Сцепление определение – —

Назначение и общее устройство сцепления автомобиля

Сцепление служит для отсоединения двигателя от коробки передач при переключении передач, а также для плавного их соединения при трогании автомобиля с места и после включения передачи.

Действие сцепления основано на использовании сил трения, возникающих между трущимися поверхностями. Сцепления, применяемые на автомобилях, по форме трущихся между собой деталей называются дисковыми. По числу ведомых дисков сцепления разделяются на однодисковые и двухдисковые. Устройство однодискового сцепления показано на рисунке.

Рис. Схема устройства однодискового сцепления: 1 — коленчатый вал двигателя; 2 — ступица ведомого диска; 3 — ведомый, диск; 4 — маховик; 5 — нажимной (ведущий) диск; 6 — нажимной рычаг выключения; 7 — масленка; 8 — нажимной подшипник; 9 — коробка передач; 10 — педаль сцепления; 11 — вилка выключения; 12 — нажимная пружина; 13 — оттяжная пружина педали; 14 — фрикционные накладки; 15 — ведущий вал коробки передач

При работе двигателя и включенном сцеплении, т. е. когда педаль 10 сцепления не нажата, а ведомый диск 3 с приклепанными к нему фрикционными накладками 14 плотно зажат нажимными пружинами 12 между маховиком 4 двигателя и нажимным (ведущим) диском 5, коленчатый вал с .маховиком, нажимной диск, ведомый диск и связанный с ним через ступицу 2 ведущий вал 15 коробки передач 9 вращаются как одно целое и передают крутящий момент от двигателя коробке передач.

Для выключения сцепления, т. е. для отсоединения коробки передач от двигателя, необходимо полностью выжать педаль 10. При этом связанная с педалью системой рычагов и тяг вилка 11 подает нажимной подшипник 8 вперед, подшипник нажимает на длинные концы рычагов 6 выключения и заставляет их короткие концы отойти назад. Связанный с рычагами выключения нажимной диск 5 также отходит назад и сжимает нажимные пружины 12. Вследствие этого прекращается нажим на ведомый диск 3 и он перестает вращаться и передавать крутящий момент от двигателя коробке передач.

Как только водитель снимает ногу с педали сцепления, нажимные пружины 12, разжимаясь, передвигают нажимной диск 5 вперед. При этом ведомый диск 3, оказавшись снова зажатым между нажимным диском 5 и маховиком 4, начинает вращаться вместе с ними, сцепление вновь включается и крутящий момент от двигателя передается коробке передач.

Надежность работы сцепления при максимальной нагрузке обеспечивается достаточной силой трения между дисками. Эта сила создается нажимными пружинами и применением для ведомых дисков специальных фрикционных накладок, способствующих увеличению трения между соприкасающимися поверхностями. Работа сцепления в момент его включения и выключения связана с некоторой пробуксовкой ведомого диска, что вызывает его нагрев. Чтобы избежать чрезмерного нагрева и коробления диска вследствие нагрева, наружная часть диска делается в виде отдельных секций (рис. а).

Плавность включения сцепления достигается не только постепенным опусканием педали при включении, но и применением пружинящего ведомого диска. Упругость диска обеспечивается тем, что каждая из секций несколько изогнута. Фрикционные накладки приклепываются к такому диску так, чтобы одна из них соединилась с секциями, имеющими выгиб назад. Вследствие этого при включении сцепления изогнутые секции постепенно выпрямляются и сила трения между трущимися поверхностями возрастает плавно.

Рис. Ведомый диск сцепления: а — с радиальными разрезами на секции; б — с приклепанными пружинными пластинами; в — с волнистыми секциями; 1 — секция диска; 2 — пружинящая пластина; 3 — волнистая секция; 4 — фрикционные накладки

Чтобы увеличить плавность включения сцепления, в некоторых конструкциях сцеплений передняя фрикционная накладка приклепывается непосредственно к диску, имеющему отдельные секции, а задняя — к волнистым пружинящим пластинам, которые в свою очередь приклепаны к диску (рис. б). В других конструкциях фрикционные накладки приклепываются к упругим волнистым секциям, соединенным с диском заклепками (рис. в).

