Привод сцепления – :

Содержание

Привод сцепления — механический, гидравлический, как работает

Привод сцепления на автомобиле предназначен для краткосрочного отсоединения коленчатого вала двигателя от коробки передач, а также для их совмещения, которые необходимы для переключения передач, а также, для того, чтобы автомобиль мог тронуться с места и начать движение.

На сегодняшний день в автомобилях применяются следующие виды приводов сцепления:

  • привод сцепления механический;
  • гидравлический привод сцепления;
  • электрогидравлический привод.

Последний из вышеназванных приводов сцепления в отличие от первых двух применяется в автомобилях крайне редко и используется в роботизированных коробках передач. Поэтому более конкретно на нем останавливаться не будем, и давайте рассмотрим первые два.

Привод сцепления механический

Данный привод, как правило, применяется в небольших легковых автомобилях. Отличается он от других приводов сцепления своей невысокой стоимостью и простотой конструкции, которая состоит из:

  • педали сцепления;
  • троса привода сцепления;
  • рычажной передаче;
  • механизма отвечающего за регулирования свободного хода педали сцепления.

Схема механического привода сцепления:
1 — контргайка; 2 — регулировочная гайка; 3 — нижний наконечник троса; 4 — защитный чехол троса; 5 — кронштейн крепления троса; 6 — нижний наконечник оболочки троса; 7 — оболочка троса; 8 — поводок троса; 9 — уплотнитель; 10 — верхний наконечник оболочки троса; 11 — верхний наконечник троса; 12 — кронштейн педали сцепления; 13 — пружина педали сцепления; 14 — педаль сцепления; 15 — упорная пластина.

В его конструкции основным элементом является трос, который соединяет между собой «вилку» выключения и педаль сцепления. При нажатии водителем на педаль сцепления через трос, который в свою очередь заключен в специальную оболочку, передается соответствующее усилие на рычажную передачу. В свою очередь рычажная передача обеспечивает выключения сцепления путем перемещения вилки сцепления.

Привод сцепления механический также оснащен механизмом, отвечающим за регулировку свободного хода педали сцепления. Данный механизм включает в себя на конце троса регулировочную гайку. Необходимость данного механизма в первую очередь обусловлена постепенным, вследствие износа, изменением положения педали сцепления.

Гидравлический привод сцепления

Данный привод по своей конструкции напоминает гидравлический привод тормозной системы автомобиля. В нем также в качестве «рабочей» жидкости используется тормозная жидкость, а сам привод состоит из:

  • педали сцепления;
  • главного и рабочего цилиндров;
  • бачка с «рабочей» жидкостью;
  • соединительных трубопроводов.

Схема гидравлического привода сцепления:
1 — маховик; 2 — ведомый диск сцепления; 3 — корзина сцепления; 4 — подшипник выключения сцепления с муфтой; 5 — бачок гидропривода сцепления; 6 — шланг; 7 — главный цилиндр гидропривода выключения сцепления; 8 — сервопружина педали сцепления; 9 — возвратная пружина педали сцепления; 10 — ограничительный винт хода педали сцепления; 11 — педаль сцепления; 12 — трубопровод гидропривода выключения сцепления; 13 — шаровая опора вилки; 14 — вилка выключения сцепления; 15 — оттяжная пружина вилки выключения сцепления; 16 — шланг; 17 — рабочий цилиндр гидропривода выключения сцепления; 18 — штуцер прокачки сцепления.

Главный и рабочий цилиндры выполнены в качестве поршня с толкателем, которые в свою очередь размещены в корпусе. При нажатии водителем на педаль сцепления поршень главного цилиндра начинает двигаться с помощью толкателя вследствие чего «рабочая» жидкость отсекается от бачка. Далее «рабочая» жидкость поступает в рабочий цилиндр по соединенному трубопроводу.

Именно под воздействием «рабочей» жидкости и происходит движение толкателя с поршнем. Толкатель в свою очередь оказывает воздействие на «вилку» сцепления и тем самым обеспечивает выключения сцепления.

Для того чтобы удалить из привода воздух, на рабочем и главном цилиндрах установлены специальные штуцеры.

Работа сцепления с гидравлическим приводом — видео:

Также на некоторых автомобилях применяется вакуумный либо пневматический усилитель привода. Его установка облегчает управление автомобилем.

Загрузка…

avto-i-avto.ru

Привод сцепления.


Ступенчатые трансмиссии

Привод сцепления




Привод сцепления служит для дистанционного управления сцеплением. Наибольшее распространение получили механический и гидравлический приводы.

Применение на автомобиле того или иного привода определяется типом сцепления, компоновкой автомобиля и рядом требований по обеспечению легкости и удобства управления.
Так, полный ход педали сцеплении не должен превышать 190 мм, а усилие на педали – 150 Н для легкового автомобиля и 250 Н для грузового автомобиля. Поэтому общее передаточное число в существующих конструкциях привода сцепления находится в пределах от 25 до 50.
В случае, если для обеспечения работы сцепления необходимо более высокое передаточное число, применяют усилители разных типов.

***

Механический привод сцепления

Механический привод сцепления прост по конструкции и надежен в эксплуатации, но обладает меньшим КПД по сравнению с гидравлическим приводом, поскольку в шарнирных сочленениях составляющих привод тяг, рычагов, в оболочках гибких валов теряется много энергии из-за сил трения. Поэтому такой тип привода применяется, как правило, если сцепление находится вблизи от органов управления (педали сцепления).

Существуют тросовый и рычажный механические приводы сцепления.

Тросовый привод (рис. 1, а) применяется на легковых переднеприводных автомобилях. Педаль 14 имеет верхнюю опору на кронштейне 16 и соединена с наконечником 10 троса. Трос заключен в оболочку 1, имеющую два наконечника. Верхний наконечник 12 оболочки выведен в салон автомобиля и упирается в упорную пластину 11, а нижний наконечник 2 оболочки закреплен в кронштейне 3 на картере сцепления.
Нижний наконечник 5 троса через поводок 8 соединен с рычагом 9 вилки выключения сцепления.

Регулировка хода педали осуществляется шайбами 6.

При нажатии на педаль сцепления трос перемещается внутри оболочки и перемещает рычаг вилки выключения сцепления, которая в дальнейшем воздействует на муфту выключения сцепления.




Рычажный привод грузового автомобиля (рис. 1, б) обеспечивает передачу усилия на сцепление при его выключении следующим образом.
При воздействии на педаль 14, закрепленную на валу 20, поворачивается рычаг 18, связанный с противоположным концом вала. Рычаг вала перемещает прикрепленную к нему на оси тягу 19, которая связана с рычагом 17 вилки выключения сцепления. Вместе с вилкой перемещается прижатая к ней с помощью пружины муфта выключения сцепления. После выбора зазора между подшипником выключения сцепления и рычагами начнется выключение сцепления.

Зазор в сцеплении должен быть равен

3…4 мм, что соответствует 35…50 мм свободного хода педали сцепления. Регулировка зазора осуществляется изменением длины тяги 19 (рис. 1) с помощью регулировочной гайки 22.
Отсутствие зазора или его недостаточная величина в приводе такой конструкции может привести к неполному включению сцепления и, как следствие, к пробуксовке сцепления. Увеличение зазора больше нормы приводит к неполному выключению сцепления, в результате чего возникает шум и треск зубчатых колес при переключении передач.

