Степень затяжки – Таблицы моментов затяжки болтов динамометрическим ключом
Таблицы моментов затяжки болтов динамометрическим ключом
Момент затяжки – это усилие, которое прикладывается к резьбовому соединению при его завинчивании. Если закрутить крепеж с меньшим усилием, чем это необходимо, то, под воздействием вибраций, резьбовое соединение может раскрутиться, не обеспечивая нужную герметичность между скрепляемыми деталями, что может привести к тяжелым последствиям. Наоборот, если приложить к метизу большее усилие, чем требуется, произойдет разрушение резьбового соединения или скрепляемых деталей, например, может произойти срыв резьбы или появление трещин в деталях.
Для каждого размера и класса прочности резьбового соединения указаны определенные моменты затяжки. Все значения занесены в специальную таблицу усилий для затяжки динамометрическим ключом. Обычно, класс прочности болта указывается на его головке.
Классы прочности для метрических болтов
Класс прочности указывается цифрами на головке.
Классы прочности для дюймовых болтов
Информация о прочности выполнена в виде насечек на головке.
Таблица усилий затяжки метрических болтов
Усилие указано в Ньютон-метрах.
Таблица усилий затяжки дюймовых болтов
SAE |
1 или 2 |
5 |
6 или 7 |
8 |
||||||||
Размер |
Усилие |
Усилие |
Усилие |
Усилие |
||||||||
(дюймы)-(резьба) |
Ft-Lb |
Кг/м |
Н/м |
Ft-Lb |
Кг/м |
Н/м |
Ft-Lb |
Кг/м |
Н/м |
Ft-Lb |
1.6596 1.9362 |
Н/м |
5/16 — 18 |
11 |
1.5213 |
14.9140 |
17 |
2.3511 |
23.0489 |
19 |
2.6277 |
25.7605 |
24 |
3.3192 |
32.5396 |
3/8 — 16 |
18 |
2.4894 |
24.4047 |
31 |
4.2873 |
42.0304 |
34 |
4.7022 |
46.0978 |
44 |
6.0852 |
59.6560 |
7/16 — 14 |
28 |
3.8132 |
37.9629 |
49 |
6.7767 |
66.4351 |
55 |
7.6065 |
74.5700 |
70 |
9.6810 |
94.9073 |
1/2 — 13 |
39 |
5.3937 |
52.8769 |
75 |
10.3785 |
101.6863 |
85 |
11.7555 |
115.2445 |
105 |
14.5215 |
|
9/16 — 12 |
51 |
7.0533 |
69.1467 |
110 |
15.2130 |
149.1380 |
120 |
16.5960 |
162.6960 |
155 |
21.4365 |
210.1490 |
5/8 — 11 |
83 |
11.4789 |
128.8027 |
150 |
20.7450 |
203.3700 |
167 |
23.0961 |
226.4186 |
210 |
29.0430 |
284.7180 |
3/4 — 10 |
105 |
14.5215 |
142.3609 |
270 |
37.3410 |
366.0660 |
280 |
38.7240 |
379.6240 |
375 |
51.8625 |
508.4250 |
7/8 — 9 |
160 |
22.1280 |
216.9280 |
395 |
54.6285 |
535.5410 |
440 |
60.8520 |
596.5520 |
605 |
83.6715 |
820.2590 |
1 — 8 |
236 |
32.5005 |
318.6130 |
590 |
81.5970 |
799.9220 |
660 |
91.2780 |
894.8280 |
910 |
125.8530 |
1233.7780 |
Таблицы затяжек колесных гаек и болтов
Примерные значения для легковых автомобилей
Примерные значения для грузовых автомобилей и автобусов
Порядок затяжки
Компания AIST располагает широким ассортиментом профессиональных ключей для выполнения различных работ с резьбовыми соединени
www.aist-tools.ru
таблица данных, как определить момент затяжки
Определенная степень закрутки резьбовых элементов выполняется с целью увеличения срока службы, прочности и повышению сопротивления различным влияющим факторам. Для каждого крепежного элемента есть определенная степень затяжки на каждом посадочном месте, рассчитывается она на основе нагрузок, температурных режимов и свойств материалов.
Вконтакте
Google+
Мой мир
Например, при воздействии температуры металлу свойственно расширяться, при условии влияния вибрации — крепеж получает дополнительную нагрузку, и чтобы минимизировать ее, закручивать нужно с правильным усилием. Рассмотрим силу затяжки болтов, таблицы, методы и инструменты для проведения работ
Маркировка деталей
Этот параметр указывается на головке болта. Для деталей, выполненных на основе углеродистой стали с классом прочности — 2, указываются цифры через точку, например: 3.5, 4.8 и т. д.
Первая цифра указывает 1/100 номинального размера прочностного предела на разрыв, измеряется в МПа. Например, если на головке болта, указано — 10.1, то первое число означает 10*100 = 1000 МПа.
Вторая цифра — отношение пределов текучести к прочности, умножается на 10, по вышеуказанному примеру — 1*10*10= 100 МПа.
Предел текучести — это максимальная нагрузка на болт. Для элементов, выполненных из нержавеющей стали, наносится тип стали А2 или А4, и далее предел прочности. Например: А4—40. Число в данной маркировке характеризует 1/10 предела прочности углеродистой стали.
Единицы измерения
Основной величиной является Паскаль, единица измерения давления, механического напряжения, согласно международной системе «СИ». Паскаль равняется давлению, вызванному силой в один ньютон, равномерно распределяющейся по плоской к ней поверхности с площадью в один квадратный метр.
Рассмотрим, как конвертируются единицы измерения:
- 1 Па = 1Н/м2.
- 1 МПа = 1 н/мм2.
- 1 н/мм2 = 10кгс/см2.
Моменты затяжки резьбовых соединений
Ниже приведена таблица затяжки болтов динамометрическим ключом.