В силовой передаче автомобиля для гашения крутильных колебаний, возникающих при неравномерном вращении коленчатого вала двигателя или при резких изменениях скорости вращения валов силовой передачи, наблюдающихся во время движения по неровным дорогам, ведомый диск сцепления соединяется со своей ступицей не жестко, а через небольшие спиральные пружины. Полное выключение сцепления при нажатии на педаль обеспечивается отведением нажимного диска от маховика двигателя при помощи рычагов выключения или специальных пружин.

Передача тепла нажимным пружинам от нагревающегося во время пробуксовки нажимного диска крайне нежелательна, так как это может привести к отпуску пружин и потере ими упругости. Во избежание этого между пружинами и нажимным диском обычно ставятся теплоизолирующие шайбы.

Для охлаждения сцепления в верхней части его картера предусмотрены вентиляционные отверстия, закрытые сетками.

Выжимную муфту и ее подшипник необходимо периодически смазывать. Смазка подводится к ним через колпачковую масленку, установленную в люке картера сцепления.

ustroistvo-avtomobilya.ru

Сцепление: описание,виды,устройство,принцип работы | НЕМЕЦКИЕ АВТОМАШИНЫ

 

Резкий старт с места, или же большая нагрузка при движении быстро выводят сцепление с рабочего состояния, первым признаком поломки сцепления становится плохое переключение коробки передач, пробуксовка после того, как включили передачу, нажали на газ, обороты двигателя поднялись, а автомобиль не набирает скорость. Все это ведет к одному, пора менять сцепление. Но все же заменить не проблема, но вот для того чтоб не случилась такая беда заново, рассмотрим принцип работы сцепления.

Что такое сцепление?

Сцепление (или как его еще называют «фрикционная муфта») ― это механизм автомобиля, который соединяет двигатель с трансмиссией и время от времени дает возможность рассоединять их при переключении передачи, торможения или же во время остановки. Основное задание сцепления ― это фрикционное взаимодействие дисков, которые располагаются на обоих валах.

Еще одной функцией, которую исполняет сцепление ― это возможность плавно трогать с места автомобиль. Постольку поскольку вал двигателя вращается, а вал трансмиссии пребывает в фиксированном неподвижном положении, начало движения машины без сцепления невозможно, так как оно помогает валам плавно притереться друг к другу, и в то же время обеспечивает плавное ускорение оборотов, которое обеспечивают валы, и наконец-то привести в движение автомобиль.

Если же случайно (или не случайно) слишком быстро и резко рассоединить те двое валов, то неподвижный вал трансмиссии заклинит вращающийся вал двигателя и Ваш автомобиль просто-напросто заглохнет (в лучшем случае), или же в механизме сцепления будут поломки, на которые понадобятся немалые материальные затраты. В основном, на современных автомобилях устанавливается механические сцепления.

ПРИВОД ВЫКЛЮЧЕНИЯ СЦЕПЛЕНИЯ

Дальнейшее изучение автомобиля невозможно без понимания термина — привод. Попробуем с ним разобраться.

Когда в автомобиле надо передать усилие, допустим от водителя к некому механизму, то могут возникнуть проблемы. Для того чтобы автомобиль исправно работал, а водитель находился на своем месте, существует

привод механизмов.

Представьте ситуацию, когда вам необходимо постоянно что-то закрывать и открывать, а сами вы передвигаться не можете. Для передачи усилия на расстоянии по «открыванию» и «закрыванию» двери, вам придется применить палку или дистанционное управление. Пусть это будет палка, привязанная веревками одним концом к вашей руке, а другим к ручке двери. В этом случае, палка с веревками будут являться «приводом», который передаст усилие на расстоянии.

