Разрушение пластин аккумулятора: Что приводит к разрушению пластин в аккумуляторах.

Содержание

Что приводит к разрушению пластин в аккумуляторах.

В процессе работы стартерных аккумуляторных батарей, при чередующихся зарядах и разрядах, происходит окисление решеток и разрушение   активных масс, потеря механических связей между частицами, интенсивная коррозия электродов. В результате чего происходит уменьшение емкости аккумуляторов и  короткое замыкание   разноименных пластин.

                    Характерными признаками   разрушения пластин  являются:

  • электролит делается мутным  и приобретает коричневую окраску из-за  высыпания активной массы; 

  • быстрое нарастание плотности электролита при заряде батареи;

  • резкое понижение емкости АКБ, что проявляется в небольшой продолжительности разряда аккумулятора, и как следствие сокращение времени работы электротехники.

   Скорость разрушения пластин  зависит от условий эксплуатации аккумуляторов.

                              Причинами разрушения пластин в аккумуляторах могут быть:

  • Увеличенная плотность электролита ( более 1300 кг/м3). Нельзя доливать электролит в аккумулятор — только дистиллированную воду.

  •  Повышение температуры аккумулятора выше 45 град.С. Если при заряде температура электролита поднялась выше 45 град.С, то зарядку необходимо прекратить  и дать остыть электролиту до температуры ниже 35град.С.  Затем продолжить заряд батареи.

  • Перезаряд аккумуляторной  батареи из-за неправильного подбора или настройки зарядного устройства.

  • Заливка не дистиллированной (водопроводной) воды в аккумуляторную батарею.    Этот процесс ускоряется при наличии в электролите таких вредных веществ, как хлор, железо и др.

  • Понижение уровня электролита ниже верхних торцов пластин.

  • Короткое замыкание АКБ.

  • Замерзание воды в аккумуляторной батарее. Электролит  плотностью 1,100г/см3 замерзает при температуре -7,7 град.С.Нельзя оставлять разряженную батарею  более 12 часов даже в теплом помещении.

  • Удары и вибрации, т.к. происходит стряхивание активной массы  свинца с решеток пластин.

  • Выпадение большого количества  активного вещества на дно аккумулятора, что приводит  к короткому замыканию пластин.

    Все эти причины  ведут к потере емкости и быстрому выходу аккумуляторной  батареи из строя.

Восстановление кислотных аккумуляторов | Каталог самоделок

Чаще всего кислотные аккумуляторы используются как автомобильные источники тока. Существует несколько причин выхода автомобильных аккумуляторов из строя, но объединяет их одно – небрежное обращение с аккумуляторной батареей.

Первая и главная причина потери ёмкости батареи – засульфатированность пластин

, которая случается из-за полного разряда аккумулятора или чрезмерной нагрузки на него, которая не даёт восстановиться аккумулятору. Поэтому не оставляйте машину с включённым светом надолго, и не нужно крутить безостановочно стартер, а делать паузы в полминуты.

Вторая причинаразрушение и осыпание пластин, наступает из-за хранения слабо заряженного аккумулятора в течение длительного времени, а особенно в неотапливаемом помещении при морозе. У аккумулятора с разрушенными пластинами электролит грязный – с примесями частиц сульфида свинца.

Третья причиназамыкание между пластинами является тяжёлым последствием разрушения пластин. При заряжании батареи, с внутренним замыканием, повреждённые секции в ней будут нагреваться, а электролит из них выкипать.

Засульфатированность пластин

эффективно можно разрушить циклическим заряжанием. И так начинаем: берём повреждённый аккумулятор, и если в нем низкий уровень электролита, наливаем в него только дистиллированную воду. Хотите и дальше разрушать аккумулятор сульфатацией – не думая наливайте раствор серной кислоты.

Дальше подключайте батарею на 12 В к зарядному устройству под напряжение около 15 В, а батарею на 6 В нужно заряжать напряжением 7,5 В, но ограниченно всего на 13 – 15 минут. Потом выключайте питание, выдерживайте паузу в 13 – 15 минут, и снова ставьте аккумулятор заряжаться на такое же время. Эти циклы нужны для перемешивания электролита с образующейся кислотой из сульфата свинца. Отлично будет, если уже немного заряженный аккумулятор, разряжать лампочкой на 5 – 10 Вт. Но учтите то, что нельзя разряжать батарею ниже напряжения 10,5 В.

Восстановление кислотных аккумуляторов

Десульфатировать нужно до тех пор, пока не восстановится плотность электролита, то есть когда напряжение на каждой секции не будет падать ниже 2,1 В, что равняется: 12,6 В для аккумулятора на 12 В, и 6,3 В для аккумулятора на 6 В.

По окончании циклов заряжания, не забудьте долить израсходованную на водород дистиллированную воду до требуемого уровня.

Разрушение и осыпание пластин аккумулятора не должно помешать восстановить его длительным заряжанием малым током. Сначала нужно батарею с повреждёнными пластинами промыть дистиллированной водой. Если примеси в промывочной воде много, то нужно повторять очистку пока взвешенные частицы в воде не будут заметны. В прочищенный аккумулятор заливаем, выше уровня пластин, только дистиллированную воду. Потом подключаем батарею к

зарядному устройству под напряжение около 14 В, при этом зарядной ток не должен превышать значение 0,05 от ёмкости аккумулятора. Если наблюдать косвенно – не ориентируясь на показания амперметра, то необходимо держать такое напряжение, при котором газовыделение из батареи будет минимальным, но чтобы оно обязательно было. В таком зарядном режиме нужно держать аккумулятор как можно дольше – до двух недель. Но за любым включённым электроприбором нужно наблюдать. А заряжающийся аккумулятор – это всё равно, что включённый утюг.

Позже замеряйте плотность залитой воды, и если она стала слабым электролитом, тогда сливайте её. В батарею снова заливайте дистиллированную воду, и заряжайте, как и раньше – одну или две недели. Прекращайте заряжать, когда при напряжении 15 В прекратиться газовыделение из аккумулятора. Теперь вам остаётся только поменять получившийся слабый электролитический раствор на электролит с достаточной плотностью.

Замыкание между пластинами аккумулятора часто устраняется хорошей промывкой его от осыпавшихся частиц. Но более эффективной будет попытка разрушить участок замыкания раствором с десульфатирующей присадкой к электролиту, которую можно купить. Раствор дистиллированной воды с 5 – 8 % присадки заливают в промытый аккумулятор, и оставляют на один час. В течение этого времени будут активно разлагаться сульфатные отложения, что будет сопровождаться кипением раствора. При сильной сульфатации пластин понадобится поменять раствор с присадкой несколько раз, пока не удастся разрушить участок замыкания. Отремонтированный с помощью десульфатирующей присадки аккумулятор нужно промыть не менее двух раз дистиллированной водой. В чистый аккумулятор нужно залить электролит нормальной плотности.

В конечном итоге: хорошо зарядив восстановленный аккумулятор, и проверив через час напряжение на нем, которое должно быть не ниже положенных 12 В или 6 В – вы узнаете, получилось ли отремонтировать аккумулятор или нет.  Конечно, чем так мучиться лучше узнать

способы увеличения сроков службы АКБ

Автор: Виталий Петрович. Украина, Лисичанск.


Что приводит к разрушению пластин в аккумуляторах.

В процессе работы стартерных аккумуляторных батарей, при чередующихся зарядах и разрядах, происходит окисление решеток и разрушение   активных масс, потеря механических связей между частицами, интенсивная коррозия электродов. В результате чего происходит уменьшение емкости аккумуляторов и  короткое замыкание   разноименных пластин.

                    Характерными признаками   разрушения пластин  являются:

  • электролит делается мутным  и приобретает коричневую окраску из-за  высыпания активной массы; 

  • быстрое нарастание плотности электролита при заряде батареи;

  • резкое понижение емкости АКБ, что проявляется в небольшой продолжительности разряда аккумулятора, и как следствие сокращение времени работы электротехники.

   Скорость разрушения пластин  зависит от условий эксплуатации аккумуляторов.

                              Причинами разрушения пластин в аккумуляторах могут быть:

  • Увеличенная плотность электролита ( более 1300 кг/м3). Нельзя доливать электролит в аккумулятор — только дистиллированную воду.

  •  Повышение температуры аккумулятора выше 45 град.С. Если при заряде температура электролита поднялась выше 45 град.С, то зарядку необходимо прекратить  и дать остыть электролиту до температуры ниже 35град.С.  Затем продолжить заряд батареи.

  • Перезаряд аккумуляторной  батареи из-за неправильного подбора или настройки зарядного устройства.

  • Заливка не дистиллированной (водопроводной) воды в аккумуляторную батарею.    Этот процесс ускоряется при наличии в электролите таких вредных веществ, как хлор, железо и др.

  • Понижение уровня электролита ниже верхних торцов пластин.

  • Короткое замыкание АКБ.

  • Замерзание воды в аккумуляторной батарее. Электролит  плотностью 1,100г/см3 замерзает при температуре -7,7 град.С.Нельзя оставлять разряженную батарею  более 12 часов даже в теплом помещении.

  • Удары и вибрации, т.к. происходит стряхивание активной массы  свинца с решеток пластин.

  • Выпадение большого количества  активного вещества на дно аккумулятора, что приводит  к короткому замыканию пластин.

    Все эти причины  ведут к потере емкости и быстрому выходу аккумуляторной  батареи из строя.

Сульфатация аккумулятора — диагностика и методы исправления сульфатации

Работа АКБ по накоплению и расходу энергии основана на обратимой электрохимической реакции. При этом должен соблюдаться баланс, все компоненты участвовать в энергообмене. Сульфатация представляет образование нерастворимого осадка на поверхности пластин аккумулятора в виде твердого налета. Из процесса выводится свинец, кислотный остаток SO4, снижается концентрация электролита. Оседая на пластинах, осадок повышает сопротивление, мешает передаче заряда. В результате устройство теряет емкость. Как обнаружить и устранить сульфатацию аккумулятора?