Прочность болта, в Нм | |||
Размер резьбы | 8.8 | 10.9 | 12.9 |
М6 | 10 | 13 | 16 |
М8 | 25 | 33 | 40 |
М10 | 50 | 66 | 80 |
М12 | 85 | 110 | 140 |
М14 | 130 | 180 | 210 |
М16 | 200 | 280 | 330 |
М18 | 280 | 380 | 460 |
М20 | 400 | 540 | 650 |
Таблица усилия затяжки болтов для дюймовой резьбы стандарта США для крепежных деталей SAE класса 5 и выше.
Дюймы | Нм | фунт |
¼ | 12±3 | 9±2 |
5/16 | 25±6 | 18±4,5 |
3/8 | 47±9 | 35±7 |
7/16 | 70±15 | 50±11 |
½ | 105±20 | 75±15 |
9/16 | 160±30 | 120±20 |
5/8 | 215±40 | 160±30 |
¾ | 370±50 | 275±37 |
7/8 | 620±80 | 460±60 |
1 ньютон метр (Нм) равняется 0,1кГм.
ISO -Международный стандарт.
Моменты затяжки ленточных хомутов с червячным зажимом
В нижеуказанной таблицеприведены данные для первоначальной установки на новом шланге, а также для повторной затяжки уже обжатого шланга.
Размер хомута | Нм | фунт / дюйм |
16мм — 0,625 дюйма | 7,5±0,5 | 65±5 |
13,5мм — 0,531 дюйма | 4,5±0,5 | 40±5 |
8мм — 0,312 дюйма | 0,9±0,2 | 8±2 |
Момент затяжки для повторной стяжки | ||
16мм | 4,5±0,5 | 40±5 |
13,5мм | 3,0±0,5 | 25±5 |
8мм | 0,7±0,2 | 6±2 |
Как определить момент затяжки
- С помощью динамометрического ключа.
Этот инструмент должен быть подобран таким образом, чтобы момент затяжки крепежного элемента был на 20−30% меньше, чем максимальный момент на вашем ключе. При попытке превысить предел, ключ быстро выйдет из строя.
Усилие на затяжку и тип стали указывается на каждом болте, как расшифровывать маркировку описывалось выше. Для вторичной протяжки болтов нужно учитывать несколько правил:
- Всегда знать точное необходимое усилие для затяжки.
- При контрольной проверке затяжки стоит выставить усилие и проверить в круговом порядке все крепежные элементы.
- Запрещено использовать динамометрический ключ как обычный, им нельзя производить закрутку деталей, гайку или закручивать болт до примерного усилия, контрольная протяжка производится динамометрическим ключом.
- Динамометрический ключ должен быть с запасом.
- Без динамометрического ключа.
Для этого потребуется:
- Ключ накидной или рожковый.
- Пружинный кантер или весы, с пределом в 30 кг.
- Таблица, в которой указывается усилие затяжки болтов и момент затяжки гаек.
Момент затяжки — это усилие, приложенное на рычаг размерами в 1 метр. Например, нам требуется затянуть гайку с усилием 2 кГс/м:
- Измеряем длину нашего накидного ключа, она, к примеру, составила 0,20 метра.
- Делим 1 на 0,20 получаем цифру 5.
- Умножаем полученные результаты, 5 на 2кГс/м и получаем в итоге 10 кг.
Переходя к практике, берем наш ключ и весы, прикрепляем крючок к ключу и производим затяжку до нужного веса, согласно описанного выше расчета. Но даже такой способ в итоге окажется лучше, чем тянуть от «руки — на глаз», с погрешностью, чем выше усилие, тем она меньше. Это будет зависеть от качества весов, но лучше все-таки приобрести специальный ключ.
Вконтакте
Google+
Мой мир
instrument.guru
Таблица затяжки болтов динамометрическим ключом

К примеру, под воздействием температурных показателей металл начинает расширяться, а под воздействием вибрации на элемент оказывается дополнительная нагрузка. Соответственно, для минимизации воздействующих факторов, болты необходимо закручивать с расчетом правильного усилия. Предлагаем ознакомиться с таблицей силы затяжки болтов, а также методами и инструментами выполнения работ.
Что такое затяжное усилие и как его узнать?
Моментом затяжки называют показатель усилия, который необходимо приложить для резьбовых соединений в процессе их завинчивания. Если крепеж был закручен с прикладыванием небольшого усилия, чем это было нужно, то при воздействии различных механических факторов резьбовое соединение может не выдержать, теряется герметичность скрепленных деталей, что влечет за собой тяжелые последствия. Так же и при чрезмерном усилии, резьбовое соединение или скрепляемые детали могут попросту разрушиться, что приведет к срыву резьбы или появлению трещин в конструкционных элементах.
Каждый размер и класс прочности резьбовых соединений имеет определенный момент затяжки при работе с динамометрическим ключом, который указывается в специальной таблице. При этом обозначение класса прочности изделия располагается на его головке.
Маркировка и класс прочности деталей
Цифровое обозначение параметра прочности метрического болта указано на головке, и представлено в виде двух цифр через точку, к примеру: 4.6, 5.8 и так далее.
- Цифра до точки обозначает номинальный размер прочности предельного разрыва, рассчитывается как 1/100, и ее измерение осуществляется в МПа. К примеру, если на изделии указана маркировка — 9.2, то значение первого числа будет составлять 9*100=900 МПа.
- Цифра после точки является предельной текучестью по отношению к прочности, после расчета число необходимо умножить на 10, как указано в примере: 1*8*10=80 МПа.
Предельная текучесть представляет собой максимальную нагрузку на конструкцию болта. Элементы, которые выполняются из нержавеющих видов стали, имеют обозначение непосредственно самого вида стали (А2, А4), и только после этого указывается предельная прочность.
К примеру, А2-50. Значение в подобной маркировке обозначает 1/10 прочностного предела углеродистой стали. При этом, изделия, для изготовления которых используется углеродистая сталь, имеют класс прочности – 2.
