Схема электростартера – : ,

Содержание

Схема подключения стартера ВАЗ | 2 Схемы

На автомобилях ВАЗ применяются стартеры, представляющие собой электродвигатель постоянного тока с электромагнитным двухобмоточным тяговым реле и роликовой муфтой свободного хода (обгонной муфтой). Стартеры служат для обеспечения минимальной частоты вращения коленчатого вала, необходимой для запуска двигателя. Питание стартера в режиме пуска осуществляется от аккумуляторной батареи.

Реле стартера имеет подключение к цепному питанию, тем самым замыкая и размыкая цепь, в зависимости от того, с какой скоростью вращается коленвал. На всех автомобилях устройство стартеров одинаковое, отличия лишь незначительные конструктивные. Если вы разбираетесь, как работает стартер в одном автомобиле, то без затруднений разберетесь и в другом.

Чтобы поломка стартера не застала врасплох, рассмотрим, как заменить его самостоятельно. Но прежде почитайте теорию и изучите все варианты схем подключения стартера на разные модели авто ВАЗ, собранные редакцией 2 Схемы.ру по знакомым автоэлектрикам.

Схема соединений стартера ВАЗ 2101

  1. стартер;
  2. удерживающая обмотка тягового реле;
  3. выключатель зажигания;
  4. генератор VAZ 2101;
  5. блок предохранителей;
  6. втягивающая обмотка тягового реле;
  7. аккумуляторная батарея.

При обычных нагрузках ток вырабатываемый стартером составляет 150 А. Когда возникают большие нагрузки, например, зимой, возникающий ток может достигнуть 500 А. Это серьезное испытание для этого электроагрегата, поэтому не рекомендуется держать ключ на запуске дольше 10 секунд, а повторные попытки запуска надо делать с перерывом не менее минуты.

Схема соединений стартера на 2105

  1. генератор;
  2. аккумуляторная батарея;
  3. шунтовая катушка обмотки статора;
  4. стартер VAZ 2105;
  5. сериесная катушка обмотки статора;
  6. удерживающая обмотка тягового реле;
  7. втягивающая обмотка тягового реле;
  8. реле включения стартера;
  9. монтажный блок;
  10. выключатель зажигания.

Схема подключения стартера ВАЗ 2106

  1. стартер;
  2. генератор;
  3. аккумуляторная батарея;
  4. втягивающая обмотка тягового реле;
  5. выключатель зажигания;
  6. удерживающая обмотка тягового реле

1 – крышка со стороны привода; 14 – крышка реле;
2 – стопорное кольцо; 15 – контактные болты;
3 – ограничительное кольцо; 16 – коллектор;
4 – шестерня привода; 17 – щетка;
5 – обгонная муфта; 18 – втулка вала якоря;
6 – поводковое кольцо; 19 – крышка со стороны коллектора;
7 – резиновая заглушка; 20 – кожух;
8 – рычаг привода; 21 – шунтовая катушка обмотки статора;
9 – якорь реле 2106; 22 – корпус;
10 – удерживающая обмотка тягового реле; 23 – винт крепления полюса статора;
11 – втягивающая обмотка тягового реле; 24 – якорь;
12 – стяжной болт реле; 25 – обмотка якоря;
13 – контактная пластина; 26 – промежуточное кольцо.

Схема стартера ВАЗ 2108, 2109, 21099

Электрический ток поступает в цепь включения стартера с вывода «30» генератора. Далее через колодку Ш8 (Х8) монтажного блока (выводы 5,6), колодку Ш1 (Х1)-розовый провод, на выключатель зажигания. Водитель поворачивает ключ в замке зажигания, чтобы включить стартер (положение 2) и замыкает контакты (50, 30). После чего замка зажигания по красному проводу ток поступает на колодку Ш1 (Х1) монтажного блока (вывод 8), далее колодка Ш5 (Х5) (вывод 4), реле включения стартера (вывод 85). Реле срабатывает. С вывода «30» реле включения ток уходит на вывод «50» тягового реле стартера, запитывая его обмотку. Тяговое реле срабатывает, запуская стартер.

В электрической цепи стартера применяется реле включения 111.3747-10.

  1. Винт крепления защитного колпака.
  2. Защитный колпак.
  3. Стопорное полукольцо.
  4. Гайка крепления задней крышки.
  5. Задняя крышка.
  6. Пружины щеток.
  7. Направляющие щеток (наружная часть).
  8. Щетки.
  9. Статор.
  10. Якорь.
  11. Рычаг привода.
  12. Привод.
  13. Ограничительное кольцо.
  14. Стопорное кольцо.
  15. Ось рычага привода.
  16. Винты крепления тягового реле.
  17. Передняя крышка.
  18. Пластмассовое уплотнительное кольцо крышки.
  19. Стяжные шпильки.
  20. Резиновая заглушка.
  21. Сердечник тягового реле.
  22. Возвратная пружина.
  23. Уплотнительное кольцо тягового реле.
  24. Тяговое реле.
  25. Уплотнительная шайба.
  26. Регулировочные шайбы.

Схема стартера для ВАЗ 2110, 2111, 2112

На автомобили ВАЗ-2110 устанавливались стартеры типа 57.3708 и имели следующие технические характеристики:

  • Номинальная мощность 1,55 кВт
  • Потребляемый ток при максимальной мощности не более 375 Ампер
  • Потребляемый ток в заторможенном состоянии не более 700 Ампер
  • Потребляемый ток в режиме холостого хода не более 80 Ампер

Схема подключения стартера на десятку приведена выше, вот ее расшифровка:

  1. АКБ
  2. генератор
  3. сам стартер
  4. замок зажигания

1 – вал привода; 20 – контактные болты;
2 – втулка передней крышки; 21 – вывод «положительных» щеток;
3 – ограничительное кольцо; 22 – скоба;
4 – шестерня с внутренним кольцом обгонной муфты; 23 – щеткодержатель;
5 – ролик обгонной муфты; 24 – «положительная» щетка;
6 – опора вала привода с вкладышем; 25 – вал якоря;
7 – ось планетарной шестерни; 26 – стяжная шпилька;
8 – прокладка; 27 – задняя крышка с втулкой;
9 – кронштейн рычага; 28 – коллектор;
10 – рычаг привода; 29 – корпус;
11 – передняя крышка; 30 – постоянный магнит;
12 – якорь реле; 31 – сердечник якоря;
13 – удерживающая обмотка; 32 – опора вала якоря с вкладышем;
14 – втягивающая обмотка; 33 – планетарная шестерня;
15 – тяговое реле; 34 – центральная (ведущая) шестерня;
16 – шток тягового реле; 35 – водило;
17 – сердечник тягового реле; 36 – шестерня с внутренними зубьями;
18 – контактная пластина; 37 – кольцо отводки;
19 – крышка тягового реле; 38 – ступица с наружным кольцом обгонной муфты.

Схема подключения стартера 2113, 2114, 2115

Втягивающее реле стартера

Реле пускового устройства называют втягивающим. Это связано с принципом его работы — оно выполняет функцию подключения пускового устройства к электрической цепи и соединения его якоря с коленчатым валом. Происходит это так: когда ток не подается на обмотки устройства, его якорь под действием возвратной пружины пребывает в выдвинутом вперед положении. Эта же пружина через специальную вилку удерживает шестерню бендикса, не давая ей входить в зацепление с венцом маховика коленвала.

Поворачивая ключ в замке зажигания, мы подаем ток на обмотку устройства. Под воздействием электромагнитного поля якорь подается назад (втягивается в корпус), замыкая контакты питания стартера. Сдвигается и шестерня бендикса, входя в зацепление с маховиком. В этот же момент втягивающая обмотка отключается, и в дело вступает удерживающая. Усилие от вала стартера передается через шестерню на маховик, заставляя коленчатый вал вращаться до того момента, пока мы не перестанем удерживать ключ в замке зажигания в положении запуска.

Какие функции выполняет втягивающее реле:

  • Защищает стартер от замыкания контактов в зажигании.
  • С целью отключения питания стартера в той ситуации, когда мотор работает, а ключ показывает режим «стартер».
  • Обеспечивает разгрузку контактов в замке зажигания.

Когда мотор запускается, напряжение от генератора идет на обмотку реле. Затем начинают работать шестерни приводной системы, за счет чего возникает магнитное поле. Маховик двигательной системы работает. Шестерня начинает свою работу благодаря обмотке удерживания, в то время когда болты замкнутся. Когда ключ возвращается в замок зажигания, то происходит обесточивание обмотки, таким образом, шестерня и маховик разъединяются. Эта схема касается современных автомобилей, включая и модели ВАЗ.

Если стартер работает с громким шумом, то это могло прослабиться крепление полюса или стартера. В первой ситуации усильте крепление, для этого затяните винт, а во второй – закрепите стартер. Если вы разобрали стартер и увидели, что муфта начинает пробуксовывать, то единственное, что нужно будет сделать, – это заменить привод стартера.

Подключение проводов к стартеру

Подключение стартера на ВАЗ — инструкция. Закрепите реле в том месте, где удобно (например бачок омывателя). Подведите провода к стартеру. Затем снимите проводок красного цвета, находящегося на плоском выводе реле, и нужно сделать соединение с разъемом провода типа «папа» и провода от нового реле.

Провод, имеющий кольцевой наконечник для 8 мм, оденьте на положительную сторону стартера и притяните гайкой. Провод нового реле типа «мама» наденьте на тот контакт, который освободился у тягового реле. Этот провод будет передавать плюс на катушку. Используя хомут, притяните новый провод и штатный вместе. Провод от катушки маленькой длины прикрутите. Теперь можно произвести включение нового реле.