В автомобиле каждый механизм имеет свой привод, посредством которого он приводится в действие. Привод может состоять из большого количества отдельных узлов и деталей, может быть механическим, гидравлическим.


Схема гидравлического привода выключения сцепления и механизма сцепления

1 — коленчатый вал; 2 — маховик; 3 — ведомый диск; 4 — нажимной диск; 5 — кожух сцепления; 6 — нажимные пружины; 7 — отжимные рычаги; 8 — нажимной подшипник; 9 — вилка выключения сцепления; 10 — рабочий цилиндр; 11 — трубопровод; 12 — главный цилиндр; 13 — педаль сцепления; 14 — картер сцепления; 15 — шестерня первичного вала; 16 — картер коробки передач; 17 — первичный вал коробки передач.
Привод выключения сцепления (гидравлического типа) состоит из :
  • педали,
  • главного цилиндра,
  • рабочего цилиндра,
  • вилки выключения сцепления,
  • нажимного подшипника,
  • трубопроводов.


При нажатии на педаль сцепления, усилие ноги водителя, через шток и поршень, передается жидкости, которая передает давление от поршня главного цилиндра на поршень рабочего. Далее шток рабочего цилиндра перемещает вилку выключения сцепления и нажимной подшипник, который передает усилие на

механизм сцепления. Когда водитель отпустит педаль, то под воздействием возвратных пружин все детали привода займут исходные позиции.

В гидравлическом приводе сцепления применяется тормозная жидкость. Перед тем как заливать ее в бачок привода, стоит прочитать, что написано на этикетке. А разрешается ли ее смешивать с жидкостью, которая уже залита в гидроприводе сцепления автомобиля? Как правило, ответ бывает положительным, но существуют жидкости, которые не подлежат смешиванию.

На переднеприводных автомобилях используется механический привод, где педаль сцепления связана с вилкой выключения с помощью металлического троса.

Из чего состоит сцепление

Чтоб не ломать сцепление, нужно знать не только как оно работает поверхностно и какие его функции, но и с каких деталей оно состоит. К основным составляющим частям относят ведомую и ведущую части, механизм отключения и нажимную систему.

Момент вращения двигателя передается от маховика на детали ведущей части, последние в свою очередь передают крутящий момент на ведущий вал КПП. Момент трения обеспечивается благодаря нажимному механизму, который благодаря плотному сцеплению ведомой и ведущей части, дает долгожданный результат движения.

Немаловажным считается выключение сцепления. Так один диск, на котором расположены периферическим образом пружины, расположено в чугунном картере, тот в свою очередь располагается в блок-картере двигателя.

В ведущую часть входит кожух сцепления и маховик, последний в свою очередь крепится к маховику коленчатого вала за счет шести специальных болтов. Нажимной диск размещается в средней части кожуха. Вращающий момент нажимного диска передается от маховика через три выступления, которые имеются в диске и входят в окна кожуха. Ведомый диск, ступица, ведущий вал коробки смены передач являются основными и обязательными составными ведомой части сцепления.

По обе стороны ведомого диска размещены фрикционные накладки, изготовлены из медно-асбестового состава (или же иного металлоасбестового состава), которые выдерживают необычайно высокую температуру и известны своими фрикционными свойствами. Со ступицей ведомый диск соединен заклепками либо же через пружины. Эти пружины являются составной частью пружинно-фрикционного гасителя вращающихся колебаний (то есть демпфера)

МЕХАНИЗМ СЦЕПЛЕНИЯ

Механизм сцепления представляет собой устройство, в котором происходит передача крутящего момента за счет работы сил трения. Механизм сцепления позволяет кратковременно разъединять двигатель и коробку передач, а затем плавно их соединять. Элементы механизма заключены в картер сцепления, который крепится к картеру двигателя.