***

Гидравлический привод сцепления

Гидравлический привод выключения сцепления позволяет передавать усилие на большое расстояние с высоким КПД, снизить усилие на педали сцепления в результате наличия передаточного числа гидравлической части привода и способствует плавному включению сцепления из-за сопротивления перетеканию жидкости в элементах гидропривода. Он удобен для применения на легковых автомобилях, а также на грузовых автомобилях с опрокидывающейся кабиной.

Гидравлический привод (рис. 2) состоит из педали 6 сцепления с оттяжной пружиной, главного цилиндра 3, соединенного трубкой 2 с бачком 1, рабочего цилиндра, трубопроводов и шлангов для подачи рабочей жидкости от главного цилиндра к рабочему цилиндру и вилки выключения сцепления с пружиной 11.

При нажатии на педаль сцепления поршень 16 главного цилиндра перемещается влево и после перекрытия компенсационного отверстия 20 вытесняет жидкость через нагнетательный клапан 16 и трубопроводы в рабочий цилиндр. Поршень 14 рабочего цилиндра перемещает толкатель 9, который воздействует на вилку выключения сцепления

7.

При отпускании педали жидкость перетекает из рабочего цилиндра в главный цилиндр через обратный клапан 19 под действием усилия нажимных пружин сцепления и оттяжной пружины вилки 11. Обратный клапан устанавливается для создания небольшого избыточного давления в трубопроводах, которое исключает попадание воздуха в привод в результате возможного повышения давления окружающей среды при выключении сцепления и ускоряет время срабатывания привода при выключении сцепления.

При резком отпускании педали сцепления магистраль пополняется жидкостью через перепускное отверстие 21 и отверстие в поршне 18 главного цилиндра, прикрытое манжетой 19, что также не дает возможности снижения давления в приводе.
Избыток жидкости перетекает в бачок 1 через компенсационное отверстие 20, что позволяет возвратить детали привода в исходное положение.

***

Усилители привода сцепления



k-a-t.ru

Привод выключения сцепления гидравлический | Сцепление

На автомобиле применяется гидравлический привод выключения сцепления с педалью подвесной конструкции (ось качания педали расположена выше ее площадки). Такой тип привода получает все большее распространение на современных легковых автомобилях. Его преимущества по сравнению с механическим приводом сводятся в основном к следующему:

  1. Сцепление включается более плавно, что уменьшает динамические нагрузки в трансмиссии, особенно при трогании автомобиля с места, и повышает комфортабельность езды.
  2. Значительно улучшается герметизация пассажирского помещения кузова от проникновения в него пыли, грязи и влаги, поскольку (при педали тормоза также «подвесной» конструкции) в наклонном полу кузова отсутствуют люки для прохода рычагов педалей сцепления и тормоза.
  3. Не забрасываются грязью и хорошо защищены от пыли главные цилиндры гидроприводов выключения сцепления и ножного тормоза, расположенные достаточно высоко па идете кузова, и элементы механической части приводов, что облегчает техническое обслуживание этих узлов и повышает их долговечность.
  4. Нет точек смазки в приводе сцепления, что упрощает обслуживание автомобиля.
  5. Появляются значительные компоновочные возможности, так как «подвесные» педали сцепления и тормоза вместе с их главными цилиндрами можно разместить на щите передка кузова в соответствии с особенностями компоновки автомобиля.

Устройство привода выключения сцепления

Штампованная педаль сцепления 21 установлена на сварном кронштейне 12, укрепленном на кузове болтами 11 и шпильками 8 с гайками 7. Педаль сцепления качается на оси 16, которая неподвижно закреплена в кронштейне 12. Педаль фиксируется от проворачивания лыской, входящей в фигурное отверстие в одной из щек кронштейна педали.

Аксиальное перемещение оси ограничено шплинтом 13 и уступом лыски. В ступицу педали вставлены две вращающиеся на оси полиамидные втулки 17, имеющие буртики на одном из торцов.

Втулки имеют высокую износостойкость и не требуют смазки в процессе эксплуатации. На площадку педали надета резиновая накладка 31. Педаль удерживается в исходном (крайнем заднем) положении усилием оттяжной пружины 15. При этом нерегулируемый толкатель 14, шарнирно соединенный с педалью пальцем 19, упирается в ограничительную шайбу 5, зафиксированную в осевом направлении стопорным кольцом.

В исходном положении педали поршень 12 главного цилиндра сцепления под действием пружины 8 упирается торцом в шайбу 14. Между толкателем 14 и поршнем 4 предусмотрен постоянный зазор а = 0,2 — 1,0 мм, который обеспечивается в указанных пределах выбранными размерами этих деталей и ограничительной шайбы 5.

Указанный зазор обеспечивает поршню главного цилиндра возможность занять исходное положение (при включенном сцеплении), гарантирующее сообщение полости а цилиндра с наполнительным бачком 3 через компенсационное отверстие б.

В приводах сцепления и управления ножными тормозами оси педалей, полиамидные втулки, толкатели, накладки педалей и крепежные детали взаимозаменяемы. Главный цилиндр сцепления предназначен для создания давления в системе гидравлического привода сцепления. Цилиндр имеет чугунный корпус 9 внутреннего диаметра 22 мм с фигурным фланцем; во фланец ввернуты две шпильки 18, с помощью которых цилиндр и кронштейн 12 педали крепятся к щиту передней части кузова. Между фланцем корпуса цилиндра и щитом передней части кузова при сборке устанавливают до четырех (по потребности) регулировочных прокладок 6, изготовленных из листовой стали толщиной 0,5 мм каждая. Эти прокладки помогают установить исходное положение педали сцепления, которое должно обеспечивать полный ее ход L до упора в резиновый коврик пола, равный 150—155 мм.

Привод выключения сцепления

Рис. Привод выключения сцепления:
1 — кронштейн крепления соединительной трубки; 2 — соединительная трубка; 3 — главный цилиндр сцепления в сборе; 4 — поршень главного цилиндра сцепления; 5 — ограничительная шайба; 6 — регулировочная прокладка; 7 и 28 — гайки; 8 — шпилька крепления главного цилиндра; 9 — питательный бачок главного цилиндра сцепления; 10 — гайкодержатель; 11 — болт крепления кронштейна педали сцеплении; 12 — кронштейн педали сцепления: 13 — шплинт оси педали сцепления; 14 — толкатель поршня главного цилиндра сцепления; 15 — оттяжная пружина педали сцепления; 16 — ось педалей сцепления и тормоза; 17 — втулка оси педалей сцепления и тормоза; 18 и 33 — шайбы; 19 и 23 — пальцы; 20 и 32 — шплинты; 21 — педаль сцеплении; 22 — вилка выключения сцепления; 24 — наконечник толкателя; 26 — оттяжная пружина вилки выключения сцепления; 26 — контргайка; 27 — толкатель вилки; 29 — рабочий цилиндр привода включения сцепления; 30 — шпилька крепления рабочего цилиндра; 31 — накладка педали; 34 — защитный колпак; 35 — стопорное кольцо; 36 — поршень рабочего цилиндра; 37 — уплотнительная манжета; 38 — распорный грибок; 39 — пружина; 40 — клапан выпуска воздуха; 41 — защитный колпачок клапана; 42 — скоба крепления трубки; 43 — прокладка

На верху корпуса главного цилиндра расположен бачок 3, изготовленный из полупрозрачной пластмассы. В бачке содержится определенный запас тормозной жидкости, необходимый для нормальной работы гидравлического привода сцепления. Бачок закрыт пластмассовой резьбовой крышкой 1, в которой имеется отверстие для сообщения внутренней полости бачка с атмосферой, и укреплена отражательная пластина, предупреждающая выплескивание тормозной жидкости через указанное отверстие. На торец питательного бачка опирается фланец сетчатого фильтра 2, выполняющего одновременно функции успокоителя находящейся в бачке тормозной жидкости.

