборотов в минуту, но винт не сможет ей соответствовать, поэтому здесь имеется понижающий редуктор. Редукторы могут быть разными, но главная их задача — снижать скорость и повышать момент.

Для повышения тяги иногда двумя винтами снабжается турбовинтовой двигатель. Принцип работы при этом у них реализуется за счет вращения в противоположные стороны, но при помощи одного редуктора.

Преимуществами турбовинтового двигателя являются:

  • малый вес по сравнению с поршневыми агрегатами;
  • экономичность по сравнению с турбореактивными моторами.

Турбокомпрессор

Принцип работы турбокомпрессора сводится к следующему:

  • при попадании в мотор топливовоздушной смеси происходит ее сгорание, которая затем выходит через выхлопную трубу. В начале выпускного коллектора установлена крыльчатка, крепко соединенная с другой крыльчаткой, расположенной во впускном коллекторе;
  • поток выходящих из двигателя выхлопных газов раскручивает крыльчатку, находящуюся в выпускном коллекторе, которая в свою очередь приводит в движение крыльчатку, установленную на впуске;
  • в мотор поступает большее количество воздушной массы, в него подается больше топлива. 

Преимущества и недостатки турбонаддува

Турбокомпрессор используется ввиду простоты конструкции и хороших эксплуатационных параметров. Турбонаддув позволяет увеличить мощность двигателя. 

Двигатель с турбокомпрессором имеет меньший выброс вредных газов в атмосферу, так как вырабатываются дополнительные выхлопные газы в двигатель. У сгораемого топлива становится меньше отходов.

Использование двух турбокомпрессоров и других турбо деталей

На некоторые двигатели устанавливается два турбокомпрессора разного размера. Малый турбокомпрессор быстрее набирает обороты, снижая тем самым задержку ускорения, а большой обеспечивает больший наддув при высокой скорости вращения двигателя.

Охладитель воздуха или охладитель наддувочного воздуха является дополнительным устройством, которое выглядит как радиатор, только воздух проходит как внутри, так и снаружи охладителя. 

Охладитель увеличивает мощность двигателя, охлаждая сжатый воздух от компрессора перед его подачей в двигатель. 

Турбокомпрессоры также обладают преимуществом на большой высоте, где плотность воздуха ниже. Обычные двигатели будут работать слабее на большой высоте над уровнем моря, т.к. на каждый ход поршня подаваемая масса воздуха будет меньше. Мощность двигателя с турбокомпрессором также снизится, но менее заметно, т.к. разреженный воздух легче сжимать.

Принцип работы газовых турбин

Газовой турбиной принято называть своеобразный тепловой двигатель, его рабочим частям предопределено только одно задание – вращаться вследствие воздействия струи газа.

История создания газовой турбины

Интересно, что механизмы турбин начали разрабатываться инженерами уже очень давно. Первая примитивная паровая турбина была создана ещё в I веке до н. э.

Активно разрабатываться турбины начали в конце XIX века одновременно с развитием термодинамики, машиностроения и металлургии.

Технические характеристики газовой турбины

Главная часть турбины представлена колесом, на которое прикреплены наборы лопаток. Газ, воздействуя на лопатки газовой турбины, заставляет их двигаться и вращать колесо. Колесо жёстко скреплено с валом.

Это ротор турбины. Вследствие этого движения достигается получение механической энергии, которая передаётся на электрогенератор, на гребной винт корабля, на воздушный винт самолёта и другие рабочие механизмы аналогичного принципа действия.

 

Активные и реактивные турбины

Активная турбина характеризуется тем, что здесь отмечается большая скорость поступления газа на рабочие лопатки. При помощи изогнутой лопатки струя газа отклоняется от своей траектории движения. В результате отклонения развивается большая центробежная сила.

В реактивной турбине поступление газа к рабочим лопаткам осуществляется на незначительной скорости и под воздействием большого уровня давления. Форма лопаток так же отлична, благодаря чему скорость газа значительно увеличивается.

 

Схема и принцип действия газотурбинного двигателя

Газотурбинным двигателем (ГТД)  называют тепловую машину, в которой энергия топлива преобразуется в кинетическую энергию струи и в механическую работу на валу. Основными элементами ГТД являются компрессор, камера сгорания и газовая турбина.

Принцип действия ГТД следующий.

1. Воздух из атмосферы поступает в компрессор (сечение «В-В»), где происходит сжатие воздуха (плотность, давление и температура возрастают). Если компрессор идеальный, то сжатие воздуха осуществляется в адиабатном процессе (  ), показатель адиабаты к=1.4.

Отношение давления воздуха на выходе из компрессора к давлению на входе называется степенью повышения давления в компрессоре:  .

2. Из компрессора (сечение «К-К») воздух поступает в камеру сгорания, где при постоянном давлении происходит подвод тепла к потоку воздуха при горении топлива. В результате подогрева в камере сгорания газ на её выходе имеет высокую температуру. Отношение температуры газа на выходе из камеры сгорания к температуре атмосферного воздуха называется степенью подогрева воздуха в двигателе:  .

3. Из камеры сгорания газ поступает в турбину (сечение «Г-Г»), где происходит расширение газа (плотность газа уменьшается). Если турбина идеальная, то процесс расширения принимается адиабатным. Показатель адиабаты газа равен 1.33.

4. Из турбины (сечение «Т-Т») газ направляется в выходной канал двигателя. Таким образом, ГТД представляет собой открытую термодинамическую систему, в которой реализуется цикл Брайтона.

Принцип действия и устройство турбин. Активные и реактивные принципы работы турбин

Особенности турбины как теплового двигателя

Турбина является тепловым ротационным двигателем, в котором потенциальная тепловая энергия пара (или газа) превращается в кинетическую, а последняя в свою очередь преобразуется в механическую работу вращения вала.

Пар с давлением более высоким, чем за турбиной, поступает в одно или несколько неподвижных каналов 5. В сопловых каналах пар расширяется, давление его падает, а скорость возрастает. 

Из сопл пар поступает в рабочие каналы, образованные рабочими лопатками 3, закрепленными на диске 2. Двигаясь в рабочих каналах между рабочими лопатками и изменяя свое направление, поток пара оказывает силовое воздействие на рабочие лопатки. В результате чего они вращаются вместе с диском и валом 1, установленным в опорных подшипниках 4.

Комплект, состоящий из сопл и рабочих лопаток, в которых совершается процесс расширения пара, называется ступенью давления турбины. Простейшие турбины, имеющие лишь одну ступень, называются одноступенчатыми, в отличие от более сложных многоступенчатых турбин.

Тремя основными элементами, содержащимися в конструкции турбокомпрессора являются: центробежный компрессор, турбина и центральный корпус. Кинетическая энергия отработанных газов под воздействием турбины преобразуется во вращательное движение компрессора.

Также турбина соединяет турбинное колесо, помещённое в специальный корпус в форме улитки.

Поступая в улитку, отработавшие газы перемещаются по каналу и попадают на лопасти турбинного колеса. Вал, к которому приварено турбинное колесо, передаёт на колесо компрессора энергию, которая придаёт его вращению.