 

Механизм сцепления состоит из:

  • картера и кожуха,
  • ведущего диска (которым является маховик двигателя),
  • нажимного диска с пружинами,
  • ведомого диска с износостойкими накладками.


Ведомый диск постоянно прижат к маховику нажимным диском под воздействием сильных пружин. За счет огромных сил трения между маховиком, ведомым и нажимным дисками, все это вместе вращается при работе двигателя. Но только тогда, когда водитель не трогает педаль сцепления, независимо от того едет ли или стоит на месте автомобиль.

Для начала движения машины, необходимо прижать ведомый диск, связанный с ведущими колесами к вращающемуся маховику, то есть — включить сцепление. И это сложная задача, так как угловая скорость вращения маховика составляет 20 — 25 оборотов в секунду, а скорость вращения ведущих колес – ноль.


Сцепление включеноКак это сделать? Для этого надо всегда правильно отпускать педаль сцепления, только в три этапа.

На первом этапе работы по включению сцепления — приотпускаем педаль, т.е. даем возможность пружинам нажимного диска подвести ведомый диск к маховику до их легкого соприкосновения. За счет сил трения диск, проскальзывая некоторое время относительно маховика, тоже начнет вращаться, а автомобиль потихоньку ползти.

На втором этапе – удерживаем ведомый диск от какого-либо перемещения, т.е. на две — три секунды удерживаем педаль сцепления в средней позиции для того, чтобы скорость вращения маховика и диска уравнялись. Машина при этом увеличивает скорость движения.

На третьем этапе — маховик вместе с нажимным и ведомым дисками уже вращаются вместе без проскальзывания и с одинаковой скоростью, 100%-но передавая крутящий момент к коробке передач и далее на ведущие колеса автомобиля. Это соответствует состоянию механизма сцепления – включено, автомобиль едет. Теперь остается только полностью отпустить педаль сцепления и убрать с нее ногу.

Если при начале движения педаль сцепления резко бросить, то автомобиль «прыгнет» вперед, а двигатель заглохнет.

Для выключения сцепления водитель нажимает на педаль, при этом нажимной диск отходит от маховика и освобождает ведомый диск, прерывая передачу крутящего момента от двигателя к коробке передач. Нажимать на педаль сцепления следует достаточно быстрым, но не резким, спокойным движением до конца хода педали.


Сцепление выключеноДействия водителя по выключению и включению сцепления в течение поездки повторяются много раз. Однако, освоив работу с педалью сцепления в три этапа, позже это войдет в привычку, которая обеспечит плавность хода автомобиля и комфортность пассажирам.

Сцепление с гидравлическим приводом

Судя с названия этого вида сцепления, думаю, Вам, итак, стало ясно, что в гидравлическом приводе все усилия, начиная с педали сцепления и заканчивая собственно механизмом, транспортируются с помощью такой себе жидкости. Она в свою очередь размещается в гидроцилиндрах и трубках, которые соединяют все нужные в механизме элементы. Механизм строения гидравлического сцепления не очень совпадает с механическим сцеплением.

Один достаточно большой диск располагается на остром конце ведущего вала и сделанного из стали кожуха. Кожух закрепляется за маховиком. Внутри кожуха имеется пружина с радиальными лепестками. Они являются, скажем, так, выжимными рычажками. На оси располагается управляющая педаль. Она же приподнята к кузову, а именно к кронштейну. Толкач основного цилиндра прикреплен к педали сцепления при содействии шарнира. Педаль попускается тогда, когда сцепление выключается и передача переключается.

Диагностика сцепления в домашних условиях

Чаще всего при поломке слышны характерные звуки. Для этого давим пару раз на педаль сцепления и внимательно слушаем. Если появляются посторонние звуки, к примеру, такие как скрип, стук или подобное, то стоит понять, откуда они идут и устранить их. При нажатии на педаль, она должна идти свободно, без рывков и задержек. Расстояние от пола до педали при включенном или выключенном состоянии не должна превышать 145 миллиметров.