2shemi.ru

2.3.5. Электрические схемы управления стартером

Все
современные системы электростартерного
пуска имеют дис­танционное управление
стартером. При дистанционном управлении
стартерный электродвигатель соединен
с аккумуляторной батареей с помощью
тягового реле стартера. На автомобилях
с дизельными двигателями это делается
при помощи выключателя стартера,
кон­такты которого рассчитаны на ток,
потребляемый тяговым реле. На автомобилях
с бензиновыми двигателями, у которых
мощность стартера значительно ниже,
тяговое реле включается через выклю­чатель
зажигания. Однако контакты последнего
не рассчитаны на силу тока, потребляемую
реле (30…40 А) в момент включения. По­этому
дополнительно устанавливается
промежуточное реле стар­тера, контакты
которого подключают обмотки тягового
реле к бата­рее. Обмотка этого реле
стартера включается через выключатель
зажигания.

Н

Рис.2.26

аиболее просты схемы управления
стартеров малой мощности с однообмоточном
тяговым реле. Электрическая схема
управления стартером показана на рис.
2.26. Стартер смешанного возбужде­ния
включается однообмоточным тяговым релеК1
(рис. 2.26), пи­тание на обмотку которого
поступает непосредственно через контакты
S1
выключателя зажигания при по­вороте
ключа в положение «Стартер».

Якорь
реле втягивается в электромагнит, через
рычажный механизм вводит шес­терню
в зацепление с венцом маховика и в конце
хода замыкает силовые контакты К1.1
цепи питания электродвигателя М.
Последний
начинает вращаться и проворачивать
коленчатый вал двигателя. После пуска
ДВС шестерня от вала отсоединяется
обгонной муфтой, при переводе ключа в
положение «Зажигание» якорь тягового
реле и приводной механизм под действием
пружины возвращаются в сходное положение.

В
стартерах в основном применяются
двухобмоточные тяговые реле, имеющие
втягивающую (ВО) и удерживающую (УО)
обмотки. Такие реле позволяют снизить
расход энергии батареи в процессе пуска
двигателя. Принцип работы двухобмоточного
тягового реле стартера проиллюстрирован
на рис. 2.27. После замыкания контак­тов
КРС.
1

реле стартера (или выключателя стартера
на дизельных двигателях) ток от
аккумуляторной батареи проходит по
двум об­моткам: УО
и ВО (рис. 2.27,а).
Под действием намагничивающей силы
этих двух обмоток якорь тягового реле
втягивается в электро­магнит (см. рис.
2.10), при помощи рычажного механизма
вводит шестерню привода в зацепление
с венцом маховика и в конце хода, замыкая
силовые контакты тягового реле КТР.
1,

включает цепь пита­ния стартерного
электродвигателя. Одновременно этими
же контак­тами втягивающая обмотка
ВО замыкается накоротко (рис. 2.27,б).

Рис.
2.27.

После
пуска двигателя контакты КРС.1
размыкаются и ток про­ходит
последовательно через силовые контакты
КТР.1,
обмотки 60 и УО
параллельно стартерному электродвигателю
(рис. 2.27,в).
Причем
направление тока в витках обмотки УО
сохраняется преж­ним, а в витках
втягивающей обмотки ВО изменяется. Так
как число витков в обмотках одинаково
и по ним протекает ток одной и той же
силы, суммарная магнитодвижущая сила
будет равна нулю. Сер­дечник
электромагнита размагничивается,
возвратная пружина, вы­двигая якорь
из сердечника тягового реле, размыкает
силовые кон­такты КТР.1
и, воздействуя на рычаг включения
привода, выводит шестерню из зацепления
с венцом маховика.

В
схеме управления стартером СТ230-Б (рис.
2.28,а) при замы­кании контактов
выключателя зажигания S1.1
срабатывает реле стартера К2,
контакты К2.1
которого соединяют с аккумуляторной
батареей GB
обмотки тягового реле К1.
Контакты одновремен­но шунтируют
добавочный резистор Я в первичной цепи
катушки зажигания. После пуска двигателя
и возвращения ключа выключа­теля
зажигания в положение «Зажигание»
остаются замкнутыми контакты S1.2
в цепи зажигания и размыкаются контакты
S1.1,
сни­мающие напряжение с обмотки реле
К2.

Стартер
СТ142 (рис. 2.28,б) включается при замыкании
контактов S1.1
выключателя приборов и стартера. Работа
схемы управления аналогична работе
схемы управления стартером СТ230-Б. При
под­нятой кабине автомобиля стартер
можно включить дублирующим выключателем
S2.
Контакты S1.2
обеспечивают срабатывание кон­тактора
КЗ
и подвод питания к выключателю
электрофакельного по­догрева (ЭФП)
через контакты К3.1.
В схеме применен дистанционный выключатель
аккумуляторной батареи (выключатель
«массы») К4,
который управляется кнопочным выключателем
S3.

Рис.
2.28.

Для
предотвращения повторного включения
стартера после пус­ка двигателя
устанавливается специальное реле
блокировки. При этом для срабатывания
этого реле могут быть использованы
сигна­лы с различных датчиков о выходе
ДВС на рабочий режим. Наибо­лее
распространены реле блокировки,
срабатывающие после по­явления
номинального напряжения автомобильного
генератора. Используются также датчики
частоты вращения коленчатого вала,
датчики давления масла в рабочих
магистралях двигателя и т. д.

На
автомобилях КамАЗ, БелАЗ, дизельных
двигателях КРАЗ и «Урал» устанавливается
система пуска двигателей с автоматиче­ским
отключением и блокировкой стартера
(рис. 2.29). Система со­стоит из датчика
частоты вращения коленчатого вала, реле
старте­ра KV1
с

нормально разомкнутыми контактами
KV1.1,
подключаю­щими стартер к аккумуляторной
батарее GS,
выключателя стартера S
и электронного блока управления, в
который входят схемы фор­мирователя
(транзистор VT1,
стабилитроны VD2,
VD3),
преобразо­вателя (диоды VD5,
VD6,
стабилитрон VD7,
конденсаторы С5,
С6,
резисторы
R8,
R9),
компаратора (стабилитрон VD7)
и триггера (VT2,
VT3).

Когда
выключатель S переводится в положение
КЗ
(«Включе­но»), к блоку управления
подключается аккумуляторная батарея
GB.
При этом триггер перебрасывается в
состояние, в котором транзистор VT2
закрыт, а VT3
открыт.

Рис.
2.29.

После
перевода выключателя в положение
СТ(«Пуск») обмотка реле KV1
через диод VD11
и открытый транзистор VT3
также под­ключается к аккумуляторной
батарее. Реле срабатывает и контакты
KV1.1
включают стартер.

При
вращении коленчатого вала с датчика
его частоты враще­ния на вход
формирователя электронного блока (VT1)
начинают поступать импульсы напряжения
положительной полярности. С коллектора
VT1
усиленные импульсы, ограниченные по
амплитуде стабилитронами VD2
и VD3,
поступают на вход преобразователя,
который преобразует частотную
последовательность импульсов в напряжение
на выходе конденсатора С6.
Параметры преобразова­теля выбраны
таким образом, что после пуска ДВС и
соответст­вующего увеличения частоты
вращения коленчатого вала амплиту­да
этого напряжения становится равной
напряжению стабилизации стабилитрона
VD7.
Последний пробивается и переводит
триггер во второе устойчивое состояние,
при котором VT3
закрыт, a
VT2
от­крыт. Обмотка реле KV1
обесточивается и стартер отключается.

Повторное
включение стартера возможно только
после сниже­ния частоты вращения
коленчатого вала и перевода выключателя
S
в первоначальное положение. Если даже
выключатель S
остает­ся в положении СТ, а двигатель
по каким-либо причинам стал глох­нуть
(уменьшилась его частота вращения),
повторного включения стартера не
произойдет, так как для срабатывания
реле KV1
необ­ходимо перевести триггер в первое
устойчивое состояние, а это возможно
только при возврате ключа S в исходное
положение.

В
качестве датчика частоты вращения
коленчатого вала в этой системе может
быть использован генератор переменного
тока. При этом полезный сигнал снимается
с одной из его фаз или с дополни­тельной
специальной обмотки.

Стартеры
большой мощности, рассчитанные на
напряжение 24 В, в схемах электрооборудования
с номинальным напряжением 12 В включают
в работу при помощи специального
электромагнитного пе­реключателя,
который изменяет соединение двух
аккумуляторных батарей (на 12В каждая)
с параллельного на последовательное.

studfiles.net

Стартер — Энциклопедия журнала «За рулем»

Стартер — электрическая машина, коллекторный двигатель постоянного тока, основной механизм системы пуска автомобильного двигателя внутреннего сгорания.

Схема соединений стартера

1 – стартер;
2 – аккумуляторная батарея;
3 – генератор;
4 – монтажный блок;
5 – реле включения стартера;
6 – выключатель зажигания;
I – удерживающая обмотка;
II – втягивающая обмотка.

Для запуска любого ДВС водителю необходимо раскрутить коленчатый вал, то есть передать на него вращающий момент. Коленчатый вал приводит в движение через шатуны поршни, в цилиндры засасывается топливо-воздушная смесь. Свеча зажигания поджигает сжатую топливовоздушную смесь, расширяющиеся газы оказывают давление на поршень. Поршень в цилиндре, который находится в состоянии рабочего хода, через шатун воздействует на коленчатый вал. В результате приходят в движение шатуны и поршни других цилиндров, в которых происходят аналогичные рабочие процессы сжатия, поджига топливо-воздушной смеси, расширения газов. Двигатель запускается и передает крутящий момент на механизмы трансмиссии.