Лопасти турбинного колеса становятся проводниками отработавших газов, которые затем покидают турбину через отверстие в центре турбокомпрессора и выходят в выпускную систему.

От формы и размера турбины напрямую зависит производительность турбокомпрессора. Значительный прирост мощности наблюдается в турбинах большего размера, потому что они могут использовать большее давление отработавших газов. Однако в таких турбокомпрессорах, на низких оборотах, значительна вероятность возникновения турбоямы.

 

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 2 чел.
Средний рейтинг: 5 из 5.

как горячий пар превращается в электричество / Блог компании Toshiba / Хабр

Учёные до сих пор бьются над поиском самых эффективных способов по выработке тока — прогресс устремился от гальванических элементов к первым динамо-машинам, паровым, атомным, а теперь солнечным, ветряным и водородным электростанциям. В наше время самым массовым и удобным способом получения электричества остаётся генератор, приводимый в действие паровой турбиной.

Паровые турбины были изобретены задолго до того, как человек понял природу электричества. В этом посте мы упрощённо расскажем об устройстве и работе паровой турбины, а заодно вспомним, как древнегреческий учёный опередил своё время на пятнадцать веков, как произошёл переворот в деле турбиностроения и почему Toshiba считает, что тридцатиметровую турбину надо изготавливать с точностью до 0,005 мм.

Как устроена паровая турбина


Принцип работы паровой турбины относительно прост, а её внутреннее устройство принципиально не менялось уже больше века. Чтобы понять принцип работы турбины, рассмотрим, как работает теплоэлектростанция — место, где ископаемое топливо (газ, уголь, мазут) превращается в электричество.

Сама по себе паровая турбина не работает, для функционирования ей нужен пар. Поэтому электростанция начинается с котла, в котором горит топливо, отдавая жар трубам с дистиллированной водой, пронизывающим котел. В этих тонких трубах вода превращается в пар.


Понятная схема работы ТЭЦ, вырабатывающей и электричество, и тепло для отопления домов. Источник: Мосэнерго

Турбина представляет собой вал (ротор) с радиально расположенными лопатками, словно у большого вентилятора. За каждым таким диском установлен статор — похожий диск с лопатками другой формы, который закреплён не на валу, а на корпусе самой турбины и потому остающийся неподвижным (отсюда и название — статор).

Пару из одного вращающегося диска с лопатками и статора называют ступенью. В одной паровой турбине десятки ступеней — пропустив пар всего через одну ступень тяжёлый вал турбины с массой от 3 до 150 тонн не раскрутить, поэтому ступени последовательно группируются, чтобы извлечь максимум потенциальной энергии пара.

На вход в турбину подаётся пар с очень высокой температурой и под большим давлением. По давлению пара различают турбины низкого (до 1,2 МПа), среднего (до 5 МПа), высокого (до 15 МПа), сверхвысокого (15—22,5 МПа) и сверхкритического (свыше 22,5 МПа) давления. Для сравнения, давление внутри бутылки шампанского составляет порядка 0,63 МПа, в автомобильной шине легковушки — 0,2 МПа.

Чем выше давление, тем выше температура кипения воды, а значит, температура пара. На вход турбины подается пар, перегретый до 550-560 °C! Зачем так много? По мере прохождения сквозь турбину пар расширяется, чтобы сохранять скорость потока, и теряет температуру, поэтому нужно иметь запас. Почему бы не перегреть пар выше? До недавних пор это считалось чрезвычайно сложным и бессмысленным —нагрузка на турбину и котел становилась критической.

Паровые турбины для электростанций традиционно имеют несколько цилиндров с лопатками, в которые подается пар высокого, среднего и низкого давления. Сперва пар проходит через цилиндр высокого давления, раскручивает турбину, а заодно меняет свои параметры на выходе (снижается давление и температура), после чего уходит в цилиндр среднего давления, а оттуда — низкого. Дело в том, что ступени для пара с разными параметрами имеют разные размеры и форму лопаток, чтобы эффективней извлекать энергию пара.

Но есть проблема — при падении температуры до точки насыщения пар начинает насыщаться, а это уменьшает КПД турбины. Для предотвращения этого на электростанциях после цилиндра высокого и перед попаданием в цилиндр низкого давления пар вновь подогревают в котле. Этот процесс называется промежуточным перегревом (промперегрев).

Цилиндров среднего и низкого давления в одной турбине может быть несколько. Пар на них может подаваться как с края цилиндра, проходя все лопатки последовательно, так и по центру, расходясь к краям, что выравнивает нагрузку на вал.

Вращающийся вал турбины соединён с электрогенератором. Чтобы электричество в сети имело необходимую частоту, валы генератора и турбины должны вращаться со строго определённой скоростью — в России ток в сети имеет частоту 50 Гц, а турбины работают на 1500 или 3000 об/мин.

Упрощённо говоря, чем выше потребление электроэнергии, производимой электростанцией, тем сильнее генератор сопротивляется вращению, поэтому на турбину приходится подавать бо́льший поток пара. Регуляторы частоты вращения турбин мгновенно реагируют на изменения нагрузки и управляют потоком пара, чтобы турбина сохраняла постоянные обороты. Если в сети произойдет падение нагрузки, а регулятор не уменьшит объём подаваемого пара, турбина стремительно нарастит обороты и разрушится — в случае такой аварии лопатки легко пробивают корпус турбины, крышу ТЭС и разлетаются на расстояние в несколько километров.

Как появились паровые турбины


Примерно в XVIII веке до нашей эры человечество уже укротило энергию стихии, превратив её в механическую энергию для совершения полезной работы — то были вавилонские ветряные мельницы. К II веку до н. э. в Римской империи появились водяные мельницы, чьи колёса приводились в движение нескончаемым потоком воды рек и ручьёв. И уже в I веке н. э. человек укротил потенциальную энергию водяного пара, с его помощью приведя в движение рукотворную систему.


Эолипил Герона Александрийского — первая и единственная на следующие 15 веков реактивная паровая турбина. Источник: American Mechanical Dictionary / Wikimedia

Греческий математик и механик Герон Александрийский описал причудливый механизм эолипил, представляющий собой закреплённый на оси шар с исходящими из него под углом трубками. Подававшийся в шар из кипящего котла водяной пар с силой выходил из трубок, заставляя шар вращаться. Придуманная Героном машина в те времена казалась бесполезной игрушкой, но на самом деле античный учёный сконструировал первую паровую реактивную турбину, оценить потенциал которой удалось только через пятнадцать веков. Современная реплика эолипила развивает скорость до 1500 оборотов в минуту.

В XVI веке забытое изобретение Герона частично повторил сирийский астроном Такиюддин аш-Шами, только вместо шара в движение приводилось колесо, на которое пар дул прямо из котла. В 1629 году схожую идею предложил итальянский архитектор Джованни Бранка: струя пара вращала лопастное колесо, которое можно было приспособить для механизации лесопилки.


Активная паровая турбина Бранка совершала хоть какую-то полезную работу — «автоматизировала» две ступки.

