Структура шины – Автомобильная шина — Википедия

Содержание

Строение автомобильных шин

Благодаря колесам автомобиль имеет возможность передвигаться по дороге. На них подается вращение от двигателя через трансмиссию, а за счет сил трения колеса отталкивается от поверхности, и авто движется.

Автомобильные колеса состоят из двух компонентов – шины и диска. Основным рабочим элементом колеса является шина или по-другому скат, а диск выступает в роли посадочного места для нее, а также обеспечивает крепление колеса к ступицам.

Шины обеспечивают:

  • Сцепление с дорожным полотном;
  • Сглаживание мелких неровностей дороги;
  • Возможность движения по поверхностям с разными характеристиками;
  • Управляемость авто.

Также от этих элементов зависит шумность при движении.

Внутреннее устройство

Устройство автомобильной шины – сложное, несмотря на простой внешний вид. В поперечном сечении скат имеет С-образную форму, которая формируется рядом слоев.

Одна из схем шины

Эти слои имеют свое название:

  • кордовый каркас;
  • брекер;
  • протектор.

Дополнительно может использоваться подложка между последними слоями.

Кордовый каркас – основа шины. Основой каркаса выступает корд – прорезиненные слои нитей (из хлопка, вискозы, капрона, стальной проволоки), покрывающих всю площадь каркаса и расположенных определенным образом. Каркас может состоять из одного или нескольких кордовых слоев.

По расположению нитей каркаса шины делятся на диагональные и радиальные. В первом случае используется перекрестное расположение слоев корда. В радиальных шинах нити проходят перпендикулярно направлению вращения колеса. Диагональные шины сейчас практически не выпускаются.


Брекер – еще один слой корда, но он располагается не по всей площади каркаса, а лишь на рабочей поверхности. Помимо этого, в брекере используются более прочные нити, что обеспечивает повышение прочности и устойчивости каркаса к повреждениям. По сути, брекер выступает в качестве армирующей соединительной прослойки между каркасом и протектором. Кордовые нити брекера располагаются исключительно диагонально.

Протектор – внешняя рабочая часть шины. Представляет собой достаточно массивный резиновый слой из высококачественных материалов и с нанесенным узором, формируемым углублениями в резине. Этот узор получил название «беговой дорожки», которой контактирует с дорогой. Протектор не только обеспечивает нужное сцепление с поверхностью, он также выступает и в качестве защитного слоя, предохраняющего каркас от повреждения. Тип рисунка, наносимого на протектор, влияет на сцепные качества шины и подразделяет их на дорожные, универсальные, повышенной проходимости.

Внешнее устройство

Если рассматривать устройство автомобильной шины только снаружи, то она состоит из:

  • бортов;
  • боковин;
  • плеч;
  • беговой дорожки.

Борта обеспечивают надежную посадку шины на диск. Жесткость этих элементов обеспечивается силовыми кольцами из металлической проволоки, вплавленными в каркас по окружности. Если рассматривать поперечное сечение шины, то борта – это вершины в С-образной форме.


От бортов отходят боковины – боковые части каркаса, покрытые дополнительно защитным слоем резины, предотвращающим повреждение кордового каркаса.

Плечи обеспечивают переход от боковин к беговой дорожке. Помимо этого, при деформации (при наезде на препятствие, вхождении в поворот) плечи принимают участие в обеспечении сцепления с дорогой.

К плечам подходит беговая дорожка, являющаяся основной рабочей поверхностью, поэтому именно она имеет наиболее многослойную структуру.

В поперечном сечении устройство шины такое: имеется два борта, соединенных с двумя боковинами, которые переходят к плечам, а те – подходят к краям одной беговой дорожки, что и формирует С-образную форму.

Классификация

Существует несколько критериев, по которым делится автомобильная «резина»:

  • Способ герметизации внутреннего пространства;
  • Сезонность использования;
  • Тип протектора;
  • Сфера использования.

Все эти критерии достаточно важны и учитываются при выборе авторезины.

Метод герметизации

По способу герметизации, существующие виды автошин делятся на камерные и бескамерные.


В камерных воздух, обеспечивающий необходимое давление внутри, закачивается в специальный резиновый баллон – камеру. Основным недостатком таких колес является легкость повреждения, поскольку даже незначительный прокол камеры приведет к спусканию колеса. Но с другой стороны, изгибы обода диска при сильных ударных нагрузках не приводит к спусканию. На легковых авто камерный тип сейчас используются очень редко.

В бескамерных воздух закачивается в пространство, образованное внутренней поверхностью шины и диском. Они менее «чувствительны» к проколам и способны выдержать до 7-8 пробитий (при условии, что элемент, проколовший шину, остается в ней). Но даже незначительный изгиб обода приведет к «отслаиванию» борта и колесо стравит воздух.

Сезонность использования

По сезонности использования шины делятся на летние, зимние и всесезонные. Отличия между ними сводятся к материалу изготовления (в летних используется жесткая резина, а зимних – мягкая), форме рисунка и глубине протектора. Всесезонный вариант является промежуточным, и должных сцепных качеств не обеспечивает ни зимой, ни летом. Оптимальный период использования такой резины – ранняя весна и поздняя осень.

Тип протектора

По типу протектора виды автошин бывают дорожными, повышенной проходимости и универсальными. Первые предназначены для эксплуатации по твердой поверхности. Шинам повышенной проходимости характерны глубокий протектор и ярко выраженные грунтозацепы, обеспечивающие отличные ходовые качества авто по пересеченной местности. Универсальные колеса подходят как для движения по дороге, так и по бездорожью, но не сильному, поскольку грунтозацепы в них есть, но они не очень «мощные».

Сфера использования

По сфере использования шины бывают общего назначения и спортивные. Все виды автошин общего назначения обладают определенным соотношением высоты профиля к ширине, что обеспечивает необходимый объем для закачки воздуха.

К спортивной резине относятся низкопрофильные шины, слики и полуслики. Низкопрофильные отличаются небольшой высотой боковин. Но для обеспечения нужного объема для закачки воздуха, конструкторы увеличили ширину шин. В результате площадь контакта беговой дорожки возросла, поэтому низкопрофильные шины отличаются улучшенными сцепными качествами. Предназначены они для езды только по твердой поверхности. Благодаря наличию протектора, допускается их использование на дорогах общего назначения.


Слики – исключительно спортивные шины. Их особенность – полное отсутствие рисунка протектора, что обеспечивает максимальное пятно контакта колеса с дорогой. Они применяются только на сухих твердых покрытиях.

Полуслики отличаются от сликов наличием небольшого протектора, в центральной части беговой дорожки, по краям же на поверхности узора нет. Несмотря на имеющийся протектор, использовать такую резину на дорогах общего назначения нельзя, на них можно ездить только по автотрекам.

Самая частая проблема, связанная с шинами во время эксплуатации авто, — проколы, в результате которых воздух их колеса выходит и дальнейшая его эксплуатация невозможна.

Частично эта проблема решилась с появлением бескамерных шин. Как уже указывалось, они способны выдержать определенное количество проколов.

Технология Flat

Попытки решить эту проблему привели к появлению так называемой «беспрокольной» резины, она же – Run Flat шина.

Существует две технологии Run Flat, применяемых на автомобилях. Первая из них – усиление боковин. Благодаря увеличению жесткости боковин, при стравливании воздуха вес авто начинает на себе удерживать именно боковины. Благодаря этой технологии на колесе без воздуха можно преодолеть до 100 км пути при сравнительно неплохой скорости – до 80 км/ч.

Технология run flat

Вторая технология – использование поддерживающего кольца. Это кольцо, изготовленное из высокопрочного пластика или металла, устанавливается и фиксируется на диске внутри шины. В случае прокола колеса, при стравливании воздуха, колесо начинает опираться на кольцо, что позволяет продолжать движение без возможного повреждения диска. Несмотря на то, что кольцо изготовлено из твердых материалов, шумность при движении повышается не сильно, поскольку между дорогой и кольцом постоянно находится прослойка резины.