Типы пусковых механизмов

Для первоначальной раскрутки коленчатого вала применяются пусковые механизмы, которые подразделяются на несколько типов.
Группа мускульных пусковых механизмов включает в себя механизмы с ножным приводом используются на одноколейных транспортных средствах с ДВС. На мотоциклах — до недавнего времени широко применялись кикстартеры, пусковая педаль с трещоткой свободного обратного хода, соединенная с коленвалом двигателя через шестерни пусковой системы. На мопедах и мотовелосипедах для запуска ДВС используют педали велосипедного типа.
Пусковые системы с ручным приводом подразделяются на механизмы с использованием шнура, наматываемого на маховик (барабан). Эти пусковые системы используются для запуска ДВС небольшой мощности — на бензопилах, лодочных моторах, стационарных электрогенераторах и насосах. На инерционные механизмы с использованием понижающего редуктора, которыми оснащаются легкие тракторы и катерные дизели. На системы прямого действия, в которых какие-либо механизмы не используются вовсе — как на легких самолетах, в которых запуск двигателя производится раскручиванием винта вручную.
На автомобилях в качестве запасной используется ручная система пуска рукояткой, в простонародье «кривой стартер». На переднем торце коленчатого вала ДВС находится венец с косыми зубьями, покатые поверхности которых направлены против направления вращения вала. В этот венец вставляется пусковая рукоятка с поперечными штифтами. Штифты входят в зацепление с зубьями венца. При повороте рукоятки по часовой стрелке крутящий момент передается на коленчатый вал двигателя. Как только ДВС запустится, косые поверхности зубьев венца выталкивают штифты пусковой рукоятки вперед, рукоятка выходит из зацепления с коленчатым валом.
Простейший по устройству механизм с пусковой рукояткой широко использовался на заре автомобилизма. В большинстве моделей легковых автомобилей начала ХХ столетия пусковая рукоятка была несъемной и соединялась с коленчатым валом либо муфтой одностороннего ходя, либо посредством венца — рукоятку при пуске нужно было слегка вдвинуть по ходу и провернуть.
В современных автомобилях рукоятка ручного запуска ДВС встречается редко и только в автомобилях классической заднеприводной компоновки с передним расположением двигателя.
В гоночных автомобилях используется пусковая система с отсоединяемым электрическим стартером — вместо пусковой рукоятки используется электродвигатель с венцовым зацеплением с коленчатым валом ДВС. Этот стартерный механизм подключается к специальному фланцу в задней части автомобиля, поскольку двигатель таких машин располагается над задней осью или перед ней.
Другая большая группа пусковых механизмов включает в себя стартеры с использованием вспомогательных двигателей разного типа.
Самым распространенным видом подобных механизмов является электростартер, который повсеместно применяется на автомобилях всех типов, мощных лодочных моторах, катерах, мотоциклах, квадроциклах и другой транспортной технике с ДВС.
На тракторных дизелях применяется система запуска со вспомогательным ДВС — «пускачом». Обычно это одноцилиндровый двухтактный бензиновый двигатель воздушного охлаждения, мощность которого примерно в десять раз меньше мощности основного двигателя. Пусковой ДВС, в свою очередь, запускается либо электростартером, либо вручную шнуровым механизмом (как на лодочных моторах).
Судовые, танковые, тепловозные дизели оснащаются пневматической системой запуска. В данном пусковом механизме для приведения во вращение коленчатого вала используются сам главный двигатель, в цилиндры которого через дополнительные клапаны подается сжатый воздух. Как только двигатель запускается, подача сжатого воздуха в цилиндры прекращается. ДВС начинает работать в обычном режиме. Баллон со сжатым воздухом пополняется во время работы основного двигателя, который соединен с компрессором. Обычно этот же компрессор используется в системе управления транспортным средством, в тормозной системе (с пневмоприводом), в механизмах подвески (пневмоподвеска) и других. Особое распространение пневмозапуск получил в самолетах 30-40-х годов прошлого века. В наши дни в авиационной технике используются электрические стартеры, получающие питание от бортовых аккумуляторов самолета, стационарных станций и подвижных аэродромных пусковых агрегатов (АПА).
Помимо пусковых механизмов различного типа существует и система непосредственного запуска ДВС, разработанная немецкой компанией BOSH. Система Direct Start включает в себя управляющий компьютер и систему форсунок, впрыскивающих топливо-воздушную смесь в один из цилиндров остановленного двигателя, поршень которого находится в положении рабочего хода. Свеча поджигает смесь, которая поступает в цилиндр уже в сжатом виде. Происходит вспышка, расширяющиеся газы толкают поршень, который через шатун приводит во вращение коленчатый вал. Управляющий компьютер подает поочередно команды на впрыск в другие цилиндры, поршень которых приходит в положение рабочего хода — двигатель запускается. Эта система работает только в ДВС с количеством цилиндров от четырех и более и в серийных автомобилях пока не применяется.

Устройство автомобильного электростартера

1 – ограничительное кольцо хода шестерни;
2 – буферная пружина;
3 – шестерня привода;
4 – ступица обгонной муфты;
5 – ролик обгонной муфты;
6 – наружное кольцо обгонной муфты;
7 – кожух обгонной муфты;
8 – ось рычага привода шестерни;
9 – рычаг привода;
10 – крышка со стороны привода;
11 – якорь тягового реле;
12 – шток тягового реле;
13 – втягивающая обмотка реле;
14 – удерживающая обмотка реле;
15 – корпус реле;
16 – крышка реле;
17 – контактные болты;
18 – контактная пластина;
19 – щетка;
20 – коллектор;
21 – обмотка статора;
22 – обмотка якоря;
23 – стяжной болт;
24 – кожух;
25 – сердечник якоря;
26 – корпус стартера;
27 – полюс статора;
28 – поводковое кольцо.


В качестве вспомогательного двигателя для запуска двигателя применяются коллекторные электродвигатели постоянного тока, получающие питание от бортовой аккумуляторной батареи автомобиля. На вал электродвигателя насажена подвижная муфта одностороннего хода, которую венчает шестерня. При повороте ключа зажигания или нажатии пусковой кнопки соленоид стартера перемещает муфту по валу. Венец муфты входит в зацепление с зубьями маховика ДВС. Одновременно через замкнувшиеся контакты на коллекторные щетки электродвигателя подается электрический ток. Вал двигателя приводится во вращение, крутящий момент передается через зубья маховика на коленчатый вал ДВС. Как только двигатель запускается, соленоид и электродвигатель стартера обесточиваются, муфта под воздействием пружины возвращается в исходное положение, выводя пусковую шестерню из зацепления с маховиком.
Электростартер в ряде случаев может применяться в качестве вспомогательного двигателя автомобиля — когда машину необходимо переместить на небольшое расстояние (в несколько метров) при неработающем ДВС. В экстренных ситуациях, когда жизни водителя и пассажиров может угрожать опасность, водитель может включить первую передачу и стартером привести автомобиль в движение.

Электростартеры мотоциклов

На легких мотоциклах, скутерах, мотороллерах с электрозапуском обычно используется электрическая машина двустороннего действия — династартер, который при подаче тока может работать, как электродвигатель, а в обычном состоянии (при работающем ДВС) выполняет функции электрогенератора.
Династартер устанавливается непосредственно на левую часть коленчатого вала мотоциклетного двигателя (встречается и обратное расположение), его якорь вращается с той же скоростью, что и коленчатый вал. Недостатком династертера, как и любого мотоциклетного генератора, является выработка недостаточного тока на малых оборотах двигателя (поскольку нет повышающей обороты якоря ременной, цепной или шестеренчатой передачи). На тяжелых мотоциклах (чопперах, спортбайках и других) применяются более совершенные системы электрозапуска схожие по устройству с автомобильными.
Для обеспечения безопасности мотоциклетные электростартеры дополняются специальными механизмами блокировки, предотвращающими запуск двигателя при неработающих тормозах. Подобная блокировка в обязательном порядке устанавливается на все мотоциклы и скутеры с автоматической передачей (клиноременным вариатором). Двигатель скутера запускается поворотом ключа только в том случае, если одна из тормозных рукояток (переднего или заднего тормоза) зажаты водителем. При свободных тормозных рукоятках энергия на электростартер не подается.

Запуск двигателя в экстренных случаях

На транспортных средствах с механической КП запуск двигателя при неработающем электростартере и отсутствии механизма пуска рукояткой возможен буксировкой автомобиля («с толкача»). Однако, таким образом невозможно запустить автомобиль и мотоцикл с автоматической трансмиссией — если транспортное средство не оборудовано механизмом блокировки АКП. На скутерах с вариатором подобный механизм отсутствует. Поэтому пуск двигателя буксировкой или при движении накатом на них невозможен, но обязательно есть кикстартер, который на скутерах с электрозапуском двигателя используется в качестве вспомогательного пускового механизма.
При истощенной бортовой аккумуляторной батарее автомобиля и исправном электростартере двигатель можно запустить, подавая ток от внешнего источника электроэнергии. Для этого используются сетевые понижающие трансформаторы или аккумуляторы других автомобилей.

wiki.zr.ru

Схема стартера с электромагнитным дистанционным управлением. Электрические схемы управления стартером

Устройство электрических стартеров

Вступление

1.1. Внутреннее строение стартеров

1.2. Принципиальные электрические схемы

2. Характеристики электростартеров

3. Особенности работы электростартеров и требования к электростартерам

4. Схемы управления электростартерами

Вступление

Двигатели внутреннего сгорания, устанавливаемые на автомобилях, автобусах, тракторах, мотоциклах, не имеют пускового момента. Для начала самостоятельной работы такого двигателя необходимо сообщить ему определенную начальную или пусковую частоту вращения, т. е. запустить двигатель. Пусковая частота вращения зависит от типа двигателя: 40 — 70 об/мин — для карбюраторных двигателей и 100 — 200 об/мин — для дизельных. В качестве пусковых устройств используются преимущественно электрические стартеры прямого действия.

Электрический стартер представляет собой устройство, состоящее из двигателя постоянного тока, механизма сцепления — расцепления, редуктора и аппаратуры управления. Механизм сцепления — расцепления и редуктор обычно называют приводом стартера.

В качестве источника энергии для питания стартера используются аккумуляторные батареи специального исполнения — так называемые стартерные аккумуляторные батареи (ГОСТ 959.0-84).

1. Устройство электростартеров

    1. Внутреннее строение стартеров

Автомобильные электростартеры отличаются по способу управления и возбуждения, типу механизма привода, способу крепления на двигателе и степени защиты от проникновения пыли и воды.

По типу и принципу работы приводных механизмов выделяют стартеры с электромеханическим перемещением шестерни привода, которые получили наибольшее распространение, и стартеры с инерционным или комбинированным приводом. Для предотвращения разноса якоря после пуска двигателя в автомобильные электростартеры устанавливают роликовые, храповые и фрикционно-храповые муфты свободного хода.