Питательный бачок 3 крепится к корпусу 9 главного цилиндра резьбовым штуцером 4, имеющим на торце шлиц под отвертку. Уплотнительная прокладка 5 после затяжки штуцера гарантирует герметичность соединения бачка с корпусом цилиндра. Через отверстие в штуцере 4 тормозная жидкость из бачка 3 самотеком поступает в корпус 9 главного цилиндра.

На находящийся внутри цилиндра поршень 12 надета резиновая уплотнительная манжета 13, препятствующая вытеканию жидкости из цилиндра. Поршень отлит из цинкового сплава. В головке поршня сделано шесть сквозных отверстий г, прикрытых тонким стальным кольцом-клапаном 11 и внутренней рабочей резиновой манжетой 10. На наружной поверхности манжеты имеются одна кольцевая и шесть продольных канавок. Пружина 8 прижимает манжету к поршню 12, а поршень — к упорной шайбе 14. Другим своим концом пружина упирается в резьбовой штуцер 7, закрывающий внутреннюю полость корпуса цилиндра.

Резиновый защитный колпак 16 предохраняет внутреннюю полость цилиндра от попадания пыли. Колпак плотно надет на проточку в корпусе цилиндра и стержень толкателя 17.

Рабочий цилиндр 29 сцепления укреплен с помощью двух шпилек 30 и гаек 28 с левой стороны картера сцепления. Внутренний диаметр рабочего цилиндра равен 22 мм.

Главный и рабочий цилиндры соединены между собой гнутой медной (6×1 мм) или двухслойной стальной трубкой 2 с омедненной внутренней и наружной поверхностями (6×0,7 мм). Спираль, расположенная в средней части трубки, компенсирует изменение расстояния между концами трубки, неизбежное при изменении положения силового агрегата, подвешенного на резиновых подушках, относительно кузова. Кроме закрепления по концам, трубка имеет две промежуточные точки крепления: на левом брызговике кузова с помощью кронштейна 1 и на картере двигателя с помощью скобы 42. Между крепежной деталью и трубкой проложены резиновые прокладки 43. Концы трубки имеют двойную коническую развальцовку, форма и размеры которой показаны на рисунке. До развальцовки концов на трубку надевают соединительные гайки, которыми она присоединяется затем к главному и рабочему цилиндрам.

Главный цилиндр привода сцепления

Рис. Главный цилиндр привода сцепления:
1 — крышка бачка; 2 — сетчатый фильтр; 3 — бачок; 4 — штуцер бачка; 5 — прокладка штуцера бачка; 6 — прокладка штуцера главного цилиндра; 7 — штуцер главного цилиндра; 8 — пружина; 9 — корпус главного цилиндра; 10 — уплотнительная манжета главного цилиндра; 11 — клапан поршня; 12 — поршень; 13 — уплотнительная манжета поршня; 14 — упорная шайба; 15 — стопорное кольцо; 16 — защитный колпак; 17 — толкатель поршня; 18 — шпилька крепления главного цилиндра

Корпус 3 рабочего цилиндра представляет собой отливку из серого чугуна, имеющую с одной стороны открытую цилиндрическую полость, в которую вставлены литой алюминиевый поршень 7 с уплотнительной резиновой манжетой б, распорным грибком 5 и пружиной 4. Пружина постоянно прижимает сферическую поверхность грибка к уплотнительной кромке манжеты и через нее кромку к зеркалу цилиндра, что значительно улучшает уплотнение рабочего цилиндра, особенно при отсутствии давления в системе (сцепление включено).

Развальцовка концов соединительной трубки

Рис. Развальцовка концов соединительной трубки (размеры сечения трубок: стальной — 6 X 0,7; медной 6 X 1,0)

Рабочий цилиндр привода сцепления

Рис. Рабочий цилиндр привода сцепления:
1 — защитный колпачок клапана; 2 — клапан выпуска воздуха; 3 — корпус цилиндра; 4 — пружина; 5 — распорный грибок; 6 — уплотнительная манжета; 7 — поршень; 6 — защитный чехол; 7 — стопорное кольцо

Ввернутый в корпус 3 цилиндра конический клапан 2 служит для удаления воздуха из системы гидропривода. Резиновый колпачок 1 надет на головку клапана и предохраняет внутренний канал клапана от засорения.

В сферическое углубление поршня 36 вставлен толкатель 27, который регулируется по длине. Толкатель регулируют ввертыванием или вывертыванием его из вильчатого наконечника 24. Положение наконечника фиксирует контргайка 26. Пружина 25 вилки 22 выключения сцепления постоянно прижимает толкатель к сферической поверхности поршня и, при отсутствии давления в системе гидропривода сцепления, перемещает поршень в крайнее переднее положение. Поскольку поршень 36 в цилиндре 29 может перемещаться в направлении, соответствующем выключению сцепления (на рисунке вправо), только под действием давления рабочей жидкости, исключается образование разрежения, а следовательно, и проникновение в цилиндр через неплотности поршня воздуха. Поэтому нет необходимости поддерживать в соединительной трубке 2 и перед поршнем 36 избыточное давление, которое обычно обеспечивается установкой в главном цилиндре двойного клапана, как это делается в гидроприводе тормозов (см. ниже). Все детали главного цилиндра сцепления, за исключением корпуса 9 и штуцера 7 взаимозаменяемы с соответствующими деталями главного цилиндра тормоза. Так как в главном цилиндре сцепления отсутствует двойной клапан, корпус и штуцер этого цилиндра отличаются от корпуса и штуцера главного цилиндра тормоза. Чтобы было легче отличить главные цилиндры сцепления и тормоза, их крепежные фланцы повернуты относительно друг друга на 60°. Защитный резиновый чехол 8 предохраняет внутреннюю полость рабочего цилиндра от грязи.

Работа главного цилиндра сцепления

Главный цилиндр сцепления работает следующим образом. При нажатии на педаль 21 толкатель 14 перемещает поршень 4, сжимая пружину 8.

Как только манжета 10 перекроет перепускное отверстие б, внутри цилиндра в полости а создается давление, и жидкость через отверстие в штуцере 7 и по соединительной трубке 2 проходит в рабочий цилиндр 29, вызывая перемещение поршня 36, толкателя 27 и связанной с ним через наконечник 24 и палец 23 вилки 22 выключения сцепления. Сцепление выключается. При том растягивается оттяжная пружина 25 вилки и сжимаются нажимные пружины 14.