Несмотря на описание несколькими изобретателями машин, преобразующих энергию пара в работу, до полезной реализации было еще далеко — технологии того времени не позволяли создать паровую турбину с практически применимой мощностью.

Турбинная революция


Шведский изобретатель Густаф Лаваль много лет вынашивал идею создания некоего двигателя, который смог бы вращать ось с огромной скоростью — это требовалось для функционирования сепаратора молока Лаваля. Пока сепаратор работал от «ручного привода»: система с зубчатой передачей превращала 40 оборотов в минуту на рукоятке в 7000 оборотов в сепараторе. В 1883 году Лавалю удалось адаптировать эолипил Герона, снабдив-таки молочный сепаратор двигателем. Идея была хорошая, но вибрации, жуткая дороговизна и неэкономичность паровой турбины заставили изобретателя вернуться к расчетам.

Турбинное колесо Лаваля появилось в 1889 году, но его конструкция дошла до наших дней почти в неизменном виде.

Спустя годы мучительных испытаний Лаваль смог создать активную паровую турбину с одним диском. На диск с лопатками из четырех труб с соплами под давлением подавался пар. Расширяясь и ускоряясь в соплах, пар ударял в лопатки диска и тем самым приводил диск в движение. Впоследствии изобретатель выпустил первые коммерчески доступные турбины с мощностью 3,6 кВт, соединял турбины с динамо-машинами для выработки электричества, а также запатентовал множество новшеств в конструкции турбин, включая такую их неотъемлемую в наше время часть, как конденсатор пара. Несмотря на тяжёлый старт, позже дела у Густафа Лаваля пошли хорошо: оставив свою прошлую компанию по производству сепараторов, он основал акционерное общество и приступил к наращиванию мощности агрегатов.

Параллельно с Лавалем свои исследования в области паровых турбин вёл англичанин cэр Чарлз Парсонс, который смог переосмыслить и удачно дополнить идеи Лаваля. Если первый использовал в своей турбине один диск с лопатками, то Парсонс запатентовал многоступенчатую турбину с несколькими последовательно расположенными дисками, а чуть позже добавил в конструкцию статоры для выравнивания потока.

Турбина Парсонса имела три последовательных цилиндра для пара высокого, среднего и низкого давления с разной геометрией лопаток. Если Лаваль опирался на активные турбины, то Парсонс создал реактивные группы.

В 1889 году Парсонс продал несколько сотен своих турбин для электрификации городов, а еще пять лет спустя было построено опытное судно «Турбиния», развивавшее недостижимую для паровых машин прежде скорость 63 км/ч. К началу XX века паровые турбины стали одним из главных двигателей стремительной электрификации планеты.


Сейчас «Турбиния» выставляется в музее в Ньюкасле. Обратите внимание на количество винтов. Источник: TWAMWIR / Wikimedia

Турбины Toshiba — путь длиной в век


Стремительное развитие электрифицированных железных дорог и текстильной промышленности в Японии заставило государство ответить на возросшее электропотребление строительством новых электростанций. Вместе с тем начались работы по проектированию и производству японских паровых турбин, первые из которых были поставлены на нужды страны уже в 1920-х годах. К делу подключилась и Toshiba (в те годы: Tokyo Denki и Shibaura Seisaku-sho).

Первая турбина Toshiba была выпущена в 1927 году, она имела скромную мощность в 23 кВт. Уже через два года все производимые в Японии паровые турбины выходили из фабрик Toshiba, были запущены агрегаты с общей мощностью 7500 кВт. Кстати, и для первой японской геотермальной станции, открытой в 1966 году, паровые турбины также поставляла Toshiba. К 1997 году все турбины Toshiba имели суммарную мощность 100000 МВт, а к 2017 поставки настолько возросли, что эквивалентная мощность составила 200000 МВт.

Такой спрос обусловлен точностью изготовления. Ротор с массой до 150 тонн вращается со скоростью 3600 оборотов в минуту, любой дисбаланс приведёт к вибрациям и аварии. Ротор балансируется с точностью до 1 грамма, а геометрические отклонения не должны превышать 0,01 мм от целевых значений. Оборудование с ЧПУ помогает снизить отклонения при производстве турбины до 0,005 мм — именно такая разница с целевыми параметрами среди сотрудников Toshiba считается хорошим тоном, хотя допустимая безопасная погрешность на порядок больше. Также каждая турбина обязательно проходит стресс-тест при повышенных оборотах — для агрегатов на 3600 оборотов тест предусматривает разгон до 4320 оборотов.


Удачное фото для понимания размеров ступеней низкого давления паровой турбины. Перед вами коллектив лучших мастеров завода Toshiba Keihin Product Operations. Источник: Toshiba

Эффективность паровых турбин


Паровые турбины хороши тем, что при увеличении их размеров значительно растёт вырабатываемая мощность и КПД. Экономически гораздо выгодней установить один или несколько агрегатов на крупную ТЭС, от которой по магистральным сетям распределять электричество на большие расстояния, чем строить местные ТЭС с малыми турбинами, мощностью от сотен киловатт до нескольких мегаватт. Дело в том, что при уменьшении габаритов и мощности в разы растёт стоимость турбины в пересчёте на киловатт, а КПД падает вдвое-втрое.

Электрический КПД конденсационных турбин с промперегревом колеблется на уровне 35-40%. КПД современных ТЭС может достигать 45%.

Если сравнить эти показатели с результатами из таблицы, окажется, что паровая турбина — это один из лучших способов для покрытия больших потребностей в электричестве. Дизели — это «домашняя» история, ветряки — затратная и маломощная, ГЭС — очень затратная и привязанная к местности, а водородные топливные элементы, про которые мы уже писали — новый и, скорее, мобильный способ выработки электроэнергии.

Интересные факты


Самая мощная паровая турбина: такой титул могут по праву носить сразу два изделия — немецкая Siemens SST5-9000 и турбина производства ARABELLE, принадлежащей американской General Electric. Обе конденсационных турбины выдают до 1900 МВт мощности. Реализовать такой потенциал можно только на АЭС.


Рекордная турбина Siemens SST5-9000 с мощностью 1900 МВт. Рекорд, но спрос на такие мощности очень мал, поэтому Toshiba специализируется на агрегатах с вдвое меньшей мощностью. Источник: Siemens

Самая маленькая паровая турбина была создана в России всего пару лет назад инженерами Уральского федерального университета — ПТМ-30 всего полметра в диаметре, она имеет мощность 30 кВт. Малютку можно использовать для локальной выработки электроэнергии при помощи утилизации избыточного пара, остающегося от других процессов, чтобы извлекать из него экономическую выгоду, а не спускать в атмосферу.


Российская ПТМ-30 — самая маленькая в мире паровая турбина для выработки электричества. Источник: УрФУ

Самым неудачным применением паровой турбины стоит считать паротурбовозы — паровозы, в которых пар из котла поступает в турбину, а затем локомотив движется на электродвигателях или за счет механической передачи. Теоретически паровая турбина обеспечивала в разы больший КПД, чем обычный паровоз. На деле оказалось, что свои преимущества, как то высокая скорость и надежность, паротурбовоз проявляет только на скоростях выше 60 км/ч. При меньшей скорости движения турбина потребляет чересчур много пара и топлива. США и европейские страны экспериментировали с паровыми турбинами на локомотивах, но ужасная надежность и сомнительная эффективность сократили жизнь паротурбовозов как класса до 10-20 лет.