Стартер состоит из электродвигателя постоянного тока с последовательным или смешанным возбуждением, электромагнитного тягового реле и механизма привода. В стартер может быть встроен дополнительный редуктор.

Узлами и деталями электростартера с электромеханическим включением шестерни являются корпус 22 (рис.10.5) с полюсами 21 и катушками 20 обмотки возбуждения, якорь 24 с обмоткой и коллектором 16, механизм привода муфтой свободного хода 2, шестерней 1 и буферной пружиной 4, электромагнитное тяговое реле с корпусом 8, обмоткой 9, контактными болтами 13 с контактами 12, крышка 6 со стороны привода, крышка 17 со стороны коллектора и щеточный узел с щеткодержателями 15, щетками 19 и щеточными пружинами 14. Корпусы (рис. 10.6) электростартеров изготавливают из трубы или стальной полосы с последующей сваркой стыка.

С целью улучшения герметизации корпус не имеет окон для доступа к щеткам. Длина корпуса в 1,6-2 раза больше длины пакета якоря. Толщина корпуса зависит от диаметра D корпуса и составляет (0,05-0,08) D. В корпусе 2 предусмотрено отверстие для выводного болта 8 обмотки возбуждения. Корпус может иметь установочные прорези на торцах и конусообразные проточки для установки уплотнительных колец.

К корпусу 2 винтами 3 крепят полюсы 12 с катушками 1 обмотки возбуждения. Все автомобильные стартёры выполняют четырехполюсными. Катушки последовательных и параллельных обмоток возбуждения устанавливают на отдельных полюсах, поэтому число катушек равно числу полюсов.

Рис. 1. Корпус стартера в сборе.

1 – катушка, 2 – корпус, 3 – винт полюса, 4 – изоляционная втулка, 5,6 – соответственно уплотнительная изоляционная шайбы, 7 – шайба, 8 – выводной болт, 9 – гайка, 10 – пружинная шайба, 11 – изоляционный материал, 12 – полюс.

Катушки (рис. 1) последовательной обмотки имеют небольшое число витков неизолированного медного провода 3 прямоугольного сечения марки ПММ. Между витками катушки прокладывают электроизоляционный картон толщиной 0,2-0,4 мм. Катушки параллельной обмотки возбуждения наматывают изолированным, круглым проводом марок ПЭВ-2 и ПЭТВ снаружи катушки изолируют лентой из изоляционного материала (хлопчатобумажная тафтяная лента, батистовая лента). Внешняя изоляция после пропитывания лаком и просушивания имеет толщину 1,-1,5 мм. Перспективно применение полимерных материалов при изолировании катушек, с помощью которых можно получить покрытия, равномерные по, толщине, стойкие к воздействию агрессивной среды и повышенной температуры.

Якорь стартера представляет собой шихтованный сердечник, в пазы которого укладываются секции обмотки. В шихтованном сердечнике меньше потери на вихревы

transport63online.ru

1 Принципиальные электрические схемы

Устройство электрических стартеров

Содержание

Вступление

1. Устройство электростартеров

1.1. Внутреннее строение стартеров

1.2. Принципиальные электрические схемы

1.3. Крепление стартеров на двигателях

1.4. Защита от посторонних тел и воды

2. Характеристики электростартеров

3. Особенности работы электростартеров и требования к электростартерам

4. Схемы управления электростартерами

Список использованной литературы

Вступление

Двигатели внутреннего сгорания, устанавливаемые на автомобилях, автобусах, тракторах, мотоциклах, не имеют пускового момента. Для начала самостоятельной работы такого двигателя необходимо сообщить ему определенную начальную или пусковую частоту вращения, т. е. запустить двигатель. Пусковая частота вращения зависит от типа двигателя: 40 — 70 об/мин — для карбюраторных двигателей и 100 — 200 об/мин — для дизельных. В качестве пусковых устройств используются преимущественно электрические стартеры прямого действия.

Электрический стартер представляет собой устройство, состоящее из двигателя постоянного тока, механизма сцепления — расцепления, редуктора и аппаратуры управления. Механизм сцепления — расцепления и редуктор обычно называют приводом стартера.

В качестве источника энергии для питания стартера используются аккумуляторные батареи специального исполнения — так называемые стартерные аккумуляторные батареи (ГОСТ 959.0-84).

1. Устройство электростартеров

    1. Внутреннее строение стартеров

Автомобильные электростартеры отличаются по способу управления и возбуждения, типу механизма привода, способу крепления на двигателе и степени защиты от проникновения пыли и воды.

По типу и принципу работы приводных механизмов выделяют стартеры с электромеханическим перемещением шестерни привода, которые получили наибольшее распространение, и стартеры с инерционным или комбинированным приводом. Для предотвращения разноса якоря после пуска двигателя в автомобильные электростартеры устанавливают роликовые, храповые и фрикционно-храповые муфты свободного хода.

Стартер состоит из электродвигателя постоянного тока с последовательным или смешанным возбуждением, электромагнитного тягового реле и механизма привода. В стартер может быть встроен дополнительный редуктор.

Узлами и деталями электростартера с электромеханическим включением шестерни являются корпус 22 (рис.10.5) с полюсами 21 и катушками 20 обмотки возбуждения, якорь 24 с обмоткой и коллектором 16, механизм привода муфтой свободного хода 2, шестерней 1 и буферной пружиной 4, электромагнитное тяговое реле с корпусом 8, обмоткой 9, контактными болтами 13 с контактами 12, крышка 6 со стороны привода, крышка 17 со стороны коллектора и щеточный узел с щеткодержателями 15, щетками 19 и щеточными пружинами 14. Корпусы (рис. 10.6) электростартеров изготавливают из трубы или стальной полосы с последующей сваркой стыка.

С целью улучшения герметизации корпус не имеет окон для доступа к щеткам. Длина корпуса в 1,6-2 раза больше длины пакета якоря. Толщина корпуса зависит от диаметра D корпуса и составляет (0,05-0,08) D. В корпусе 2 предусмотрено отверстие для выводного болта 8 обмотки возбуждения. Корпус может иметь установочные прорези на торцах и конусообразные проточки для установки уплотнительных колец.

К корпусу 2 винтами 3 крепят полюсы 12 с катушками 1 обмотки возбуждения. Все автомобильные стартёры выполняют четырехполюсными. Катушки последовательных и параллельных обмоток возбуждения устанавливают на отдельных полюсах, поэтому число катушек равно числу полюсов.

Рис. 1. Корпус стартера в сборе.

1 – катушка, 2 – корпус, 3 – винт полюса, 4 – изоляционная втулка, 5,6 – соответственно уплотнительная изоляционная шайбы, 7 – шайба, 8 – выводной болт, 9 – гайка, 10 – пружинная шайба, 11 – изоляционный материал, 12 – полюс.

Катушки (рис. 1) последовательной обмотки имеют небольшое число витков неизолированного медного провода 3 прямоугольного сечения марки ПММ. Между витками катушки прокладывают электроизоляционный картон толщиной 0,2-0,4 мм. Катушки параллельной обмотки возбуждения наматывают изолированным, круглым проводом марок ПЭВ-2 и ПЭТВ снаружи катушки изолируют лентой из изоляционного материала (хлопчатобумажная тафтяная лента, батистовая лента). Внешняя изоляция после пропитывания лаком и просушивания имеет толщину 1,-1,5 мм. Перспективно применение полимерных материалов при изолировании катушек, с помощью которых можно получить покрытия, равномерные по, толщине, стойкие к воздействию агрессивной среды и повышенной температуры.

Якорь стартера представляет собой шихтованный сердечник, в пазы которого укладываются секции обмотки. В шихтованном сердечнике меньше потери на вихревые токи. Пакет якоря напрессован на вал 4, вращающийся в двух или трех опорах с бронзографитовыми подшипниками, подшипниками из других порошковых материалов, либо с п6дшипниками качения.

В стартерных электродвигателях применяют простые волновые обмотки с одно- и двухвитковыми секциями. Одновитковые секции выполняют из неизолированного прямоугольного провода. Обмотки с двухвитковыми секциями наматывают круглыми изолированными проводами (ПЭВ-2 и ПЭТВ).

Концы секций обмотки якоря укладывают в прорези “петушков” коллекторных пластин. Конец одной секции и начало следующей по ходу обмотки присоединяют к одной коллекторной пластине.

На лобовые части обмотки якоря накладывают бандажи, состоящие из нескольких витков проволоки, xлопчатобумажного шнура или стекловолокнистого материала, намотанных на прокладку из электроизоляционного картона.

Бандаж из стекловолокна менее дорогостоящий, для него можно не применять крепежные скобы. Бандаж может быть изготовлен в виде алюминиевого кольца с изоляционной кольцевой прокладкой из гетинакса или текстолита. Лобовые части секций изолируют друг от друга электроизоляционным картоном.

В электростартерах применяют сборные цилиндрические коллекторы на металлической втулке, а также цилиндрические торцовые коллекторы с пластмассовым корпусом.

Сборные цилиндрические коллекторы, применяемые на стартерах большой мощности, составляют из медных пластин и изолирующий прокладок из миканита, слюдинита или слюдопласта. Пластины в коллекторе закрепляются с помощью металлических нажимных колец 2 и изоляционных корпусов 4 по боковым опорным поверхностям. От металлической втулки 1, которую напрессовывают на вал якоря, медные пластины изолируют цилиндрической втулкой из миканита.

Рабочая поверхность коллектора должна иметь строго цилиндрическую форму. Монолитность конструкции и биение рабочей поверхности сборных цилиндрических коллекторов зависят от точности изготовления сопрягаемых деталей. Вследствие податливости изоляционных прокладок между пластинами первоначальная форма сборного цилиндрического коллектора в процессе эксплуатации может измениться, что приводит к усилению искрения под щётками.

Рис. 2. Строение стартера.