Сульфатация - признак

 

Как определить сульфатацию аккумулятора

Причины появления белого отложения на пластинах аккумулятора, сульфатации, связаны с нарушением правильной эксплуатации. В период разряда кристаллы PbSO4 образуются всегда, но они малого размера. При зарядке АКБ они снова ионизируются, токопроводная поверхность очищается.

Сульфатация пластин аккумулятора происходит, если есть причины:

  • Глубокий разряд приводит к укрупнению кристаллов, которые не разрушаются при зарядке.
  • Низкие температуры приводят к хроническому недозаряду аккумулятора. Холодный электролит теряет скорость химической реакции. Если поездки короткие, простои длинные – все предпосылки для сульфатации аккумулятора.
  • Высокая температура летом в подкапотном пространстве ускоряет все процессы, в том числе и образование больших кристаллов сульфата свинца в разряженной батарее.
  • Хранение недозаряженного кислотного аккумулятора приведет к постепенному росту и уплотнению кристаллов в результате саморазряда. При этом подзарядка не производится, кристаллы не разрушаются.
  • Низкий уровень электролита в банках, плохое качество электролита.
  • Добавление концентрированной кислоты для уменьшения сульфатации только увеличит размер забитой поверхности.

Признаки сульфатации пластин АКБ

Чем раньше определить появление сульфатации на пластинах кислотного аккумулятора, тем легче разрушить осадок, освободить доступ к приемнику заряженных частиц. Как это сделать?

Периодически необходимо осматривать банки необслуживаемого аккумулятора – коричневато-белесый налет на пластинах хорошо просматривается через открытую пробку. Сульфатация ведет к потере емкости. Явные признаки – зарядка автомобильного аккумулятора происходит в течение часа, банки кипят. После зарядки АКБ не запускает двигатель, быстро разряжается лампой подсветки. На корпусе, вокруг пробок, на клеммах, образуется белый налет, электролит кипит в аккумуляторе, установленном в гнездо. Емкость аккумулятора снижается, это можно установить замерами напряжения на клеммах хх и под нагрузкой.

Все перечисленные признаки сульфатации характерны и для кальциевых необслуживаемых аккумуляторов, но в большей степени. Два-три глубоких разряда, и кальциевая батарея придет в полную негодность. Здесь образуется не только свинцовый осадок, но гипс, что хуже. Проблема проявляет себя уменьшением емкости, малым временем зарядки.

Сульфатация пластин аккумулятора – как устранить?

Сульфатация АКБ

Итак, главная беда свинцовых аккумуляторов с электролитом из серной кислоты, сульфатация. Пока налет незначительный, его можно снять в домашних условиях. Кристаллы забили пористую поверхность свинца. Извлечь их можно, только разложив на ионы и направив на разные электроды. Используется:

  • воздействие реверсивными токами или восстановление АКБ импульсными зарядами;
  • десульфатация током малой величины длительное время;
  • химические растворители осадка;
  • механическое удаление накипи на пластинах.

В домашних условиях для устранения сульфатации аккумулятра можно использовать длительное воздействие на батарею током силой 2-3 А, не допуская закипания банок. Процедура проводится в течение 24 часов и далее, пока плотность электролита не будет стабильной в течение 5-6 часов. Проведение 2-3 тренировочных циклов может вернуть емкость до 80 % не до конца забитой батарее.

Хорошо растворяется осадок сульфата железа в растворе этилендиаминтетрауксусной кислоты (трилон Б). Свинец в соли заменяется ионом натрия, и она становиться растворимой. Раствор готовят в соотношении 60 г порошка трилона Б + 662 мл NH4OH 25% + 2340 мл дистиллированной воды.

Инструменты для химической десульфатизации

Чтобы снять сульфатацию, раствор в аккумулятор заливать на 60 минут, сразу после удаления электролита. Реакция в банках бурная, с нагреванием и кипением. После раствор слить, 3 раза промыть полости дистиллированной водой и залить свежий электролит. Если свинцовые пластины не разрушатся, произойдет полная очистка пластин.

Слабый налет может быть удален с использованием дистиллированной воды. Содержимое банок необходимо удалить полностью, слив в эмалированную посуду. Если в содержимом банки есть угольные крошки, он не восстановится, разрушены пластины.

Залить банки электролитом, оставить пробки открытыми, подключить ЗУ, установить напряжение 14 В. Добиться, чтобы кипение в банках было умеренным, и оставить на неделю – две под нагрузкой. Растворившийся осадок превращает воду в слабый электролит. Чтобы избавиться от сульфатации процедуру повторить несколько раз. Закончить очистку, как только растворится весь осадок на пластинах аккумулятора.

Одинарная и двойная переполюсовка используется в случаях, когда остальные методы очистки не помогли. Смена заряда пластин поможет растворит осадок за счет изменения направления движения электронов. Но этот способ разрушит батарею с тонкими свинцовыми обкладками. Для современных бюджетных моделей китайского производства не применяется.

При использовании специальных присадок, растворяющих осадок, необходимо точно следовать инструкции, работы проводить в вентилируемом помещении, пользоваться средствами личной защиты.

Десульфатизация АКБ с применением ЗУ

Как снять сульфатацию с автомобильного аккумулятора, инструментально

Десульфатацию аккумулятора проводят с помощью электрических импульсов, разрушающих структуру кристалла. При этом электролит не сливается. Важно только убедиться, что причиной потери емкости стало именно появление осадка сульфата свинца, не разрушение пластин или короткое замыкание.

Используя специальный зарядник, не потребуется дополнительных действий. Нужно установить и подключить батарею. Подача переменного заряда в соотношении 1:10 с установленной периодичностью постепенно очистит пластины. Процесс длительный, но результат отражается на дисплее информацией о восстановленной емкости.

Промышленный десульфатор ЗУ

Схема снятия сульфатации аккумулятором обычным зарядным устройством выглядит так:

  • Довести уровень электролита но нормы дистиллированной водой.
  • Подключить зарядное устройство, установить напряжение 14 В, 1 А, заряжать 8 часов.
  • Замерить напряжение, если оно меньше 10 В, АКБ не восстановится. Оставить батарею «отдыхать» сутки.
  • Подключить ЗУ 14 В 2,0-2,5 А, держать зарядку 8 часов. В результате должно быть напряжение на клеммах 12,7-12,8 В. Плотность электролита должна быть 1,13 г/см3
  • Подключить сопротивление разрядки, снижая напряжение на клеммах не ниже 9 В.

Цикл повторять до тех пор, пока плотность электролита не повысится до 1,27 г/см3. За счет постепенного растворения кристаллов, вызвавших сульфатацию, пластины аккумулятора приобретают пористость. Как результат, удается убрать дополнительное сопротивление, восстановить работоспособность АКБ.

Десульфатор своими руками

Устранение сульфатации свинцовых аккумуляторов вручную

На старых аккумуляторах, там, где пластины были собраны в отдельные банки, редко, но применяется механическая очистка осадка. Как убрать сульфатацию вручную? Разбирается корпус аккумулятора, пластины из банок извлекают и чистят вручную. Именно так можно привести в порядок загипсованную батарею Ca+/Ca+, предварительно срезав болгаркой несъемную крышку.

Ручное снятие сульфатации аккумулятора дает лучший результат по сравнению с использованием химических присадок – они забирают свинец не только из отложений. Активная масса обедняется, срок службы АКБ уменьшается. Но при механической сборке есть опасность неточного выставления зазоров, последующего замыкания.

Присадка в аккумулятор против сульфатации

Присадки для аккумулятора

Можно ли, и как избавиться или уменьшить сульфатацию пластин автомобильного аккумулятора, пользуясь присадками? Есть несколько составов, которые снижают сульфатацию аккумулятора, но отрицательно действуют на другие характеристики. В качестве добавок в электролит используются растворимые сульфаты активных металлов цинка, кадмия, олова, но они не снижают саморазряд и газоотделение. Применяются сложноорганические составы НТФ, ОЭДФ с сульфатами металлов в микродозах, как катализаторы процесса распада кристаллов сернокислого свинца. Химические присадки помогают избавиться от сульфатации необслуживаемого автомобильного аккумулятора кислотного типа.

Видео

Предлагаем посмотреть полезное видео о сульфатации аккумулятора.

Что приводит к разрушению пластин в аккумуляторах.

В процессе работы стартерных аккумуляторных батарей, при чередующихся зарядах и разрядах, происходит окисление решеток и разрушение   активных масс, потеря механических связей между частицами, интенсивная коррозия электродов. В результате чего происходит уменьшение емкости аккумуляторов и  короткое замыкание   разноименных пластин.

                    Характерными признаками   разрушения пластин  являются:

  • электролит делается мутным  и приобретает коричневую окраску из-за  высыпания активной массы; 

  • быстрое нарастание плотности электролита при заряде батареи;

  • резкое понижение емкости АКБ, что проявляется в небольшой продолжительности разряда аккумулятора, и как следствие сокращение времени работы электротехники.

   Скорость разрушения пластин  зависит от условий эксплуатации аккумуляторов.

                              Причинами разрушения пластин в аккумуляторах могут быть:

  • Увеличенная плотность электролита ( более 1300 кг/м3). Нельзя доливать электролит в аккумулятор — только дистиллированную воду.

  •  Повышение температуры аккумулятора выше 45 град.С. Если при заряде температура электролита поднялась выше 45 град.С, то зарядку необходимо прекратить  и дать остыть электролиту до температуры ниже 35град.С.  Затем продолжить заряд батареи.