Встречаются еще поломки во время езды, а именно когда переключаете передачу. Если тяжело включить передачу и при включении появляются нестандартный хруст, шум и другие звуки, то не стоит затягивать. Так же при включении передачи и нажатии на газ машина не так резва, как обычно, начинает плавно набирать ход, при этом мотор работает на максимум. Это первый признак поломки диска сцепления.

Характеристики керамического и металлокерамического сцепления

В последнее время любители экстремальной быстрой езды открыли для себя керамическое и металлокерамическое сцепление. Керамика значительно выигрывает, если ее установить на мощный агрегат, который любит стартовать с пробуксовкой и сжигать резину. Металлокерамическое сцепление может выдерживать значительные нагрузки и является лучшим выбором гонщиков.

 

Диски производят с добавление углеродистого волокна, кевлара и керамики. Такой состав позволяет на 10–15% поднять передачу крутящего момента без увеличения прижимной силы, оказываемой на корзину. Живут такие диски, как правило, в четыре раза дольше обычных. Производят 3-х, 4-х, 6-и лепестковые модели, которые отлично справляются с температурными и механическими нагрузками. Некоторые водители жалуются на слишком резкое переключение передач при керамическом сцеплении, но определенного
мнения на этот счет среди автомобилистов пока нет.

ПОХОЖИЕ СТАТЬИ:

  • Что такое трансмиссия и как она работает — фото видео.
  • Что такое двигатель и как он работает — фото видео.
  • Mercedes-Benz Concept седан — видео трейлер
  • Бмв е90: описание,обзор,фото,видео,комплектация,характеристики.
  • Volkswagen c coupe gte: обзор,описание,фото,видео,комплектация.
  • Бмв е39: обзор,описание,фото,видео,комплектация,характеристики
  • Опель Зафира: обзор,описание,фото,видео,комплектация.
  • Какую сигнализацию лучше поставить на автомобиль с автозапуском.
  • КАК ПРОИЗВОДЯТ АВТОМОБИЛИ В ГЕРМАНИИ — немецкие авто видео.
  • Новый Audi Q2 2016-2017 описание технические характеристики фото видео
  • Volkswagen Amarok 2017 года фото видео обзор описание комплектация.
  • Как выбрать самый экономичный кроссовер по расходу топлива?
  • Киа пиканто 2019: обзор,характеристики,комплектация,фото
  • Интересные модели автомобилей от мерседес
  • Как купить летние покрышки?

seite1.ru

1.1 Определение основных параметров и показателей нагруженности сцепления

Выбор размеров сцепления производится из условия передачи максимального крутящего момента двигателя посредством трения с некоторым запасом.

Статический момент трения сцепления , Нм, определяют по формуле

, (1.1)

где – максимальный крутящий момент двигателя, Нм; – коэффициент запаса сцепления.

Значение коэффициента запаса сцепления выбирается с учетом неизбежного уменьшения коэффициента трения накладок в процессе эксплуатации, усадки нажимных пружин, наличия регулировки нажимного усилия, числа ведомых дисков. С другой стороны, пиковые нагрузки в трансмиссии, независимо от их происхождения, должны ограничиваться пробуксовыванием сцепления. По этой причине коэффициент запаса сцепления не должен превышать определенного значения.

Средние значения коэффициента запаса сцепления можно принять по рекомендациям [5]:

  • для легковых автомобилей – = 1,2 1,75;

  • для грузовых автомобилей – = 1,5 2,2;

  • для АТС повышенной проходимости – = 1,8 3,0.

Ориентировочно наружный диаметр дисков , см, определяют по формуле

, (1.2)

где – максимальный крутящий момент двигателя, кгсм; А – эмпирический коэффициент.

Величина эмпирического коэффициента выбирается в зависимости от типа транспортного средства [2]:

  • для легковых автомобилей – А = 4,7;

  • для грузовых автомобилей – А = 3,6;

  • для АТС повышенной проходимости – А = 1,9.