При отпускании педали сцепления последняя возвращается в исходное положение пружиной 75, а поршень 12 главного цилиндра под действием возвратной пружины 8 перемещается вслед за толкателем 17 до упора в шайбу 14. При этом давление в системе падает, и нажимной диск сцепления, переменяясь под действием нажимных пружин, вновь прижимает ведомый диск к маховику. Сцепление включается. Перемещение нажимного диска до его упора в ведомый диск вызывает перемещение связанной с ним через отжимные рычажки пяты и упертого в нее подпятника.

Далее подпятник и связанная с ним вилка выключения сцепления перемещаются под действием оттяжной пружины 25, которая постоянно прижимает шток толкателя 27 к поршню 36 и передвигает последний в крайнее переднее положение. При этом поршень вытесняет жидкость из внутренней полости рабочего цилиндра 29. Жидкость по трубке 2 возвращается в полость а главного цилиндра.

При резком отпускании педали сцепления жидкость, возвращающаяся из рабочего цилиндра в главный, не успевает заполнить пространство, освобождаемое поршнем 12, и в полости а создается разрежение.

Под действием этого разрежения жидкость из полости д (куда она поступает через отверстие в) перетекает в полость а через отверстия г в головке поршня, отодвигая клапан 11 и края манжеты 10. Канавки на поверхности манжеты 10 облегчают проход жидкости из полости д в полость а. В дальнейшем избыточная жидкость но мере поступления ее из трубопровода вытесняется из полости а через компенсационное отверстие б в бачок 3. Перетекание жидкости из соединительной трубки в главный цилиндр сцепления прекращается, как только поршень рабочего цилиндра под действием нажимных пружин и оттяжной пружины вилки выключения сцепления возвратится в крайнее переднее положение.

ustroistvo-avtomobilya.ru

суть, устройство, привод и принцип работы

3897 Просмотров

Сцепление является важнейшим элементом любого автомобиля, принимающим на себя многочисленные нагрузки и удары, возникающие в процессе езды. Поэтому особую важность имеет его устройство, функциональные особенности и разновидности. Сцепление может иметь механический и гидравлический привод.

Сцепление с гидравлическим приводом

Впервые устройство появилось в 1905 году, предназначалось для применения в морских судах, но спустя какое-то время один инженер занялся его установкой на авто.

Гидравлический привод сцепления

Гидравлический привод сцепления

Принцип базируется на обеспечении сцепления двигателя и коробки передач, в ходе чего происходит поглощение вибраций, и автомобиль начинает плавное движение.

Рассмотрим устройство и принцип функционирования системы.

Гидравлический привод

Гидравлический привод сцепления обладает более сложной структурой. Несмотря на сложную систему, устройство в работе является более совершенным. Главный и рабочий цилиндр сцепления автомобиля имеют одинаковый принцип дефектовки деталей, поэтому они описываются по отдельности редко.

Особенности

Гидропривод сцепления для автомобиля имеет несколько конструктивных особенностей:

  • устройство предполагает отсутствие троса, подвергаемого износу и поломкам, поэтому можно экономить на затратах;
  • соединение осуществляется штоком, обладающим регулируемой конструкцией и сложным механизмом;
  • цилиндр располагается традиционно в области корпуса картера;
  • главный цилиндр сцепления и бачок жидкости совместимы по своему расположению.

Главный и рабочий цилиндр имеют соединение с помощью магистрали, где расположена рабочая жидкость. Принцип работы имеет сходство с действием гидравлической системы тормозов, которое базируется традиционно на особенностях свойств несжимаемой жидкости.

Поломки

Рабочий цилиндр автомобиля подвергается поломкам, поэтому тем, кто хочет сэкономить время на ремонте, стоит осуществить его замену новым элементом. Цилиндр продается, как и шайбы для уплотнения, в комплекте. Устанавливаются компоненты под гидравлический шланг, в области болта крепления. Если их нет в наборе, стоит приобрести отдельно и установить на автомобиль.

Полностью заменять цилиндр автомобиля нецелесообразно с экономической точки зрения, достаточно поменять специальные резиновые манжеты, которые продаются в ремонтных комплектах. Отдавать машину стоит в ремонт только в проверенные сервисы, чтобы достигнуть оптимального результата.

Как работает

От педали сцепления к его механизму передается усилие с помощью жидкости, находящейся в гидроцилиндрах привода, соединяющих важнейшие элементы. Большой диск находится на острой стороне вала и кожуха, выполненного из стали. Последний закрепляется в области маховика. Внутри него есть пружина со специальными выжимными рычажками. На оси конструкции располагается специальная управляющая педаль, которая приподнимается к кронштейну на кузове. Она опускается при выключении сцепления и переключении передачи.

Особенности выбора минерального масла. Можно ли использовать его в гидроприводе сцепления

Минеральное масло должно приспособиться к тяжелым условиям функционирования в передачах, ведь температурный режим может достигать +150 С. К маслам, соответственно, предъявлены жесткие требования, поскольку помимо выполнения функции смазки трущихся поверхностей они играют роль рабочего тела.

Так, минеральное масло должно обладать достаточным количеством эксплуатационных качеств:

  • высокая стабильность в течение полного эксплуатационного срока;
  • минеральное масло должно иметь интенсивную аэрацию;
  • высокие показатели образования пены;
  • минеральное масло должно характеризоваться присутствием в составе противокоррозионных присадок, обеспечивающих снижение действия коррозии;
  • оптимальный уровень вязкости и плотности, который должно иметь минеральное масло. Если уровень и КПД высокие, показатель вязкости – минимальный, если нужно обеспечить в области поверхностей трения пленку – требуется высокий показатель вязкости;
  • отсутствие качеств агрессивности в отношении деталей, используемых для уплотнения и по сравнению с другими элементами, работающими в системе.

Комплект установки гидравлического сцепления

Комплект установки гидравлического сцепления

Нередко на практике применяется специальное минеральное масло, которое изготовлено на базе веретенных компонентов с низким уровнем вязкости и присутствием присадок.

Однако стоит обратить особое внимание: в современных автомобилях минеральное масло в гидроприводе сцепления не используется, так как оно может разрушить резиновые элементы конструкции. Для этого применяют специальную тормозную жидкость DOT4. Также недопустимо смешивание тормозных жидкостей разных типов.