  • Перезаряд аккумуляторной  батареи из-за неправильного подбора или настройки зарядного устройства.

  • Заливка не дистиллированной (водопроводной) воды в аккумуляторную батарею.    Этот процесс ускоряется при наличии в электролите таких вредных веществ, как хлор, железо и др.

  • Понижение уровня электролита ниже верхних торцов пластин.

  • Короткое замыкание АКБ.

  • Замерзание воды в аккумуляторной батарее. Электролит  плотностью 1,100г/см3 замерзает при температуре -7,7 град.С.Нельзя оставлять разряженную батарею  более 12 часов даже в теплом помещении.

  • Удары и вибрации, т.к. происходит стряхивание активной массы  свинца с решеток пластин.

  • Выпадение большого количества  активного вещества на дно аккумулятора, что приводит  к короткому замыканию пластин.

    Все эти причины  ведут к потере емкости и быстрому выходу аккумуляторной  батареи из строя.

Что такое сульфатация пластин аккумулятора: причины и последствия

Рано или поздно любой автовладелец сталкивается с такой проблемой, как сульфатация пластин аккумулятора. Давайте разберемся, что же это такое, почему это происходит с аккумулятором и к чему это может привести.

Любые аккумуляторные батареи работают по принципу двойной сульфатации. Дело в том, что при разряде батареи пластины взаимодействуют с электролитом, в результате это ведет к падению плотности электролита. А при зарядке батареи в пластинах аккумулятора происходят обратные процессы, что ведет к повышению удельной плотности электролита. На сульфатацию пластин аккумулятора автомобиля вам укажет повышенное напряжение аккумулятора в начале разряда, а также обильное газовыделение.

Причины сульсификации

К сульфатации пластин вашего аккумулятора чаще всего могут привести следующие причины: разряженное состояние аккумулятора, слишком высокая температура или ее частые колебания, слишком низкое разрядное напряжение, а также чересчур большие разрядные токи. Очень важно соблюдать температурный режим и не допускать перегрева пластин аккумулятора. Потому что при ней процессы сульфатации и обратный процесс происходят быстрее. Но особенно опасны частые колебания температуры хранения пластин аккумулятора, потому как химические реакции со временем будут происходить неравномерно, что приведет к быстрому износу и порче аккумулятора. Для предотвращения сульфатации пластин аккумулятора, лучше не эксплуатировать их в режиме заряд-разряд выше, чем на 75-80% от номинала емкости аккумулятора. Это позволит аккумуляторной батарее быстрее восстановить емкость и перейти в режим заряда. Очень опасно оставлять свинцовый аккумулятор в постоянном разряженном состоянии, так как это способствует началу процессов сульфатации в его пластинах.

Последствия сульфатации

Объем пластин вашего аккумулятора сильно увеличивается. Дело в том, что при сульфатации сами пластины вашего аккумулятора занимают гораздо больший объем в емкости, чем в обычном заряженном состоянии. Сама пористость пластин его уменьшается, а их толщина, наоборот, увеличивается. Все это может привести к деформации и разрушению пластин. Засульфатированная батарея быстро разряжается и в некоторых сложных случаях даже может его привести к деформации корпуса самого вашего аккумулятора.

Емкость аккумулятора постепенно уменьшается. Химические процессы, происходящие в аккумуляторе при его сульфатации, постепенно сокращают площадь самой поверхности его пластин, обязательно покрытую активными веществами. И поэтому емкость такого аккумулятора постепенно сокращается.

Внутреннее сопротивление самого аккумулятора растет. В результате падает напряжение на вашем аккумуляторе при попытке его разрядить и зарядить, а также сам аккумулятор гораздо быстрее перегревается и сульфатируется.

Поэтому, чтобы не допустить и максимально отсрочить наступление сульфатации пластин аккумулятора, соблюдайте правила его эксплуатации и аккумулятор прослужит вам очень долго!

Неисправности аккумуляторных батарей (АКБ). Неисправности аккумуляторных батарей Разрушение пластин электродов

Главная→Полировка→Неисправности аккумуляторных батарей (АКБ). Неисправности аккумуляторных батарей Разрушение пластин электродов

Аккумуляторные батареи (АКБ) могут отказать не только по вине производителя, но и при нарушении правил их эксплуатации на автомобиле. Возникшие дефекты снижают емкость и ток стартерного разряда батареи или делают ее неработоспособной.
Емкость (упрощенно) — сколько электричества в данный момент способна отдать батарея при разряде. Чем ниже этот параметр, тем меньше времени АКБ способна питать электрооборудование, например вращать стартер.
Номинальная емкость указывается производителем на корпусе батареи и определяется по специальной методике.
Степень заряженности — отношение емкости батареи к номинальной (умноженное на 100%). Указывает сколькими процентами от номинальной емкости обладает в данный момент батарея. Для обеспечения нормального ресурса АКБ степень заряженности должна находиться в пределах 75-95%.
Ток стартерного разряда (холодной прокрутки) определяет пусковые свойства батареи. При его снижении стартер будет медленнее прокручивать коленвал, что затрудняет пуск двигателя (при условии, что стартер исправен).

Производственные дефекты:

Появляются, как правило, в течение первых месяцев эксплуатации батареи. Их внешние проявления и возможные причины возникновения приведены ниже.

Дефект Признаки Возможная причина
Разрыв электрической цепи внутри АКБ Напряжение на выводах батареи есть, но стартер не вращается Разрушение мостиков* между банками. Плохая сварка полюсных клемм и т. п. (фото 1)
Короткое замыкание между положительными и отрицательными электродами (пластинами) В дефектной банке плотность ниже, чем в остальных. При заряде зарядным устройством дефектная банка не «кипит». При работе стартера в банке происходит интенсивное газовыделение Повреждение сепаратора или неправильное его размещение в процессе сборки (фото 2). Низкое качество материала сепаратора или отклонение его размеров от допустимых (фото 3). Перекос электродов
Недоформованная активная масса электродов (фото 4) Полностью заряженная батарея не может обеспечить более двух – трех пусков двигателя, а при заряде и разряде интенсивно «кипит» Нарушена операция формования – процесс заряда электродов
Отрыв электродов (пластин) от соединительных мостиков При работе стартера электролит в такой банке «кипит». При бездействии батареи плотность электролита не снижается Низкое качество сварки пластины с мостиком

Если гарантийный срок не истек и есть подозрение, что неисправность батареи появилась по вине производителя, необходимо обратиться в специализированную мастерскую. При этом надо иметь кассовый или товарный чек, а также гарантийный талон с датой продажи и наименованием организации-продавца. К тому же желательно, чтобы в нем были указаны характеристики батареи на момент продажи — плотность электролита, напряжение на выводах без нагрузки и т. д. Это поможет проведению экспертизы.

В мастерской должны установить причину неработоспособности АКБ или снижения ее характеристик. Результаты исследования батареи заносят в гарантийный талон, и если дефект производственный — АКБ подлежит замене на новую.

Эксплуатационные дефекты

Возникают в результате небрежной эксплуатации батареи на автомобиле. Основные нарушения — не осуществляется контроль за уровнем электролита и состоянием электрооборудования. Дефекты, приведенные в таблице,

Дефект Признаки Возможная причина
Сильное окисление полюсных клемм Напряжение на выводах батареи есть, а стартер не крутится. Клеммы греются Не проводилась очистка полюсных клемм
Оплывание активной массы – оголение решеток электродов Темный цвет электролита. Быстрое снижение напряжения батареи при работе стартера Длительная эксплуатация батареи с низкими степенью заряженности и уровнем электролита. Вибрация незакрепленной батареи
Замерзание электролита при отрицательных температурах Вздутие стенок корпуса или его разрушение Очень низкие степень заряженности и плотность электролита из-за глубокого разряда АКБ
Взрыв смеси кислорода и водорода (гремучего газа) Трещины на крышке и стенках или полное разрушение корпуса Уровень электролита ниже верхних кромок электродов приводит к накоплению гремучего газа, который взрывается при малейшем искрении
Коррозия (полная) решеток положительных электродов Батарея плохо заряжается*. Быстрое снижение напряжения батареи при работе стартера Постоянный перезаряд из-за большого напряжения (более 14,6 В). Интенсивная эксплуатация автомобиля (более 60 тыс км. в год)
Короткое замыкание между электродами В дефектной банке плотность ниже, чем в остальных. При заряде дефектная банка не выделяет газ и не «кипит». При работе стартера в банке происходит интенсивное газовыделение Большое количество оплывшей активной массы**. Разрушение сепараторов из-за низкого уровня электролита

* Заряд током 5,5 А батареи емкостью 55 А.ч продолжается более 15 часов.
** Только для старых типов батарей с сепараторами типа мипласт.

Делают батарею практически непригодной к дальнейшему применению. Исключение составляет только оплывание активной массы электродов, да и то лишь в начальной стадии. Поскольку значительное образование шлама (оплывшей активной массы) приводит к оголению решеток пластин и потере работоспособности АКБ при включении стартера.

Причины эксплуатационных дефектов возникают из-за перечисленных ниже факторов.

Низкая степень заряженности (менее 75%) может являться результатом:

  • слабого натяжения ремня привода генератора;
  • неисправности генератора и регулятора напряжения. При работающем двигателе на выводах батареи напряжение составляет менее

Заряд в секундах, в последние месяцы

(Pocket-lint). Хотя смартфоны, умные дома и даже умные носимые устройства становятся все более совершенными, они все еще ограничены мощностью. Аккумулятор не совершенствовался десятилетиями. Но мы находимся на пороге революции власти.