При этом внутренний диаметр d, см, фрикционных накладок ориентировочно составляет:

. (1.3)

Рассчитанные величины необходимо привести в соответствие с требованиями ГОСТ 12238 – 76 (таблица 1.1) [5].

Таблица 1.1 – Диаметры фрикционных накладок

D, мм

180

200

215

240

250

280

300

d, мм

100, 120, 125

120, 130, 140

140, 150, 160

160, 180

155, 180

165, 180, 200

165, 175, 200

Продолжение табл. 1.1

D, мм

325

340

350

380

400

420

d, мм

185, 200, 220, 230

185, 195, 210

195, 200, 210, 240, 290

200, 220, 230

220, 240, 280

220, 240, 280

Средний радиус дисков , м, определяют по формуле

. (1.4)

Нажимное усилие пружин , Н, рассчитывают по формуле

(1.5)

где – расчетный коэффициент трения;i – число пар трения.

Расчетный коэффициент трения зависит от ряда факторов: параметров фрикционных материалов, состояния и относительной скорости скольжения поверхностей трения, давления, температуры.

Расчетный коэффициент трения – = 0,25 0,3 [3].

Число пар трения [5]:

Для сцепления с периферийными цилиндрическими пружинами (рис. 1.1) нажимное усилие пружин , Н, рассчитывают по формуле

(1.6)

где – диаметр проволоки пружины, м;– напряжение кручения пружины, Па;– число нажимных пружин;– диаметр пружины, м.

Рисунок 1.1 – Схема цилиндрической нажимной пружины

Обычно сцепление проектируется так, чтобы при выключении нажимное усилие пружин увеличивалось на 20 %, то есть:

(1.7)

где – усилие пружины при выключении сцепления, Н;– максимальное напряжение кручения, Па.

Максимальное напряжение кручения – = 700 900 МПа [4].

Число пружин выбирается в зависимости от наружного диаметра фрикционных накладок (таблица 1.2) [2] и должно быть кратно числу рычагов выключения.

Таблица 1.2 – Число нажимных пружин

D, мм

180  250

280

300; 325

350; 380

400; 420

6

9

12

16

28

Нагрузка на пружину не должна превышать = 800Н [4].

Принимается = 3 10 [4].

После выбора отношения по формуле определяются диаметры проволоки и пружины, после чего согласовываются в соответствии с5:

–1,0; 1,2; 1,6; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0; 7,0; 8,0; 9,0; 10,0.

–16,0; 18,0; 20,0; 22,0; 25,0; 28,0; 32,0; 36,0; 40,0; 45,0; 50,0; 55,0; 60,0; 70,0.

После согласования уточняют нажимное усилие пружин по формуле (1.6).

Диафрагменная пружина (рисунок 1.2) представляет собой пружину Бельвиля, модифицированную для использования в автомобильных сцеплениях.

Рисунок 1.2 – Расчетная схема диафрагменной пружины

Нажимное усилие , Н, диафрагменной пружины определяют по формуле

, (1.8)

где Е – модуль упругости первого рода, Па; – толщина диафрагменной пружины, м; – перемещение пружины в месте приложения силы, действующей со стороны ведомого диска, м;k1, k2– коэффициенты; h – высота сплошного кольца диафрагменной пружины, м; – коэффициент Пуассона;– наружный диаметр сплошного кольца диафрагменной пружины, м.

Модуль упругости 1-го рода – Е = 2·105 МПа [4].

Толщина диафрагменной пружины – = 2,0  2,5 мм [4].

Перемещение пружины в месте приложения силы – = 1,5 2,0 мм [2].

Коэффициент Пуассона = 0,254.

Коэффициенты определяют по формулам (1.9), (1.10):

, (1.9)

где – внутренний диаметр сплошного кольца диафрагменной пружины, м.