Заключение

Таким образом, устройство гидравлического привода автомобиля является сложным, но, несмотря на это, имеет массу преимуществ и особенностей функционирования. Минеральное масло не стоит использовать в гидравлическом приводе автомобиля, чтобы не возникло серьезных проблем с его эксплуатацией и ремонтом.

portalmashin.ru

Привод сцепления — Энциклопедия журнала «За рулем»

Схема гидравлического привода сцепления:
1 — педаль;
2 — толкатель;
3 — главный цилиндр;
4 — поршень толкателя;
5 — поршень главного цилиндра;
6 — бачок;
7 — трубопровод;
8 — рабочий цилиндр;
9 — поршень;
10 — пружина;
11 — вилка;
12 — опора вилки;
13 — выжимной подшипник

Привод фрикционного сцепления может быть механическим, гидравлическим или электромагнитным. На большинстве автомобилей применяются механические и гидравлические приводы. Электромагнитный привод применяется редко, в основном при необходимости автоматизации процесса управления сцеплением. Для облегчения управления на некоторых автомобилях в приводе сцепления используют пневматические и вакуумные усилители.
автомобилях в приводе сцепления используют пневматические и вакуумные усилители. В качестве привода сцепления небольших легковых автомобилей часто используют механический тросовый привод. Его преимуществами являются простота и дешевизна. Однако износ фрикционных накладок при таком типе привода приводит к изменению положения педали сцепления. Поэтому в конструкции тросового привода обычно предусмотрена возможность ручной или автоматической регулировки.
Гидравлический привод сцепления использует свойство несжимаемости жидкости. В качестве рабочей жидкости используют такую же, что и в гидравлическом тормозном приводе. Привод имеет главный и рабочий цилиндры, соединенные между собой трубопроводом. Плунжер рабочего цилиндра через толкатель действует на вилку включения сцепления, связанную с выжимным подшипником. Для удаления воздуха из привода в цилиндрах гидравлического привода установлены специальные клапаны.
Иногда в гидравлическом приводе сцепления устанавливают демпфирующее устройство, которое гасит колебания, возникающие при взаимодействии выжимного подшипника с элементами выключения сцепления.


Смотрите также:
Устройство сцепления
Сцепление

wiki.zr.ru

Усилитель привода сцепления.


Ступенчатые трансмиссии

Усилители привода сцеплений




Усилители привода сцепления вводятся в привод, если требуемое для выключения сцепления усилие на педали превышает 150 Н для легковых автомобилей и 250 Н для грузовых автомобилей. Их назначение – облегчить работу водителю по управлению сцеплением автомобиля при переключении передач либо при необходимости удержания сцепления в выключенном состоянии для временного разъединения трансмиссии от двигателя (например, при кратковременном движении накатом).
Наиболее часто в конструкциях автомобильных трансмиссий применяют механические и пневматические (пневмогидравлические) усилители сцепления.
Электрические усилители привода сцепления в настоящее время применения не нашли.

***

Механические усилители сцепления

Наиболее простым по конструкции является механический усилитель привода сцепления, в качестве которого используется сервопружина. Она позволяет снизить максимальное усилие на педали сцепления на 30…40%.
Сервопружина может устанавливаться как в механическом, так и в гидравлическом приводах и работать на сжатие или растяжение.

На рис. 1 приведена конструкция механического усилителя привода сцепления сервопружиной и схема ее работы. При включенном сцеплении сервопружина 2, воздействуя на рычаг 3, удерживает педаль 1 сцепления в верхнем положении, обеспечивая тем самым зазор между подшипником выключения сцепления (выжимным подшипником) и рычагами сцепления. При этом ось пружины Оа (рис. 2, б) находится выше оси поворота педали Оb.

При нажатии на педаль пружина сжимается и противодействует перемещению до тех пор, пока ось пружины Оа не займет положение ниже оси Оb. С этого момента пружина начнет создавать момент на рычаге 3, способствуя дальнейшему перемещению педали и выключению сцепления.

***

Пневматические (пневмогидравлические) усилители сцепления

Другим типом усилителей привода сцепления являются пневматические усилители, которые вводятся в гидроприводы грузовых автомобилей (рис. 2), поэтому их часто называют пневмогидравлическими усилителями, или, сокращенно, ПГУ.
Основные элементы привода такие же, как и на рассмотренных ранее конструкциях гидроприводов.
Иногда пневматические усилители сцепления грузовых автомобилей называют пневмогидравлическими усилителями, или ПГУ.

Пневматический усилитель 5 совмещается с рабочим цилиндром 9. Усилие, создаваемое усилителем, может передаваться на поршень рабочего цилиндра или непосредственно на вилку выключения сцепления.
Суммарное усилие, создаваемое гидравлической частью привода и усилителем, позволяет значительно облегчить выключение сцепления и удержание его в выключенном состоянии.
В случае отсутствия воздуха в пневмосистеме автомобиля возможна работа гидравлического привода без усиления, но при этом усилие на педаль при выключении сцепления существенно возрастает.

Пневматические усилители, как правило, в своей конструкции имеют так называемые следящие устройства, обеспечивающие пропорциональность между усилием на педали сцепления и усилием, развиваемым усилителем.
Отсутствие следящего устройства приведет к тому, что малейшее нажатие на педаль вызовет прогрессирующее ее перемещение за счет возрастающего дополнительного усилия, развиваемого пневматическим усилителем, что создаст неудобства и даже невозможность управления сцеплением.


Пневматический усилитель «КамАЗ»

Пневматический усилитель автомобилей марки «КамАЗ» (рис. 3) состоит из переднего 15 алюминиевого и заднего 18 чугунного корпусов.
В цилиндре переднего корпуса расположен пневмопоршень 14 с манжетой и возвратной пружиной 13. Пневмопоршень напрессован на толкатель 2, выполненный как одно целое с гидравлическим поршнем 17 рабочего цилиндра, который установлен в заднем корпусе.

В верхней части обоих корпусов находится следящее устройство, которое обеспечивает кинематическое и силовое слежение. К основным частям следящего устройства относятся следящий поршень 4 с уплотнительной манжетой 3, мембрана 7 с пружиной 9, впускной 11 и выпускной 10 клапаны и их седла 8, 12.

При включенном сцеплении пневмопоршень 14 находится в крайнем правом положении под действием возвратной пружины 13. Давление перед поршнем и за поршнем соответствует давлению окружающей среды. Полость перед поршнем соединяется с окружающей средой выходом 6 через открытый выпускной клапан 10 и отверстие б в седле выпускного клапана 8, а полость за поршнем – через отверстие а в корпусе. Поршень 17 рабочего цилиндра также находится в правом положении, так как он связан с пневмопоршнем.




При нажатии на педаль сцепления рабочая жидкость поступает под давлением в полость А рабочего цилиндра и одновременно к торцу следящего поршня 4, который перемещаясь, воздействует на клапанное устройство таким образом, что выпускной клапан 10 закрывается, а впускной 11 открывается, пропуская сжатый воздух в пневмоцилиндр.

Под давлением сжатого воздуха пневмопоршень 14 начинает перемещаться, оказывая воздействие на поршень 17 рабочего цилиндра. В результате на толкатель 2 поршня рабочего цилиндра действует суммарное усилие, обеспечивающее выключение сцепления.
Одновременно воздух через отверстие в в переднем корпусе 15 попадает в полость справа от мембраны 7 и, воздействуя на нее, оказывает противодавление перемещению следящего поршня 4, благодаря которому осуществляется силовое слежение.
Для полного выключения сцепления необходимо нажать на педаль с силой 200 Н.

При отпускании педали давление жидкости перед следящим поршнем 4 падает, под действием пружины 9 происходит смещение следящего поршня 4 влево, при этом впускной клапан 11 перекрывается, а выпускной открывается.
Сжатый воздух из полости перед пневмопоршнем 14 постепенно стравливается в окружающую среду, воздействие поршня на толкатель 2 уменьшается, и осуществляется плавное включение сцепления.

Если в процессе включения или выключения сцепления педаль будет остановлена, произойдет стабилизация давления в полости А рабочего цилиндра и в результате незначительного смещения следящего поршня 4 и мембраны 7 оба клапана закроются, а давление в полости пневмопоршня 14 также станет стабильным.