Угольный паротурбовоз C&O 500 ломался почти каждую поездку, из-за чего уже спустя год после выпуска был отправлен на металлолом. Источник: Wikimedia

Авиационные газотурбинные двигатели / Хабр

Всем привет! В этой статье я хочу рассказать о том, как работают авиационные газотурбинные двигатели (ГТД). Я постараюсь сделать это наиболее простым и понятным языком.

Авиационные ГТД можно можно разделить на:

  • турбореактивные двигатели (ТРД)
  • двухконтурные турбореактивные двигатели (ТРДД)
  • Турбовинтовые двигатели (ТВД)
  • Турбовальные двигатели (ТВаД)

Притом, ТРД и ТРДД могут содержать в себе форсажную камеру, в таком случае они будут ТРДФ и ТРДДФ соответственно. В этой статье мы их рассматривать не будем.

Начнём с турбореактивных двигателей.

Турбореактивные двигатели


Такой тип двигателей был создан в первой половине 20-го века и начал находить себе массовое применение к концу Второй мировой войны. Первым в мире серийным турбореактивным самолетом был немецкий Me.262. ТРД были популярны вплоть до 60-ых годов, после чего их стали вытеснять ТРДД.


Современная фотография Me-262, сделанная в 2016 году

Самый простой турбореактивный двигатель включает в себя следующие элементы:

  • Входное устройство
  • Компрессор
  • Камеру сгорания
  • Турбину
  • Реактивное сопло (далее просто сопло)

Можно сказать, что это минимальный набор для нормальной работы двигателя.

А теперь рассмотрим что для чего нужно и зачем.

Входное устройство — это расширяющийся* канал, в котором происходит подвод воздуха к компрессору и его предварительное сжатие. В нём кинетическая энергия входящего воздуха частично преобразуется в давление.

*здесь и дальше мы будем говорить про дозвуковые скорости. На сверхзвуковой скорости физика меняется, и там все совсем не так.

Компрессор — это устройство, в котором происходит повышение давление воздуха. Компрессор можно характеризовать такой величиной, как степень повышения давления. В современных двигателях оно уже начинает переступать за 40 единиц. Кроме того, в нем увеличивается температура (может быть, где-то до 400 градусов Цельсия).

Камера сгорания — устройство, в котором к сжатому воздуху (после компрессора) подводится тепло из-за горения топлива. Температура в камере сгорания очень высокая, может достигать 2000 градусов Цельсия. Вам может показаться, что давление газа в камере тоже сильно увеличивается, но это не так. Теоретически принято считать, что подвод тепла осуществляется при постоянном давлении. В реальности оно немного падает из-за потерь (проблема несовершенства конструкции).

Турбина — устройство, превращающее часть энергии газа после камеры сгорания в энергию привода компрессора. Так как турбины используются не только в авиации, можно дать более общее определение: это устройство, преобразующее внутреннюю энергию рабочего тела (в нашем случае рабочее тело — это газ) в механическую работу на валу. Как вы могли понять, турбина и компрессор находятся на одном валу и жестко связаны между собой. Если в компрессоре происходит повышение давления газа, то в турбине, наоборот, понижение, то есть газ расширяется.

Сопло — суживающийся канал, в котором происходит преобразование потенциальной энергии газа в кинетическую (оставшийся запас энергии газа после турбины). Как и в турбине, в сопле происходит расширение газа. Образуется струя, которая, вытекая из сопла, движет самолёт.

С основными элементами разобрались. Но все равно не очень понятно как оно работает? Тогда давайте ещё раз и коротко.

Воздух из атмосферы попадает во входное устройство, где немного сжимается и поступает в компрессор. В компрессоре давление воздуха растёт ещё сильнее, растёт и температура. После компрессора воздух поступает в камеру сгорания и, смешиваясь там с топливом, воспламеняется, что приводит к сильному возрастанию температуры, при, можно сказать, постоянном давлении. После камеры сгорания горячий сжатый газ попадает в турбину. Часть энергии газа расходуется на вращение компрессора турбиной (чтобы он мог выполнять свою функцию, описанную выше), другая часть энергии расходуется на, нужное нам, движение самолёта, из-за того, что газ, пройдя турбину, превращается в реактивную струю в сопле и вырывается из него (сопла) в атмосферу. На этом цикл завершается. Конечно, в реальности все процессы цикла проходят непрерывно.

Такой цикл называется циклом Брайтона, или термодинамическим циклом с непрерывным характером рабочего процесса и подводом тепла при постоянном давлении. По такому циклу работают все ГТД.


Цикл Брайтона в P-V координатах

Н-В — процесс сжатия во входном устройстве
В-К — процесс сжатия в компрессоре
К-Г — изобарический подвод тепла
Г-Т — процесс расширения газа в турбине
Г-С — процесс расширения газа в сопле
С-Н — изобарический отвод тепла в атмосферу


Схематичная конструкция турбореактивного двигателя, где 0-0 — ось двигателя

ТРД может иметь и два вала. В таком случае компрессор состоит из компрессора низкого давления (КНД) и компрессора высокого давления (КВД), а подвод работы будут осуществлять турбина низкого давления (ТНД) и турбина высокого давления (ТВД) соответственно. Такая схема более выгодная газодинамически.


Реальный двигатель такого вида в разрезе

Мы рассмотрели принцип работы самой простой схемы авиационного газотурбинного двигателя. Естественно, на современных «Эйрбасах и Боингах» устанавливаются ТРДД, конструкция которых заметно сложнее, но работает все по таким же законам. Давайте рассмотрим их.

Двухконтурный турбореактивный двигатель


ТРДД, прежде всего, отличается от ТРД тем, что имеет два контура: внешний и внутренний. Внутренний контур содержит в себе то же самое, что и ТРД: компрессор (разделенный на КНД и КВД), камеру сгорания, турбину (разделенную на ТВД и ТНД) и сопло. Внешний контур представляет собой канал, с соплом в конце. В нем нет ни камеры сгорания, ни турбины. Перед обоими контурами (сразу после входного устройства двигателя) стоит ступень компрессора, работающая на оба контура.

Не очень понятная картина выходит, да? Давайте разберемся как оно работает.


Схематичная конструкция двухвального двухконтурного турбореактивного двигателя

Воздух, попадающий в двигатель, пройдя через первую ступень компрессора низкого давления, разбивается на два потока. Одна часть воздуха идет по внутреннему контуру, где происходят те же процессы, которые были описаны, когда мы разбирали ТРД. Вторая часть воздуха попадает во внешний контур, получив энергию от первой ступени КНД (та, которая работает на два контура). Во внешнем контуре энергия воздуха тратится только на преодоление гидравлических потерь (за счёт трения). В конце этот воздух попадает в сопло внешнего контура, создавая огромную тягу. Тяга, созданная внешним контуром, может составлять 80% тяги всего двигателя.