Поскольку в расчетах можно принять , то из рекомендуемого соотношения= 1,2 1,5 5 можно найти внутренний диаметр сплошного кольца.

, (1.10)

где – средний диаметр сплошного кольца диафрагменной пружины, м.

Средний диаметр , м, сплошного кольца диафрагменной пружины можно приближенно вычислить по формуле

. (1.11)

Усилие при выключении , Н, отличается от нажимного усилия передаточным числом диафрагменной пружины:

, (1.12)

где – внутренний диаметр лепестков диафрагменной пружины, м.

Внутренний диаметр лепестков , м, диафрагменной пружины можно определить из рекомендованного соотношения4:

2,5.

Высоту сплошного кольца диафрагменной пружины можно найти, задаваясь значением из рекомендованного соотношения 4:

= 1,5  2,0.

Отношение высоты сплошного кольца диафрагменной пружины к ее толщине определяет нелинейность пружины. При 1,6 на характеристике пружины имеется большая область с постоянной осевой силой; при2,8 возможно «выворачивание» пружины.

Давление на фрикционные накладки , Па, рассчитывают по формуле

, (1.13)

где F – площадь поверхности одной стороны фрикционной накладки, м2.

Допустимые давления на фрикционные накладки – [] = 0,15 0,25 МПа [4].

Меньшие значения имеют сцепления грузовых автомобилей и автобусов или автомобилей, работающих в тяжелых дорожных условиях; большие значения – сцепления легковых автомобилей.

К показателям нагруженности деталей сцепления относятся удельная работа буксования (отражающая также износостойкость сцепления) и нагрев деталей сцепления при одном трогании с места.

Удельную работу буксования сцепления , Дж/м2, рассчитывают по формуле

, (1.14)

где – работа буксования, Дж.

Работу буксования , Дж, определяют по формуле

, (1.15)

где – момент инерции приведенного к коленчатому валу двигателя маховика, заменяющего поступательно движущуюся массу автомобиля, кгм2; – угловая скорость коленчатого вала, рад/с;– момент сопротивления движению автомобиля, приведенный к коленчатому валу двигателя, Нм.

При определении работы буксования следует иметь в виду, что формула (1.15) выведена при следующих допущениях:

  • для исключения влияния водителя предполагается, что сцепление включается мгновенно;

  • угловая скорость коленчатого вала двигателя в процессе включения постоянна;

  • крутящий момент двигателя, равный передаваемому сцеплением моменту, растет пропорционально времени;

  • момент сопротивления движению – величина постояная.

Такая идеализация процесса включения сцепления позволяет проводить лишь ориентировочные расчеты. Для повышения точности результатов следует учитывать упругие свойства трансмиссии как колебательной системы и изменение переменных, входящих в формулу (1.15) в реальных условиях эксплуатации.

Момент инерции условного маховика , кгм2, заменяющего собой поступательно движущуюся массу автомобиля, рассчитывают по формуле

, (1.16)

где – момент инерции маховика двигателя, кгм2; – момент инерции условного маховика, приведенного к ведущему валу коробки передач, кгм2.

Величины момента инерции маховиков приведены в таблице 1.4 [6].

Таблица 1.4 – Момент инерции маховика двигателя

Автомобиль

ЗАЗ-968

ВАЗ-2101

ВАЗ-2121

Москвич-2140

ГАЗ-24

, кг·м2

0,118

0,130

0,130

0,170

0,310

Продолжение табл. 1.4

Автомобиль

УАЗ-469

РАФ-2203

ПАЗ-3201

ЛиАЗ-677

ЛАЗ-695Е

, кг·м2

0,360

0,314

0,510

1,070

0,991

Продолжение табл. 1.4

Автомобиль

ЛАЗ-699Н

ГАЗ-52

ГАЗ-3307

ЗИЛ-431410

ЗИЛ-133

, кг·м2

1,740

0,491

0,510

0,991

0,991

Продолжение табл. 1.4

Автомобиль

КамАЗ-5320

Урал-375

КрАЗ-257

МАЗ-5551

МАЗ-5432

, кг·м2

2,070

1,740

4,61

2,60

4,61

Момент инерции условного маховика , кгм2, приведенного к ведущему валу коробки передач, рассчитывают по формуле

, (1.17)

где – полная масса автомобиля, кг;– радиус качения колеса, м; – передаточное число главной передачи; – передаточное число первой ступени коробки передач.