Технология Run Flat действительно позволяет решить проблему с проколами. Но в случае с колесами, имеющими усиленные боковины, то они не помогут при сильном порезе боковины. А колеса с поддерживающим кольцом стоят дорого и для обслуживания требуют специализированное оборудование.

Стоит отметить, что Run Flat – это общее обозначение технологии беспрокольных шин. Производители же зачастую используют свое обозначение такой резины, что создает определенную путаницу.

«Самолечащиеся шины»

Но существует еще одна технология «беспрокольных» шин – «самолечащихся». Она к Run Flat не относится.

Суть этой методики сводится к нанесению на внутреннюю поверхность шины специального вязкого материала. Он в случае прокола полученное отверстие закупоривает и не дает воздуху стравливаться. Эта технология является самой простой и при этом дешевой. Стоимость шин с таким внутренним покрытием практически не отличается от обычной бескамерной резины.


Кстати, на рынке автоаксессуаров сейчас можно встретить специальные составы, которые позволяют из обычных бескамерок сделать «самолечащиеся». И для этого достаточно через вентиль закачать состав внутрь колеса, а в процессе эксплуатации залитый материал равномерно распространяется по внутренней поверхности шины, минус этого способа в том что и вся внутренняя поверхность диска покроется этим составом.

autoleek.ru

устройство и виды, износ шин и его причины

Одним из основных элементов автомобильного колеса является шина. Она устанавливается на диск и обеспечивает стабильный контакт автомобиля с дорожным покрытием. В процессе движения автомобиля шины поглощают возникающие вибрации и колебания, вызванные неровностями дороги, что обеспечивает комфорт и безопасность пассажиров. В зависимости от условий эксплуатации шины могут изготавливаться из различных материалов со сложным химическим составом и определенными физическими свойствами. Шины могут также отличаться рисунком протектора, обеспечивающего надежное сцепление с поверхностями с различным коэффициентом трения. Зная устройство шин, правила их эксплуатации и причины преждевременного износа, вы сможете обеспечить долгий срок службы резины и безопасность вождения в целом.

Функции шины

К основным функциям автомобильной шины относятся:

  • гашение вибраций колес от неровностей дорожного покрытия;
  • обеспечение постоянного сцепления колес с дорогой;
  • снижение расхода топлива и уровня шума;
  • обеспечение проходимости автомобиля в сложных дорожных условиях.

Устройство автомобильной шины

Устройство автомобильной шины

Конструкция шины достаточно сложная и состоит из множества элементов: корда, протектора, брекера, плечевой зоны, боковины и борта. Поговорим о них подробнее.

Корд

Основой шины является каркас, состоящий из нескольких слоев корда. Корд — прорезиненный слой ткани из текстильных, полимерных или металлических нитей.

Корд натянут по всей площади шины, т.е. радиально. Существуют радиальные и диагональные шины. Наибольшее распространение получила радиальная шина, т.к. она характеризуется наиболее долгим сроком эксплуатации. Каркас в ней более эластичный, за счет чего уменьшается теплообразование и сопротивление качению.

Диагональные шины имеют каркас из нескольких слоев корда, расположенных перекрестно. Эти покрышки отличаются невысокой ценой и имеют более прочную боковину.

Протектор

Наружная часть покрышки, непосредственно контактирующая с дорожной поверхностью, называется «протектор». Главным его предназначением является обеспечение сцепления колеса с дорогой и защита его от повреждений. Протектор влияет на уровень шумности и вибрации, а также определяет степень износа шины.

Рисунок протектора шины и ее назначение

Конструктивно протектор представляет собой массивный слой резины, имеющий рельефный рисунок. Рисунок протектора в виде канавок, борозд и выступов обуславливает способность шины работать в определенных дорожных условиях.

Брекер

Слои корда, расположенные между протектором и каркасом, называются «брекер». Он необходим для улучшения взаимосвязи между этими двумя элементами, а также для предотвращения отслоения протектора под действием внешних сил.

Плечевая зона

Часть протектора, находящаяся между беговой дорожкой и боковиной, называется «плечевая зона». Она усиливает боковую жесткость шины, улучшает синтез каркаса с протектором, берет на себя часть боковых нагрузок, передаваемых беговой дорожкой.

Боковины

Боковина — прослойка резины, являющаяся продолжением протектора на боковых стенках каркаса. Она ограждает каркас от влаги и механических повреждений. На нее наносится маркировка шин.

Борт

Боковина заканчивается бортом, служащим для ее крепления и герметизации на ободе колеса. В основе борта находится нерастяжимое колесо из стальной обрезиненной проволоки, придающее прочность и жесткость.

Виды шин

Шины можно классифицировать по нескольким параметрам.

Сезонный фактор

Рисунок протектора летних и зимних шин

По сезонному фактору различают летние, зимние и всесезонные шины. Сезонность шины определяется по рисунку протектора. На летней резине отсутствует микрорисунок, зато присутствуют ярко выраженные бороздки для стока воды. Это обеспечивает максимальное сцепление колес с асфальтом.

Зимние шины от летних можно отличить по узким канавкам протектора, которые позволяют резине не терять свою эластичность и хорошо держать машину даже на обледенелой дороге.

Существуют и так называемые «всесезонные шины», о плюсах и минусах которых можно сказать следующее: они одинаково хорошо показывают себя как в жару, так и в холод, однако обладают весьма средними эксплуатационными характеристиками.

Способ герметизации внутреннего объема

По этому показателю различают «камерные» и «бескамерные шины». Бескамерные шины – это шины, имеющие только покрышку. В них герметичность достигается за счет устройства последней.

Внедорожные шины

Этот класс шин отличается повышенной проходимостью. Резина характеризуется высоким профилем и глубокими канавками протектора. Подходит для езды по глинистым и грязевым участкам, крутым склонам и прочему бездорожью. Но на этой резине не получится развить достаточную скорость на ровной дороге. В обычных условиях эта шина плохо «держит дорогу», в следствие чего снижается безопасность движения, а протектор быстро изнашивается.

Рисунок протектора шин

Рисунок протектора шины

По рисунку протектора различают шины с ассиметричным, симметричным и направленным рисунками.

Симметричный рисунок наиболее распространен. Параметры шины с таким протектором наиболее сбалансированы, а сама шина в большей степени приспособлена для эксплуатации на сухой дороге.

Наивысшие эксплуатационные свойства имеют шины с направленным рисунком, который придает покрышке устойчивость к аквапланированию.

Шины с ассиметричным рисунком реализуют в одной покрышке двойную функцию: управляемость на сухой дороге и надежность сцепления на мокром дорожном покрытии.

Низкопрофильные шины

Этот класс шин разработан специально для скоростного движения. Они обеспечивают быстрый разгон и уменьшают тормозной путь. Но, с другой стороны, эти шины не отличаются плавностью хода и характеризуются шумностью при движении.

Слики

Слики — еще один класс шин, который можно выделить отдельной. Чем отличаются слики от остальных шин? Абсолютной гладкостью! Протектор не имеет ни канавок, ни бороздок. Слики хорошо себя показывают только на сухой дороге. Используются в основном в автоспорте.

Износ автомобильных шин

В процессе движения автомобиля шина подвергается постоянному износу. Износ шины сказывается ее эксплуатационных показателях, в том числе и на длине тормозного пути. Каждый дополнительный миллиметр износа протектора увеличивает длину тормозного пути на 10-15%.

Важно! Допустимая глубина протектора для зимних шин составляет 4 мм, а для летних – 1,6 мм.

Виды износа шин и их причины

Для наглядности виды и причины износа шин представим в виде таблицы.