Одной из важнейших характеристик ТРДД является степень двухконтурности. Степень двухконтурности — это отношение расхода воздуха во внешнем контуре, к расходу воздуха во внутреннем контуре. Это число может быть как больше, так и меньше единицы. На современных двигателях это число переступает за значение в 12 единиц.
Двигатели, степень двухконтурности которых больше двух, принято называть турбовентиляторными, а первую ступень компрессора (ту, что работает на оба контура) вентилятором.


ТРДД самолета Boeing 757-200. На переднем плане видно входное устройство и вентилятор

На некоторых двигателях вентилятор приводится в движение отдельной турбиной, которая ставится ближе всего к соплу внутреннего контура. Тогда двигатель получается трехвальным. Например, по такой схеме выполнены двигатели Rolls Royce RB211 (устанавливались на L1011, B747, B757, B767), Д-18Т (Ан-124), Д-36 (Як-42)


Д-18Т в разрезе изнутри

Главное достоинство ТРДД заключается в возможности создания большой тяги и хорошей экономичности, по сравнению с ТРД.

На этом я хотел бы закончить про ТРДД и перейти к следующему виду двигателей — ТВД.

Турбовинтовые двигатели


Турбовинтовой двигатель, как и турбореактивный, относится к газотурбинным двигателям. И работает он почти как турбореактивный. Элементарный турбовинтовой двигатель состоит из уже знакомых нам элементов: компрессора, камеры сгорания, турбины и сопла. К ним добавляются редуктор и винт.

Принцип работы работы такой же, как у турбореактивного, с разницей в том, что практически вся энергия газа расходуется на турбине на вращение компрессора и на вращение винта через редуктор (здесь винт и редуктор находятся на одном валу с компрессором). Винт создаёт основную долю тяги. Оставшаяся, после турбины, часть энергии направляется в сопло, образуя реактивную тягу, но она мала, может составлять десятую часть от общей. Редуктор в этой схеме нужен для того, чтобы понизить обороты и передать момент, так как турбина может вращаться с очень высокой частотой, например, 10000 оборотов в минуту, а винту нужно только 1500. И винт достаточно тяжелый.


Схематичная конструкция ТВД

Но бывает и другая схема турбовинтовых двигателей: со свободной турбиной.
Её суть в том, что за обычной турбиной компрессора ставится отдельная турбина, которая механически не связана с турбиной компрессора. Такая турбина называется свободной. Связь между турбиной компрессора и свободной турбиной только газодинамическая. От свободной турбины идёт отдельный вал, на который устанавливаются редуктор с винтом. Все остальное работает так же, как и в первом случае. Большинство современных двигателей выполняют именно по такой схеме. Одним из плюсов такой схемы является возможность использования двигателя на земле, как вспомогательную силовую установку (ВСУ), не приводя винт в движение.


Схематичная конструкция ТВД со свободной турбиной

Хочу отметить, что не нужно смотреть на турбовинтовые двигатели как на малоэффективный пережиток прошлого. Я несколько раз слышал такие высказывания, но они неверны.
Турбовинтовой двигатель в некоторых случаях обладает наивысшим КПД, как правило, на самолетах с не очень большими скоростями (например, на 500 км/ч), притом, самолет может быть внушительных размеров. В таком случае, турбовинтовой двигатель может быть в разы выгоднее, рассмотренного ранее, турбореактивного двигателя.

На этом про турбовинтовые двигатели можно заканчивать. Мы потихоньку подошли к понятию турбовального двигателя.

Турбовальный двигатель


Должно быть, большинство читателей здесь вообще впервые слышат такое название. Такой тип двигателей устанавливается на вертолёты.

Турбовальный двигатель очень схож с турбовинтовым двигателем со свободной турбиной. Он также состоит из компрессора, камеры сгорания, турбины компрессора, далее идёт свободная турбина, связанная со всем предыдущем только газодинамически. А вот реактивную тягу такой двигатель не создаёт, реактивного сопла у него нет, только выхлоп. Свободная турбина имеет свой вал, который соединяется к главному редуктору вертолёта (несущего винта). Да, у всех известных мне вертолетов есть такой редуктор, и, как правило, он внушительных размеров. Дело в том, что обороты несущего винта вертолёта очень низкие. Если у самолета, как я писал выше, они могут достигать 1500 об/мин, то у вертолёта, например у Ми-8, всего 193 об/мин.
А обороты двигателя у вертолёта зачастую очень высокие (из-за небольших размеров), и понижать их приходится в сотню и более раз. Бывает такое, что редуктор стоит и на двигателе, и на самом вертолете, например, у Ми-2 и его двигателя ГТД-350.


Схематичная конструкция турбовального двигателя


Двигатель ТВ3-117 от вертолета Ми-8. Справа видны выхлопная труба и приводной вал

Итак, мы рассмотрели четыре типа газотурбинных двигателей. Надеюсь, мой текст был понятен и полезен для вас. Все вопросы и замечания можете писать в комментариях.

Спасибо за внимание.

Принцип работы актуатора турбины — проверка, регулировка и ремонт

Актуатор турбины

Автомобиль – неизменных помощник практически половины населения страны. Не удивительно, что многие стараются получить максимальную пользу с машины, с минимальными вложениями. И сегодня, чтобы улучшить тяговые характеристики авто, не нужно что-то кардинально менять. Увеличить тяговые характеристики машины можно просто установив турбонаддув.

Суть улучшения – турбонаддув позволяет принудительно увеличить объемы воздуха, подающиеся в камеру сгорания, тем самым улучшить процесс сгорания топлива без необходимости физического изменения параметров самого двигателя.

Здесь важно учесть, что больший объем сожженного топлива увеличивает давление и объем выхлопных газов. Поэтому требуется усиленное, оперативное их отведение, чтобы освободить место для новой порции воздуха. Именно на этом и базируется принцип работы актуатора турбины, который мы сегодня рассмотрим.

Как работает актуатор турбины

Для начала определимся в терминологии. Актуатор может иметь множество разговорных названий – вестгейт, вакуумный регулятор, избыточный клапан. Все это одна деталь, базовая роль которой сводится к выполнению функции сброса повышенного давления воздуха (выхлопных газов), во время работы двигателя автомобиля. Этот элемент выступает промежуточным звеном между турбокомпрессором и двигателем, оберегая их от перегрузки.

Устанавливается практически на турбине.

  • Принцип работы актуатора сводится к тому, что при высоких оборотах двигателя, когда возрастает давление выхлопных газов с одной стороны и воздуха, направляемого через турбокомпрессор в двигатель с другой открывается клапан и стабилизирует ситуацию. Во время открытия клапана часть выхлопных газов попросту проходят мимо турбинного колеса, что приводит к снижению эффективности работы турбинного нагнетающего колеса и снижает давление воздуха.

Снижение давления выхлопных газов и направление их в обход турбинного колеса выполняется через калитку вестгейта, управляемую актуатором. Тем самым потребность в воздухе для горючей смеси четко соответствует моменту очищения камеры сгорания от выхлопных газов.