Обозначение прочности для дюймовых болтов отмечается насечками на его головке.
Обозначение класса прочности дюймовых болтовВ чем измеряется затяжное усилие?
Основная величина измерения усилия затяжки болтов – Паскаль (Па). Международная система «СИ» предполагает, что данной единицей измеряется как давление, так и механическое напряжение. Соответственно, Паскаль равен значению давления, которое вызывается силой равной одному Ньютону и равномерным образом распределяется на плоскости размером в 1 м2.
Чтобы понять как можно конвертировать одну единицу измерения в другую, посмотрим пример:
- 1 Паскаль = 1 Нютону/м2;
- 1 МПаскаль = 1 Ньютону/мм2;
- 1 Ньютон/мм2 = 10 кгс/см2.
Значения усилий затяжки для различных типов болтов (таблица)
Для более удобного и точного восприятия представлена таблица затяжки болтов динамометрическим ключом.
Резьба | Класс прочности, Нм | Головка, мм | |||||||
3.6 | 4.6 | 5.8 | 6.8 | 8.8 | 9.8 | 10.9 | 12.9 | ||
М5 | 1.71 | 2.28 | 3.8 | 4.56 | 6.09 | 6.85 | 8.56 | 10.3 | 8 |
М6 | 2.94 | 3.92 | 6.54 | 7.85 | 10.5 | 11.8 | 14.7 | 17.7 | 10 |
М8 | 7.11 | 9.48 | 15.8 | 19 | 25.3 | 28.4 | 35.5 | 42.7 | 13 |
М10 | 14.3 | 19.1 | 31.8 | 38.1 | 50.8 | 57.2 | 71.5 | 85.8 | 17 |
М12 | 24.4 | 32.6 | 54.3 | 65.1 | 86.9 | 97.7 | 122 | 147 | 19 |
М14 | 39 | 52 | 86.6 | 104 | 139 | 156 | 195 | 234 | 22 |
М16 | 59.9 | 79.9 | 133 | 160 | 213 | 240 | 299 | 359 | 24 |
М18 | 82.5 | 110 | 183 | 220 | 293 | 330 | 413 | 495 | 27 |
М20 | 117 | 156 | 260 | 312 | 416 | 468 | 585 | 702 | 30 |
М22 | 158 | 211 | 352 | 422 | 563 | 634 | 792 | 950 | 32 |
М24 | 202 | 270 | 449 | 539 | 719 | 809 | 1011 | 1213 | 36 |
Также представим таблицу момента затяжки для дюймовых видов резьб по стандарту, который применяется в Соединенных Штатах.
Дюймы | Нм | Фунт |
1/4 | 12±3 | 9±2 |
5/16 | 25±6 | 18±4.5 |
3/8 | 47±9 | 35±7 |
7/16 | 70±15 | 50±11 |
1/2 | 105±20 | 75±15 |
9/16 | 160±30 | 120±20 |
5/8 | 215±40 | 160±30 |
3/4 | 370±50 | 275±37 |
7/8 | 620±80 | 460±60 |
Значения усилий затяжки для ленточного хомута с червячным зажимом
Ниже приведенная таблица содержит ряд данных про первоначальную установку ленточных хомутов на новом шланге, а также про повторную затяжку уже обжатых шлангов.
Размер хомута | Нм | Фунт/Дюйм |
16мм — 0,625 дюйма | 7,5±0,5 | 65±5 |
13,5мм — 0,531 дюйма | 4,5±0,5 | 40±5 |
8мм — 0,312 дюйма | 0,9±0,2 | 8±2 |
Усилие затяжки для повторных стяжек | ||
16мм | 4,5±0,5 | 40±5 |
13,5мм | 3,0±0,5 | 25±5 |
8мм | 0,7±0,2 | 6±2 |
Определение момента затяжки
Динамометрическим ключом
Подбор этого инструмента должен осуществляться так, чтобы затяжной момент на крепежном элементе был на 20-30% меньше, нежели значение максимального момента на используемом ключе. Если попытаться превысить допустимый лимит, то инструмент может легко сломаться.
Затяжное усилие и марка материала должны присутствовать на каждом изделии, способы расшифровки маркировки описаны выше.
Чтобы выполнить вторичную протяжку болтов, следует придерживаться следующих рекомендаций:
- Точно знать значение необходимого затяжного усилия.
- Выполняя контрольную проверку затяжки, необходимо выставлять усилие и проверять по кругу каждый крепежный элемент.
- Запрещается пользоваться динамометрическим ключом как обычным, его не стоит использовать для закрутки деталей, гаек и болтов, чтобы получить лишь примерное усилие. Его стоит использовать для выполнения контрольной протяжки.
- У динамометрического ключа должен быть запас для измерения момента усилия.
Без использования динамометрического ключа
Чтобы выполнить проверку нам понадобится наличие:
- накидного или рожкового ключа;
- пружинного кантера или весов, с пределом не менее 30 кг;
- таблицы, которая содержит сведения об усилии затяжки болтов и гаек.
Момент затяжки является усилием, которое необходимо приложить на рычаг размером в 1 метр. К примеру, требуется выполнить затяжку гайки рассчитав для этого усилие в 2 кГс/м:
- Нам потребуется узнать какой длины ключ. Например, длина составляет 20 см или 0,2 метра.
- Разделить единицу на наше полученное значение: 1/0,2 = 5.
- Умножить полученный результат: 5*2кГс/м = 10 кг.
Далее на практическом опыте крепим к ключу крючок и присоединяем его к весам. Выполняем натяжку к нужному значению (которое мы получили в ходе расчетов) и начинаем постепенно закручивать/проверять. Применение такого кустарного метода все же лучше, нежели закручивать болты на «глаз». Погрешность будет присутствовать в любом случае, однако с увеличением усилия она будет уменьшаться. Все зависит от того, какого качества весы. Однако для проведения серьезных и профессиональных работ лучше обзавестись специальным динамометрическим ключом.
pro-instrymenti.ru
Практические и предельные моменты затяжки болтов и гаек с метрической резьбой
Думаю, только реально «работающие руками» люди могут понять насколько важно точно знать практические и предельные моменты затяжки болтов и гаек из углеродистой стали с метрической резьбой.