Вид износа шины Причина
Износ протектора посередине покрышки Неправильное давление воздуха в шине
Трещины и выпуклости на боковой стенке шины Удар шины о бордюр или яму
Износ протектора по краям покрышки Недостаточное давление в шинах
Плоские пятна износа Особенности вождения: резкое торможение, занос или ускорение
Односторонний износ Неправильный сход-развал

Проверить износ шин можно визуально при помощи индикатора уровня износа шин, представляющего собой участок протектора, отличающийся от его основы размерами и формой.

Индикатор износа в виде цифр

Индикатор износа шин может быть:

  • классическим – в виде сепаратного протекторного блока высотой 1,6 мм, расположенного в продольной канавке шины;
  • цифровым – в виде выдавленных в протекторе цифр, соответствующих определенной глубине протектора;
  • электронным – одна из функций системы контроля давления в шинах.

techautoport.ru

Конструкция грузовой шины

Главная   /   Статьи

17 Июня 2016

В предыдущей статье мы подробно рассказали об истории возникновения шины для автомобиля. Теперь давайте рассмотрим строение шины и изучим ее конструкцию.

Радиальные и диагональные шины

Существует два типа грузовых шин: диагональные и радиальные. Первые пневматические шины имели диагональную конструкцию. Каркас шины состоял из полотняных слоев. Позже большую популярность приобрели хлопчатые корды. Чтобы шина была крепче и держала форму, делали несколько слоев корда, которые перекрещивались между собой. Если на современной шине встречается надпись 16 PR (слойность 16), это означает, что данная шина выдерживает точно такую же нагрузку, как и шина с 16 слоями хлопчатобумажного корда. Позже нити стали изготавливать из более прочного материалы: вискозы и нейлона. Сейчас самым распространенным считается стальной корд.

Диагональная шина состоит из нескольких хлопчатобумажных слоев, расположенных так, что нити соседних слоев перекрещиваются друг с другом. Радиальная шина состоит из одного слоя металлических нитей, натянутых от одного борта к другом. Нити не перекрещиваются. Мягкий каркас усиливается стальным брекером, который опоясывает каркас.

Преимущества и недостатки радиальных и диагональных шин

Преимущества радиальной шины:

  • Долговечность. Износостойкость диагональной шины в несколько раз ниже чем радиальной. Например, средний пробег радиальной шины составляет 150 000 км, тогда как диагональная шина ходит не более 60 000 км. Диагональная шина толще, больше деформируется при движении, больше нагревается.
  • Низкое сопротивление качению. Радиальная шина более жесткая, форма каркаса более стабильная. Это приводит к тому, что для качения такой шины нужно прикладывать меньше усилия. Чтобы было понятно, что такое низкое сопротивление качению, представьте металлическое колесо от поезда катящееся по рельсу. Сопротивление качению такого колеса минимально. Теперь представьте автомобиль со спущенным колесом. Такому автомобилю двигаться труднее. Сопротивление качению такого колеса максимально.
  • Лучшее сцепление с дорогой. У радиальной шины площадь пятна контакта больше, пятно контакта стабильно во время движения. Диагональная шина мягче, при движении она деформируется и пятно контакта постоянно изменяется.
  • Лучшая управляемость грузовика. При поворотах и маневрировании диагональная шина деформируется, площадь пятна контакта уменьшается, что приводит к снижению сцепления с дорогой. Радиальная шина, благодаря жесткому брекерному поясу, сохраняет свою форму, «отставания» протектора от дороги не происходит даже на высоких скоростях.
  • Преимущества диагональных шин:

  • Мягкость. Диагональные шины мягче радиальных. Движение на них более комфортное. В радиальной шине удары от дороги через жесткий брекер передаются на корпус автомобиля. Качественные современные подвески помогают избавиться от этого недостатка.
  • Лучшая ремонтопригодность. Если шина с металлокордом получила повреждение, то если не выполнить своевременный ремонт, металлические нити начнут ржаветь, ржавчина будет распространяться все глубже и глубже. В диагональной шине в основном нейлоновый корд, который не подвержен коррозии.
  • Cтроение шины на примере радиальной конструкции

    1. Протектор
    2. Боковина
    3. Зона опирания
    4. Центровочный выступ
    5. Борт
    6. Бортовое кольцо
    7. Внутренний герметизирующий слой (инерлайнер)
    8. Носок борта
    9. Зона борта
    10. Каркас
    11. Брекерные слои
    12. Вершина

    Читайте в следующей статье:

    Камерная и бескамерная грузовая шина: строение, преимущества и недостатки

    Возврат к списку

    tyrecraft.ru

    Устройство и типы автомобильных шин

    Автомобильная шина — не просто «резина» одетая на диск колеса, а сложная, многофункциональная конструкция. Основное назначение шины — смягчить толчки и удары, передаваемые на подвеску автомобиля, обеспечить надежное сцепление колеса с дорожным покрытием, управляемость, передать на дорогу тяговые и тормозные силы. В значительной степени от шины зависит коэффициент сцепления, проходимость в различных дорожных условиях, расход топлива и шум, создаваемый автомобилем во время движения. Кроме того, шина должна обеспечить заданную грузоподъемность, надежность и долговечность.

      Шины подразделяются:

    • в зависимости от конструкции каркаса- на диагональные и радиальные;
    • по способу герметизации внутреннего объема- на камерные и бескамерные;
    • по типу рисунка беговой дорожки- дорожные (летние, всесезонные), универсальные, зимние, повышенной проходимости;
    • по профилю поперечного сечения.

    Схема устройства автомобильной шины

    Диагональные шины. Вам, скорее всего, не придется выбирать шины по этому признаку, так как диагональные уже почти полностью вытеснены с рынка радиальными. Конструкция диагональных шин устарела, но их продолжают выпускать в небольших количествах потому, что они относительно дешевы в производстве. Единственное преимущество этих шин заключается в том, что у них прочнее боковина. Диагональная шина имеет каркас из одной или нескольких пар кордных слоев, расположенных так, что нити соседних слоев перекрещиваются.

    Корд – обрезиненный слой ткани, состоящий из частых прочных нитей основы и редких тонких нитей утка, которые обеспечивают хорошее обрезинивание нитей корда, высокую гибкость и прочность. Корд изготавливается из хлопкового, вискозного или капронового волокна. В настоящее время большее применение находит металлокорд, имеющий нити, свитые из стальной проволоки, толщиной около 0,15 мм. Есть и более дорогие материалы, напр. кевлар, которые не могут получить массового распространения по причине своей дороговизны.

    Радиальные шины. В радиальной шине корд каркаса натянут от одного борта к другому без перехлеста нитей. Направление натяжения нитей явствует из названия. Тонкая мягкая оболочка каркаса по наружной поверхности обтянута мощным гибким брекером – поясом из высокопрочного нерастяжимого корда, как правило, стального. Поэтому к надписи radial (радиальная) на боковинах шин часто добавляют belted (опоясанная) или steel belted (опоясанная сталью). Такое расположение слоев корда снижает напряжение в нитях, что позволяет уменьшить число слоев, придает каркасу эластичность, снижает теплообразование и сопротивление качению.

    Каркас – важнейшая силовая часть шины, обеспечивающая ее прочность, воспринимающая внутреннее давление воздуха и передающая нагрузки от внешних сил, действующих со стороны дороги, на колесо. Каркас состоит из одного или нескольких, наложенных друг на друга слоев обрезиненного корда. В зависимости от конструкции каркаса, размеров, допустимой нагрузки и давления воздуха в шине число слоев корда в каркасе может изменяться от1 (в легковой) до 16 и более (в грузовых, сельхоз.шинах и пр).

    Брекер – часть шины, состоящая из слоев корда и расположенная между каркасом и протектором шины. Он служит для улучшения связей каркаса с протектором, предотвращает его отслоение под действием внешних и центробежных сил, амортизирует ударные нагрузки и повышает сопротивление каркаса механическим повреждениям. В брекере нити корда в смежных слоях пересекаются друг с другом и с нитями корда соприкасающегося слоя каркаса, т.е. расположены диагонально, независимо от конструкции шины. Брекер в радиальных шинах более жесткий, усиленный и малорастяжимый по сравнению с брекером диагональных шин, т.к. он в основном определяет прочностные показатели шин.