 

Иные типы актуаторов

В турбинах с изменяемой геометрией также есть актуаторы, которые бывают электрические и пневматические (вакуумные). Актуаторы в этом случае служат для поворота лопаток механизма изменяемой геометрии. Обычно в таких турбинах нет калитки вестгейта с управлением актуатором от повышенного давления.

Наиболее распространенные поломки актуаторов

  • повреждение электрических элементов;
  • износ зубьев шестеренок и червяка у электрического актуатора;
  • выходит из строя электромотор;
  • повреждение мембраны вакуумного актуатора.

В таких случаях, чтобы отремонтировать актуатор турбины, необходимо выполнить его диагностику с целью точно определить поломку. Для устранения неисправности целесообразно обратиться в специализированный сервисный центр. Устранить поломку самостоятельно будет достаточно сложно – для определения неисправности нужно специальное оборудование, которое в большинстве случаев отсутствует в домашних условиях. А если покупать отдельно – намного дешевле ремонт актуатора провести в сервисном центре.

 

 

Проверка актуатора

Изначально, в момент реализации, актуатор имеет заводские настройки и, фактически, готов к работе. Но после установки на транспортное средство целесообразно проверить актуатор и отрегулировать. Характерным сигналом выполнить такие действия будет дребезжание компрессора в момент глушения двигателя авто. Здесь не стоит паниковать, это не поломка актуатора. Просто шток клапана излишне болтается в процессе работы.

Кроме этого, часто, если правильно настроить актуатор, можно существенно увеличить производительность турбокомпрессора путем наращивания давления воздуха, подаваемого в двигатель.

Регулировка осуществляется несколькими путями

  1. Самый простой и распространенный способ – просто выполнить замену пружины на более мощную. То позволит увеличить и поддерживать высокое давление турбины до момента срабатывания выпускного клапана. Но это чревато превышением оборотов вала турбины.
  2. Следующий вариант, это выполнить подтяжку (можно затянуть, либо послабить) регулятора, влияющего на процесс открытия и последующее закрытия заслонки. При расслаблении тяга удлиняется. Если немного подтянуть – укорачивается. От длины тяги напрямую зависит плотность закрытия заслонки. Чем она меньше, тем плотнее будет примыкать заслонка. Следовательно, чтобы ее открыть нужно больше давления и времени. Тем самым турбина получает возможность обеспечить высокие обороты за короткий промежуток времени.
  3. Еще один вариант – установка буст-контроллера. Устройство устанавливают перед вестгейтом и обеспечивает снижение давления, при котором срабатывает мембрана актуатора. Фактически такое устройство берет на себя часть функции регулирования давления, вследствие чего клапан не получает информации о реальном давлении газов и продолжает работать в штатном режиме.

Настройка актуатора

Конечно, ремонт турбин следует выполнять в условиях профессиональных сервисных центров, имеющих все необходимое диагностическое оборудование и запасные детали в случае необходимости что-либо менять. Вместе с этим обычная настройка может быть выполнена в домашних условиях.

Для этого потребуется пассатижи и ключ на 10. Последовательность действий будет такой:

  1. Снять турбокомпрессор (некоторые модели машин дают возможность добраться до клапана без необходимости выполнения этой процедуры).
  2. Снять скобу со штока, ослабить гайку, подтянуть винт регулировки (необходимо крутить влево).
  3. Выполнить легкое постукивание по заслонке. Подтягивать до момента, пока не пропадет небольшое дребезжание. Учитывайте, чем туже затягиваете, тем сильнее будет возрастать давление на мембране.
  4. Затяните гайку, верните скобу в исходное положение.

Чтобы проверить правильность ваших действий при настройках – запустите мотор и опробуйте его на разных режимах работы. Если все действия были верными – посторонних звуков не будет, в том числе и в момент глушения двигателя.

Паровая турбина

— Принцип работы и типы паровой турбины

ЧТО ТАКОЕ ПАРОВАЯ ТУРБИНА?

Паровая турбина — это один из видов тепловых машин, в которых тепловая энергия пара преобразуется в механическую работу. Конструкция паровой турбины очень проста. К турбине не прикреплен шток поршня, маховик или золотниковые клапаны. Это довольно просто. Он состоит из ротора и набора вращающихся лопастей, которые прикреплены к валу, причем вал расположен в середине ротора.К валу ротора подключен электрический генератор, известный как паротурбинный генератор. Турбинный генератор собирает механическую энергию с вала и преобразует ее в электрическую. Паровой турбогенератор также повышает КПД турбины.

ИСТОРИЯ ПАРОВОЙ ТУРБИНЫ

Первая паровая турбина была изобретена греческим математиком Героем Александрийским около 120 г. до н.э. и имела возвратно-поступательное движение. Современная паровая турбина была изготовлена ​​сэром Чарльзом Парсонсом в 1884 году.Дизайн многократно менялся. Мощность турбины составляет от 0,75 кВт до 1000 МВт. Это широкий спектр применений, таких как насосы, компрессоры и т. Д. Современная паровая турбина также используется в качестве первичного двигателя на большой тепловой электростанции.

ПРИНЦИП РАБОТЫ ПАРОВОЙ ТУРБИНЫ

Принцип работы паровой турбины зависит от динамического действия пара. Пар с высокой скоростью выходит из сопел и ударяется о вращающиеся лопасти, которые установлены на диске, установленном на валу.Этот высокоскоростной пар создает динамическое давление на лопасти, при котором лопасти и вал начинают вращаться в одном направлении. Как правило, в паровой турбине энергия давления пара отбирается, а затем преобразуется в кинетическую энергию, позволяя пару проходить через Преобразование кинетической энергии выполняет механическую работу с лопастями ротора, и ротор соединен с паротурбинным генератором, который действует как посредник. Турбогенератор собирает механическую энергию от ротора и преобразует ее в электрическую.Поскольку конструкция паровой турбины проста, ее вибрация намного меньше, чем у другого двигателя при той же скорости вращения. Хотя для повышения скорости вращения турбины используются разные типы систем управления.

steam turbine

ТИПЫ ПАРОВОЙ ТУРБИНЫ

По принципу работы существуют различных типов паровых турбин .

, г.

1. По принципу работы паровые турбины в основном делятся на две категории:

а) Импульсная турбина

б).Реакционная паровая турбина

⇨Когда пар попадает на движущиеся лопасти через сопла, называемые импульсной турбиной, и когда он ударяет по движущимся лопастям под давлением через направляющий механизм, называемый реакционной турбиной.

  • Прочтите принцип работы импульсной и реактивной паровой турбины.

  • Паровые турбины можно разделить на следующие категории:

    2. По направлению потока пара его можно разделить на две категории: —

    а).Паровая турбина с осевым потоком: —

    б) Паровая турбина с радиальным потоком: —

    ⇨ Когда поток пара внутри корпуса параллелен оси вала ротора, это называется паровой турбиной с осевым потоком, а поток пара внутри корпуса радиален по отношению к оси вала ротора, что называется паровой турбиной с радиальным потоком.