Ведь еще неизвестно что лучше: «недотянуть» соединение, или «сорвать резьбу».
Ну что же… Эта проблема решаема, ведь к счастью, есть справочники, в которых все написано. И сейчас мы рассмотрим какие моменты затяжки для метрических болтов и гаек являются практическими, а какие — предельными
Практические моменты затяжки (М5-М39) классов прочности 4.6, 5.8, 4.6, 5.8, 8.8, 10.9, 12.9 для метрических болтов и гаек из углеродистой стали
При затяжке болта до практического момента затяжки, у него остается запас прочности, достаточный для того, чтобы болт гарантированно не «потек».
Разумеется, совершенно не обязательно в каждом случае затягивать все соединения до этих значений.
Скорее наоборот. В подавляющем большинстве случаев, дотянув до этих значений, вы можете получить ряд побочных проблем. Например, порвете, продавите или выдавите сделанную из более мягкого материала прокладку. И тем самым только испортите прочность соединения.
Тем не менее, приведенные в таблице практические моменты затяжки для метрических болтов и гаек из углеродистой стали являются допустимыми. А уровень нагрузки на соединение при этом соответствует ориентировочно 60-70% предела текучести.
Резьба/шаг мм |
Класс прочности болтов |
||||
4.6 |
5.8 |
8.8 |
10.9 |
12.9 |
|
момент затяжки Н*м |
|||||
5/0.8 |
2,1 |
3,5 |
5,5 |
7,8 |
9,3 |
6/1.0 |
3,6 |
5,9 |
9,4 |
13,4 |
16,3 |
8/1.25 |
8,5 |
14,4 |
23,0 |
31,7 |
38,4 |
10/1.5 |
16,3 |
27,8 |
45,1 |
62,4 |
75,8 |
12/1.75 |
28,8 |
49,0 |
77,8 |
109,4 |
130,6 |
14/2.0 |
46,1 |
76,8 |
122,9 |
173,8 |
208,3 |
16/2.0 |
71,0 |
118,1 |
189,1 |
265,9 |
319,7 |
18/2.5 |
98,9 |
165,1 |
264,0 |
370,6 |
444,5 |
20/2.5 |
138,2 |
230,4 |
369,6 |
519,4 |
623,0 |
22/2.5 |
186,2 |
311,0 |
497,3 |
698,9 |
839,0 |
24/3.0 |
239,0 |
399,4 |
638,4 |
897,6 |
1075,2 |
27/3.0 |
345,6 |
576,0 |
922,6 |
1296,0 |
1555,2 |
30/3.5 |
472,3 |
786,2 |
1257,6 |
1766,4 |
2121,6 |
33/3.5 |
636,5 |
1056,0 |
1699,2 |
2380,8 |
2860,8 |
36/4.0 |
820,8 |
1363,2 |
2188,8 |
3081,6 |
3696,0 |
39/4.0 |
1056,0 |
1756,8 |
2820,2 |
3955,2 |
4742,4 |
Предельные моменты затяжки (М6-М42) классов прочности 8.8, 10.9, 12.9 для метрических болтов и гаек из углеродистой стали
А вот приведенные в настоящей таблице моменты затяжки болтов и гаек уже являются предельными. Или максимально допустимыми.
При превышении данных значений, Вы практически наверняка испортите соединение. Что называется — «сорвете резьбу». Своими собственными руками.
Резьба/шаг мм |
Класс прочности болта |
||
8.8 |
10.9 |
12.9 |
|
предельный момент затяжки Н*м |
6/1.0 |
10 |
13 |
16 |
8/1.25 |
25 |
33 |
40 |
10/1.5 |
50 |
66 |
80 |
12/1.75 |
85 |
110 |
140 |
14/2.0 |
130 |
180 |
210 |
16/2.0 |
200 |
280 |
330 |
18/2.5 |
280 |
380 |
460 |
20/2.5 |
400 |
540 |
650 |
22/2.5 |
530 |
740 |
880 |
24/3.0 |
670 |
940 |
1130 |
27/3.0 |
1000 |
1400 |
1650 |
30/3.5 |
1330 |
1800 |
2200 |
33/3.5 |
1780 |
2450 |
3000 |
36/4.0 |
2300 |
3200 |
3850 |
39/4.0 |
3000 |
4200 |
5050 |
42/4,5 |
3700 |
5200 |
6250 |
pro-krepezh.ru
Затяжка резьбовых соединений
Технический уровень и качество крепёжных деталей и соединений имеют важное значение для обеспечения высоких потребительских характеристик машин, механизмов, строительных конструкций, бытовой техники, другой продукции. Известно, что большинство отказов в автотранспортных средствах так или иначе связано с крепёжными деталями, ослаблением соединений, а любые ремонты и обслуживание – с отвинчиванием и завинчиванием болтов, гаек, винтов и т.д.
Надёжность соединений узлов зависит от технического уровня конструкции в целом, качества крепёжных деталей и качества сборки [1].
Надёжность резьбовых соединений — это, в первую очередь, гарантия длительного сохранения усилия предварительной затяжки в период эксплуатации. Как обеспечить это?
Силовые параметры резьбовых соединений. Надёжность крепежа.
Чтобы ответить на поставленный вопрос, сначала назовём основные силовые параметры резьбовых соединений. ГОСТ 1759.4 устанавливает для крепёжных деталей минимальную разрушающую нагрузку(Рр, Н) и пробную нагрузку(N, Н), которая для классов прочности 6.8 и выше составляет 74-79% от минимальной разрушающей нагрузки. Пробная нагрузка является контрольной величиной, которую стержневая крепёжная деталь должна выдержать при испытаниях.