При отсутствии сжатого воздуха в пневматической системе сохраняется возможность управления сцеплением за счет давления только в гидравлической части усилителя, при этом усилие на педали, создаваемое водителем, будет составлять примерно 600 Н.

Пневмогидравлический усилитель сцепления автомобилей марки «КамАЗ» крепится на картере сцепления с правой стороны силового агрегата.


Пневматический усилитель «КрАЗ»

Пневматический усилитель автомобиля КрАЗ-260 (рис. 4) работает следующим образом.

При нажатии на педаль сцепления давление жидкости в рабочем цилиндре возрастает. Поршень 9 рабочего цилиндра вместе с воздушным клапаном 5 и его седлом 11 смещаются влево до тех пор, пока клапан не упрется в торец хвостовика 4 превмопоршня.
Дальнейшее перемещение гидропоршня открывает доступ воздуха через радиальное отверстие в нем и зазор между клапаном и седлом в полость пневматического цилиндра 3. Пневмопоршень, перемещаясь через шток 15 и рычаг 10 (рис. 2, б) выключает сцепление.

При отпускании сцепления давление жидкости в рабочем цилиндре снижается и поршень под действием возвратной пружины 12 (рис. 4) перемещается вправо, а воздушный клапан садится в седло, открывая выход воздуху через осевое отверстие в хвостовике 4 и сапун 1 в окружающую среду. Пневмопоршень смещается вправо под действием пружины 11 (рис. 2, б), сцепление включается.

Если педаль сцепления, а следовательно, поршень рабочего цилиндра будут остановлены в каком-нибудь промежуточном положении, хвостовик 4 (рис. 4), продолжая смещаться вправо, упрется в клапан 5 и выход воздуха прекратится.
Суммарное усилие пневматического и гидравлического поршней будут равно моменту сопротивления нажимного устройства сцепления и оттяжной пружины, наступит равновесное положение, и перемещение деталей прекратится. Выход из этого положения возможен при изменении усилия на педали сцепления.
Такая способность усилителя обеспечивать пропорциональность между усилием на педали и давлением воздуха на пневмопоршень называется слежением.

***

Коробка передач



k-a-t.ru

Сцепление и приводы управления сцеплением — Мегаобучалка

 

Назначение и принцип действия сцепления. Сцепление автомобиля служит для кратковременного разъединения коленча­того вала двигателя от коробки передач и их плавного соединения, которые необходимы при переключении передач и трогания авто­мобиля с места.

На легковых и грузовых автомобилях наиболее распространено однодисковое сцепление фрикционного типа. Сцепление (рис.71) состоит из механизма и привода выключения. Механизм сцепления собран на маховике 1 двигателя, а привод — на невращающихся деталях, установленных на раме или кузове автомобиля.

Основными деталями механизма сцепления являются ведомый диск 2, установленный на шлицы ведущего вала 8 коробки передач, нажимный диск 3 с пружинами 4, размещенными на кожухе 12, который жестко прикреплен к маховику. На кожухе 12 сцепления установлены на шаровых опорах отжимные рычаги 11, соединенные шарнирно с нажимным диском 3.

Привод выключения сцепления состоит из муфты 10 с выжимным подшипником и возвратной пружиной 9, вилки 5, тяги 6 и педали 7.

При отпущенной педали сцепления ведомый диск 2 зажат пружинами 4 между маховиком и нажимным диском. Такое состо­яние сцепления называется включенным, так как при работе двига­теля крутящий момент от маховика и нажимного диска передается за счет сил трения на ведомый диск и дальше на ведущий вал 8 коробки передач. Если нажать на педаль 1 сцепления, тяга 6 перемещается и поворачивает вилку 5 относительно места ее крепления. Свободный конец вилки давит на муфту 10, в результате чего она перемешается к маховику и нажимает на рычаги 11, которые отодвигают нажимный диск 3. При этом ведомый диск освобождается от сжимающего усилия, отходит от маховика и сцеп­ление выключается.

Для включения сцепления необ­ходимо плавно отпускать педаль 7. При этом усилие на ведомом диске будет нарастать постепенно, вслед­ствие чего будет происходить прос­кальзывание диска относительно маховика и плавное их соединение до момента полного включения. С целью отвода теплоты, выделя­ющейся при включении сцепления, на кожухе выполняют отверстия для циркуляции воздуха.



Рассмотренный на схеме фрикционного сцепления привод вы­ключения сцепления прост по конструкции, содержит жесткие рычаги и тяги и называется механическим. На многих легковых автомобилях в настоящее время применяют гидравлический привод выключения сцепления. В таком приводе усилие от педали к механизму сцепления передается жидкостью, заключенной в гидроцилиндрах и трубопроводах. На грузовых автомобилях для облегчения управления сцеплением в приводе его выключения иногда применяют пневматический усилитель (автомобили МАЗ, КамАЗ).

Устройство сцеплений. Однодисковый механизм сцепления автомобиля ГАЗ-24 «Волга» (рис.72) состоит из ведомого диска 4, установленного на шлицевом конце ведущего вала 8 коробки передач, и стального штампованного кожуха 11, прикрепленного к маховику 2 болтами. Внутри к кожуху на опорных вилках прикреплены рычаги 10 выключения сцепления, шарнирно соединенные с нажимным диском 5. Опорные вилки также шарнирно крепятся к кожуху 11, что обеспечивает отвод нажимного диска при выключении без перекосов.

Между кожухом 11 и нажимным диском по окружности разме­щены нажимные цилиндрические пружины 6, установленные для центровки на бобышках по периферии нажимного диска.

Ведомый диск сцепления (рис.73) выполнен раздельно со ступицей 6, крутящий момент на которую передается через демп­ферные пружины 5. Они расположены в окнах ступицы 6 и дисков 2 и 8, скрепленных через вырез в ступице пальцами 7. К диску 2 прикреплены волнистые пружинные пластины 4 с двумя фрик­ционными накладками 3. При включении сцепления волнистые пружины распрямляются постепенно, обеспечивая более плавное включение. Ведомый диск имеет также гаситель крутильных коле­баний, выполненный в виде пружины 1, прижимающей диск 2 к ступице 6 с некоторым усилием.

Крутильные колебания, возникающие на маховике двигателя в основном за счет пульсации его работы при включенном сцеплении, передаются ведомому диску и заставляют его поворачиваться на некоторый угол относительно ступицы 6, сжимая пружины 5. При этом возникает трение диска 2 о фланец ступицы, к которой он прижимается пружиной 1 гасителя, и энергия крутильных коле­баний гасится, превращаясь в теплоту. В целом гаситель способст­вует мягкости, включения сцепления и повышает долговечность шестерен коробки передач и карданного вала.

Механизм сцепления с двумя ведомым и дисками отличается от однодискового фрикционного механизма сцепления наличием среднего нажимного диска, распо­лагаемого между двумя ведомыми дисками. Конструкция нажим­ного диска и других элементов двухдискового механизма сцепления принципиальных отличий от однодискового механизма не имеет.