    Протектор – массивный слой высокопрочной резины, соприкасающийся с дорогой при качении колеса. По наружной поверхности он имеет рельефный рисунок в виде выступов и канавок между ними, так называемую “беговую дорожку”. Протектор предохраняет каркас от механических повреждений, от него зависит износостойкость шины и сцепление колеса с дорогой, а также уровень шума и вибраций. Рисунок рельефной части определяет приспособленность шины для работы в различных дорожных условиях. По типу рисунка протектора шины делятся на четыре основные группы: дорожные (летние, всесезонные), универсальные, зимние, повышенной проходимости.

    Плечевая зона – часть протектора, расположенная между беговой дорожкой и боковиной шины. Она увеличивает боковую жесткость шины, воспринимает часть боковых нагрузок, передаваемых беговой дорожкой и улучшает соединение протектора с каркасом.

    Боковины – часть шины, расположенная между плечевой зоной и бортом, представляющая собой относительно тонкий слой эластичной резины, являющийся продолжением протектора на боковых стенках каркаса и предохраняющий его от влаги и механических повреждений. На боковинах нанесены обозначения и маркировки шин.

    Борт – жесткая часть шины, служащая для ее крепления и герметизации (в случае бескамерной) на ободе колеса. Основой борта является нерастяжимое кольцо, сплетенное из стальной обрезиненной проволоки. Состоит из слоя корда каркаса, завернутого вокруг проволочного кольца, и круглого или профилированного резинового наполнительного шнура. Стальное кольцо придает борту необходимую жесткость и прочность, а наполнительный шнур – монолитность и эластичный переход от жесткого кольца к резине боковины. С наружной стороны борта расположена бортовая лента из прорезиненной ткани, или корда, предохраняющая борт от истирания об обод и повреждения при монтаже и демонтаже.

    Содержание статьи

    Особенности бескамерной шины

    Диск для бескамерной шины

    Бескамерную резину можно устанавливать только на диски, имеющие «хампы» – специальные выступы на ободе.

    Бескамерная резина гораздо более безопаснее на скорости, т.к. она спускает постепенно.

    Бескамерная автомобильная шина до того, как начнет спускать держит, как правило, не один, а несколько проколов.

    Не стоит без особой необходимости, вставлять в бескамерную шину камеру. Если в камерной шине воздух, попадающий между камерой и шиной, выходит в атмосферу через сосок или негерметичный обод, то в бескамерной шине он остается плоскими пузырями, которые здорово затрудняют теплоотдачу колеса, и оно часто перегревается в жару при больших скоростях, это чревато.

    Маркировка шин

    Маркировка шин

    Обозначение и маркировка шин, выпускаемых в Европе, соответствует Евростандарту, а в США – требованиями Транспортного управления этой страны. Следует отметить, что обозначения и маркировка отечественных и импортных шин по отдельным позициям совпадают, хотя среди них имеются характерные различия. Прежде всего рассмотрим маркировки шин, действующих в Европе:

    Пример: 185/65 R15 87Т – размер шины и ее техническая характеристика:

    • 185 – ширина профиля шины в мм.;
    • 65 – отношение высоты профиля к ее ширине, выраженное в процентах;
    • R – радиальная конструкция шины;
    • 15 – посадочный диаметр обода в дюймах;
    • 87 – индекс грузоподъемности. Ряд зарубежных фирм указывают максимальную нагрузку (MAX LOAD) в кг и английских фунтах;
    • Т – индекс максимальной скорости, на которую рассчитана шина;
    • надпись “Radial” – указывает на радиальную конструкцию шины;
    • “Tubeless” – маркировка бескамерной шины. Камерная шина обозначается “TUBE TYPE”;
    • “M+S” (Mud+Snow -грязь+снег) – тип рисунка протектора. Маркировка обозначает, что шина предназначена для эксплуатации в зимний период года и по грязи;
    • цифры 379 – дата выпуска шины: изготовлена на 37-й неделе 2009 года;
    • знак Е одним цифровым индексом (на других шинах может быть двухцифровой индекс) указывает, что шина проверена на соответствие европейскому стандарту безопасности. Индекс в кружке – условный номер страны, где назначенная правительством комиссия провела проверку. Например, Е – проверено в Швеции. Пятизначный (может быть и шестизначный) индекс, нанесенный рядом с кружком, означает номер сертификата, свидетельствующий о положительных результатах проверки, и выданного страной, осуществлявшей проверку.
    Индекс
    грузоподъемности,
    кг/колесо
    Индекс
    максимальной
    скорости, км/ч
    60 – 250
    62 – 265
    64 – 280
    66 – 300
    68 – 315
    70 – 335
    72 – 355
    74 – 375
    76 – 400
    78 – 425
    80 – 450
    82 – 475
    84 – 500
    86 – 530
    88 – 560
    90 – 600
    F – 80
    G – 90
    J – 100
    K – 110
    L – 120
    M – 130
    N – 140
    P – 150
    Q – 160
    R – 170
    S – 180
    T – 190
    H – 210
    V – 240
    VR – 210-240
    ZR – от 240

     

    Маркировка шин в ЕС

    С октября 2012 года в странах Евросоюза введена дополнительная маркировка шин по трем параметрам, отражающим уровень их экологичности, безопасности и комфорта: сопротивление качению, сцепление на мокрой поверхности и шумности. Чем ниже сопротивление качению, тем ниже расход топлива и выбросы СО2. Этот параметр (пиктограмма в виде бензоколонки) обозначается буквой от A до G (A – наименьшее сопротивление, G – наибольшее). Безопасность шины отражает уровень сцепления на мокрой поверхности (пиктограмма в виде дождевой тучи). Обозначается аналогично, буквами от A до G (A – наилучшее сцепление, G – наименьшее). Уровень шумности обозначается пиктограммой в виде шины, издающей звуковые волны. Одна волна соответствует самой “тихой” шине, три волны – самой шумной.

    avtonov.info

    Структура и стандарты шин ПК





    ⇐ ПредыдущаяСтр 2 из 4Следующая ⇒

    Основным компонентом каждого ПК является материнская (системная) плата. На ней размещены все его основные элементы – процессор, оперативная память, видеокарта, контроллеры, а также слоты и разъёмы для подключения внешних периферийных устройств. Все компоненты материнской платы связаны между собой системой проводников (линий), по которым происходит обмен информацией. Эту совокупность линий называют информационной шиной. Шина, связывающая только два устройства, называется портом. В качестве примера, рассмотрим структуру, например, такой шины ПК:

     

    Взаимодействие между компонентами и устройствами ПК, подключенными к разным шинам, осуществляется с помощью, так называемых мостов, реализованных на одной из микросхем Chipset.

    Шины в ПК различаются по своему функциональному назначению:

    системная шина используется микросхемами Chipset для пересылки информации к процессору и обратно;

    шина кэш-памяти предназначена для обмена информацией между процессором и внешней кэш-памятью;

    шина памяти используется для обмена информацией между оперативной памятью и процессором;

    шины ввода-вывода используются для обмена информацией с периферийными устройствами.

     

    Шины ввода-вывода подразделяются на локальные и стандартные. Локальная шина ввода-вывода – это скоростная шина, предназначенная для обмена информацией между быстродействующими периферийными устройствами (видеоадаптерами, сетевыми картами и др.) и процессором. В настоящее время в качестве локальной шины используется шина PCI Express (в прошлом использовалась шина AGP – Accelerated Graphics Port).

    Стандартная шина ввода-вывода используется для подключения более медленных устройств (например, мыши, клавиатуры, модемов). До недавнего времени в качестве этой шины использовалась шина стандарта ISA. В настоящее время широко используется шина USB.