Крупные технологические и автомобильные компании слишком осведомлены об ограничениях литий-ионных аккумуляторов.В то время как чипы и операционные системы становятся более эффективными для экономии энергии, мы все еще рассматриваем только один или два дня использования смартфона, прежде чем потребуется подзарядка.

Хотя может пройти некоторое время, прежде чем мы сможем прожить неделю жизни наших телефонов, разработка идет хорошо. Мы собрали все лучшие открытия в области аккумуляторов, которые могут быть с нами в ближайшее время, от беспроводной зарядки до сверхбыстрой 30-секундной подзарядки. Надеюсь, скоро вы увидите эту технологию в своих гаджетах.

Литий-ионная батарея без кобальта

Исследователи из Техасского университета разработали литий-ионную батарею, в которой в качестве катода не используется кобальт.Вместо этого он переключился на высокий процент никеля (89 процентов), используя марганец и алюминий в качестве других ингредиентов. «Кобальт — наименее распространенный и самый дорогой компонент в катодах аккумуляторных батарей», — сказал профессор Арумугам Мантирам, профессор кафедры машиностроения Уолкера и директор Техасского института материалов. «И мы полностью устраняем это». Команда заявляет, что с помощью этого решения они преодолели общие проблемы, обеспечив длительный срок службы батареи и равномерное распределение ионов.

SVOLT представляет батареи для электромобилей, не содержащие кобальт.

Несмотря на то, что свойства электромобилей по снижению выбросов широко распространены, все еще существуют разногласия по поводу аккумуляторов, особенно по поводу использования металлов, таких как кобальт.Компания SVOLT, штаб-квартира которой расположена в Чанчжоу, Китай, объявила о производстве безкобальтовых батарей, предназначенных для рынка электромобилей. Помимо сокращения содержания редкоземельных металлов, компания заявляет, что они обладают более высокой плотностью энергии, что может привести к дальности действия до 800 км (500 миль) для электромобилей, а также продлить срок службы батареи и повысить безопасность. Мы не знаем, где именно мы увидим эти батареи, но компания подтвердила, что работает с крупным европейским производителем.

Тимо Иконен, Университет Восточной Финляндии

На шаг ближе к литий-ионным батареям с кремниевым анодом

Стремясь решить проблему нестабильного кремния в литий-ионных батареях, исследователи из Университета Восточной Финляндии разработали метод производства гибридного анода. , используя микрочастицы мезопористого кремния и углеродные нанотрубки. В конечном итоге цель состоит в том, чтобы заменить графит в качестве анода в батареях и использовать кремний, емкость которого в десять раз больше. Использование этого гибридного материала улучшает характеристики батареи, в то время как силиконовый материал устойчиво производится из золы шелухи ячменя.

Университет Монаша

Литий-серные батареи могут превзойти литий-ионные, снизить воздействие на окружающую среду

Исследователи из Университета Монаша разработали литий-серные аккумуляторы, способные обеспечивать питание смартфона в течение 5 дней, превосходя литий-ионные. Исследователи изготовили эту батарею, имеют патенты и интерес производителей. У группы есть финансирование для дальнейших исследований в 2020 году, заявив, что дальнейшие исследования автомобилей и использования сетей будут продолжены.

Утверждается, что новая аккумуляторная технология оказывает меньшее воздействие на окружающую среду, чем литий-ионные, и снижает производственные затраты, при этом предлагая потенциал для питания автомобиля на 1000 км (620 миль) или смартфона в течение 5 дней.

Аккумулятор IBM получен из морской воды и превосходит по своим характеристикам литий-ионный

IBM Research сообщает, что они обнаружили новый химический состав аккумулятора, который не содержит тяжелых металлов, таких как никель и кобальт, и потенциально может превзойти литий-ионные. IBM Research утверждает, что этот химический состав никогда раньше не использовался в комбинации в батареях и что материалы можно извлекать из морской воды.

Производительность аккумулятора многообещающая, при этом IBM Research заявляет, что он может превзойти литий-ионный в ряде различных областей — он дешевле в производстве, он может заряжаться быстрее, чем литий-ионный, и может иметь как более высокую мощность. и плотности энергии.Все это доступно в батареях с низкой горючестью электролитов.

IBM Research отмечает, что эти преимущества сделают ее новую технологию аккумуляторов подходящей для электромобилей, и вместе с Mercedes-Benz, среди прочих, компания работает над превращением этой технологии в жизнеспособный коммерческий аккумулятор.

Panasonic

Система управления батареями Panasonic

Хотя литий-ионные батареи повсюду и их число растет, управление этими батареями, включая определение того, когда у них закончился срок службы, затруднено.Panasonic, работая с профессором Масахиро Фукуи из Университета Рицумейкан, разработала новую технологию управления батареями, которая значительно упростит отслеживание батарей и определение остаточной стоимости литий-ионных в них.

Panasonic заявляет, что ее новую технологию можно легко применить с изменением системы управления батареями, что упростит мониторинг и оценку батарей с несколькими составными ячейками, которые можно найти в электромобиле. Panasonic сообщает, что эта система поможет продвинуться в направлении устойчивого развития, поскольку сможет лучше управлять повторным использованием и переработкой литий-ионных батарей.

Асимметричная модуляция температуры

Исследования продемонстрировали метод зарядки, который приближает нас на шаг ближе к сверхбыстрой зарядке — XFC — который направлен на обеспечение 200 миль пробега электромобиля примерно за 10 минут с зарядкой 400 кВт. Одна из проблем при зарядке — это литиевая гальваника в батареях, поэтому метод асимметричной температурной модуляции заряжает при более высокой температуре, чтобы уменьшить гальванику, но ограничивает это 10-минутными циклами, избегая роста межфазной границы твердого электролита, что может сократить срок службы батареи.Сообщается, что этот метод снижает износ аккумулятора, позволяя заряжать XFC.

Pocket-lint

Песочная батарея увеличивает время автономной работы в три раза

В этом альтернативном типе литий-ионной батареи используется кремний для достижения в три раза большей производительности, чем у нынешних графитовых литий-ионных батарей. Батарея по-прежнему литий-ионная, как и в вашем смартфоне, но в анодах используется кремний вместо графита.

Ученые из Калифорнийского университета в Риверсайде какое-то время занимались нанокремнием, но он слишком быстро разрушается, и его трудно производить в больших количествах.Используя песок, его можно очистить, измельчить в порошок, затем измельчить с солью и магнием перед нагреванием для удаления кислорода, что приведет к получению чистого кремния. Он пористый и трехмерный, что помогает повысить производительность и, возможно, продлить срок службы батарей. Изначально мы начали это исследование в 2014 году, и теперь оно приносит свои плоды.

Silanano — стартап по производству аккумуляторов, который выводит эту технологию на рынок и получил большие инвестиции от таких компаний, как Daimler и BMW. Компания заявляет, что ее решение может быть применено к существующему производству литий-ионных аккумуляторов, поэтому оно настроено на масштабируемое развертывание, обещая прирост производительности батареи на 20% сейчас или на 40% в ближайшем будущем.

Захват энергии от Wi-Fi

Хотя беспроводная индуктивная зарядка является обычным явлением, возможность захвата энергии от Wi-Fi или других электромагнитных волн остается проблемой. Однако группа исследователей разработала ректенну (антенну, собирающую радиоволны), которая представляет собой всего лишь несколько атомов, что делает ее невероятно гибкой.

Идея состоит в том, что устройства могут включать в себя эту ректенну на основе дисульфида молибдена, чтобы энергия переменного тока могла быть получена от Wi-Fi в воздухе и преобразована в постоянный ток либо для подзарядки батареи, либо для непосредственного питания устройства.Это может позволить использовать медицинские таблетки с питанием без необходимости во внутренней батарее (более безопасно для пациента) или мобильных устройств, которые не нужно подключать к источнику питания для подзарядки.

Энергия, полученная от владельца устройства

Вы можете стать источником энергии для вашего следующего устройства, если исследования TENG принесут свои плоды. TENG или трибоэлектрический наногенератор — это технология сбора энергии, которая улавливает электрический ток, генерируемый при контакте двух материалов.

Исследовательская группа из Суррейского института передовых технологий и Университета Суррея дала представление о том, как эту технологию можно использовать для питания таких вещей, как носимые устройства. Хотя мы еще далеки от того, чтобы увидеть это в действии, исследование должно дать дизайнерам инструменты, необходимые для эффективного понимания и оптимизации будущей реализации TENG.

Золотые нанопроволочные батареи

Великие умы Калифорнийского университета в Ирвине создали треснувшие нанопроволочные батареи, способные выдержать много перезарядок.В результате в будущем батареи могут не разрядиться.

Нанопроволока, в тысячу раз тоньше человеческого волоса, открывает большие возможности для батарей будущего. Но они всегда ломались при подзарядке. Это открытие использует золотые нанопроволоки в гелевом электролите, чтобы этого избежать. Фактически, эти батареи были проверены на перезарядку более 200 000 раз за три месяца и не показали вообще никакой деградации.

Твердотельные литий-ионные

Твердотельные батареи традиционно обеспечивают стабильность, но за счет передачи электролита.В статье, опубликованной учеными Toyota, рассказывается об их испытаниях твердотельной батареи, в которой используются сульфидные суперионные проводники. Все это означает превосходный аккумулятор.

В результате получился аккумулятор, способный работать на уровне суперконденсатора и полностью заряжаться или разряжаться всего за семь минут, что делает его идеальным для автомобилей. Поскольку он твердотельный, это также означает, что он намного стабильнее и безопаснее, чем существующие батареи. Твердотельный блок также должен работать при температуре от минус 30 до ста градусов Цельсия.

Электролитные материалы по-прежнему создают проблемы, поэтому не ожидайте увидеть их в ближайшее время в автомобилях, но это шаг в правильном направлении к более безопасным и быстро заряжаемым аккумуляторам.