    3. В соответствии с условиями выпуска пара, он делится на две категории: —

    a) Паровая турбина с противодавлением или без конденсации: —

    б) Паровая турбина конденсационного типа: —

    ⇨ После расширения пар выбрасывается в атмосферу, называемую паровой турбиной с противодавлением, или паровой турбиной неконденсирующего типа, в противном случае он выпускается в конденсатор, называемый конденсационной турбиной.

    4. По давлению пара его можно разделить на следующие категории: —

    а) Паровая турбина высокого давления или с отводом или с отводом: —

    б) Паровая турбина среднего или противодавления: —

    в) Турбина низкого давления: —

    ⇨ Пар высокого, среднего и низкого давления подается в турбину, называемую паровой турбиной высокого давления или паровой турбиной среднего давления, или паровой турбиной с противодавлением и паровой турбиной низкого давления. Эти турбины используются для различных производственных и отопительных процессов.

    5. По количеству ступеней его можно разделить на следующие категории: —

    а) Одноступенчатая паровая турбина: —

    б) Многоступенчатая паровая турбина: —

    ⇨ Пар выходит из форсунок при прохождении через одиночный набор движущихся лопастей, называемых одноступенчатой ​​паровой турбиной, и в многоступенчатый поток движущихся лопастей, называемых многоступенчатой ​​паровой турбиной.

    6. По расположению отвала и колес его можно разделить на следующие категории: —

    а) Паровая турбина компаундирования под давлением

    б) Паровая турбина скоростного компаундирования

    c) Комбинированная паровая турбина с импульсной реакцией

    г) Паровая турбина с компаундированием по давлению и скорости

    РАЗНИЦА МЕЖДУ ПАРОВОЙ ТУРБИНОЙ И ПАРОВЫМ ДВИГАТЕЛЕМ

    Паровая турбина Паровоз
    1) Преобразование тепловой энергии в механическую работу, нет потерь на трение. 1) Высокие потери на трение для деталей, совершающих возвратно-поступательное движение.
    2) Баланс хороший. 2) Баланс не так хорош.
    3) Фундамент легкий. 3) Фундамент тяжелый.
    4) Он может работать на высокой скорости. 4) Он не может работать на такой большой скорости.
    5) Смазка простая, так как без смазки части в наличии. 5) Смазка не так уж и проста при трении частей.
    6) Выработка электроэнергии равномерно. 6) Он не вырабатывает мощность равномерно.
    7) Расход пара меньше поршневой паровой двигатель. 7) Он потребляет больше пара, чем паровая турбина.
    8) Более компактный и требует меньше внимание. 8) Паровой двигатель требует большего внимания.
    9) Подходит для больших электростанций. 9) Не подходит для больших электростанций.
    10) Паровая турбина более эффективна чем паровой двигатель. 10) Паровоз не так уж и эффективен.
    ☛ Дополнительные вопросы Нажмите здесь ,Паровая турбина

    | Принцип работы импульсной и реактивной паровой турбины

    ПРИНЦИП РАБОТЫ ИМПУЛЬСНОЙ ПАРОВОЙ ТУРБИНЫ

    В импульсной паровой турбине имеется несколько неподвижных сопел, а движущиеся лопасти находятся на диске, установленном на валу. Движущиеся лопасти расположены в симметричном порядке. Пар поступает в корпус турбины с некоторым давлением. После этого проходит один или несколько нет. неподвижных сопел в турбину. Относительная скорость пара на выходе из движущихся лопастей такая же, как на входе в лопасти.Во время расширения давление пара падает. Из-за высокого перепада давления в соплах скорость пара увеличивается.

    Эта высокоскоростная струя пара проходит через неподвижные сопла и ударяет по лопасти с постоянным давлением. Импульсная турбина, пар создавал только импульсную силу на лопасти. Теперь лопасти начинают двигаться в том же направлении, что и поток пара. Вал турбины из-за изменения количества движения начинает вращаться. Примером турбины Simple Impulse является турбина DA-Laval .

    ПРИНЦИП РАБОТЫ ПАРОВОЙ ТУРБИНЫ ИМПУЛЬСНОЙ РЕАКЦИИ:

    Принцип работы турбины с импульсной реакцией зависит от силы реакции, создаваемой паром . Здесь пар проходит через сопла на концах труб и опирается на подшипники. Относительная скорость пара на выходе намного меньше, чем на входе в лопасти.

    В реакционной турбине сопла будут двигаться на подшипниках в направлении, противоположном потоку пара, и давление в этой турбине не является постоянным.Поэтому; к соплам и трубкам всегда прикладывается сила реакции. В этой турбине пар создает как импульсную, так и реактивную силу. Таким образом, результирующая сила, действующая на ротор, представляет собой векторную сумму импульсной и реактивной силы, а сила реакции является несбалансированным. Как правило, эта турбина не используется в коммерческих целях. Из-за этой реактивной силы она называется реактивной турбиной. Примером этой турбины является Parson’s Turbine .

    РАЗНИЦА МЕЖДУ ИМПУЛЬСНОЙ ТУРБИНОЙ И РЕАКЦИОННОЙ ТУРБИНОЙ

    Импульсная турбина Реакционная турбина
    1) В импульсной турбине только импульсная сила воздействует на лопасти, закрепленные на роторе 1) В реактивной турбине векторная сумма импульсной и реактивной силы ударяет по лопаткам, прикрепленным к ротору.
    2) Пар полностью расширяется при прохождении через сопла, а его давление остается постоянным. 2) давление не может расширяться полностью. Он частично расширяется, когда проходит через сопла и опирается на лопасти ротора.
    3) Лезвия симметричной формы. 3) Лезвия асимметричной формы.
    4) Поскольку скорость пара высока, импульсная турбина имеет высокую скорость. 4) Но скорость реакционной турбины намного ниже, чем импульсной турбины, потому что скорость пара в реакционной турбине ниже, чем в импульсной турбине.
    5) Для получения такой же мощности требуется гораздо меньше ступеней. 5) Для развития такой же мощности требуется больше ступеней.
    6) Кривая эффективности отвала высокая. 6) Кривая КПД лопастей ниже, чем у импульсной турбины.
    ☛ Подробнее Нажмите здесь ,Принцип работы газотурбинного двигателя

    Принцип, используемый газотурбинным двигателем, поскольку он обеспечивает силу для перемещения самолета, основан на законе количества движения Ньютона. Этот закон гласит, что на каждое действие есть равное и противоположное противодействие; следовательно, если двигатель ускоряет массу воздуха (действие), он прикладывает силу к самолету (реакция). Турбореактивный двигатель создает тягу, давая относительно более медленное ускорение большому количеству воздуха. Старый чисто турбореактивный двигатель достигает тяги за счет передачи большего ускорения меньшему количеству воздуха.Это была его основная проблема с расходом топлива и шумом.

    Масса воздуха увеличивается в двигателе за счет использования непрерывного цикла. Окружающий воздух поступает во впускной диффузор, где он подвергается изменениям температуры, давления и скорости из-за ударного действия. Затем компрессор механически увеличивает давление и температуру воздуха. Воздух под постоянным давлением поступает в секцию горелки, где его температура повышается за счет сгорания топлива. Энергия забирается из горячего газа за счет расширения через турбину, которая приводит в действие компрессор, и за счет расширения через выхлопное сопло, предназначенное для выпуска отработавшего газа с высокой скоростью для создания тяги.