Угловую скорость коленчатого вала двигателя , рад/с, для автомобилей с бензиновыми двигателями рассчитывают по формуле

, (1.18)

где – угловая скорость при максимальном крутящем моменте, рад/с.

Для автомобилей с дизелями угловую скорость коленчатого вала двигателя , рад/с, определяют по формуле

, (1.19)

где – угловая скорость при максимальной мощности, рад/с.

Угловую скорость коленчатого вала двигателя , рад/с, определяют по формуле

, (1.20)

где – частота вращения коленчатого вала двигателя, об/мин.

Момент сопротивления движению автомобиля, приведенный к коленчатому валу двигателя , Нм, рассчитывают при допущении о равенстве радиусов качения всех колес автомобиля по формуле

, (1.21)

где g – ускорение свободного падения, м/с2; – коэффициент общего дорожного сопротивления;– КПД трансмиссии.

Ускорение свободного падения – g = 9,8 м/с2 5.

Коэффициент общего дорожного сопротивления – = 0,024.

КПД механической трансмиссиипринимают согласно данным таблицы 1.55 в зависимости от типа АТС и типа главной передачи.

Таблица 1.5 – КПД механической трансмиссии

Легковые АТС

Грузовые АТС

и автобусы

Много-

приводные АТС

классической компоновки

передне-приводные

с одинарной

главной

передачей

с двойной главной передачей

0,92

0,95

0,9

0,86

0,84

Допустимая удельная работа буксования [4]:

  • для легковых автомобилей – [] = 50 70 Дж/см2;

  • для грузовых автомобилей – [] = 15 120 Дж/см2;

  • для автопоездов – [] = 10 40 Дж/см2.

При определении теплового режима сцепления рассчитывается нагрев ведущего диска. Маховик имеет значительно большую массу, чем нажимной диск, и поэтому температура его нагрева сравнительно невелика.

При расчете нагрева ведущего диска принимается допущение, что теплопередача в окружающую среду отсутствует и вся работа буксования используется на нагрев диска.

Нагрев ведущего диска ,С, при одном трогании с места рассчитывают по формуле

, (1.22)

где – доля теплоты, поглощаемая диском;– масса нажимного диска, кг;– удельная теплоемкость стали, Дж/(кгград).

Доля теплоты, поглощаемая диском [4]:

  • для ведущего диска однодискового сцепления и среднего диска двухдискового –= 0,5;

  • для наружного нажимного диска двухдискового сцепления –= 0,25.

Радиальные размеры дисков выбираются, исходя из размеров фрикционных накладок. Толщина нажимного диска , м, предварительно принимается в зависимости от наружного диаметра накладок и затем уточняется по результатам теплового расчета сцепления:

. (1.23)

Удельная теплоемкость стали – = 481,5 Дж/(кгград) [5].

Плотность стали – = 7600 7800 кг/м3 [5].

Допустимый нагрев нажимного диска – [] = 10 15 С [4].

Полученная расчетная температура является условной (определение ее проведено при одном трогании автомобиля с места) и используется при сравнительной оценке конструкций сцеплений различных типов. В действительности же процесс нагрева дисков значительно сложнее, и поэтому температура деталей сцепления в процессе работы автомобиля значительно выше.

При выборе основных параметров сцеплений и их приводов могут быть использованы данные таблицы 1.6 5.

studfile.net

Отправить ответ

avatar
  Подписаться  
Уведомление о