Графеновые батареи Grabat

Графеновые батареи потенциально могут быть одними из самых лучших среди имеющихся. Grabat разработал графеновые батареи, которые могут обеспечить электромобилям запас хода до 500 миль без подзарядки.

Graphenano, компания, стоящая за разработкой, заявляет, что аккумуляторы можно полностью зарядить всего за несколько минут и они могут заряжаться и разряжаться в 33 раза быстрее, чем литий-ионные.Разряд также важен для таких вещей, как автомобили, которым требуется огромное количество энергии для быстрого трогания с места.

Нет информации о том, используются ли аккумуляторы Grabat в настоящее время в каких-либо продуктах, но у компании есть аккумуляторы для автомобилей, дронов, мотоциклов и даже для дома.

Микро-суперконденсаторы, созданные с помощью лазера.

Rice Univeristy

. Ученые из Университета Райса совершили прорыв в создании микроконденсаторов. В настоящее время их производство дорогое, но в них используются лазеры, которые вскоре могут измениться.

При использовании лазеров для выжигания электродов на листы пластика затраты на производство и усилия значительно снижаются. В результате получается аккумулятор, который может заряжаться в 50 раз быстрее, чем нынешние аккумуляторы, и разряжаться даже медленнее, чем современные суперконденсаторы. Они даже прочные, способны работать после более чем 10 000 сгибаний во время испытаний.

Пенные аккумуляторы

Прието верит, что будущее аккумуляторов — за 3D. Компании удалось решить эту проблему с помощью своей батареи, в которой используется вспененная медь.

Это означает, что эти батареи будут не только более безопасными благодаря отсутствию горючего электролита, но также будут обеспечивать более длительный срок службы, более быструю зарядку, в пять раз более высокую плотность, будут дешевле в производстве и будут меньше, чем существующие предложения.

Prieto стремится в первую очередь помещать свои батареи в мелкие предметы, например, в носимые устройства. Но в нем говорится, что батареи можно масштабировать, чтобы мы могли видеть их в телефонах и, возможно, даже в автомобилях в будущем.

Carphone Warehouse

Складной аккумулятор похож на бумагу, но прочный

Jenax J.Аккумулятор Flex был разработан, чтобы сделать гаджеты возможными. Батарея, похожая на бумагу, складывается и является водонепроницаемой, что означает, что ее можно интегрировать в одежду и носимые устройства.

Батарея уже создана и даже прошла испытания на безопасность, в том числе ее сложили более 200 000 раз без потери производительности.

Ник Билтон / The New York Times

uBeam по воздуху зарядка

uBeam использует ультразвук для передачи электричества. Энергия преобразуется в звуковые волны, неслышимые для людей и животных, которые передаются, а затем преобразуются обратно в энергию при достижении устройства.

С концепцией uBeam наткнулась 25-летняя выпускница астробиологии Мередит Перри. Она основала компанию, которая позволит заряжать гаджеты по воздуху с помощью пластины толщиной 5 мм. Эти передатчики можно прикрепить к стенам или сделать предметами декоративного искусства, чтобы передавать энергию на смартфоны и ноутбуки. Гаджетам просто необходим тонкий приемник, чтобы принимать заряд.

StoreDot

StoreDot заряжает мобильные телефоны за 30 секунд

StoreDot, стартап, созданный на базе кафедры нанотехнологий Тель-Авивского университета, разработал зарядное устройство StoreDot.Он работает с современными смартфонами и использует биологические полупроводники, изготовленные из природных органических соединений, известных как пептиды — короткие цепочки аминокислот, которые являются строительными блоками белков.

В результате получилось зарядное устройство, способное заряжать смартфон за 60 секунд. Батарея состоит из «негорючих органических соединений, заключенных в многослойную защитную структуру, предотвращающую перенапряжение и нагрев», поэтому проблем с ее взрывом возникнуть не должно.

Компания также объявила о планах создать аккумулятор для электромобилей, который заряжается за пять минут и предлагает запас хода до 300 миль.

Пока неизвестно, когда аккумуляторы StoreDot будут доступны в глобальном масштабе — мы ожидали, что они появятся в 2017 году, — но когда они появятся, мы ожидаем, что они станут невероятно популярными.

Pocket-lint

Прозрачное солнечное зарядное устройство

Alcatel продемонстрировал мобильный телефон с прозрачной солнечной панелью над экраном, которая позволяет пользователям заряжать свой телефон, просто поместив его на солнце.

Хотя вряд ли он появится в продаже в течение некоторого времени, компания надеется, что он каким-то образом решит повседневные проблемы, связанные с постоянным отсутствием заряда батареи.Телефон будет работать как с прямыми солнечными лучами, так и со стандартным освещением, как и обычные солнечные батареи.

Phienergy

Алюминиево-воздушная батарея обеспечивает пробег на 1100 миль без подзарядки.

Автомобиль сумел проехать 1100 миль на одной зарядке аккумулятора. Секрет этого супердиапазона заключается в технологии батареи, называемой «алюминий-воздух», которая использует кислород из воздуха для заполнения своего катода. Это делает его намного легче, чем заполненные жидкостью литий-ионные батареи, что дает автомобилю гораздо больший запас хода.

Бристольская робототехническая лаборатория

Батареи с питанием от мочи

Фонд Билла Гейтса финансирует дальнейшие исследования Бристольской робототехнической лаборатории, которая обнаружила батареи, которые могут питаться от мочи. Этого достаточно, чтобы зарядить смартфон, который ученые уже продемонстрировали. Но как это работает?

Используя микробный топливный элемент, микроорганизмы собирают мочу, расщепляют ее и выделяют электричество.

Питание от звука

Исследователи из Великобритании создали телефон, способный заряжаться, используя окружающий звук в окружающей атмосфере.

Смартфон построен по принципу пьезоэлектрического эффекта. Были созданы наногенераторы, которые собирают окружающий шум и преобразуют его в электрический ток.

Наностержни даже реагируют на человеческий голос, а это означает, что болтливые мобильные пользователи могут подключать свой собственный телефон во время разговора.

Двойная угольная батарея Ryden заряжается в 20 раз быстрее.

Power Japan Plus уже анонсировала новую технологию аккумуляторов под названием Ryden dual carbon. Он не только прослужит дольше и будет заряжаться быстрее, чем литиевые, но его можно будет производить на тех же заводах, где производятся литиевые батареи.

В аккумуляторах используются углеродные материалы, что означает, что они более устойчивы и экологически безопасны, чем существующие альтернативы. Это также означает, что батареи будут заряжаться в двадцать раз быстрее, чем литий-ионные. Они также будут более долговечными, способными выдержать до 3000 циклов зарядки, а также более безопасными с меньшей вероятностью возгорания или взрыва.

Натрий-ионные аккумуляторы

Ученые из Японии работают над новыми типами аккумуляторов, которые не нуждаются в литии, таких как аккумулятор вашего смартфона.В этих новых батареях будет использоваться натрий, один из самых распространенных материалов на планете, а не редкий литий, и они будут в семь раз эффективнее обычных батарей.

Исследования натриево-ионных аккумуляторов ведутся с восьмидесятых годов в попытке найти более дешевую альтернативу литию. Используя соль, шестой по распространенности элемент на планете, можно сделать батареи намного дешевле. Ожидается, что в ближайшие пять-десять лет начнется коммерциализация аккумуляторов для смартфонов, автомобилей и других устройств.

Upp

Зарядное устройство для водородных топливных элементов Upp

Переносное зарядное устройство для водородных топливных элементов Upp уже доступно. Он использует водород для питания вашего телефона, не позволяя вам отвлекаться и оставаться экологически чистым.

Одна водородная ячейка обеспечит пять полных зарядов мобильного телефона (емкость 25 Втч на ячейку). И единственный побочный продукт — это водяной пар. Разъем USB типа A означает, что он будет заряжать большинство USB-устройств с выходом 5 В, 5 Вт, 1000 мА.

Батареи со встроенным огнетушителем

Литий-ионные батареи нередко перегреваются, загораются и даже могут взорваться.Аккумулятор в Samsung Galaxy Note 7 — яркий тому пример. Исследователи Стэнфордского университета придумали литий-ионные батареи со встроенными огнетушителями.

В батарее есть компонент, называемый трифенилфосфатом, который обычно используется в качестве антипирена в электронике, добавленный к пластиковым волокнам, чтобы помочь разделить положительный и отрицательный электроды. Если температура батареи поднимается выше 150 градусов C, пластмассовые волокна плавятся и выделяется трифенилфосфат.Исследования показывают, что этот новый метод может предотвратить возгорание аккумуляторов за 0,4 секунды.

Майк Циммерман

Батареи, защищенные от взрыва

Литий-ионные батареи имеют довольно летучий слой пористого материала жидкого электролита, расположенный между анодным и катодным слоями. Майк Циммерман, исследователь из Университета Тафтса в Массачусетсе, разработал батарею, которая имеет вдвое большую емкость, чем литий-ионные, но без присущих ей опасностей.

Батарея Циммермана невероятно тонкая, немного толще, чем две кредитные карты, и заменяет жидкость электролита пластиковой пленкой, которая имеет аналогичные свойства.Он может противостоять прокалыванию, измельчению и нагреванию, так как он негорючий. Еще предстоит провести много исследований, прежде чем технология сможет попасть на рынок, но хорошо знать, что существуют более безопасные варианты.

Батареи Liquid Flow

Ученые Гарварда разработали батарею, которая накапливает свою энергию в органических молекулах, растворенных в воде с нейтральным pH. Исследователи говорят, что этот новый метод позволит батарее Flow работать исключительно долгое время по сравнению с нынешними литий-ионными батареями.