Однодисковый механизм сцепления с центральной диафрагменной нажимной пружиной (рис.74) имеет только одну нажимную пружину. Она выполнена в форме усеченного конуса. В выштамповке пружины расположено 18 лепестков, которые являются не только упругими элементами, но и одновременно отжимными рычагами. Основное преимущество диафрагменной пружины — ее нелиней­ная характеристика. Она обеспечивает практически постоянное усилие независимо от степени нажатия. У цилиндрических пружин характеристика линейная — усилие прямо пропорционально их сжатию. Применение диафрагменной пружины улучшает износос­тойкие свойства сцепления, исключает возможность пробуксовки и позволяет уменьшить габаритные размеры и массу.

В конструкции сцепления диафрагменная пружина 5 крепится заклепками 6 и двумя опорными кольцами 9 на кожухе 4 сцепления. Наружный край пружины передает сжимающее усилие на нажимный диск 3.

При выключении сцепления подшипник 8 через упорный фла­нец воздействует на лепестки пружины и перемещает ее в сторону маховика. Наружный край пружины отгибается в обратную сторону и фиксаторами 10 отводит нажимный диск 3 от ведомого диска 2 — сцепление выключается. Ведомый диск 2 в данной конструкции сцепления имеет гаситель крутильных колебаний.

Приводы управления сцеплением. Механический при­вод выключения сцепления применяют на большин­стве отечественных грузовых автомобилей, так как он наиболее прост по конструкции и удобен в эксплуатации. Основными дета­лями (рис.75) привода выключения сцепления автомобиля ЗИЛ-130 являются педаль 1, которая закреплена на валу 5, связанном тягой 6 с рычагом 7 и вилкой 3 выключения сцепления.

При нажатии на педаль 1 все детали привода приходят во взаимодействие, в результате чего подшипник 2 муфты нажимает на внутренние концы рычагов выключения, нажимный диск отводится, а ведомый освобождается от усилия нажатия и сцепления выключается.

При включении сцепления педаль отпускают, муфта с подшипником под действием возвратной пружины 4 занимает исходное положение, освобождая рычаги выключения и сцепление включается.

Гидравлический привод выключения сцеп­ления сложнее по конструкции, чем механический, но он обес­печивает более плавное включение и допускает свободное расположение педали привода по отношению к механизму сцепления.

На автомобиле ГАЗ-24 гидропривод сцепления (см. рис.72) включает педаль 16, главный 15 и рабочий 14 цилиндры, а также толкатель 12, действующий на вилку 9 выключения сцепления. Главный и рабочий цилиндры привода соединены трубопроводом.

Педаль подвешена на оси к кронштейну кузова. К педали шарнирно присоединен толкатель главного цилиндра, действу­ющий на поршень. Перемещение поршня при нажатии на педаль, показанное на рис.72 штрихпунктирной линией, вызывает перетекание жидкости по трубопроводу и повышение давления в рабо­чем цилиндре. В результате поршень рабочего цилиндра тоже начинает двигаться и через толкатель 12 действует на вилку 9, которая перемещает выжимный подшипник и выключает сцеп­ление. Возврат педали в исходное положение после ее отпускания происходит под действием оттяжной пружины.

Пневматический усилитель в приводе сцепления применяют на грузовых автомобилях, чтобы уменьшить усилие нажима на педаль при выключении сцепления. Устройство пневматического усилителя гидравлического привода выключения сцепления автомобиля КамАЗ показано на рис.76.

Пневматический усилитель состоит из двух корпусов, между ко­торыми зажаты диафрагмы следящего устройства. В переднем корпусе расположены пневмопоршень 6, клапаны управления 5 и диафрагма 4. В заднем корпусе установлены гидропоршень 2 выключения сцеп­ления и поршень 3 следящего устройства. Следящее устройство автоматически изменяет давление на пневмопоршень в соответствии с изменением усилия в гидроприводе педали сцепления.

Работает пневмоусилитель следующим образом. При нажатии на педаль сцепления давление жидкости из главного цилиндра передается под гидропоршень усилителя и следящий поршень.

Последний перемещается и действует на клапаны управления, закрывая выпускной и открывая впускной. При этом сжатый воздух из системы начинает поступать в полость пневмопоршня, который перемещается, оказывая дополнительное усилие на шток 1 выклю­чения сцепления. В результате суммарное усилие от давления воздуха и педали на штоке выключения сцепления возрастает и сцепление выключается. При пускании педали давление в гидроприводе исчезает и поршни под действием пружин отходят в исходное положение, сцепление включается, а воздух из пневмоусилителя выходит в атмосферу.

Коробка передач.

 

Назначение и принцип действия коробки передач. Короб­ка передач служит для изменения в широком диапазоне крутящего момента, передаваемого от двигателя на ведущие колеса автомобиля при трогании с места и его разгоне. Помимо этого коробка передач обеспечивает автомобилю движение задним ходом и позволяет длительно разъединять двигатель и ведущие колеса, что необходимо при работе двигателя на холостом ходу во время движения или при стоянке автомобиля.

На современных отечественных автомобилях применяют преимущественно механические ступенчатые коробки передач с зубчатыми шестернями. Количество передач переднего хода обычно равно четырем или пяти, не считая передачи заднего хода.

Пятая передача чаще всего выполняется с передаточным числом менее 1,0 и является «ускоряющей» или «экономичной», так как позволяет на скоростях автомобиля, приближенных к максималь­ной, понизить частоту вращения двигателя и получить некоторую экономию топлива.

Переключение передач в механических коробках осуществляет­ся передвижением шестерен, которые входят поочередно в зацеп­ление с другими шестернями, или блокировкой шестерен на валу с помощью синхронизаторов. Синхронизаторы выравнивают час­тоты вращения включаемых шестерен и блокируют одну из них с ведомым валом. Управление передвижением шестерен или синхронизаторов осуществляет водитель при выключенном сцеп­лении. В зависимости от числа передач переднего хода коробки передач бывают трехступенчатыми, четырехступенчатыми и т.д.

Принцип действия коробки передач можно рассмотреть на схеме трехступенчатой коробки передач (рис.77). Основными деталями коробки являются ведущий вал 1, ведомый вал 5, промежуточный вал 6, установленный в корпусе коробки. На первичном валу жестко закреплена шестерня z2 находящаяся в постоянном зацеплении с шестерней z’3, жестко закрепленной на промежуточном валу. Другие шестерни промежуточного вала z’2, z’1 и z’3x также жестко закреплены. На ведомом валу 5 установлена свободно вращающаяся шестерня z2, находящаяся в постоянном за­цеплении с шестерней z’2, шестер­ня z1 и синхронизатор 2 соединены с валом 5 посредством шлиц и имеют возможность перемещаться по ним в направлениях, указанных стрелками. Шестерня z0 обес­печивает изменение направления вращения ведомого вала в обрат­ную сторону при включении пере­дачи заднего хода.

Каждая передача характеризуется передаточным числом, под которым понимают отношение числа зубьев ведомой шестерни к ведущей. Если в передаче участ­вует Несколько пар зубчатых шестерен, то для определения переда­точного числа следует перемножить значения передаточных отношений всех пар.

В рассматриваемой схеме коробки передач для включения пер­вой передачи шестерню z1 передвигают вилкой 4 влево до зацеп­ления ее с шестерней z’1. Тогда крутящий момент будет передаваться с первичного вала 1 через шестерни постоянного зацепления z3 и z’3 на шестерни z’1 и z1, образующие первую передачу.