Усилие предварительной затяжки (далее – усилие затяжки – Q, Н), на которое производится затяжка резьбового соединения, обычно принимаетсяв пределах 75-80%, в отдельных случаях и 90%, от пробной нагрузки[1]. Нередко возникает вопрос почему «предварительной»? Дело в том, что затяжка соединений подразумевает создание во всех деталях – и крепёжных, и соединяемых, некоторых напряжений. При этом в упруго напряжённых телах проявляются некоторые механизмы пластических деформаций, ведущие к убыванию напряжений во времени (явление релаксации напряжений). Поэтому по истечении некоторого времени усилие затяжки соединения несколько снижается без каких либо дополнительных силовых воздействий на него. В табл. 1 для справок приведены значения усилий затяжки нескольких размеров соединений.
Таблица 1
Значения усилий затяжки,Q, Н |
|||
Размер резьбы болта |
Класс прочности 6.8 |
Класс прочности 8.8 |
Класс прочности 10.9 |
М6 |
7540 |
8700 |
12530 |
М8 |
12750 |
15900 |
22800 |
М10 |
19130 |
25280 |
36080 |
М12 |
27230 |
36680 |
52500 |
Существует несколько способов затяжки резьбовых соединений: затяжка до определённого момента, затяжка до определённого угла, затяжка до предела упругости, затяжка в области пластических деформаций и другие.
Затяжка соединений до определённого момента
В отечественной практике чаще всего применяется затяжка путём приложения к крепёжной детали необходимого крутящего момента затяжки (далее – момента затяжки, Мкр, Н*м), который обычно указывается в чертежах или технологии сборки. В автомобильной промышленности для назначения моментов затяжки используются отраслевые стандарты [2; 3] и руководящий документ [4], которые распространяются на резьбовые соединения с болтами, шпильками и гайками с цилиндрической метрической резьбой номинальным диаметром от М3 до М24 в зависимости от размеров, класса прочности крепёжной детали и класса соединения.
В зависимости от степени ответственности соединений назначаются классы резьбовых соединений и соответствующие им величины максимальных и минимальных моментов затяжки, объёма их контроля (проверки), приведенные в табл.2.
Таблица 2. Классы резьбовых соединений по [3]
Класс соедин. |
Наименование |
Допускаемое отклон. от расчетного Мкр, % |
Объем контроля затяжки |
|
Максим. |
Минимум |
|||
I |
Особо ответственные |
+5 |
-5 |
100% соединений |
II |
Ответственные |
+5 |
-15 |
|
III |
Общего назначения |
+5 |
-35 |
Периодически, согласно техдок. |
IV |
Малоответственные |
+5 |
-65 |
Несколько иные, но во многом аналогичные классы резьбовых соединений приводит, например, стандарт фирмы Renault[5], называя их классами точности прилагаемого момента:
класс А |
имеет поле допуска Мкр на инструменте |
±5% |
класс В |
имеет поле допуска Мкр на инструменте |
±10% |
класс М |
имеет поле допуска Мкр на инструменте |
±15% |
класс С |
имеет поле допуска Мкр на инструменте |
±20% |
класс D |
имеет поле допуска Мкр на инструменте |
±35% |
класс Е |
имеет поле допуска Мкр на инструменте |
±45% |
Видно, что классы А, В, С, D соответствуют по полю допуска классам по табл.2.
Номинальный крутящий момент рассчитывается по известной формуле [1; 4;7]:
Мкр = 0,001 Q[0,16 Р + µр 0,58 d2 + µт 0,25 (dт + d0) ],
где µр– коэффициент трения в резьбе;
µт — коэффициент трения на опорном торце;
dт – диаметр опорной поверхности головки болта или гайки,мм;
d0 – диаметр отверстия под крепёжную деталь, мм;
Р – шаг резьбы, мм;
d2– средний диаметр резьбы, мм.
Существенное влияниена затяжку крепёжных соединений оказывают условия контактного трения в резьбе и на опорной поверхности, зависящие от таких факторов, как состояние контактных поверхностей, вид покрытия, наличие смазочного материала, погрешности шага и угла профиля резьбы, отклонение от перпендикулярности опорного торца и оси резьбы, скорость завинчивания и др. Значения коэффициента трения в реальных условиях сборки можно лишь прогнозировать. Как показывают многочисленные эксперименты, они не стабильны. В табл. 3 приведены их справочные значения [6].
Таблица 3. Значения коэффициентов трения в резьбе µри на опорном торце µт
Вид покрытия |
Коэффициент трения |
Без смазочного материала |
Машинное масло |
Солидол синтетический |
Машинное масло с МоS2 |
Без покрытия |
µр |
0,32-0,52 |
0,19-0,24 |
0.16-0,21 |
0,11-0,15 |
µт |
0,14-0,24 |
0,12-0.14 |
0,11-0,14 |
0,07-0,10 |
|
Цинкование |
µр |
0,24-0,48 |
0,15-0,20 |
0,14-0,19 |
0,14-0,19 |
µт |
0,07-0.10 |
0.09-0,12 |
0,08-0,10 |
0,06-0,09 |
|
Фосфатирование |
µр |
0,15-0,50 |
0,15-0,20 |
0,15-0.19 |
0.14-0,16 |
µт |
0,09-0,12 |
0,10-0,13 |
0,09-0,13 |
0,07-0,13 |
|
Оксидирование |
µр |
0.50-0,84 |
0,39-0.51 |
0,37-0,49 |
0.15-0,21 |
µт |
0,20-0,43 |
0,19-0.29 |
0.19-0,29 |
0,07-0,11 |
Для упрощения расчётов Мкр коэффициенты трения обычно усредняют. В качестве примера в табл. 4 приведены результаты сравнительного расчёта моментов затяжки соединения болт-гайка размером М8, класса прочности 8.8-8. Значения коэффициентов трения µриµт взяты средними от приведённых в табл.3. Конечные результаты расчётов достаточно близки.