Маловероятно, что мы увидим эту технологию в смартфонах и т.п., поскольку жидкий раствор, связанный с батареями Flow, хранится в больших резервуарах, чем больше, тем лучше. Считается, что они могут быть идеальным способом хранения энергии, создаваемой решениями в области возобновляемых источников энергии, таких как ветер и солнце.

Действительно, исследование Стэнфордского университета использовало жидкий металл в проточной батарее с потенциально отличными результатами, заявляя, что напряжение вдвое выше, чем у обычных проточных батарей. Команда предположила, что это может быть отличным способом хранения непостоянных источников энергии, таких как ветер или солнце, для быстрого выпуска в сеть по запросу.

IBM и ETH Zurich разработали жидкостную проточную батарею гораздо меньшего размера, которая потенциально может быть использована в мобильных устройствах. Эта новая батарея утверждает, что может не только обеспечивать питание компонентов, но и одновременно охлаждать их. Обе компании обнаружили две жидкости, которые подходят для этой задачи, и будут использоваться в системе, способной производить 1,4 Вт мощности на квадратный см, при этом 1 Вт мощности зарезервирован для питания батареи.

Zap & Go Карбон-ионный аккумулятор

Оксфордская компания ZapGo разработала и произвела первую угольно-ионную аккумуляторную батарею, которая уже готова к использованию потребителями.Углеродно-ионный аккумулятор сочетает в себе сверхбыструю зарядку суперконденсатора с характеристиками литий-ионного аккумулятора, при этом полностью пригодный для вторичной переработки.

Компания предлагает зарядное устройство powerbank, которое полностью заряжается за пять минут, а затем полностью заряжает смартфон за два часа.

Цинково-воздушные батареи

Ученые из Сиднейского университета считают, что они придумали способ производства воздушно-цинковых батарей, намного более дешевый, чем существующие методы.Воздушно-цинковые батареи можно считать более совершенными, чем литий-ионные, поскольку они не загораются. Единственная проблема в том, что они полагаются на дорогие компоненты.

Sydney Uni удалось создать воздушно-цинковую батарею без необходимости использования дорогих компонентов, а скорее с некоторыми более дешевыми альтернативами. Возможно, появятся более безопасные и дешевые батареи!

Умная одежда

Исследователи из Университета Суррея разрабатывают способ использования одежды в качестве источника энергии.Батарея называется трибоэлектрическим наногенератором (TENG), которая преобразует движение в накопленную энергию. Накопленное электричество затем можно использовать для питания мобильных телефонов или устройств, таких как фитнес-трекеры Fitbit.

Эта технология может быть применена не только к одежде, она может быть интегрирована в тротуар, поэтому, когда люди постоянно ходят по ней, она может накапливать электричество, которое затем может использоваться для питания стальных ламп или в шинах автомобиля, чтобы он может привести машину в действие.

Растягиваемые батареи

Инженеры Калифорнийского университета в Сан-Диего разработали растяжимый биотопливный элемент, который может вырабатывать электричество из пота.Говорят, что генерируемой энергии достаточно для питания светодиодов и радиомодулей Bluetooth, а это означает, что однажды она сможет питать носимые устройства, такие как умные часы и фитнес-трекеры.

Графеновая батарея Samsung.

Компания Samsung сумела разработать «графеновые шары», которые способны увеличить емкость существующих литий-ионных аккумуляторов на 45 процентов и заряжаться в пять раз быстрее, чем существующие аккумуляторы. Чтобы представить это в контексте, Samsung заявляет, что его новый аккумулятор на основе графена может быть полностью заряжен за 12 минут, по сравнению с примерно часом для текущего устройства.

Samsung также заявляет, что его можно использовать не только в смартфонах, но и в электромобилях, поскольку он выдерживает температуру до 60 градусов Цельсия.

Более безопасная и быстрая зарядка существующих литий-ионных аккумуляторов

Ученые из WMG из Университета Уорика разработали новую технологию, которая позволяет заряжать существующие литий-ионные аккумуляторы до пяти раз быстрее, чем рекомендуемые текущие пределы. Технология постоянно измеряет температуру батареи намного точнее, чем существующие методы.

Ученые обнаружили, что нынешние батареи действительно могут выходить за пределы рекомендуемых пределов, не влияя на производительность или перегрев. Может быть, нам вообще не нужны другие упомянутые новые батареи!

Написано Крисом Холлом.

.

MCQ элементов и батарей с пояснительными ответами

MCQ элементов и MCQ с пояснительными ответами

1. Эти батареи были подключены в ___________.

Battery: Batteries MCQs with Explanatory Answers Battery: Batteries MCQs with Explanatory Answers

  1. Серия
  2. Параллельный

Показать пояснительный ответ

Ответ: 2. Параллельный

Объяснение:

Как мы видим, что положительный вывод подключен к положительной клемме, а отрицательный подключен к отрицательному терминалу.Итак, конфигурация батарей в параллельном режиме. Как мы можем подключить нагрузку в этой конфигурации, это показано на рисунке ниже.

battery: Batteries Configuration. These Batteries have Connected in series or parallel? Clear Your Concept. battery: Batteries Configuration. These Batteries have Connected in series or parallel? Clear Your Concept.

2. В идеальном случае ток зарядки для 200Ач батареи будет _________?

  1. 10 A
  2. 12 A
  3. 15 A
  4. 20 A

Показать пояснительный ответ

Ответ: 4. 20 A.

Пояснение:

Зарядный ток должен составлять 10% от номинальной емкости аккумулятора в ампер-часах.

Следовательно, зарядный ток для аккумулятора 120 Ач будет = 200 Ач x (10/100) = 20 А.

Примечание. Это только для идеального случая… для реального случая ,, просто проверьте MCQ # 3.

3. В реальном случае ток зарядки для 200 Ач батареи будет _________?

  1. 20-22 A
  2. 14-16 A
  3. 12-14 A
  4. 10-12 A

Показать пояснительный ответ

Ответ: 1. 20-22A

Пояснение:

Зарядный ток должен составлять 10% от номинальной емкости батареи в Ач (ампер-час).

Следовательно, зарядный ток для 120Ач батареи будет = 200Ач x (10/100) = 20А

Но из-за потерь зарядный ток для 200Ач батареи должен быть 20-22А.

4. В идеальном случае время зарядки 200Ач батареи будет _________?

  1. 5 часов
  2. 10 часов
  3. 15 часов
  4. 20 часов

Показать пояснительный ответ

Ответ: 2. 10 часов

Пояснение:

Ток зарядки должен быть 10 % от номинальной емкости аккумулятора в ампер-часах.

Следовательно, зарядный ток для аккумулятора 120 Ач будет = 200 Ач x (10/100) = 20 А

Следовательно, время зарядки для аккумулятора 200 Ач = номинал аккумулятора / зарядный ток

= 200 Ач / 20 = 10 часов.

Примечание. Это только для идеального случая… для реального случая ,, просто проверьте MCQ # 5.

5. В реальном случае время зарядки 200Ач батареи будет _________?

  1. 5 часов
  2. 10 часов
  3. 11 часов
  4. 12 часов

Показать пояснительный ответ

Ответ: 3.11 часов

Пояснение:

Предположим, для аккумулятора на 200 Ач,

Прежде всего, мы рассчитаем зарядный ток для аккумулятора 200 Ач. Как известно, зарядный ток должен составлять 10% от номинальной емкости аккумулятора в Ач.

Таким образом, зарядный ток для аккумулятора 200 Ач = 200 x (10/100) = 20 ампер.

Но из-за потерь мы можем взять для зарядки 20-22 Ампер.

предположим, что мы взяли 22 А для зарядки,

Тогда время зарядки для 200 Ач батареи = 200/22 = 9.09 Часов.

Но это был идеальный случай…

Практически это замечено, что 40% потерь (в случае зарядки аккумулятора)

Тогда 200 x (40/100) = 80… .. (200Ah x 40% потерь )

Следовательно, 200 + 80 = 280 Ач (200 Ач + потери)

Время зарядки аккумулятора = Ач / ток заряда

280/22 = 12,72 или 12,5 часов (в реальном случае)

Следовательно, 200 Ач Для полной зарядки аккумулятора потребуется 12 часов (при токе зарядки 22 А).

6 Один (1) Ач = ________?

  1. 1C
  2. 1200C
  3. 2400C
  4. 3600C

Показать пояснительный ответ

Ответ: 4. 3600C

Объяснение:

1Ah = (1sA) x (C / s) x (3600s) = 3600 C.

∴ A (Один Ампер) = Один кулон в секунду = C / s

7. Коммерческий свинцово-кислотный аккумулятор имеет 13 пластин.Количество положительных пластин будет _______.

  1. 6
  2. 7
  3. 8
  4. 9

Показать пояснительный ответ

Ответ: 1. 6

Пояснение:

Количество отрицательных пластин в свинцово-кислотной ячейке равно одному больше количества положительных пластин; внешние пластины отрицательные. Таким образом, количество положительных пластин будет 6.

8. Коммерческий свинцово-кислотный элемент имеет 15 пластин.Количество отрицательных пластин будет _______.

  1. 6
  2. 7
  3. 8
  4. 9

Показать пояснительный ответ

Ответ: 3. 8

Пояснение:

Количество отрицательных пластин в свинцово-кислотной ячейке на единицу больше, чем количество положительных пластин; внешние пластины отрицательные. Таким образом, количество отрицательных пластин будет 8.

9. Свинцово-кислотный элемент имеет 15 пластин.При отсутствии данных производителя [паспортная табличка] зарядный ток должен быть ________.