1 – вал якоря, 2 – шестерня привода, 3 –втулка шестерни, 4 – ролик муфты свободного хода, 5 – кожух муфты, 6 – ось рычага привода шестерни, 7 – крышка стартера со стороны шестерни, 9 – якорь тягового реле, 10 – корпус втягивающего реле, 11 – втягивающая обмотка тягового реле, 12 – удерживающая обмотка тягового реле, 13 – шток тягового реле, 14 – сердечник тягового реле, 15 – контактная пластина, 16 – крышка втягивающего реле, 17 – контактные болты, 18 – торцевой коллектор, 19 – щетка, 20 – пружина щетки, 21 – втулка крышки стартера, 22 – кожух, 23 – стяжной болт, 24 – крышка стартера со стороны коллектора, 25 – обмотка якоря, 26 – сердечник якоря, 27 – обмотка статора, 28 – полюс статора, 29 – корпус стартера, 30 – ограничительный диск, 31 — поводковое кольцо, 32 – центрирующий диск, 33 – буферная пружина, 34 – наружное кольцо муфты свободного хода, 35 – спутница муфты свободного хода, 36 – ограничительное кольцо хода шестерни.

В цилиндрических коллекторах с пластмассовым корпусом (рис. 2) пластмасса является формирующим элементом коллектора. Она плотно охватывает сопрягаемые поверхности независимо от конфигурации и точности изготовления коллекторных пластин, изолирует коллекторные пластины от вала и воспринимает нагрузки. В отечественной автопромышленности качестве пресс-материала чаще всего используется пластмасса АГ-4С. Для повышения прочности коллектора применяют армировочные кольца из металла и пресс-материала. При небольших размерах коллектор может быть изготовлен из цельной цилиндрической заготовки, разрезаемой после опрессовки пластмассой на отдельные ламели.

Торцовые коллекторы (рис. 2) по сравнению с цилиндрическими имеют меньшие размеры и металлоемкость. Рабочая поверхность торцового коллектора находится в плоскости, перпендикулярной к оси вращения якоря. При изготовлении торцового коллектора из медной втулки формируется пластина в виде диска с отверстием, прямоугольными пазами по числу требуемых коллекторных пластин и кольцевыми выступами. Диск со стороны выступов опрессовывается пластмассой. В пластмассовом корпусе прошивают внутреннее отверстие для напрессовки коллектора на вал. Для разделения пластин производится обсечка коллектора по наружному диаметру.

Щетки в щеткодержателях должны перемещаться свободно, но без сильного бокового люфта.В электростартерах применяют меднографитные щетки с добавками свинца и олова. Содержание графита выше в щетках для мощных стартеров и стартеров для тяжелых условии-эксплуатации. Плотность тока jщ в щетках электростартеров находится в пределах 40-100 А/см2. От допустимой плотности тока зависят размеры щеток и падение напряжения под щетками Uщ.

Рис. 3. Подетальное строение и внешний вид стартера.

1. Bearing – Подшипник, 2. Armature — Якорь стартера, 3. Bearing – Подшипник, 4. Field frame — Кожух стартера, 5. Spring – Пружина, 6. Brush holder – Щеткодержатель, 7. End cover — Торцевая крышка, 8. Through bolt — Стяжной болт, 9. Magnet switch assembly — Втягивающее реле в сборе, 10. Spring – Пружина, 11. Ball – Шарик, 12. 13. Idle gear — Промежуточное зубчатое колесо, 13. Bearing – Подшипник, 14. Bearing housing — Корпус подшипника, 15. Clutch assembly — Муфта в сборе, 16. Starter housing — Кожух стартера.

Крышки со стороны коллектора изготавливают методом литья из чугуна, стали, алюминиевого или цинкового сплава, а также штампуют из стали. Крышки могут иметь дисковую или колоколообразную форму. В крышках колоколообразной формы предусмотрены окна для доступа к щеткам.

Крышки со стороны привода изготавливают методом литья из алюминиевого сплава или чугуна. Конструкций крышки зависит от материала, из которого она изготовлена, типа механизма привода, способа крепления стартера на двигателе и тягового реле на стартере. Установочные фланцы крышки имеют два или большее число отверстий под болты крепления стартера. Фланцевое крепление стартера к картеру сцепления дает возможность сохранить постоянство межосевого расстояния в зубчатом зацеплении при снятии и повторной установке стартера. В крышке предусмотрено отверстие, которое позволяет шестерне привода входить в зацепление с венцом маховика.

В крышках и промежуточной опоре устанавливают подшипники скольжения. Промежуточную опору предусматривают в стартерах с диаметром кopпyca 115 мм и более. Подшипники смазывают в процессе производства и при необходимости во время технического обслуживания в эксплуатации. В стартерах большой мощности для грузовых автомобилей бобышки подшипников имеют масленки с резервуарами для смазочного материала и смазочными фильцами.

 Управляемые дистанционно тяговые реле обеспечивают, ввод шестерни, в зацепление с венцом маховика и подключают стартерный электродвигатель к аккумуляторной батарее. Они отличаются по способу крепления на стартере, количеству обмоток, конструкции контактного устройства и форме стопа электромагнита.

На большинстве стартеров тяговое реле располагают на приливе крышки 27 со стороны привода. С фланцем прилива крышки реле соединяют непосредственно или через дополнительные крепежные элементы.

Реле может иметь одну или две обмотки, намотанные на латунную втулку, в которой свободно перемещается стальной якорь 11, воздействующий на шток 15 с подвижным контактным диском 4. Два неподвижных контакта в виде контактных болтов 2.1 закрепляют в пластмассовой крышке.

В двухобмоточном реле удерживающая обмотка 13, рассчитанная только на удержание якоря, реле 11 в притянутом к сердечнику 16 состоянии, намотана проводом меньшего сечения и имеет прямой, выход на “массу”. Втягивающая обмотка 14 подключена параллельно контактам реле. При включении реле она действует согласно с удерживающей обмоткой и создает необходимую силу притяжения, когда зазор между якорем 11 и сердечником 16 максимален. Во время работы стартерного электродвигателя замкнутые контакты тягового реле шунтируют втягивающую обмотку и выключают ее из работы.

Контактные системы могут быть разделенной или неразделенной конструкции. При неразделенной контактной системе подвижный контакт снабжен пружиной 7. Перемещение подвижного контактного диска в исходное нерабочее положение обеспечивает возвратная пружина 9. В разделенной контактной системе подвижный контактный диск 10 не связан жестко 6 якорем 13 реле.

Контактный диск круглой, фасонной или прямоугольной формы устанавливают между изоляционной втулкой и шайбой на штоке. Это обеспечивает надёжное соединение контактов реле при возможном перекосе и перемещении диска вдоль оси штока за счет сжатия пружин контактной системы.

Тяговое реле рычагом связано с механизмом привода, расположенным на шлицевой части вала. Рычаг воздействует на привод через поводковую муфту. Его отливают из полимерного материала или выполняют составным из двух штампованных стальных частей, которые соединяют заклепками или сваркой.

1. 2. Принципиальные электрические схемы

Электрическая схема стартера (рис 4):

1. Battery – аккумулятор, 2. Fusible link — плавкая вставка (фактически предохранитель, выполненый в виде плавкой части в начале провода от аккумулятора на стартер), 3. Ignition switch — Выключатель (точнее «включатель» зажигания, это в нашей стране включатели умудрились обозвать «выключателями», 4. ECU – компьютер, 5. EFI – инжектор, 6. Engine – мотор.

Рис.5 Схема электрической цепи стартера

1 — аккумуляторная батарея; 2 — предохранитель; 3 — замок зажигания; 4 — реле стартера

Работа стартера состоит из трех этапов:

1. Механизм привода стартера вводит шестерню на валу якоря в зацепление с зубчатым венцом маховика.

2. Начинается вращение вала якоря стартера вместе с шестерней, которая проворачивает коленчатый вал двигателя через маховик, тем самым, запуская двигатель.

3. После начала работы двигателя, механизм привода выводит шестерню стартера из зацепления с зубчатым венцом маховика.

1.3. Крепление стартеров на двигателях

Обычно стартер располагают сбоку картера двигателя, при этом крышка со стороны привода обращена в сторону маховика и входит в отверстие картера сцепления.

Стартеры мощностью свыше 4,4кВт с диаметром корпуса 130-180 мм устанавливают в углублениях специальных приливов двигателя. К посадочной, поверхности прилива двигателя корпус стартера прижимается стальными лентами или литыми скобами. От проворота стартер фиксируют шпонками или штифтами. Шестерня механизма привода стартера может быть установлена между опорами под крышкой или консольно за ее пределами.

1.4. Защита от посторонних тел и воды

В эксплуатации стартеры подвержены воздействию влаги, масла, грязи. Конструкция стартера предусматривает защиту от них. Лучше защищены стартеры грузовых автомобилей. Герметизация обеспечивается установкой в местах разъема резиновых колец, применением втулок и уплотнительных прокладок из мягких пластических материалов. Герметизация стартера в местах вывода обмоток тягового реле и стартера обеспечивается установкой резиновых, шайб. Попадание в стартер и тяговое реле грязи, влаги и посторонних тел исключается благодаря установке резинового сильфона 19 (рис. 10.19) и резиновой армированной манжеты 27 в промежуточной опоре 26. Герметизирующий сильфон 19 не должен препятствовать регулированию механизма привода.

  1. Особенности работы электростартеров и требования к электростартерам

Электростартер получает питание от аккумуляторной батареи — автономного источника электроэнергии ограниченной мощности. Вследствие внутреннего падения напряжения в батарее напряжение на выводах электростартера не остается постоянным, а уменьшается с увеличением нагрузки и силы потребляемого тока.

Сила тока электростартеров может составлять несколько сот и даже тысяч ампер. При такой силе тока на характеристики стартерного электродвигателя большое влияние оказывает падение напряжения в стартерной сети, т.е. в стартерном проводе и “массе”.

Характеристики стартерных электродвигателей зависят от емкости и технического состояния аккумуляторной батареи. “Семейству” вольт-амперных характеристик батареи (см. рис. 10.33) соответствует “Семейство” рабочих и механических характеристик стартерного электродвигателя.