    Компоненты шины

    Архитектура любой шины имеет следующие компоненты:

    линии для обмена данными (шина данных). Шина данных обеспечивает обмен данными между процессором, картами расширения, установленными в слоты и памятью. Чем выше разрядность шины, тем больше данных может быть передано за один такт и тем выше производительность ПК. Компьютеры с процессором семейства Pentium имеют 64-разрядную шину данных.



    линии для адресации данных (шина адреса). Шина адреса служит для указания адреса какого-либо устройства, с которым процессор производит обмен данными. Каждый компонент ПК, каждый порт ввода-вывода и ячейка RAM имеют свой адрес.

    линии управления данными (шина управления). По шине управления передается ряд служебных сигналов: записи/считывания, готовности к приему/передаче данных, подтверждение приема данных, аппаратного прерывания , управления и других. Все сигналы шины управления предназначены для обеспечения передачи данных.

    контроллер шины, осуществляет управление процессом обмена данными и служебными сигналами и обычно выполняется в виде отдельной микросхемы, либо в виде совместимого набора микросхем – Chipset.

     

    Основные характеристики шины

    Разрядность шины определяется числом параллельных проводников, входящих в неё. Первая шина ISA для IBM PC была 8-разрядной, т.е. по ней можно было одновременно передавать 8 бит. Системные шины для современных ПК, например, Pentium IV – 64 – разрядные.

    Пропускная способность шины определяется количеством байт информации, передаваемых по шине за секунду. Для определения пропускной способности шины необходимо умножить тактовую частоту шины на ее разрядность. Например, если разрядность шины 64, а тактовая частота 66 МГц, то пропускная способность = 8 (байт) * 66 МГц = 528 Мбайт/сек.

    Частота шины — это тактовая частота, с которой происходит обмен данными по шине.

    Внешние устройства подключаются к шинам посредством интерфейса.

    Стандарты шин ПК

    Принцип IBM-совместимости подразумевает стандартизацию интерфейсов отдельных компонентов ПК, что, в свою очередь, определяет гибкость системы в целом, т.е. возможность по мере необходимости изменять конфигурацию системы и подключать различные периферийные устройства. В случае несовместимости интерфейсов используются контроллеры.

     

    Системная шина (FSB – Front Side Bus) это шина предназначена для обмена информацией между процессором, памятью и другими устройствами, входящими в систему. К системным шинам относятся GTL, имеющая разрядность 64 бит, тактовую частоту 66, 100 и 133 МГц; EV6, спецификация которой позволяет повысить ее тактовую частоту до 377 МГц.




    Шины ввода/вывода совершенствуются в соответствии с развитием периферийных устройств ПК.

    Шина ISA в течение многих лет считалась стандартом ПК, однако и до сих пор сохраняется в некоторых ПК наряду с современной шиной PCI. Корпорация Intel совместно с Microsoft разработала стратегию постепенного отказа от шины ISA. Вначале планируется исключить ISA-разъемы на материнской плате, а впоследствии исключить слоты ISA и подключать дисководы, мыши, клавиатуры, сканеры к шине USB, а винчестеры, приводы CD-ROM, DVD-ROM – к шине IEEE 1394.

    Шина EISA стала дальнейшим развитием шины ISA в направлении повышения производительности системы и совместимости ее компонентов. Шина не получила широкого распространения в связи с ее высокой стоимостью и пропускной способностью, уступающей пропускной способности появившейся на рынке шины VESA.

    Шина VESA или VLB, предназначена для связи процессора с быстрыми периферийными устройствами и представляет собой расширение шины ISA для обмена видеоданными. Во времена преобладания на компьютерном рынке процессора CPU 80486, шина VLB была достаточно популярна, однако в настоящее время ее вытеснила более производительная шина PCI.

    Шина РСI (Peripheral Component Interconnect bus – взаимосвязь периферийных компонентов) была разработана фирмой Intel для процессора Pentium. Основополагающим принципом, положенным в основу шины PCI, является применение так называемых мостов (Bridges), которые осуществляют связь между шиной PCI и другими типами шин. В шине PCI реализован принцип Bus Mastering, который подразумевает способность внешнего устройства при пересылке данных управлять шиной (без участия процессора). Во время передачи информации устройство, поддерживающее Bus Mastering, захватывает шину и становится главным. В этом случае центральный процессор освобождается для решения других задач, пока происходит передача данных. В современных материнских платах тактовая частота шины PCI задается как половина тактовой частоты системной шины, т.е. при тактовой частоте системной шины 66 МГц шина PCI будет работать на частоте 33 МГц. В настоящее время шина PCI стала фактическим стандартом среди шин ввода/вывода.

    Шина AGP — высокоскоростная локальная шина ввода/вывода, предназначенная исключительно для нужд видеосистемы. Она связывает видеоадаптер с системной памятью ПК. Шина AGP была разработана на основе архитектуры шины PCI, поэтому она также является 32-разрядной. Однако при этом у нее есть дополнительные возможности увеличения пропускной способности, в частности, за счет использования более высоких тактовых частот. Если в стандартном варианте 32-разрядная шина PCI имеет тактовую частоту 33 МГц, что обеспечивает теоретическую пропускную способность PCI 33 х 32= 1056 Мбит/с = 132 Мбайт/с, то шина AGP тактируется сигналом с частотой 66 МГц, поэтому ее пропускная способность в режиме 1х составляет, 66 х 32 = 264 Мбайт/сек; в режиме 2х эквивалентная тактовая частота составляет 132 МГц, а пропускная способность — 528 Мбайт/сек.; в режиме 4х пропускная способность около 1 Гбайт/сек.

    PCI Express – В 2004 году компанией Intel была разработана последовательная шина PCI-Express с пропускной способностью около 4 Гб/сек. Каждому устройству, подключенному к этой шине отводится собственный канал со скоростным показателем 250Мб/сек. При этом можно использовать сразу несколько каналов, например, при передаче данных к видеокарте. Также к плюсам данной шины можно отнести «горячую замену» любого подключенного к ней устройства, даже не выключая питания системного блока. Высокая пиковая производительность шины PCI Express позволяет использовать её вместо шин AGP и PCI, ожидается, что PCI Express заменит эти шины в персональных компьютерах.

    Шина USB (Universal Serial Bus) была разработана для подключения среднескоростных и низкоскоростных периферийных устройств. Например, скорость обмена информацией по шине USB 2.0 составляет 45 Мбайт/с – 60 Мбайт/сек. К компьютерам, оборудованным шиной USB, можно подключать такие периферийные устройства, как клавиатура, мышь, джойстик, принтер, не выключая питания. Шина USB поддерживает технологию Plug & Play. При подсоединении периферийного устройства его конфигурирование осуществляется автоматически.

    Шина SCSI (Small Computer System Interface) обеспечивает скорость передачи данных до 320 Мбайт/с и предусматривает подключение к одному адаптеру до восьми устройств: винчестеры, приводы CD-ROM, сканеры, фото- и видеокамеры. Существует широкий диапазон версий SCSI, начиная от первой версии SCSI I, обеспечивающей максимальную пропускную способность 5 Мбайт/с, и до версии Ultra 320 с максимальной пропускной способностью 320 Мбайт/сек.

    Шина UDMA (Ultra Direct Memory Access – прямое подключение к памяти). UDMA обеспечивает передачу данных с жесткого диска, со скоростью до 33,3 Мб/сек в режиме 2 и 66,7 Мб/сек в режиме 4.