  1. 3A
  2. 6A
  3. 7A
  4. 13A

Показать пояснительный ответ

Ответ. 4. 7A

Пояснение:

Зарядный ток аккумулятора должен составлять 1 А для каждой положительной пластины отдельного элемента. Также мы знаем, что количество отрицательных пластин в свинцово-кислотном элементе на единицу больше, чем количество положительных пластин; внешние пластины отрицательные.следовательно, количество отрицательных и положительных пластин будет 8 и 7 соответственно. таким образом, зарядный ток для этой батареи будет 7А.

10. Батарея — это последовательная или параллельная комбинация электролитических ячеек.

  1. Верно
  2. Ложно

Показать пояснительный ответ

Ответ: (1)

Ячейка с электролитом состоит из положительного и отрицательного электродов, отделенных друг от друга электролитом.Электролит может быть концентрированными водными растворами, такими как кислоты, щелочи или соли, или ионными проводниками, такими как растворы органических солей, полимеры, керамика и т. Д. Электролит является хорошим проводником ионов, но плохим проводником электронов. Две или несколько таких ячеек, соединенных вместе последовательно или последовательно-параллельным массивом, образуют сборку, называемую батареей.

11. В одной ячейке два электрода отделены друг от друга на:

  1. 1 мм
  2. 1 см
  3. 0.5 мм
  4. 0,5 см

Показать пояснительный ответ

Ответ: (1)

В одной электролитической ячейке положительный электрод и отрицательный электрод имеют минимальное расстояние между собой, около 1 мм, так что внутреннее сопротивление составляет как можно ниже. Типичное значение этого сопротивления составляет порядка миллиом, поэтому падение напряжения между электродами минимально при протекании большого количества тока

12.Стандартное напряжение холостого хода для свинцово-кислотных аккумуляторов при стандартных условиях составляет ——-

  1. 3 В
  2. 2,048 В
  3. 2,50 В
  4. 3,508 В

Показать пояснительный ответ

Ответ: (2)

Сетевое напряжение или разность напряжений между потенциалами положительного и отрицательного электродов электролитической ячейки определяет напряжение холостого хода при стандартных условиях. Во время разряда батареи отрицательный электрод подвергается окислению, а положительный электрод — восстановлению, как показано ниже:

battery: Batteries Configuration. These Batteries have Connected in series or parallel? Clear Your Concept. battery: Batteries Configuration. These Batteries have Connected in series or parallel? Clear Your Concept.

Таким образом, напряжение холостого хода при стандартных условиях составляет: В o = E o1 -E 02 = +1.690 — (-0,358) Вольт = +2,048 Вольт

13. В первичной ячейке один из электродов обычно отключается через определенное время за счет химического воздействия.

  1. True
  2. False

Показать пояснительный ответ

Ответ: (1)

Рассмотрим первичную ячейку с цинковым электродом в качестве отрицательного электрода и угольным электродом в качестве отрицательного электрода и серной кислотой в качестве электролита. Движение электронов от отрицательного электрода к положительному электроду составляет ток через нагрузку.Происходящая химическая реакция гарантирует, что положительные ионы в цинковом электроде объединяются с отрицательными ионами серной кислоты, образуя сульфат цинка.

Таким образом, по мере продолжения реакции цинк постепенно растворяется в растворе, вызывая разряд элемента. Это доказывает, что в первичном элементе один из электродов используется для химического воздействия.

14. Во вторичном элементе электрический ток заставляют течь в противоположном направлении, чем обычно, для зарядки элемента.

  1. True
  2. False

Показать пояснительный ответ

Ответ: (1)

Рассмотрим 12-вольтную свинцово-кислотную батарею с полностью заряженным напряжением на клеммах 12,6 вольт. Когда на аккумулятор подается внешнее напряжение, превышающее напряжение на клеммах, обеспечивается плавная зарядка.

Когда электричество проходит через раствор электролита, сульфат свинца на электродах превращается обратно в свое исходное вещество, т.е.е. анод или положительная пластина из диоксида свинца и катода или отрицательная пластина из губчатого свинца.

15. Первичный сухой элемент называется так, потому что…

  1. Используемый электролит полностью сухой
  2. Используемый электролит представляет собой влажную пасту
  3. Используются сухие электроды
  4. Ни один из вышеперечисленных

Показать пояснительный ответ

Ответ: (2)

Первичный сухой элемент, также известный как элемент Leclanche , состоит из влажной пасты в качестве электролита.Паста обычно представляет собой смесь таких веществ, как хлорид аммония, диоксид марганца, порошкообразный кокс, графит и вода. Паста содержится в цинковом контейнере, который действует как катод или отрицательный электрод. Контейнер покрыт непроводящим материалом для отделения цинка от пасты.

16. Никель-кадмиевые аккумуляторы предпочтительнее свинцово-кислотных аккумуляторов в военных целях, потому что ——–

  1. Легко заряжаются и разряжаются.
  2. Скорость разряда выше
  3. Обеспечивает большую мощность
  4. Все вышеперечисленное

Показать пояснительный ответ

Ответ: (4)

Никель-кадмиевые элементы содержат гидроксид кадмия в качестве катода, гидроксид никеля в качестве анода и гидроксид калия и вода в качестве электролита. Хотя никель-кадмиевые батареи сравнимы со свинцово-кислотными батареями при нормальной скорости разряда, при более высоких скоростях разряда мощность передается выше в первых.Кроме того, никель-кадмиевые батареи превосходят свинцово-кислотные батареи с точки зрения более высокой скорости зарядки, меньшего времени для зарядки, более длительного периода хранения и более длительных интервалов зарядки и разрядки.

17. Количество элементов, соединенных последовательно, обеспечивает —–

  1. Высокая допустимая нагрузка по току
  2. Повышенное напряжение
  3. Повышенная мощность
  4. Ничего из вышеперечисленного

Показать пояснительный ответ

Ответ: (2)

Рассмотрим приведенную ниже комбинацию четырех ячеек.

Series Connected Cells Series Connected Cells

Рис. 1. Последовательно соединенные элементы

Обратите внимание, что отрицательный электрод каждой ячейки соединен с положительным электродом соседней ячейки. Если напряжение на каждой ячейке составляет В вольт, общее напряжение на контуре будет определяться с использованием закона Кирхгофа как сумма индивидуальных напряжений на каждой ячейке. Следовательно, общее напряжение будет 4 В. Это показывает, что последовательно включенные элементы обеспечивают более высокое напряжение .

18.Количество ячеек, соединенных параллельно, обеспечивает ——-

  1. Высокая пропускная способность по току
  2. Более высокое напряжение
  3. Более высокая мощность
  4. Ни один из вышеперечисленных

Показать пояснительный ответ

Ответ: (1)

Рассмотрим приведенную ниже параллельную комбинацию четырех ячеек.

parallel connected cells parallel connected cells

Рисунок 2: Параллельно подключенные элементы

Обратите внимание, что положительные электроды всех элементов подключены последовательно друг с другом, а отрицательные электроды подключены последовательно друг с другом.Это гарантирует, что напряжение на комбинации будет таким же, как напряжение на отдельной ячейке, то есть V вольт. Однако полный протекающий ток будет суммой отдельных токов, протекающих через каждую ячейку. Таким образом, ячейки, соединенные параллельно, составляют поток более высокого тока .

19. Удельный вес электролита в отдельном элементе или батарее всегда составляет —

  1. Равно 1,0
  2. Больше 1,0
  3. Меньше 1.0
  4. Ничего из вышеперечисленного.

Показать пояснительный ответ.

Ответ: (2)

Удельный вес вещества определяется как отношение его веса к весу того же количества чистой воды. Этот термин используется для определения количества активного ингредиента в электролите, чтобы гарантировать бесперебойную работу элемента. Поскольку электролит представляет собой раствор воды, количество активного ингредиента невозможно измерить напрямую.

Любое вещество, которое плавает на воде, будет иметь меньший удельный вес, чем у чистой воды, т.е.е. менее 1,0. Поскольку используемый активный ингредиент должен тонуть или растворяться в воде, удельный вес обычно больше, чем у чистой воды, то есть больше 1,0.

20. Аккумуляторы рассчитаны в соответствии с ——–

  1. Температура окружающей среды
  2. Скорость разряда
  3. A и C
  4. Ни один из вышеперечисленных

Показать пояснительный ответ

Ответ: (3 )

Теоретически емкость или номинальная мощность аккумуляторной батареи выражается в виде общего количества тока, протекающего через батарею, за заданный промежуток времени и является постоянной величиной.Однако практически номинальные характеристики зависят от скорости разряда и температуры окружающей среды. Чем выше скорость разряда, тем меньше будет емкость.

Разряд происходит до тех пор, пока напряжение на элемент не упадет до 1,7 вольт, особенно для свинцово-кислотных аккумуляторов. Для аккумуляторной батареи, рассчитанной на 100 ампер-часов при 5-часовой скорости разряда, если ее уменьшить до 30-минутной, то предоставленная емкость составит 1/3 или от данной номинальной емкости. Если скорость разряда увеличивается до 10-часового режима, поставленная мощность увеличится на 20% по сравнению с номинальным значением.

Кроме того, оптимальная производительность аккумулятора достигается в диапазоне рабочих температур от 20 до 30 градусов Цельсия. Согласно нескольким практическим тестам, скорость разряда батареи удваивается с повышением температуры на каждые 10 градусов Цельсия. Хотя при более высокой температуре скорость протекания химических реакций будет выше, срок службы батареи сократится.

Связанные MCQS с пояснительными ответами:

Батареи Связанные сообщения:

.

прогнозных методов испытаний стартерных батарей — Battery University

У стартерных аккумуляторов есть два режима окончания срока службы: отказ от перегрева и уменьшение емкости. Тепловой отказ вызван коррозией, которая появляется на ранних этапах эксплуатации и проявляется в плохом запуске двигателя из-за высокого внутреннего сопротивления. Этот недостаток можно легко измерить с помощью тестера CCA. Квалифицированный механик также может оценить производительность CCA по отклику двигателя.