Таблица 4. Результаты сравнительного расчёта момента затяжки крепежа
Вид смазки и покрытия |
Разные коэффициенты трения |
Усреднен. к-ты трения |
|||
µр |
µт |
Мкр.разд, Н?м |
µ=0,5(µр+µт) |
Мкр.сред, Н?м |
|
6Ц хр |
0,36 |
0,09 |
34,9 |
0,22 |
36,8 |
6Ц хр, солидол |
0,165 |
0,09 |
21,9 |
0.13 |
23,0 |
Без смазки и покрытия |
0,42 |
0,19 |
47,6 |
0,30 |
48,9 |
Для понимания и правильного назначения режимов сборки резьбовых соединений важно знать на что расходуется Мкр. В табл. 5 приведены результаты расчёта момента затяжки в целом и по составляющим. Три составляющие момента затяжки (см. формулу) отражают их доли, идущие на создание усилия затяжки (12-15%), на преодоление сил трения в резьбе (32-39%) и на преодоление сил трения под головкой болта или под гайкой (47-54%) [1].
Как видим на создание усилия затяжки расходуется лишь до 15% Мкр.
Таблица 5. Моменты затяжки соединений и их составляющие, Мкр, Н*м
Размер резьбы ишестигр., мм |
Всего |
На создание усилия затяжки |
На трение в резьбе |
На трение под головкой |
||||
Класс прочности |
||||||||
6.8 |
8.8 |
6.8 |
8.8 |
6.8 |
8.8 |
6.8 |
8.8 |
|
М6; S=10 |
8.3 |
9,6 |
1.2 |
1,4 |
3,0 |
3,5 |
4,1 |
4,7 |
М8; S=13 |
18,4 |
23 |
2.6 |
3,2 |
6.9 |
8.6 |
8,9 |
11,2 |
М10; S=17 |
35 |
46,3 |
4,6 |
6,0 |
13,0 |
17,2 |
17,4 |
23,5 |
При применении соединений с фланцевыми болтами и гайками важно учитывать влияние на момент затяжки увеличенной опорной поверхности под головкой. Момент требуется на 10-15% выше, чем без фланца.
Крепёж. Точность способа затяжки по моменту
Итак, все действия разработчиков крепёжных соединений в машинах и механизмах сводится к назначению Мкр. Но обеспечит ли этот момент получение необходимого усилия затяжки? Зная сильное влияние условий трения и класса соединения на зависимость между усилием и моментом затяжки, покажем каков может быть разброс достигаемых значений Q при сборке. В качестве примера рассмотрим соединение болт-гайка М8 класса прочности 8.8-8, покрытие цинковое с хроматированием без смазочного материала. Номинальное усилие затяжки Q= 15900 Н.По [4] имеемМкр макс = 24,4 Н*м.
Близкие значения Q и Мкр приводятся в материалах фирм Renault, Gedore, Facom и других.
Рассчитаемпри возможных значениях коэффициентов трения 0,3, 0,14 и 0,10 величины достигаемого усилия затяжки при названных моментах затяжки для соединений II и III классов (табл. 6) и построим диаграмму в координатах Q– Мкр (рис. 1). Виден весьма существенный разброс достигаемых значений усилия затяжки (заштрихованная четырехугольная зона) при заданных крутящих моментах. Для соединений II класса это А2ВСD2, а III класса – А3ВСD3.
Минимально достигаемое усилие затяжки Qминполучается при приложении минимального крутящего момента затяжки Мкр. мин при максимальном коэффициенте трения µмакс(точки А2 и А3 на диаграмме).
Таблица 6. Результаты расчётов усилия затяжки, Q, Н
Момент затяжки, Н/м |
Коэффициент трения, µ |
||
0,3 |
0,14 |
0,10 |
|
Мкр. макс = 24,4 |
7870 |
15900 |
21030 |
Мкр.мин = 19,8;11 класс |
6390 |
12860 |
17070 |
Мкр. мин = 15,1; 111класс |
4870 |
9800 |
13020 |
Максимальное усилие затяжки Qмакс достигается при приложении максимального крутящего момента Мкр. макс при наименьшем коэффициенте трения µмин (точка С на диаграмме).
Подобные графические изображения могут быть построены для каждого конкретного резьбового соединения. Точка соответствующего соотношения Мкр – Q находится внутри четырёхугольника.
Еще одна характеристика резьбовых соединений, влияющая на точность затяжки по моменту, назовём её «плотность» или «герметичность» стыка соединяемых деталей. Чем больше в пакете деталей (слоев), тем сильнее влияние заусенцев, неровностей, шероховатости контактных поверхностей.
Минимальное удельное усилие на контактных поверхностях должно устанавливаться из условия плотности стыкови не должно быть меньше s0 мин=(0,4 – 0,5)sт. Максимальное значение удельных усилий, обеспечивающих надёжность затяжки должно быть s0 макс=(0,8 – 0,9)sт.
Ранее мы приводили данные [1] о нежелательности применения плоских и пружинных шайб в соединениях и приводили варианты перехода, в частности, на фланцевый крепёж, что существенно повышает надёжность. Там же показаны отрицательные стороны применения болтов с шестигранной уменьшенной головкой, у которых контактные напряжения под головкой превышают sт.
Как видно способ затяжки с контролем момента даже при его точной фиксации не обладает необходимой надёжностью, далеко не всегда обеспечивает нужное усилие затяжки.
Методы контроля затяжки крепежа
Наиболее распространен метод контроля при помощи динамометрических ключей, имеющих точность в пределах ±5%. Ошибка в измерении величины момента зависит от принятого метода его определения. В [4] предусматриваются следующие методы.
Метод А. Момент измеряется непосредственно в начале вращения болта или гайки в направлении затягивания, измеренный таким образом момент называется «моментом страгивания с места». Метод применяется для быстрого контроля и осуществляется не позднее 30 минут после затяжки.