    Шина IEEE 1394 — это стандарт высокоскоростной локальной последовательной шины, разработанный фирмами Apple и Texas Instruments. Шина IEEE 1394 предназначена для обмена цифровой информацией между ПК и другими электронными устройствами, особенно для подключения жестких дисков и устройств обработки аудио- и видеоинформации, а также работы мультимедийных приложений. Она способна передавать данные со скоростью до 1600 Мбит/сек, работать одновременно с несколькими устройствами, передающими данные с разными скоростями, как и SCSI. Как и USB, шина IEEE 1394 полностью поддерживает технологию Plug & Play, включая возможность установки компонентов без отключения питания ПК. Подключать к компьютеру через интерфейс IEEE 1394 можно практически любые устройства, способные работать с SCSI. К ним относятся все виды накопителей на дисках, включая жесткие, оптические, CD-ROM, DVD, цифровые видеокамеры, устройства записи на магнитную ленту и многие другие периферийные устройства. Благодаря таким широким возможностям, эта шина стала наиболее перспективной для объединения компьютера с бытовой электроникой.

    Последовательный и параллельный порты

    Такие устройства ввода и вывода, как клавиатура, мышь, монитор и принтер, входят в стандартную комплектацию ПК. Все периферийные устройства ввода должны коммутироваться с ПК таким образом, чтобы данные, вводимые пользователем, могли не только корректно поступать в компьютер, но и в дальнейшем эффективно обрабатываться. Для обмена данными и связи между периферией (устройствами ввода/вывода) и модулем обработки данных (материнской платой) может быть организована параллельная или последовательная передача данных.

    Параллельный порт. В ПК, как правило, 2 параллельных порта: LPT1 и LPT2. К ним можно подключать принтеры и сканеры. В настоящее время LPT порты используются редко, современные принтеры и сканеры в основном подключаются к универсальным USB портам.

    Последовательные порты.В ПК, как правило, 4 последовательных порта: COM1 COM4. Это устаревшие порты, они редко используются в современных ПК. К ним можно подключать: мышь старой конструкции (с механическим шариком) и некоторые другие медленные устройства.

    PS/2 – порт для подключения клавиатуры и мыши, получивший в своё время широкое рас­про­стра­не­ние и до сих пор имеющийся во многих современных компьютерах.

    Универсальный USBпорт.К USB-портам подключаются разнообразные устройства, от принтеров и сканеров до флэш-накопителей и внешних дисков, а также видеокамеры и веб-камеры, фотоаппараты, телефоны, музыкальные плейеры и пр.

     

    Слоты ПК

    Для того, чтобы системная плата могла взаимодействовать с другими, отдельно вставляющимся платами, используются специальные гнезда, которые называются слотами.

    Слоты стандарта PCI. PCI – это стандарт не только слота, но и самой шины (канал, по которому передается информация между устройствами компьютера). Уже долгое время слоты PCI служат для подключения внешних устройств (звуковая плата, сетевая карта и др. контроллеры). Слотов PCI на современных платах три, четыре. Найти их очень легко – они самые короткие и обычно белого цвета, разделенные перемычкой на две неравные части. Сегодня слоты PCI сочетаются с новыми слотами PCI-Express (используются для подключения видеокарт).

    Слоты стандарта PCI Express. PCI-Express имеет два типа слотов для подключения дополнительных плат:

    — короткие PCI-Express x1 (скорость передачи данных – 250 Мб/с)

    — длинные PCI-Express x16 (до 4 Гб/с) – для подсоединения видеокарты.

    Слоты для установки оперативной памяти – их легко различить среди всех разъемов, они снабжены специальными замочками-защелками. На плате их может быть от двух до четырех, что позволяет установить от 512 Мб до 4 Гб оперативной памяти. Слоты жестко привязаны к типу оперативной памяти, т.е. в слот, предназначенный для памяти DDR2 нельзя вставить память типа DDR3. Иногда на одной системной плате бывает установлено несколько слотов для разных типов памяти.

     

     









    

    infopedia.su

    Резины. Состав, свойства, применение резины

    Содержание страницы

    Резина – пластмассы с редкосетчатой структурой, в которых связующим выступает полимер, находящейся в высокопластическом состоянии.

    В резине связующим являются натуральные (НК) или синтетические (СК) каучуки.

    На рис. 1 и 2 показаны область применения каучуков и получаемые изделия.

    Рис. 1 Применение каучуков

    Рис. 2 Изделия, где используются каучуки

    Каучуку присуща высокая пластичность, обусловленная особенностью строения их молекул. Линейные и слаборазветвлённые молекулы каучуков имеют зигзагообразную или спиралевидную конфигурацию и отличаются большой гибкостью (рис. 3, верхний). Чистый каучук ползёт при комнатной температуре и особенно при повышенной, хорошо растворяется в органических растворителях. Такой каучук не может использоваться в готовых изделиях. Для повышения упругих и других физико-механических свойств в каучуке формируют редкосетчатую молекулярную структуру. Это осуществляют вулканизацией – путём введения в каучук химических веществ – вулканизаторов, образующих поперечные химические связи между звеньями макромолекул каучука (рис. 3, нижний). В зависимости от числа возникших при вулканизации поперечных связей получают резины различной твёрдости – мягкие, средней твёрдости, твёрдые.

    Рис. 3 Структуры каучука и резины

    Механические свойства резины определяют по результатам испытаний на растяжение и на твёрдость. При вдавливании тупой иглы или стального шарика диаметром 5 мм по значению измеренной деформации оценивают твёрдость (рис. 4).

    Рис. 4 Определение твёрдости резины протектора

    При испытании на растяжение определяют прочность Ϭz (МПа), относительное удлинение в момент разрыва εz (%) и остаточное относительное удлинение Ѳz (%) (рис. 5).

    Рис. 5 Лабораторная установка для проведения механических испытаний резины

    В процессе эксплуатации под воздействием внешних факторов (свет, температура, кислород, радиация и др.) резины изменяют свои свойства – стареют. Старение резины оценивают коэффициентом старения Кстар, который определяют, выдерживая стандартизованные образцы в термостате при температуре -70оС в течение 144 час, что соответствует естественному старению резины в течение 3 лет. Морозостойкие резины определяется температурой хрупкости Тхр, при которой резина теряет эластичность и при ударной нагрузке хрупко разрушается.

    Для оценки морозостойкости резин используют коэффициент Км, равный отношению удлинения δм образца при температуре замораживания к удлинению δо при комнатной температуре.

    Состав резины

    Резины являются сложной смесью различных ингредиентов, каждый из которых выполняет определённую роль в формировании её свойств (рис. 6). Основу резины составляет каучук. Основным вулканизирующим веществом является сера.

    Рис. 6 Компоненты, которые входят в состав резины

    Вулканизирующие вещества (сера, оксиды цинка или магния) непосредственно участвуют в образовании поперечных связей между макромолекулами. Их содержание в резине может быть от 7 до 30 %.

    Наполнители по воздействию на каучуки подразделяют на активные, которые повышают твёрдость и прочность резины и тем самым увеличивают её сопротивление к изнашиванию и инертные, которые вводят в состав резин в целях их удешевления.

    Пластификаторы присутствия в составе резин (8 – 30%), облегчают их переработку, увеличивают эластичность и морозостойкость.

    Противостарители замедляют процесс старения резин, препятствуют присоединению кислорода. Кислород способствует разрыву макромолекул каучука, что приводит к потере эластичности, хрупкости и появлению сетки трещин на поверхности.

    Красители выполняют не только декоративные функции, но и задерживают световое старение, поглощая коротковолновую часть света. Наибольшее распространение получили сорта натурального каучука янтарного цвета и светлого тона.

    Обычно приняты классификация и наименование каучуков синтетических по мономерам, использованным для их получения (изопреновые, бутадиеновые, бутадиен-стирольные и т.п.), или по характерной группировке (атомам) в основной цепи или боковых группах (напр., полисульфидные, уретановые, кремнийорг), фторкаучуки.

    Каучуки синтетические подразделяют также по другим признакам, например, по содержанию наполнителей – на ненаполненные и наполненные каучуки, по молекулярной массе (консистенции) и выпускной форме – на твердые, жидкие и порошкообразные.