Передаточное число для нее можно определить по формуле iI = = (z’3/z3)*(z1/z’1), где z1, z’1, z3, z’3 — число зубьев соответствующих шестерен.

Вторая передача включается перемещением синхронизатора 2 с помощью вилки 3 вправо. При этом шестерня z2 блокируется на ведомом валу, а крутящий момент на нем будет определяться Передаточным числом iII = (z’3/z3)*(z2/z’2).

Третью передачу можно получить, если передвинуть синхронизатор 2 влево. В этом случае ведомый и ведущий валы жестко соединяются, а передаточное число в коробке не изменяется и становится равным единице, такую передачу называют прямой. Она используется для движения автомобиля с большой скоростью.

Устройство коробок передач. Четырехступенчатая коробка передач автомобиля ГАЗ-53А имеет четыре передачи для движения вперед и одну назад. Она выполнена по трехвальной схеме и действует аналогично трехступенчатой коробке передач (рис.77). Конструктивными особенностями коробки передач автомобиля ГA3-53A является постоянное зацепление шестерен ведущего и проме­жуточного вала, шестерен второй и третьей передач. Передачи переднего хода включаются передвижением шестерни первой передачи и синхронизатора по шлицам ведомого вала, а задний ход включается перемещением блока шестерен заднего хода.

Пятиступенчатая коробка передач авто­мобилей МАЗ-5335 приведена на рис.78. Основными частями коробки передач являются картер, ведущий вал, промежуточный вал с шестернями, ведомый вал с шестернями и синхронизаторами, механизм переключения передач.

Ведущий вал 2 установлен на шариковом подшипнике в перед­ней стенке картера 13 и имеет на переднем конце шлицы для установки диска сцепления, а на заднем конце — шестерню, нахо­дящуюся в постоянном зацеплении с шестерней 24 на промежуточ­ном валу 18. Шестерни 11, 9 и 8 ведомого вала 16 установлены на нем свободно на гладких стальных втулках и зацеплены с соответ­ствующими шестернями на промежуточном валу. При включении второй, третьей, четвертой и пятой передач блокировка шестерен с ведомым валом осуществляется с помощью синхронизаторов 5 и 10. Первая передача и задний ход включаются перемещением шестерни 12 вдоль оси ведомого вала.

Стальные опорные втулки шестерен ведомого вала смазываются под давлением от насоса 25, приводимого хвостовиком валика, вставленного в паз промежуточного вала. Подача масла произ­водится от насоса по каналам в крышке подшипника вала, через переходную втулку в осевой канал ведомого вала и далее по радиальным сверлениям к втулкам шестерен. Зубья шестерен сма­зываются за счет разбрызгивания масла, забираемого зубьями из масляной ванны картера коробки передач.

Безударное включение передач переднего хода в рассматрива­емой коробке обеспечивается синхронизаторами инерционного типа. Синхронизатор 10 включает вторую и третью передачу, а синхронизатор 5 — четвертую (прямую) и пятую (ускоряющую) передачи.

Устройство синхронизатора показано на рис.79. Основными деталями синхронизатора являются корпус 5 с бронзовыми коническими кольцами 10, запрессованными в него с обоих концов. Внутри корпуса установлена муфта 8 с зубчатыми венцами 9. Фланец муфты имеет выступы 6, которые входят в фигурные вырезы 3 корпуса. В те выступы фланцы, которые не входят в вырезы, вставлены шариковые фиксаторы 7. Пальцы муфты 4 проходят через вырез в корпусе и вставлены во внутренний паз кольца 2 переключения, соединенного с вилкой переключения передач.

При включении передачи муфта 8 под действием вилки переключения передвигается в сторону включаемой шестерни 1. Конусная поверхность конического блокирующего кольца начинает соприкасаться с конусной поверхностью шестерни. Поскольку в начальный момент соприкосновения частоты вращения кольца и шестерни не совпадают, на их поверхностях возникают силы трения, поворачивающие корпус на некоторый угол, вследствие чего выступы фланца муфты упираются в края фигурных вырезов и осевое перемещение муфты дальше не происходит.

В результате трения между коническими поверхностями кольца и шестерни их частота вращения выравнивается. В этот момент выступы муфты выходят из прорезей фигурных вырезов и больше не препятствуют осевому перемещению муфты. Муфта перемещается дальше в сторону включения и ее зубья входят в зацепление с зубчатым венцом шестерни, блокируя ее на валу.

Выключение передачи осуществляется простым перемещением муфты в нейтральное положение, в результате чего зубчатые венцы шестерни и муфты синхронизатора оказываются разъединенными.

Механизм переключения передач размещает­ся в верхней крышке коробки передач и приводится в действие рычагом, установленным на шаровой опоре. Нижний конец рычага при отклонении входит в пазы вилок переключения. Вилки закреплены на штоках, которые могут перемещаться в осевом направлении и удерживаются фиксаторами 7 (рис.78).

Для защиты от случайного включения двух передач одновре­менно служит блокирующее устройство (замок), которое состоит из двух плунжеров и штифта, заложенных в горизонтальное сверление в крышке и среднем ползуне. При перемещении одного из крайних ползунов блокирующее устройство стопорит средний и другой крайний ползун в нейтральном положении, а при перемещении среднего ползуна стопорятся оба крайних ползуна.

Для предохранения от включения заднего хода служит пружинный предохранитель, который задает в момент включения заднего хода ощутимо большее усилие на рычаге переключения, чем при включении передач переднего хода.

На грузовых автомобилях КамАЗ, работающих в качестве тяга­чей, устанавливают пятиступенчатую коробку передач с передним приставным двухступенчатым редуктором-делителем передач, который в сочетании с основной коробкой позволяет получить 10 передач переднего хода и 2 передачи заднего хода. При включении делителя происходит уменьшение общего передаточного числа каждой передачи примерно в 1,225 раза.

Делитель передач (рис.80) представляет по конст­рукции дополнительный редуктор, картер 7 которого жестко пристыкован к картеру коробки передач. В картере делителя размещены ведущий 2 и промежуточный 6 валы, пара зубчатых шестерен 3 и 1, синхронизатор 5 и механизм переключения. Промежуточный вал делителя постоянно соединен шлицами с промежуточным валом коробки передач. Шестерня 3 ведущего вала вращается на нем свободно и имеет зубчатый венец для взаимодействия с синхронизатором, закрепленным с помощью зубчатой муфты 4.

Делитель обеспечивает две передачи: прямую и повышающую. Прямая передача не изменяет передаваемого момента от двигателя к коробке передач. Она включается перемещением синхронизатора вправо, в результате чего ведущий вал делителя и ведущий вал коробки передач жестко блокируются.

Повышающая передача делителя включается при перемещении синхронизатора влево. В этом случае шестерня 3 блокируется синхронизатором на ведущем валу делителя, а крутящий момент передается с шестерни 3 на шестерню 1 промежуточного вала и далее на промежуточный вал коробки передач. При этом происходит уменьшение передаваемого крутящего момента на передаточное число делителя и частота вращения возрастает на такую же величину. Это дает возможность работать автомобилю при небольших нагрузках с повышенной скоростью движения, что способствует экономии топлива.

 

megaobuchalka.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о