Метод В. Момент измеряется во время вращения при повороте на 10о – 15о в направлении завинчивания. Момент, полученный при этом, называется «моментом вращения». Метод применяется для периодического, но более точного контроля.
Метод С. Соединение освобождается и снова затягивается в прежнем положении, которое должно быть отмечено риской. Этот момент называется «моментом повторной затяжки» и применяется для контроля соединений, имеющих оксидные пленки, окраску, загрязнения.
Величины моментов затяжки при контрольных измерениях должны находитьсяв следующих диапазонах :
|
Метод А |
Метод В |
Метод С |
От |
1,25 Мкр. макс |
1,08 Мкр. макс |
1,05 Мкр. макс |
До |
1,05 Мкр.мин |
0,92 Мкр.мин |
0,88 Мкр. мин |
В случае недостаточной величины момента затяжки производится подтяжка резьбового соединения до заданной величины момента. Заметим, что контроль качества затяжки особо ответственных соединений (класс 1 ) с допускаемым отклонением момента ±5% динамометрическим ключом, имеющим такую же точность, едва ли корректен.
Таким образом, показано, что как затяжка резьбовых соединений, так и её контроль базируются на косвенных методах путём приложения к крепёжной детали крутящего момента, но это далеко не всегда обеспечивает получение необходимого усилия затяжки.
Поэтому разработчики конструкции вынуждены для обеспечения требуемого усилия сжатия соединяемых деталей применять большее количество недозатянутых крепёжных деталей и увеличивать их диаметр.
Приведем примеры ошибок, которые стали возможными из-за указания в техдокументации только момента затяжки.
На автомобилях семейства ГАЗель при сборке крепления задней опоры двигателя имели место случаи разрушения болтов М10х6gх30 (210406) с полукруглой головкой и квадратным подголовком. Испытания болтов показывали, что они соответствуют требованиям ОСТа и имеют класс прочности 4.8. Оказалось, что, указанный в чертежах узла крутящий момент затяжки Мкрравнялся 28-36 Нм. Это соответствует соединению класса прочности 6.8.в результате усилие затяжки при Мкр. минзавышалось в 1,4 раза, а при Мкр.макс в 1,9 раза! После замены класса прочности болта на 6.8 дефекты сборки были исключены.
При сборке суппорта переднего тормоза автомобилей ВАЗ 2108(09) разрушался болт 2108-3501030 М12х1,25х30, имеющий класс прочности 10.9. Болт, имеющий покрытие фосфат с промасливанием, опирается на шайбу с таким же покрытием и закручивается в чугунный суппорт с цинковым покрытием. По чертежу Мкр.макс=118,4 Нм. В стандартах ВАЗа не было данных по коэффициенту трения для данного сочетания контактных поверхностей. По разным источникам отклонение Мкр могут составлять от ±10% до ±30%. Проведённые исследования этого резьбового соединения и условий его сборки на конвейере позволили выявить, объяснить и устранить причины разрушения болтов[1]. На рис. 2 показана диаграмма Q– Мкр, рассчитанная по методике Фиат-ВАЗ, где n — коэффициент использования предела текучести (n=s:sт, где s — суммарное напряжение в болте, создаваемое при затяжке). Для ответственного соединения (11 класса) коэффициент трения в резьбе и на опорной поверхности варьировался в пределах 0,1–0,18. Было определено, что при m=0,1 момент Мкр.мин=96,5 Нм, а усилие затяжки Q=59536 Н. При Мкр.макс=118,4 Нм усилие Q=73130 Н, что выше нагрузки до предела пропорциональности Qупр=72750 Н, то есть возможна пластическая деформация болта или его разрушение при сборке. Известно, что при случайном попадании масла и колебаниях толщины покрытий коэффициент трения может уменьшится до значения 0,08 и даже 0,06. В то же время было выявлено,что перед сборкой болты проходили операции мойки и промасливания, что недопустимо, ибо ещё больше увеличивало усилие затяжки.
Результаты исследований показали также целесообразность замены цилиндрической головки с внутренним шестигранником у болтана головку с волнистым приводом (типа ТОRХ) и 2-х радиусной поднутренной галтелью под головкой. За счёт этого удалось снизить напряжения под головкой и еще больше повысить надёжность крепления.
Приведённые примеры показывают, что исследования конструкций узлов и технологии сборки позволяют выяснить и исключить возможные дефекты, а также подтверждают необходимость перенесения внимания с момента на усилие затяжки.
О затяжке крепёжных соединений с контролем усилий
В мировой практике используются методы и инструменты, которые непосредственно контролируют усилие затяжки в ходе сборки. Осуществить затяжку резьбового соединения с контролем по усилию в лабораторных условиях несложно. Исследования показывают, что наибольшая точность обеспечения усилий затяжки в производственных усло
atex-tools.ru
Момент затяжки колесных болтов (таблица). Какая сила и момент затяжки должна быть для гаек колес автомобиля?
Для того, чтобы правильно установить колеса, необходимо при помощи динамометрического ключа равномерно ослабить колесные болты и гайки до рекомендованного момента затяжки. Каждый автопроизводитель устанавливает собственное усилие затяжки колесных болтов, измеряемое в Ньютон-метрах (НМ). Момент затяжки колесных болтов автомобиля можно узнать из нижеприведенной таблицы.