Для стартерного электропривода двигателя характерна значительная неравномерность нагрузки, обусловленная резким изменением момента сопротивления, от сил давления газов в цилиндрах и сложной кинематикой кривошипно-шатунного механизма. При переменной нагрузке снижается мощности и КПД системы пуска, что необходимо учитывать при выборе мощности стартерного электродвигателя и емкости аккумуляторной батареи.

Режим работы электростартеров — кратковременный с длительностью включения до 10 с при температуре 20°С. При отрицательных температурах допускается, длительность работы до 15 с для стартеров бензиновых двигателей и до 20 с для, стартеров дизелей.

Длительное время по отношению к периоду прокручивания коленчатого вала двигателя стартер может работать в режимах полного торможения и холостого хода. Якорь стартера должен без повреждений в течение 20 с выдерживать нагрузки, возникающие при частоте вращения коленчатого вала, на 20% превышающей частоту его вращения в режиме холостого хода.

Якорь стартера должен иметь надежный привод к коленчатому валу при пуске двигателя и автоматически отключаться от него после осуществления пуска. Конструкция стартерами зубчатая передача должны обеспечивать надежный ввод шестерни в зацепление и передачу коленчатому валу двигателя вращающего момента. Шестерня привода стартера не должна самопроизвольно входить в зацепление с венцом маховика. Муфта свободного хода привода должна защищать якорь от механических повреждении.

Тяговое реле стартера должно обеспечивать ввод шестерни в зацепление и включение стартера при снижении напряжения до 9 В Для Uн=12 В и до 18 В для Uн=24 В при температуре окружающей среды (20±5)°С. Контакты тягового реле должны оставаться замкнутыми при снижении напряжения на выводах стартера до 5,4 и 10,8 В При номинальных напряжениях соответственно 12 и 24 В.

Автомобильные электростартеры имеют степень защиты не ниже IRX4 (по ГОСТ 14254-80), кроме полости механизма привода.

Пусковой цикл (попытка пуска) на двигателе (на стенде) не должен превышать 15 с при температуре окружающей среды (20±5)°С. Допускается не более трех пусковых циклов подряд с перерывам между ними не менее 30 с. После охлаждения стартера до температуры окружающей среды допускается еще один пусковой цикл.

Не допускается нагружать стартер более чем на номинальную мощность. Повышение температуры стартера во время пусковых циклов не должно приводить к изменениям, отрицательно влияющим на его работоспособность.

Рациональному использованию аккумуляторной батареи, имеющей в системе пуска относительно большую массу и в наибольшей степени подверженной влиянию эксплуатационных факторов, способствуют правильное согласование характеристик элементов системы, пуска и обоснованный выбор ее схемы и параметров, при которых расходуется минимальное количество энергии источника тока.

Для уменьшения длины стартерных проводов, габаритных размеров и массы стартера и батареи, а также для удобства их установки и технического обслуживания важно предусмотреть рациональное размещение элементов системы пуска двигателя на автомобиле.

Параметром, определяющим рациональное согласование мощностной характеристики пускового устройства с пусковыми характеристиками двигателя, является передаточное число привода. При изменении передаточного числа привода меняется наклон механической характеристики стартерного электродвигателя, приведенной к коленчатому валу двигателя. С повышением передаточного числа приведенный вращающий момент увеличивается, а приведенная частота вращения вала уменьшается. Максимальное значение мощности электростартера смещается в сторону меньшей частоты вращения коленчатого вала. Для каждого типа двигателя и заданных условий пуска существуют наивыгоднейшие передаточные числа, при которых наилучшим образом используются мощностные характеристики стартерного электродвигателя.

Автомобильные электростартеры должны обеспечивать номинальные параметры при нормальные климатических условиях: температура окружающего воздуха (25±10)°С; относительная влажность (45-80)%; атмосферное давление (84-106) кПа.

  1. Характеристики электростартеров

Свойства электростартеров оценивают по рабочим и механическим характеристикам. Рабочие характеристики представляют в виде зависимостей напряжения на зажимах стартера Uст полезной мощности P2 на валу, полезного вращающего момента M2, частоты вращения якоря nа и КПД стартерного электродвигателя от силы тока якоря Iа.

При вращении якоря в его обмотке индуцируется ЭДС:

Еа = cеnaФ,

где cе — постоянная электрической машины, не зависящая от режима ее работы;

Ф – магнитный поток, пpoxoдящий через воздушный зазор и якорь электродвигателя.

При питании стартера от аккумуляторной батареи ЭДС:

Eа = Uн —  Uщ – IаRа = Uн —  Uщ – Iа(Rб + Rпр + Rа + Rс),

где  Uщ — падение напряжения в контактах щетки-коллектор;

Rс — суммарное сопротивление цепи якоря;

Ядр — сопротивление стартерной сети;

Rа — сопротивление обмотки якоря;

Rд – сопротивление последовательной обмотки возбуждения. Частота вращения якоря

С уменьшением нагрузки электродвигателя с последовательным возбуждением магнитный поток Ф падает, а nа быстро возрастает до значения nа0 при силе тока холостого хода Iа0 стартерах смешанного возбуждения частота вращения в режиме холостого хода ограничивается магнитным потоком параллельной обмотки возбуждения. При уменьшении нагрузки магнитный поток, создаваемый последовательной обмоткой, стремится к нулю, тогда как намагничивающая сила параллельной обмотки и создаваемый ею магнитный поток даже немного увеличиваются. Электромагнитный вращающий момент

М = СМIаФ,

где См — постоянная электрической машины.

В электродвигателях с последовательным возбуждением через обмотку возбуждения проходит весь ток якоря Ia, поэтому магнитный поток возрастает с увеличением нагрузки стартера. При одинаковых номинальных параметрах электродвигателей с параллельным и последовательным возбуждением последние развивают большие полезные моменты М режиме полного торможения. Это улучшает их тяговые свойства, облегчает трогание системы стартер-двигатель с места и раскручивание коленчатого вала при пуске двигателя при низких температурах. Подводимая к стартеру мощность за вычетом электрических потерь преобразуется в электромагнитную мощность

Максимальная электромагнитная мощность

Зависимость электромагнитной мощности от силы тока представляет собой симметричную параболу с максимальным значением при силе тока Im, равной половине тока Iк полного торможения. Полезная мощность Р2 на валу электродвигателя меньше электромагнитной на величину суммы  Р2 механических потерь в подшипниках, в щеточно-коллекторном узле и магнитных потерь в пакете якоря. Полезный вращающий момент на валу электродвигателя

Сила тока, потребляемого электродвигателем со смешанным возбуждением

I = Iа + Is,

где Is = Uc/Rs — сила тока в параллельной обм6тке возбуждения;

 Rs — сопротивление параллельной обмотки возбуждения.

Рис. 6. Рабочие характеристики стартерного электродвигателя с последовательным возбуждением.

Подводимая к стартерному электродвигателю мощность

P1 = UI.

КПД стартерного электродвигателя

Рис. 7. Механические характеристики стартерных электродвигателей: 1 – с последовательным возбуждением; 2 – со смешанным возбуждением.

Механические характеристики электростартеров обычно представляют в виде зависимости вращающего момента M2 от частоты вращения якоря na (рис. 7).

При снижении напряжения на выводах аккумуляторной батареи и стартера, в связи с понижением температуры или увеличением сопротивления стартерной сети при той же силе тока Iа = ЭДС Еа, частота вращения nа и мощность P2 электродвигателя уменьшаются (рис. 8). При той же частоте вращения nа уменьшается вращающий момент М2 (рис.8).

Влияние электросопротивления источника электроснабжения и стартерной сети на рабочие и механические характеристики стартерных электродвигателей требует однозначного указания условии, при, которых определяется номинальная мощность стартера. Номинальной считают наибольшую полезную мощность Рн в кратковременном режиме работы при электроснабжении от аккумуляторной батареи максимально допустимой емкости, установленной в технических условиях на стартер, при степени заряженности батареи 100 %, температуре электролита +20°С, при первой по- пытке пуска двигателя, без учета падения напряжения в стартерной сети. Номинальной мощности соответствуют сила тока Iн частота вращения nн и вращающий момент Мн.

Рис. 8. Характеристики стартерных электродвигателей при различных температурах: а – рабочие; б – механические.

Пусковая мощность Рп определяется как наибольшая полезная мощность в кратковременном режиме работы при электропитании от батареи, заряженной на 75%, при температура -20°С в конце третьей попытки пуска двигателя с учетом падения напряжения в проводке.

Напряжение на выводам стартерного электродвигателя при определении номинальной мощности рассчитывается по формуле:

где аб — коэффициент, принимаемой равным 0,05 для батарей емкостью

С20ч, а также 0,038 и 0,046 соответственно для батарей 6СТ-55ЭМ и 6СТ-190ТР.

  1. Схемы управления электростартерами

Рис. 9. Наиболее распространенные схемы внутренних соединений электростартеров.

Схемы внутренних соединений электростартеров с последовательным и смешанным возбуждением с использованием одно- и двухобмоточных тяговых реле приведены на рис. 9.

Однообмоточное тяговое реле подключается к аккумуляторной батарее GB (рис. 9, а) переводом ключа выключателя зажигания 2 с контактами S1 в нефиксированное положение “стартер”. Якорь тягового реле втягивается в электромагнит, с помощью рычажного механизма вводит шестерню привода в зацепление с венцом маховика и в конце хода замыкает силовые контакты реле К1 в цепи электродвигателя М.

Силовые контакты замыкаются до полного ввода шестерни в зацепление. Если шестерня упирается в венец маховика, корь реле продолжает перемещаться вследствие сжатия буферной пружины привода и замыкает силовые контакты. Якорь с шестерней начинают вращаться, и шестерня под действием буферной пружины входит в зацепление, когда зуб шестерни устанавливается против впадины зубчатого венца маховика. Использование дополнительного усилия в шлицевом соединении вала и направляющей втулки ведущей обоймы роликовой муфты свободного хода для перемещения шестерни позволяет уменьшить тяговое усилие и ход якоря электромагнита, размеры и массу тягового реле.