    Получение и применение каучуков

    Более широкое применение в производстве резин получили синтетические каучуки, отличающиеся разнообразием свойств. Синтетические каучуки получают из спирта, нефти, попутных газов нефтедобычи, природного газа и т.д. (рис. 7).

    Рис. 7 Схема получения синтетических каучуков

    СКБ – бутадиеновый каучук, чаще идёт на изготовление специальных резин (рис. 8).

    Рис. 8 Уплотнители – упругие прокладки трубчатого или иного сечения

    СКС – бутадиенстирольный каучук. Каучук СКС – 30, наиболее универсальный и распространённый, идёт на изготовление автомобильных шин, резиновых рукавов и других резиновых изделий (рис. 9). Каучуки СКС отличаются повышенной морозостойкостью (до -77оС).

    Рис. 9 Изделия из каучука СКС

    СКИ – изопреновый каучук. Промышленностью выпускается каучуки СКИ-3 – для изготовления шин, амортизаторов; СУИ-3Д – для производства электроизоляционных резин; СКИ-3В – для вакуумной техники (рис. 10).

    Рис. 10 Вакуумный выключатель-прерыватель (а), электрозащитные перчатки (б)

    СКН – бутадиеннитрильный каучук. В зависимости от содержания нитрила акриловой кислоты бутадиеннитрильные каучуки разделяют на марки СКН-18, СКН-26, СКН-40. Они стойки в бензине и нефтяных маслах. На основе СКН производят резины для топленных и масляных шлангов, прокладок и уплотнителей мягких топливных баков (рис. 11).

    СКТ – синтетический каучук теплостойкий имеет рабочую температуру от -60 до +250оС, эластичный. На основе этих каучуков производят резины, предназначенные для изоляции электрических кабелей и для герметизирующих и уплотняющих прокладок (рис. 12).

    Рис. 11 Масляные шланги и уплотнители топливных баков

    Рис. 12 Уплотняющая прокладка и изоляция электрических кабелей

    Технология формообразования деталей из резины

    Из сырой резины методами прессования и литья под давлением изготавливают детали требуемой формы и размеров. Каждый метод имеет только ему присущие технологические возможности и применяется для изготовления определённого вида деталей.

    Прессование. Детали из сырой резины формуют в специальных прессформах на гидравлических прессах под давлением 5 – 10 МПа (рис. 13).

    Рис. 13 Гидравлический пресс и готовые изделия

    В том случае, если прессование проходило в холодном состоянии, отформованное изделие затем подвергают вулканизации. При горячем прессовании одновременно с формовкой протекает вулканизация. Методом прессования изготавливают уплотнительные кольца, муфты, клиновые ремни.

    Литьё под давлением. При этом более прогрессивном методе форму заполняют предварительно разогретой пластичной сырой резиновой смесью под давлением 30 – 150 МПа. Резиновая смесь приобретает форму, соответствующую рабочей полости пресс-формы. Прочность резиновых изделий увеличивается при армировании их стенок проволокой, сеткой, капроновой или стеклянной нитью (рис. 14).

    Рис. 14 Резиновые изделия с увеличенной прочностью

    Сложные изделия – автопокрышки, гибкие бронированные шланги и рукава – получают последовательно. Сначала наматывают на полый металлический стержень слои резины, затем изолирующие и армирующие материалы (рис. 15).

    Рис. 15 Бронированные шланги и устройство автопокрышки

    Сборку этих изделий выполняют на специальных дорновых станках (рис. 16).

    Рис. 16 Один из разновидностей дорновых станков литья под давлением резины

    Вулканизация. В результате вулканизации – завершающей операции технологического процесса – формируются физико-механические свойства резины. Горячую вулканизацию проводят в котлах, вулканизационных прессах, пресс-автоматах (рис. 17), машинах и вулканизационных аппаратах непрерывного действия под давлением при строгом температурном режиме в пределах 130 – 150оС. Вулканизационной средой могут быть горячий воздух, водяной пар, горячая вода, расплав соли. Основной параметр вулканизации – время – определяется составом сырой резины, температурой вулканизации, формой изделий, природой вулканизационной среды и способом нагрева.

    Вулканизацию можно проводить и при комнатной температуре (рис. 18). в этом случае сера отсутствует в составе сырой резины, а изделие обрабатывают в растворе или парах дихлорида серы или в атмосфере сернистого газа.

    Рис. 17 Пресс-автомат и котёл для вулканизации резины

    Рис. 18 Вулканизация (ремонт) шин при комнатной температуре

    В результате вулканизации увеличиваются прочность и упругость резины, сопротвление старению, действию различных органических растворителей, изменяются электроизоляционные свойства.

    На фото 1 и 2 показано сборочное оборудование Нижнекамского завода и цех вулканизации шин ЦМК (цельнометаллокордных покрышек).

    Фото 1

    Фото 2

    Главное преимущество цельнометаллокордных покрышек — возможность их двукратного восстановления путем наварки протектора. Это позволяет в конечном итоге удвоить срок их службы и довести до 500 тыс. км пробега. Помимо ресурсосбережения достигается значительный экологический эффект — вдобавок к уменьшению выхлопных газов сокращаются и отходы в виде изношенных покрышек.

    Просмотров:
    1 903

    extxe.com

    обозначение и классификация, условия эксплуатации, типы протекторов +фото

    В автомобилях устанавливают разные виды шин, в зависимости от погодных и температурных условий окружающей среды. Существуют даже покрышки для эксплуатации по бездорожью. Из статьи вы узнаете, каким же образом классифицируются шины, и как правильно подобрать их для авто.

    Устройство автомобильной шины

    Конструкция практически всех шин одинаковая:

    • борт;
    • прижимное кольцо;
    • брекер;
    • боковина;
    • корд;
    • протектор.

    В разрезе можно заметить, что структура покрышки многослойная. Так сделано для обеспечения одновременной эластичности и прочности конструкции. Именно поэтому в основе – каучуковая смесь с армированной тканью, пронизанной стальной проволокой.

    Немного отличается конструкция разве что у гоночных шин, для которых важны теплоотвод и высокая степень сцепления с дорожным покрытием. А вот устойчивость к трению у них низкая, поэтому в той же «Формуле-1» за один рейс каждый автомобиль меняет по 3–4 комплекта шин, ведь каждый изнашивается буквально за 30–40 километров езды.

    Видео «Разновидности автомобильных шин»

    В этом видеосюжете представлено несколько классификаций автомобильных покрышек.

    Классификация шин

    Условно шины разделяют по следующим критериям:

    • сезон;
    • рисунок протектора;
    • конструкция слоев;
    • тип профиля;
    • назначение.

    Также шины делятся на легковые, грузовые, специализированные. В этом случае они различаются только размером и схемой протектора. В той же строительной технике, к примеру, устанавливают толстую резину со специальными «зацепами», которые позволяют передвигаться тяжелой машине даже в условиях сильно размытой глины.

    Сезонность покрышек

    По сезонности автомобильные покрышки бывают:

    1. Летние. Подходят для эксплуатации при температуре окружающей среды +7 °C или выше. В более холодных условиях становятся слишком твердыми, не обеспечивают нормальной сцепки с дорожным полотном.
    2. Зимние. Подходят для эксплуатации при температуре окружающей среды +7 °C или ниже. Имеют выраженный рисунок протектора, чтобы через специальные ложбинки выводить из-под колес снег и воду.
    3. Всесезонные. Своего рода смесь летней и зимней резины. Специалисты не рекомендуют их активно использовать, так как они не обеспечивают такую хорошую сцепку, как летние или зимние.

    Всесезонные покрышки актуальны для тех регионов, где зимой снег редкость, а средняя суточная температура в январе или феврале не опускается ниже 0 °C.