Емкость оценить сложнее, и она определяет энергию, которую держит аккумулятор.В то время как CCA имеет тенденцию оставаться на высоком уровне в течение всего срока службы батареи, емкость постепенно уменьшается, незаметно для пользователя, до тех пор, пока автомобиль не заводится в один прекрасный день из-за недостаточной емкости. Аналогия — мост, который хорошо держится, а затем внезапно рушится без особого предупреждения.

Рис. 1: Тросы, поддерживающие мост Моранди в Италии, потеряли 20% прочности. Емкость большинства стартерных аккумуляторов может упасть на 75% до остановки запуска. Емкость плохо коррелирует с CCA.

Новые батареи переоценены, чтобы учесть снижение производительности; 25–30% — это нижняя граница емкости стартерной батареи. Автомобилисты также попадают в затруднительное положение, когда низкие температуры еще больше снижают и без того низкую мощность. В большинстве сервисных мастерских заменяют аккумулятор при снижении заряда до 40%.

Срок службы батареи снизился с 5 лет до 4 лет в новых автомобилях, несмотря на то, что батарея, как говорят, улучшилась. Вспомогательные нагрузки, такие как нагревательные элементы, механические заслонки и функция старт-стоп, снижают долговечность, поскольку большие нагрузки ускоряют снижение производительности.В большинстве случаев емкость определяет конец срока службы батареи. Это намекает на важность проверки емкости, но измерить ее сложно. Одного измерения CCA недостаточно, поскольку CCA и мощность не коррелируют хорошо.

Каждая аккумуляторная система по-разному проявляет потерю емкости. Свинцовая кислота теряет активное вещество, что также называется размягчением или выделением. Батарея глубокого цикла содержит толстые пластины, чтобы выдерживать повторяющиеся циклы, но стартерная батарея имеет тонкие губчатые пластины, обеспечивающие большую площадь поверхности и высокую пусковую мощность, но срок службы ограничен 12–15 полными циклами.Третья разновидность — это долговечная резервная батарея, наполненная электролитом с низкой плотностью для уменьшения коррозии. В результате более низкая удельная энергия и, как следствие, больший размер менее важны для стационарных, чем для мобильных батарей. Поскольку батареи ИБП редко меняются, пластины имеют умеренную толщину.

Кислотное расслоение — это еще один сбой в стартерных батареях, который вызван фиксированным режимом зарядки и частичной разрядки. Заряженный электролит тяжелее воды и стекает ко дну.Высокая концентрация ускоряет коррозию пластин снизу вверх, как показано на Рисунке 2.


Рис. 2: Эффект расслоения кислоты в стартерной батарее.
Более тяжелая кислота тяготеет ко дну, а более легкая кверху, влияя на коррозию пластин снизу вверх.
Источник: iQ Power


Еще одна распространенная причина выхода из строя аккумуляторной батареи — сульфатирование. Это происходит, когда свинцово-кислотная батарея находится в частично заряженном состоянии и редко получает полный заряд.Аккумуляторы в автомобилях, движущихся по городу с включенными принадлежностями, обычно страдают от сульфатации из-за недостаточного заряда. Двигатель на холостом ходу или на низкой скорости движения может недостаточно заряжать аккумулятор.

При своевременном обслуживании сульфатацию можно обратить вспять, применив медленную зарядку регулируемым током около 2 А в течение 72 часов. Когда кристаллы сульфата превращаются в крупные кристаллические структуры, восстановление становится невозможным. Считается, что эти большие кристаллы блокируют попадание электролита в поры пластин, что делает батарею непригодной для эксплуатации.

Быстрое тестирование батареи не включает в себя «измерение» состояния, а оценку симптомов, которые меняются в зависимости от состояния заряда (SoC) и температуры. На эти симптомы также влияет волнение после зарядки и зарядки, а также продолжительное время простоя. Задача состоит в том, чтобы отличить хорошую батарею с низким зарядом от плохой с полным зарядом. Характеристики обеих батарей схожи, но состояние различается.

На Рисунке 3 сравнивается CCA и емкость батареи, которая получила тепловое повреждение.Емкость по-прежнему высока, но невозможно передать энергию, поскольку высокое сопротивление препятствует подаче энергии.


Рис. 3: Батарея вышла из строя.
Аккумулятор выходит из строя через 1-2 года из-за коррозии, механического дефекта или сульфатации.

Признаки: Плохой запуск из-за высокого внутреннего сопротивления. Режим отказа не внезапный, а прогрессирующий.

.

Руководство по истечению срока службы батареи

С возвращением! Мы сохранили для вас вашу корзину покупок: Просмотр корзины

Следите за тем, чтобы ваши батареи всегда были в идеальном состоянии, ознакомившись с нашим руководством по истечению срока годности. В этом руководстве представлен обзор сроков годности батарей, включая то, что означает «истек срок годности», различия между разными размерами и химическим составом, где найти информацию о сроке годности вашей батареи, а также общие вопросы о батареях. Продолжайте прокручивать, чтобы узнать больше об истекших батареях, или нажмите одну из ссылок на боковой панели, чтобы начать.

Значение истекшего срока для батарей отличается от истекшего, когда речь идет о пищевых продуктах. Когда срок службы батареи истек, это означает, что производитель батареи больше не может гарантировать, что батарея имеет полный срок службы или заряд. В частности, срок годности батареи зависит от того, когда общий саморазряд батареи превысит 20%.


Скорость саморазряда батареи — это скорость, с которой батарея теряет заряд во время простоя. Многие люди предполагают, что батареи остаются полностью заряженными до тех пор, пока они не будут использованы, но на самом деле батареи начинают терять заряд сразу после их изготовления.Скорость разряда зависит от типа и марки батареи и даже может зависеть от температуры, при которой они хранятся. Для более подробного изучения различий в скорости саморазряда посетите наше руководство по химическому составу батарей или ознакомьтесь с таблицей 2A ниже.


Место истечения срока годности зависит от типа аккумулятора и используемой упаковки. Что касается батарей типа «таблетка», у многих из них он будет на коробке или в пластиковой упаковке, но практически никогда не будет на самой батарее.На большинстве батарей дата напечатана на каждой отдельной батарее рядом с информацией о химическом составе или типе батареи. В большинстве случаев он будет легко заметен, часто выделяется и отделяется от другого текста цветной рамкой или какой-либо другой отличительной чертой.


«Срок годности» означает, как долго батареи будут сохранять свой заряд без использования, особенно для неперезаряжаемых химикатов. Что касается аккумуляторных батарей, срок годности означает, сколько времени батарея может простоять до того, как потребуется зарядка или истечет срок ее действия.Срок годности аккумуляторов во многом зависит от размера, химического состава и производителя. В нашем руководстве по химическому составу батарей дается приблизительная оценка срока годности каждого химического вещества. Для получения более точной информации вы можете воспользоваться приведенными ниже ссылками для конкретных производителей.



Температура:

Батареи следует хранить при прохладной температуре, так как высокая температура окружающей среды ускоряет процесс саморазряда. Однако хранение батареи при слишком низкой температуре также может отрицательно повлиять на химические компоненты внутри батареи.Оптимальные диапазоны температур для батарей зависят от химического состава и марки, но для большинства батарей рекомендуется хранить при температуре 15 ° C, также известной как комнатная температура. Чтобы получить полное представление о температуре аккумулятора, посетите руководство по химическому составу аккумулятора или прочтите таблицу 1A ниже.

Батареи 1А:

Перезаряжаемый

Одноразовые

Никель-металлогидрид (NiMH) Никель-цинк (NiZn) Щелочная аккумуляторная Щелочной Литий Углерод цинк, хлорид цинка
Диапазон рабочих температур от -4 до 149 ° F (от -20 до 65 ° C) от -4 до 140 ° F (от -20 до 60 ° C) от -4 до 140 ° F (от -20 до 60 ° C) от -18 до 55 ° C (от 0 до 131 ° F) от -40 до 140 ° F (от -40 до 60 ° C) от -18 до 55 ° C (от 0 до 130 ° F)
Тип батареи (восстанавливаемая емкость при хранении батареи при температуре в течение 1 года)

Свинцово-кислотный (полностью заряженный)

На никелевой основе (за любую плату)

Литий-ионный (полная зарядка)

0 ° С 97% 99% 94%
25 ° С 90% 97% 80%
40 ° С 62% 95% 65%
60 ° С 38% (через 6 месяцев) 70% 60%

Открытый / свободный склад:

Не рекомендуется хранить батареи вне упаковки, независимо от того, хранятся ли они в сумке или беспорядочно в ящике для мусора.Хранение открытых батарей вместе с другими металлическими предметами, такими как монеты, ключи, скрепки, гвозди, может привести к потенциальному короткому замыканию батарей, что приведет к повышению температуры и большему риску протечки батарей. Также плохая идея — держать «батарейный отсек» для смешивания и сопоставления оставшихся батарей, поскольку использование батарей разной емкости в одном устройстве может привести к утечке из-за чрезмерной работы более слабой батареи.

Скорость саморазряда батареи 2А:

Аккумуляторная система Расчетный саморазряд
Первичный литий-металлический 10% через 5 лет
Щелочной Срок годности 7-10 лет, саморазряд примерно 2-3% в год
Свинцово-кислотный 5% в месяц
На основе никеля 10-15% в течение первых 24 часов, а затем 10-15% каждый месяц после этого
Литий-ионный 5% в течение первых 24 часов, затем 1-2% в месяц после этого
.

Отправить ответ

avatar
  Подписаться  
Уведомление о