Для отключения стартера необходимо снять усилие с ключа выключателя зажигания. Ключ автоматически займет положение “Зажигание”. При этом якорь отключенного от источника тока тягового реле и приводной механизм под действием пружины возвращаются в исходное положение.

В стартерах с двухобмоточными реле (рис. 9, б и в) при замыкании контактов S1 выключателя зажигания 2 ток от батареи проходит через втягивающую и удерживающую обмотки. При замыкании контактов реле К1 втягивающая обмотка замыкается накоротко.

Обмотки тягового реле К1 могут подключаться к источнику тока через контакты вспомогательного реле К2 (рис. 9,в, г и д). Дополнительный контакт 17 в тяговом реле или во вспомогательном реле замыкает накоротко добавочный резистор катушки зажигания. В рассмотренных схемах управление после, пуска двигателя следует немедленно выключить стартер, так как при длительном вращении ведомой обоймы с шестерней привода возможно заклинивание роликовой муфты свободного хода и повреждение якоря. Включение, стартера при работе двигателя может привести к повреждению зубьев шестерни и венца маховика или выходу из строя муфты свободного хода.

Надежность системы пуска и срок службы стартера можно повысить за счет автоматизации отключения стартера после пуска двигателя и блокировки его включения при работе двигателя. Электронное устройство 2612.3747 (рис. 10) автоматического отключения и блокировки включения стартера содержит блок управления и датчик частоты вращения коленчатого вала. Блок управления настроен на частоту вращения, при которой стартер должен отключаться. Частота эта должна быть больше максимально возможной пусковой частоты вращения коленчатого вала электростартером и меньше минимальной частоты вращения коленвала в режиме прогрева двигателя пoслe пуска.

При пуске двигателя выключатель приборов и стартера переводится в положение “стартер”, транзистор VT5 открывается (первое устойчивое состояние триггера на транзисторах VT4 и VT5) и подключает к аккумуляторной батарее вспомогательное реле, которое включает стартер. При вращении коленчатого вала двигателя через вход 4 штекерного разъема на электронное устройство подается синусоидальное напряжение от фазы генератора, которое транзистором VT1 преобразуется в прямоугольные импульсы нормированной амплитуды. С помощью резисторов R1, R2, R3 и конденсатора С1 ограничивается входное напряжение и отфильтровываются импульсные помехи во входных цепях.

Рис. 10. Наиболее распространенные схемы управления электростартерами: 1 – электростартер, 2 – выключатель зажигания, 3 – дополнительное реле, А – к выводу добавочного резистора.

Прямоугольные импульсы заряжают конденсатор СЗ преобразователя частота-напряжение. Чем больше частота входного сигнала (частота вращения коленчатого вала двигателя), тем меньше промежутки времени между импульсами и разряд конденсатора С2. При определенной частоте вращения коленчатого вала напряжение на конденсаторе СЗ превышает опорное напряжение на резисторе R10-R15, транзисторы VT2 и VT3 открываются и триггер переводится во второе устойчивое состояние, когда транзистор VT4 открыт, а транзистор VT5 закрыт. Вспомогательное реле обесточивается и отключает стартер. Диоды VD10, VD13 и конденсаторы С5, С6 обеспечивают надежное закрытие транзисторов VT5 и VT4.

Терморезистор R11 изменяет частоту вращения вала двигателя, при которой стартер должен отключаться, в соответствии с изменением температуры окружающего воздуха. Повторное включение стартера после первой неудачной попытки пуска возможно только после предварительного перевода ключа выключателя зажигания в положение “Выключено”.

Список использованной литературы

    1. А.И.Вольдек Электрические машины, – Энергия (Ленинградское отделение), 1978 г., 832 стр.
    1. А. Трантер Руководство по электрическому оборудованию автомобилей. ЗАО «Алфамер-Паблишинг», 2001, — 284с.
    1. Волков А.В. Руководство по эксплуатации, техническому обслуживанию и ремонту автомобилей УАЗ-31512, УАЗ-3741. АСТ, 2002 г., 224 стр.
    1. Кацман М. М. Расчет и конструирование электрических машин: Учеб. пособие для техникумов. — М.: Энергоатомиздат, 1984. — 360 с.

100>

auto-dnevnik.com

4.6. Схемы управления электростартерами

Схемы
внутренних соединений электростартеров
с последовательным и сме­шанным
возбуждением с использованием одно- и
двухобмоточных тяговых ре­ле приведены
на рис. 4.28.

Однообмоточное
тяговое реле подключается к аккумуляторной
батарее
GB
(рис.
4.29, а) переводом ключа выключателя
зажигания 2 с контактами
S1
в
нефиксированное положение «стартер».
Якорь тягового реле втягивается в
электромагнит, с помощью рычажного
механизма вводит шестерню привода в
зацепление с венцом маховика и в конце
хода замыкает силовые контакты ре­ле
К1 в цепи электродвигателя М.

Силовые
контакты замыкаются до полного ввода
шестерни в зацепление. Ес­ли шестерня
упирается в венец маховика, якорь реле
продолжает перемещать­ся вследствие
сжатия буферной пружины привода и
замыкает силовые контак­ты. Якорь с
шестерней начинают вращаться, и шестерня
под действием буфер-

а
— СТ368; 6 — 40.3708, 26.3708, СТ4-А1; в — СТ221; г —
29.3708. 35.3708; д

— 42.3708,
421.3708, CT230-B3,
СТ230-К1;
е — СТ230-А1, СТ230-Б1, СТ230-И, СТ402, СТ402-А
СТ402-Б, 25.3708, 25.3708-01, СТ142-Б, 30.3708; ж — СТ2-А.
CT130-A3;
з
-16.3708; 1 -к силовым контактам контак­тора
КТ130; 2 — к положительному выводу
аккумуляторной батареи; 3 — к обмотке
контактора КТ130; 4-к контактам контактора
КТ127

Рис.
4.29.

Схемы
управления электростартерами:

а
— СТ221 с однообмоточным реле; б — СТ221 с
двухобмоточным репе: 29.3708 на первых
моделях ВАЗ- 2108: в

— 29.3708
на автомобилях ВАЗ-2108, -2109; г — CT130-A3;
д
— СТ230-Б1; 1 — электростартер; 2 — выключатель
зажигания и стартера: 3 -дополнительное
реле; А-к выводу добавочного резистора

ной
пружины входит в зацепление, когда зуб
шестерни устанавливается против впадины
зубчатого венца маховика. Использование
дополнительного усилия в шлицевом
соединении вала и направляющей втулки
ведущей обоймы роликовой муфты свободного
хода для перемещения шестерни позволяет
уменьшить тяго­вое усилие и ход якоря
электромагнита, размеры и массу тягового
реле.

Для
отключения стартера необходимо снять
усилие с ключа выключателя за­жигания.
Ключ автоматически займет положение
«Зажигание». При этом якорь отключенного
от источника тока тягового реле и
приводной механизм под дей­ствием
пружины возвращаются в исходное
положение.

В
стартерах с двухобмоточными реле (рис.
4.29,
бив)
при замыкании конта­ктов
S1
выключателя
зажигания 2 ток от батареи проходит
через втягивающую и удерживающую
обмотки. При замыкании контактов реле
К1 втягивающая об­мотка замыкается
накоротко.

161

Обмотки
тягового рвлв К1 могут подключаться к
источнику тока через конта­кты
вспомогательного реле К2 (рис. 4.29, в, г и
д). Дополнительный контакт 17 в тяговом
реле или во вспомогательном реле замыкает
накоротко добавочный резистор катушки
зажигания.

6
Зак 2362

Рис.
4.30. Электронное устройство 2612.3747 для
автоматического отключения и блокировки
стартера СТ142-Б:

VT1,
VT2, VT4,

1/75-транзисторыКТ630А;
VT3-транзисторКТ3107Б;
VD1,
VD2, VD3, VD4, VD7, VD8, VD9, VD12, VD13-диоды
КД102А;

1/DJ0
-диод
КД209А; VD5,
VD6-стабилитроны
ДВ14А; VD11
-ста­билитрон
Д816Д; конденсаторы: С1 -0,05 мкФ; С2 — 0,22 мкФ;
СЗ — 0,47 мкФ; С4 — 0,05 мкФ; С5 — мкФ; С6 — 0,05 мкФ;
резисторы: R1,
R2-3 кОм;
R3.R8-10
кОм:
R4-5.6
кОм;
R5
-100
Ом; R6

39,2 кОм; R7-22
кОм;
R9,
R11, R15, R16, R19-2,2
кОм; R10

470 Ом; R12-33
кОм;
R13
-1
кОм; R14
— 470 Ом;
R17-4.7
кОм;
R18-680
Ом;
R20
-1
кОм; R21
-8,2
кОм

В
рассмотренных схемах управления после
пуска двигателя следует немед­ленно
выключить стартер, так как при длительном
вращении ведомой обоймы с шестерней
привода возможно заклинивание роликовой
муфты свободного хода и повреждение
якоря. Включение стартера при работе
двигателя может приве­сти к повреждению
зубьев шестерни и венца маховика или
выходу из строя муфты свободного хода.

Надежность
системы пуска и срок службы стартера
можно повысить за счет автоматизации
отключения стартера после пуска двигателя
и блокировки его включения при работе
двигателя.

Электронное
устройство 2612.3747 (рис. 4.30) автоматического
отключения и блокировки включения
стартера содержит блок управления и
датчик частоты вращения коленчатого
вала. Блок управления настроен на частоту
вращения, при которой стартер должен
отключаться. Частота эта должна быть
больше ма­ксимально возможной пусковой
частоты вращения коленчатого вала
электро­стартером и меньше минимальной
частоты вращения коленвала в режиме
про­грева двигателя после пуска.

При
пуске двигателя выключатель приборов
и стартера переводится в по­ложение
«стартер», транзистор
VT5
открывается
(первое устойчивое состоя­ние триггера
на транзисторах
VT4
и
VT5)
и
подключает к аккумуляторной ба­тарее
вспомогательное реле, которое включает
стартер. При вращении ко­ленчатого
вала двигателя через вход 4 штекерного
разъема на электронное устройство
подается синусоидальное напряжение от
фазы генератора, кото­рое транзистором
VT1
преобразуется
в прямоугольные импульсы нормирован­ной
амплитуды. С помощью резисторов
R1,
R2, R3
и
конденсатора С1 ограни­чивается
входное напряжение и отфильтровываются
импульсные помехи во входных цепях.