    Отличия в протекторном рисунке

    По рисунку протектора бывают следующие разновидности покрышек:

    1. Ненаправленные. Самые распространенные и дешевые в производстве. Просто обеспечивают неплохую сцепку с дорожным покрытием.
    2. Направленные. В отличие от ненаправленных, в них рисунок сделан таким образом, чтобы через сформировавшиеся ложбинки из-под колеса при движении отводилась вода или снег. Отлично подходят для эксплуатации по мокрой дороге.
    3. Асимметричные. Дорогие, но обеспечивают лучшую сцепку с дорожным покрытием. Колесо в авто не устанавливается абсолютно вертикально, оно держится под уклоном. Несимметричный рисунок обеспечивает правильное прилегание резины к дорожному полотну, за счет чего маневренность авто увеличивается, вероятность заноса даже на мокрой дороге минимальная.

    Отличия в конструкции шин

    По конструкции автошины разделяются следующим образом:

    1. Диагональные. Более простые, имеют многослойную структуру из армированной ткани. Менее долговечные.
    2. Радиальные. Стоят дороже, состоят не из множества слоев, а из непересекающихся проволочных колец, утопленных в резиновую основу. Обеспечивают лучшую эластичность и надежность.

    Что касается сцепки с дорогой, то у диагональных и радиальных покрышек этот показатель практически идентичный. Ключевое отличие – в долговечности.

    Виды профилей

    Для тех, кто интересуется вопросом, какие бывают шины по типу профиля, отвечаем: низкопрофильные и широкопрофильные.

    Первые подходят больше для скоростной, динамической, маневренной езды. Отличаются они минимальной толщиной боковины. И именно за счет этого пятно контакта протектора с дорогой увеличивается.

    Широкопрофильные – это более привычные шины, являются универсальными в плане используемой техники управления. Стоят тоже дешевле.

    Следует заметить, что у низкопрофильных и широкопрофильных покрышек кардинально различается конструкция колесного диска, поэтому они несовместимы.

    Для внедорожников и кроссоверов

    Их лишь недавно выделили в отдельную категорию, так как от обычных шин они мало чем отличаются. Разделяют на следующие виды:

    1. Шоссейные. Более жесткие, чем для легковых авто, состав резины также устойчив к абразивному воздействию.
    2. Грязевые. Протектор у них с глубоким рисунком, с так называемыми зацепами. За счет них и обеспечивается хорошая сцепка с грязью.
    3. Универсальные. Самые простые по конструкции, хорошо подходят для езды по асфальту, по бездорожью – умеренно.

    Беспрокольная технология RunFlat

    Относительно недавно такие шины стали использовать в Европе, сейчас они завоевывают все большую популярность. Ключевое отличие таких покрышек – наличие ребер жесткости в боковине, с внутренней стороны. За счет этого при отсутствии давления шина позволяет проехать еще порядка 80–100 километров. И при этом она не испортится, ее не разорвет, рисунок не затрется. Покрышка будет выдерживать свою рабочую форму именно за счет ребер жесткости.

    Сейчас часто встречаются шины с маркировкой, указывающей на соответствие RunFlat, хотя таковыми они не являются. Делают это с целью привлечения потенциального покупателя, хотя это обман со стороны производителя.

    Если уж и покупать автошины такого типа, то доверять только проверенным производителям. Стоят они недешево, но в критических случаях хорошо выручают, когда вблизи нет никаких шиномонтажных мастерских.

    Типы гоночных шин

    Ключевое отличие гоночных шин – рисунок протектора и ширина профиля. Главное требование к ним – обеспечение хорошей сцепки и устойчивость к очень высоким скоростям. Поэтому поверхность у них практически гладкая. Это обеспечивает самое большое пятно соприкосновения с асфальтом, однако нормально управлять автомобилем получится разве что на сухой качественной дороге, без повреждений, изъянов и мусора. Кстати, такие покрышки эксплуатировать не допускается на дорогах общего значения.

    Гоночные шины дополнительно разделяют на слики, у которых гладкий протектор без рисунков, и полуслики, у которых есть рисунок протектора, с помощью которого отводится вода из-под колес.

    Маркировка автомобильных шин

    Для более точного определения типа шин производители наносят на боковину специальную маркировку, на которой указываются:

    • размер;
    • сезонность;
    • тип рисунка;
    • конструкция;
    • посадочный диаметр;
    • предел максимальной скорости;
    • предел нагрузки;
    • ширина профиля;
    • дополнительные функции.

    Отечественных производителей

    Ранее использовалась упрощенная маркировка, сейчас же даже в России принято указывать дюймовую, являющуюся общепринятой во всем мире. В упрощенной же покрышки обозначались как 165­­-330Р, что расшифровывается следующим образом:

    • 165 – ширина профиля в миллиметрах;
    • 330 – посадочное место в миллиметрах;
    • Р – радиальная конструкция, если данная буква отсутствует, значит, это диагональная шина.

    Зарубежных производителей

    Традиционная маркировка имеет вид типа LT 195/55R18 91V, где:

    • LT – это общий тип назначения, в данном случае для легких грузовиков;
    • 195 – ширина профиля, пятна контакта;
    • 55 – отношение высоты профиля к ширине, указывается в процентном соотношении;
    • R – тип каркаса, в данном случае радиальный;
    • 18 – посадочный диаметр;
    • 91 – индекс допустимой максимальной нагрузки;
    • V – максимальный предел скорости.

    В некоторых странах применяется дюймовая система маркировки. Вид аналогичный, но все показатели указываются в дюймах.

    Предел максимальной скорости – относительный показатель. Это лишь гарантия того, что на заданной скорости покрышка сохраняет свойства, заданные ей производителем. Но эксплуатация на скорости, близкой к максимальной, все равно ускоряет износ протектора.

    Практические советы по выбору резины

    Можно долго спорить относительно того, как правильно выбирать резину для авто. На тематических форумах по этому поводу встречаются десятки дискуссий.

    Бывалые автомобилисты сходятся на том, что оптимальными для авто являются те шины, которые рекомендует сам производитель транспортного средства.

    Отступать от данного совета не стоит. Концерны имеют возможность провести десятки испытаний, на основе которых выбрать те покрышки, которые обеспечат и хорошую маневренность, и безопасность на дороге. Профессионалы же дополнительно рекомендуют следовать следующим советам:

    1. Низкопрофильные шины в РФ – не лучший вариант. Они подойдут разве что для поездок в городах, где дороги действительно качественные. Но уже в пригороде все их преимущества исчезают, а вот недостатки проявляются. И главный среди них – плохая амортизация при езде по дорогам не лучшего качества.
    2. Отдавать предпочтение только проверенным брендам и отказаться от покупки уже эксплуатированных шин. Среди производителей советуют покупать автошины от Nokian, Yokohama, Michelin, Pirelli, Goodyear, Bridgestone, Continental. Вот только многие бренды сейчас подделывают. Поэтому покрышки следует покупать только у официальных представителей. Их список всегда можно найти на официальном сайте производителя.
    3. Для внедорожников лучше отдавать предпочтение шинам с отметкой XL, что указывает на их устойчивость к очень высоким динамическим и статическим нагрузкам. Стоят недешево, но не подводят в самый ответственный момент.
    4. Не использовать всесезонные шины. Хоть и кажется, что таким образом можно сэкономить, на деле их приходится часто менять. А вот качественной сцепки с дорогой они не обеспечивают. Лучше по традиции владеть двумя отдельными комплектами – для зимы и лета.
    5. RunFlat покупать, если автомобиль часто используется для длительных междугородних или даже международных поездок. У производителей требования к качеству таких шин высокое, проверка также многоуровневая. Они полностью окупают свою стоимость.

    Именно за шинами приходится тщательнее всего следить. То же давление, например, следует проверять не реже 2 раз в неделю, а при ежедневном использовании авто – и того чаще! За использование слишком изношенных покрышек штрафы небольшие, но не забывайте, что речь идет в первую очередь о безопасности самого автовладельца.

    kakieshiny.ru

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о