    Высокоскоростные газы из двигателя можно рассматривать как непрерывные, передавая эту силу на самолет, в котором он установлен, создавая таким образом тягу. Формула для тяги может быть получена из второго закона Ньютона, который гласит, что сила пропорциональна произведению массы и ускорения. Этот закон выражается в формуле:

    В приведенной выше формуле масса аналогична весу, но на самом деле это другая величина. Масса относится к количеству вещества, а вес относится к силе силы тяжести на это количество вещества.На уровне моря при стандартных условиях 1 фунт массы имеет вес 1 фунт. Чтобы вычислить ускорение данной массы, гравитационная постоянная используется как единица сравнения. Сила тяжести составляет 32,2 фута на секунду в квадрате (фут / сек2). Это означает, что свободно падающий объект весом 1 фунт ускоряется со скоростью 32,2 фута в секунду каждую секунду, когда на него действует сила тяжести. Поскольку масса объекта составляет 1 фунт, что также является фактической силой, сообщаемой ему гравитацией, можно предположить, что сила в 1 фунт ускоряет объект 1-1 со скоростью 32.2 фута / сек2.

    Кроме того, сила в 10 фунтов ускоряет массу в 10 фунтов со скоростью 32,2 фута / сек2. Это предполагает отсутствие трения или другого сопротивления, которое необходимо преодолеть. Теперь очевидно, что отношение силы (в фунтах) к массе (в фунтах), поскольку ускорение в фут / сек2 равно 32,2. Используя M для представления массы в фунтах, формулу можно выразить следующим образом:

    В любой формуле, связанной с работой, необходимо учитывать фактор времени. Удобно иметь все временные факторы в эквивалентных единицах (т.е.е., секунды, минуты или часы). При расчете реактивной тяги удобно использовать термин «фунты воздуха в секунду», поскольку секунда — это та же единица времени, которая используется для силы тяжести.

    Летный механик рекомендует

    .

    Принцип работы турбины

    Инновации в турбинах и соображения

    Турбины для ферментеров представляют собой вращающиеся устройства с множеством радиально выступающих лопастей. Цель состоит в том, чтобы уменьшить неоднородности в жидкости, содержащей жидкости, смешать растворимые компоненты, диспергировать газы и твердые частицы, такие как ячейки, и способствовать теплопередаче. Ферментация во многом зависит от успеха конструкции ферментера для получения оптимального поля потока, распределения сдвига, распределения пузырьков, распределения кислорода, массопереноса во всем объеме жидкости ферментера.Приведенная ниже конструкция турбины актуальна для биотехнологической промышленности с WV до 100 литров и названа в честь настоящего конструктора, изобретателя.

    Принципиальный размер турбины
    Rushton, смешивание под углом 90 и 45 градусов
    Турбины Раштона на валу

    Турбины описываются физическими размерами, такими как диаметр, количество лопаток, угол лопастей, форма лопаток, открытый или закрытый сердечник и т. Д.Общее понимание главного измерения схематично представлено выше. Характер течения, развивающийся в газовых условиях, зависит от геометрии, скорости мешалки, расхода газа, размера газовых пузырьков. Турбина Раштона с плоскими лопастями, расположенными под углом 90 градусов, генерирует только сильную радиальную картину потока и ограниченную эффективность перемешивания. Изменение угла плоской лопасти (угол Якоба) значительно улучшает возможности смешивания.

    Турбина Раштона РТ6-90
    Эскиз Раштона
    Раштон СС

    Дж.Турбина Генри Раштона (Университет Пердью, Вест-Лафайет, Индиана, 47907 США) возникла в 1950-х годах. Конструкция турбины со 100% -ным радиальным потоком основана на плоском диске с 6 плоскими лопатками, установленными вертикально симметрично по окружности диска (RT6-90).

    Наиболее экономичная конструкция с характеристиками, обычно ограниченными карманами или полостями, которые цепляются за заднюю часть лопасти при высоких скоростях потока газа и / или об / мин. Раштоны вызывают кавитацию, значительную обтекаемость и снижение потребляемой мощности.Когда поток газа становится слишком большим, карманы могут перекрываться между лопастями, что приводит к затоплению и серьезной механической нестабильности.

    Раштон угловой
    ТУР J 060 08 75 R HPD_01
    Турбина Раштона РТ6-45

    Симметричная турбина Якоба с плоскими лопастями, расположенными под углом (JT8-75 слева), сочетает радиальный поток с осевым потоком за счет избирательного наклона лопастей.Это в открытой конструкции улучшает аэрацию. Газ, впрыскиваемый под турбину, всасывается в полностью открытый объем активной зоны турбины и распределяется по всему выхлопу турбины. Должен быть механически несколько жестким, спроектированным из пластика CerCell, способным развивать скорость 2000 об / мин при вязкости 1200 сП. Показанные металлические частично открытые RT6-45 и полностью открытые RT4-45 сопоставимы с характеристиками Jacob.

    Турбина Смита с изогнутыми лопатками
    Полутрубная турбина Смита
    Турбина Смита с узлами

    Эта симметрично расположенная изогнутая (полутрубная) лопасть Smith (ST6) 1980-х годов (Philadelphia Mixing Solutions) способна обрабатывать увеличенный объем закачиваемого газа.Может рассеивать вдвое больше газа по сравнению с Rushton (RT6) до затопления. Не испытывает такого сильного падения мощности из-за нагрузки на газ по сравнению с турбиной Раштона. Рекомендуется в сочетании с крыльчаткой с подкачивающей (морской) крыльчаткой.

    Эскиз турбины Hjort
    Турбина Hjort SS

    The Hjorth (Scaba AB, Швеция — США 4.779.990 — 1985) или Middleton (ICI, UK — US 5,198,156 — 1986). Симметричная конструкция лопастей с глубоким вогнутым профилем HT6 обеспечивает еще лучшую способность диспергирования газа. Может диспергировать в 3 раза больше газа по сравнению с турбиной Раштона (RT6-90) до затопления.

    Турбина Bakker SS
    Эскиз турбины Баккера
    ТУР Б 080 6_01

    Баккер (Chemineer Inc.- US 5.791.780 — 1997) асимметричная конструкция лопастей с глубоким вогнутым профилем (BT6) обеспечивает наивысшую доступную способность диспергирования газа. Может диспергировать в 5 раз больше газа по сравнению с турбиной Раштона (RT6-90) до затопления. В отличие от многих других крыльчаток для диспергирования газа, BT6 относительно нечувствителен к вязкости.

    Раштон-Смит-Баккер

    Фотография показывает сравнение газовой дисперсии между Rushton, Smith, Bakker при расходе газа 13 VVm.

    Эта статья Андре Баккера покажется вам интересной: Новое рабочее колесо с газовой дисперсией с вертикально асимметричными лопастями , 2000, http://www.bakker.org

    ,

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о