Прямоугольные
импульсы заряжают конденсатор СЗ
преобразователя часто- та-напряжение.
Чем больше частота входного сигнала
(частота вращения ко­ленчатого вала
двигателя), тем меньше промежутки времени
между импульса­ми и разряд конденсатора
С2. При определенной частоте вращения
коленчато­го вала напряжение на
конденсаторе СЗ превышает опорное
напряжение на ре­зисторе
R10-R15,
транзисторы
VT2
и
VT3
открываются
и триггер переводится во второе устойчивое
состояние, когда транзистор
VT4
открыт,
а транзистор
VT5
закрыт.
Вспомогательное реле обесточивается
и отключает стартер. Дио­ды
VD10,
VD13
и
конденсаторы С5, С6 обеспечивают надежное
закрытие тран­зисторов
VT5
и
VT4.

Терморезистор
R11
изменяет частоту вращения вала двигателя,
при которой стартер должен отключаться,
в соответствии с изменением температуры
окру­жающего воздуха. Повторное
включение стартера после первой неудачной
по­пытки пуска возможно только после
предварительного перевода ключа
выклю­чателя зажигания в положение
«Выключено».

studfiles.net

Устройство и схемы включения стартера


Категория:

   1Отечественные автомобили


Публикация:

   Устройство и схемы включения стартера


Читать далее:

Устройство и схемы включения стартера

Стартер состоит из корпуса, якоря, крышек (со стороны привода) и (со стороны коллектора), привода стартера, включающего муфту свободного хода, шестерню и поводковую муфту. На корпусе стартера укреплено тяговое реле.

Корпус стартера изготовляют из стали. Он может быть сварным или выполненным из цельнотянутой трубы. Полюса получают горячей штамповкой из стали. Крышка отливается из чугуна или алюминиевого сплава. Крышка штампуется из листовой стали или отливается из цинкового или алюминиевого сплава. На задней крышке укреплены щеткодержатели коробчатого типа. На стартерах большой мощности применяют щеткодержатели, в которых устанавливают по две щетки в один ряд.

Вал якоря вращается в трех подшипниках (втулках из пористой графитовой бронзы или металлокерамики). Втулки перед сборкой стартера смазываются маслом.

Рекламные предложения на основе ваших интересов:

Обмотка возбуждения изготовляется из медной шины с небольшим числом витков. В небольших стартерах обмотки возбуждения включаются последовательно, в стартерах средней и большой мощности — параллельно-последовательно. В этом случае сопротивление четырех катушек (на четырех полюсах) будет равно сопротивлению одной катушки. Якорь стартера набран из пластин электротехнической стали с целью снижения его нагрева вихревыми токами.

При пуске двигателя якорь тягового реле, втягиваясь магнитным полем обмотки, перемещает рычаг и связанную с ним муфту привода. При этом шестерня стартера входит в зацепление с венцом маховика двигателя. Подвижный контакт тягового реле замыкает цепь аккумуляторная батарея— стартер, и якорь стартера начинает вращаться. Если шестерня не вошла в зацепление с венцом маховика (так называемое «утыкание» шестерни стартера в зубцы венца маховика), то рычаг все равно будет перемещаться, сжимая пружину. Как только якорь начнет вращаться, шестерня повернется и под действием пружины ее зубья войдут во впадины между зубьями венца маховика.

Рис. 1. Стартер СТ130-А1:
1 — контакты тягового репе, 2 — контакт замыкания добавочного резистора катушки зажигания, 3 — обмотка тягового реле, 4 — якорь тягового реле, 5 — регулировочный винт-тяга, 6 — защитный кожух рычага, 7 — рычаг, 8 — винт регулировки хода шестерни, 9 — крышка стартера со стороны привода, 10 — упорное кольцо, И — шестерня привода, 12 — муфта свободного хода, 13 — пружина, 14 — поводковая муфта привода, 15 — корпус стартера, 16 — якорь стартера, 17 — защитная лента, 18 — коллектор, 19 — крышка стартера со стороны коллектора, 20 — обмотка возбуждения, 21 — полюс, 22 — стяжная шпилька, 23 — щеткодержатель, 24 — пружина щеткодержателя, 25 — провод щетки, 26—стяжной винт защитной ленты, 27 — щетка

В случае, если двигатель завелся, а шестерня привода не вышла из зацепления с венцом маховика, срабатывает муфта свободного хода, и вращение от маховика двигателя не передается на якорь, что предохраняет его от «разноса».

Муфта свободного хода роликового типа может перемещаться по спиральным шлицам вала стартера. На втулке, имеющей внутренние шлицы, укреплена обойма. В ней имеются четыре

клиновидные паза, в которых установлены ролики, ролики отжимаются в сторону узкой части паза толкателем с пружиной. Шестерня выполнена заодно со ступицей.

При включении стартера крутящий момент от втулки передается ропиками на ступицу шестерни. В этом случае ролики заклинены между ступицей шестерни и обоймой. Как только двигатель будет запущен, ступица шестерни станет ведомой (ведущим будет зубчатый венец маховика), ролики раскпиниваются и муфта начинает пробуксовывать.

В стартерах большой мощности муфты свободного хода не применяют, так как в этих условиях они работают ненадежно. На рис. 3 изображен механизм привода стартеров дизельных двигателей. На спиральных шлицах вала установлены гайка и шестерня. Гайка двумя внешними выступами входит в продольные пазы хвостовика шестерни. Между гайкой и хвостовиком шестерни помещена пружина. На валу якоря свободно посажен стакан, в котором имеется спиральный паз. На опорной втулке стакана размещены буферная пружина и шайба.

Рис. 2. Муфта свободного хода:
а — конструкция муфты, 6 — ролик заклинен, муфта передает момент, в — ролик вращается, муфта пробуксовывает; 1—втулка привода, 2, 6—замочные кольца, 3 — опорное кольцо, 4 — пружина, 5 — поводковая муфта, 7 — буферная пружина, 8 — обойма, 9 — кожух, 10 — ролик, 11 — ступица шестерни, 12 — шестерня, 13 — толкатель, 14 — пружина толкателя

Рис. 3. Механизм привода стартеров дизельных двигателей:
1 — вал якоря, 2 — стакан, 3 — рычаг, 4 — буферная пружина, 5 — шайба, 6 — гайка, 7 — пружина, 8 — шестерня, 9 — упорное кольцо, 10 — спиральный паз

Ход шестерни на валу ограничивает упорное кольцо. При включении стартера тяговое реле, действуя на рычаг, перемещает стакан вправо. При этом опорная втулка стакана нажимает, на ведущую гайку и перемещает ее вместе с шестерней до упорного кольца. Если происходит «утыкание» зубьев шестерни и венца маховика, то ведущая гайка сжимает пружину и поворачивает шестерню, так как шлицевые пазы в шестерне шире шлицев вала.

В первый момент пуска двигателя стакан повертывается благодаря трению и по спиральному пазу отводится назад в исходное положение, освобождая место для отхода шестерни. Как только двигатель будет запущен, венец маховика начнет вращать шестерню стартера и она, перемещаясь по спиральным шлицам, отойдет в первоначальное положение.

При наличии на нем тягового реле стартер включается подключением обмоток тягового реле к аккумуляторной батарее. Это подключение на, автомобилях с дизельными двигателями осуществляют при помощи выключателя стартера, контакты которого рассчитаны на ток, потребляемый тяговым реле. На автомобилях с карбюраторными двигателями, у которых мощность стартера значительно ниже, тяговое реле включается через выключатель зажигания. Однако контакты выключателя зажигания не рассчитаны на силу тока, потребляемую тяговым реле в момент включения (30—40 А), поэтому приходится ставить реле стартера, контакты которого включают обмотки тягового реле, а обмотки реле стартера включаются через выключатель зажигания.

На рис. 4, а, 6 приведены электрические схемы включения стартера СТ130-А1 на автомобиле ЗИЛ-130, когда система электрооборудования имеет генератор постоянного и переменного тока. Если система электрооборудования имеет генератор постоянного тока, то обмотка реле стартера (PC) включается в цепь через якорь генератора. В этом случае обмотка реле стартера находится под разностью напряжений батареи и э. д. с. генератора. Такое включение обмотки реле стартера обеспечивает автоматическое отключение стартера, как только двигатель завелся, и невозможность его включения при работающем двигателе.

В системах электрооборудования с генератором переменного тока такую схему включения реле стартера осуществить нельзя, поэтому блокировка в этой схеме отсутствует. Блокировка стартера в этом случае может быть осуществлена при помощи .специального реле блокировки (автомобиль «Запорожец»)ю

Рис. 4. Электрические схемы включения стартера СТ130-А1:
а—в схеме электрооборудования с генератором постоянного тока Г130, б— в схеме электрооборудования с генератором переменного тока Г250-И1

При повороте вправо ключа в выключателе ВЗ появляется ток в обмотке реле стартера и замыкаются его контакты PC, включая ток в обмотки тягового реле ТР. Сердечник тягового реле перемещается и замыкает его главные контакты, включая стартер. Одновременно замыкаются дополнительные контакты тягового реле, шунтирующие добавочное сопротивление Яд катушки зажигания.

Главные контакты тягового реле, замыкаясь, шунтируют втягивающую обмотку ВО реле, чем значительно снижается ток, потребляемый тяговым реле, так как якорь реле удерживается только удерживающей обмоткой УО. Если в схеме с генератором переменного тока отсутствует блокировка стартера, необходимо сразу после запуска двигателя отпустить ключ выключателя зажигания, чтобы быстрее вывести шестерню стартера из зацепления с венцом маховика.


Рекламные предложения:

Читать далее: Приборы освещения и сигнализации

Категория: —
1Отечественные автомобили

Главная → Справочник → Статьи → Форум

stroy-technics.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о