Момент затяжки колесных болтов – таблица:
Производитель автомобиля |
Модель |
Момент затяжки (Нм) |
Alfa Romeo |
Alfa 145/146/147 Alfa 156 Alfa 159 Alfa 166 Alfa Briera/Spider |
93+/-10 98 120 +/- 12 86 +/-8 120 +/- 12 |
Audi |
A1/A2/A3/A4/A5/A6/A7/A8/TT Q5 Q7 |
120 140 160 |
BMW |
1 серия/3 серия/5 серия M5 Z3 X3,X5,X6 |
120 100 100+/-10 140 |
Chevrolet |
Сruze Captiva Spark |
140 125 120 |
Chrysler |
300C 200C Grand Voyager |
150 120 135 |
Citroen |
Xsara Picasso/Saxo C4/C5 Berlingo AX10/AX11/AX14/Sport |
85 80-100 85 90 |
Ford |
KA/Mondeo/Scorpio/Puma Cougar Fiesta (2002-2008) Fiesta Fusion Probe Transit Connect |
85 128 90 110 110 90-120 90 |
Fiat |
500 Grande Punto/Punto Evo Ducato/Talento Ducato Maxi |
86 120 160 180 |
Hyundai |
Все модели Starex |
110 130 |
Honda |
Все модели |
108-110 |
Jeep |
Cherokee Compass Patriot/Wrangler |
136 135 135 |
Jaguar |
XKR S-Type XJ6 XJR/XJ12 XJ8/XJ-S |
125 128 65-85 88-102 66-82 |
KIA |
Sorento/Picanto/ Rio/Shuma Carnival Margentis |
100 103 100 98 |
LADA |
Samara/Riva Niva |
www.spbkoleso.ru
Моменты затяжки при ремонте двигателя
НА САЙТЕ ВЕДУТСЯ РАБОТЫ. ВОЗМОЖНЫ СБОИ, НЕКОРРЕКТНОЕ ОТОБРАЖЕНИЕ. ОКОНЧАНИЕ 20.08.2019
Случайная статья узнай что то новое
Моменты затяжки резьбовых соединений
Без динамометрического ключа в ремонте двигателя делать нечего! Моменты затяжки при ремонте Honda Civic, очень важны. Инженеры Honda вычислили для каждого болта и гайки в автомобиле свой момент. Затягивать от руки до характерного хруста не нужно. Во первых вы можете сломать какой нибудь болт, и доставать его будет крайне сложно. Во вторых перекошенная ГБЦ явно будет пропускать масло и охлаждающую жидкость. В Honda Civic, как и любой другой машине, используются разные моменты затяжки, от 10 Нм до 182нм и даже больше, болт шкива коленвала. Советую приобрести мощный динамометрический ключ, мощный и хороший, с щелчком по достижению момента, не берите стрелочный. И последние, все соединения которые находятся в составе одного элемента (диск, ГБЦ, крышки) затягиваются в несколько этапов от центра наружу и зигзагом. Итак по порядку, все описываю в Нм (Nm). Не забудьте немного смазать резьбу маслом или медной смазкой.
Пример динамометрического ключа, цена 50-100$
Данные моменты подходят для всей D Серии D14,D15,D16. Не проверял D17 и D15 7 поколения.
Болты крепления крышки ГБЦ | 10 Нм |
Болты постели ГБЦ 8мм | 20 Нм |
Болты постели ГБЦ 6мм | 12 Нм |
Гайки крышки шатуна | 32 Нм |
Болт шкива распредвала | 37 Нм |
Болт шкива коленвала | 182 Нм |
Болты крышки постели коленвала D16 | 51 Нм |
Болты крышки постели коленвала D14, D15 | 44 Нм |
Болты и гайки крепления масляного заборника | 11 Нм |
Болты крепления масляного насоса | 11 Нм |
Болта крепления платы привода (AT) | 74 Нм |
Болта крепления маховика (MT) | 118 Нм |
Болты крепления масляного поддона | 12 Нм |
Болты крышки заднего сальника коленвала | 11 Нм |
Датчик крепления помпы ОЖ | 12 Нм |
Болт крепления скобы генератора (от помпы к ген) | 44 Нм |
болт ролика натяжителя ГРМ | 44 Нм |
Болт датчика CKF | 12 Нм |
Болты крепления пластиковых кожухов ГРМ | 10 Нм |
Крепление датчика VTEC к ГБЦ | 12 Нм |
Болт масляного поддона (широкая прокладка), пробка | 44 Нм |
Моменты затяжки болтов ГБЦ
На более ранних версиях, было всего два этапа, позже уже 4. Важно Желательно, протягивать болты да и вообще работать с резьбовыми соединениями при температуре не ниже 20 градусов тепла. Не забывайте что нужно вычищать от любой жидкости и грязи резьбовые соединения.Так-же, желательно после каждого этапа подождать 20 минут для снятия «напряжения» металла.
P.S. В разных источниках даются разные цифры, например 64, 65, 66 НМ. Даже в оригинальном справочники для разных регионов, пишу сюда средние или максимально знакомые.

Порядок затяжки болтов ГБЦ, постели коленвала, постели распредвала
- D14A3, D14A4, D14Z1, D14Z2, D14A7 — 20 Нм, 49 Нм, 67 Нм. Контрольный 67
- D15Z1 — 30 Нм, 76 Нм Контрольный 76
- D15Z4, D15Z5, D15Z6, D15Z7, D15B (3Stage) — 20 Нм, 49 Нм, 67 Нм. Контрольный 67
- D16Y7, D16y5, D16Y8, D16B6 — 20 Нм, 49 Нм, 67 Нм. Контрольный 67
- D16Z6 — 30 Нм, 76 Нм Контрольный 76
- Контргайка настройки зазоров клапанов d16y5, d16y8 — 20
- Контргайка настройки зазоров клапанов D16y7 — 18
- Банджо болт топливного шланга d16y5, d16y8 — 33
- Банджо болт топливного шланга D16y7 — 37
Другие моменты затяжки
- Гайки на дисках 4х100 — 104 Нм
- Свечи зажигания 25
- Ступичная гайка — 181 Нм
Случайная статья узнай что то новое
Данная статья актуальна для автомобилей Honda выпуска 1992-2000 годов, таких как Civic EJ9, Civic EK3, CIVIC EK2, CIVIC EK4 (частично). Информация будет актуальна для владельцев Honda Integra в кузовах DB6, DC1, с моторами ZC, D15B, D16A.
www.ej9.ru