Трансмиссий: Трансмиссия автомобиля: виды, неисправности

Содержание

Трансмиссия автомобиля: виды, неисправности


Трансмиссия автомобиля – это целый комплекс механизмов, который обеспечивает функционирование всех его движущих механизмов, передаёт им энергию ДВС. Дословно слово «transmission» с английского языка на русский можно перевести следующим образом: «перенос», «передача», «перевод». Фактически даже простая цепная передача на велосипеде – это уже трансмиссия. Но применительно к велосипедам слово «трансмиссия» не прижилось. Принято говорить именно «передача». А вот в сфере машиностроения, транспортных технологий понятие «трансмиссия» применяется и к механизмам, соединяющим ДВС с движущимися элементами, и к системам, которые обеспечивают функционирование таких механизмов.

Хотя, если речь уже зашла о велосипеде, то на его примере легче всего наглядно объяснить суть трансмиссии как-таковой. Чтобы передвигаться быстро на велосипеде, нужна высокая частота вращения заднего ведущего колеса. Цепная передача идеально позволяет решить эту задачу, не прибегая к изменению диаметра колеса.

Правда, если мы рассматриваем устройство автомобилей, то уже появляется двигатель, и конструкция усложняется, как и спектр её «обязанностей». Например, во время движения авто ДВС постоянно нужно затрачивать энергию на преодоление всевозможных сопротивлений, в том числе преодоление инерции самого автомобиля.
 
От качества механизмов трансмиссии (МТ) зависит расход топлива, безопасность и комфорт водителя, пассажиров транспортного средства, эффективность выполнения тех или иных задач. Например, МТ погрузчика обеспечивают оператору комфортное взаимодействие с погрузчиком, беспрепятственно подъезжать к стеллажам и аккуратно разгружать его. От МТ комбайна зависит отлаженность передачи действий от ДВС механизмам жатвенной части. От МТ карьерного самосвала зависит то, сможет ли он обеспечить эффективный старт после полной загрузки кузова или движение в гору с высокой скоростью.

Назначение и схемы трансмиссий

Прямое назначение трансмиссии автомобиля — пошагово регулировать крутящий момент от маховика и распределять его по ведущим колёсам.

МТ позволяют согласовать работу ДВС с сопротивлением движению транспортного средства, расширяя тяговое усилие на ведущих колесах, диапазон изменения оборотов.

Схема трансмиссии автомобиля зависит от того – переднеприводный или заднеприводный автомобиль перед нами.

У транспортного средства с приводом на задние ведущие колеса в составе трансмиссии чаще всего можно встретить сцепление, коробку передач, карданный механизм, задний ведущий мост в сборе. Такой вариант очень популярен у коммерческого транспорта (включая, грузовики, автобусы).

У транспорта с приводом на передние колеса (самый распространённый вариант у легковых авто) в состав трансмиссии чаще всего входят: сцепление, трансэксл, карданный привод на передние ведущие колеса и шарниры равных угловых скоростей. 

Уточнение «чаще всего» при описании конструкции сделано по той причине, что некоторые элементы могут «перекочёвывать». Например, трансэксл можно встретить в конструкции некоторых автомобилей и с задним приводом.

К такому конструктивному решению не раз прибегали при производстве некоторых моделей Chevrolet, Nissan Alfa Romeo. Особенно решение популярно у спорткаров с независимой подвеской. Трансэксл может соединяться с ДВС при помощи различных валов (карданного, с резиновыми муфтами).

В трансмиссионную схему всех полноприводных авто с ручным управлением и ряда транспортных средств с дополнительным оборудованием (например, коммунальной техникой) также входит раздаточная коробка. 

Отдельно стоит обратить внимание на гидромеханические схемы. У них нет сцепления, но каждая ступень КПП оснащается автономным элементом переключения.

Что входит в трансмиссию автомобиля?

Узлы трансмиссии автомобиля:
  • Сцепление, муфта сцепления или фрикцион (последний вариант часто встречается на сельскохозяйственной технике, например, тракторах). Разъединяет двигатель от трансмиссии и плавно соединяет их при переключении передач, при старте движения. Основа большинства сцеплений — фрикционный диск или диски, прижатых к маховику или сжатых друг с другом. Управлять сцеплением можно механическим способом (педалью), посредством гидро-, электропривода.
  • Коробка передач (КПП). Главная функция любой КПП — изменение отношения между угловыми скоростями, крутящими моментами валов, угловыми и линейным перемещениями (то есть изменение передаточного отношения). Агрегат позволяет изменить крутящий момент, скорость и направление движения транспортного средства, а также разъединить двигатель с трансмиссией. Устройство агрегата зависит от типа КПП. 
  • Трансэксл — ведущий мост в блоке с коробкой передач. 
  • Кардан — механизм, передающий крутящий момент между валами у переднеприводных авто и от коробки к задним колесам на заднеприводных.
  • Картер. Кожух, в котором располагаются главная передача, полуоси для крепления ступиц ведущих колец и дифференциал.
  • Главная передача. Увеличивает крутящий момент и передаёт его на полуоси ведущих колес, адаптирует мощь двигателя под эксплуатационные условия.

  • Дифференциал. Распределяет крутящий момент между приводными валами и обеспечивает возможность колёс вращаться с разными угловыми скоростями. От дифференциала зависит безопасность езды при поворотах на сухой гладкой дороге. Дифференциал может быть исполнен в виде муфты (вязкостной или фрикционной) или червячных полуосевых шестерен (дифференциал Торсен) с автоматической самоблокировкой механизма в момент разности крутящих моментов на приводном вале и корпусе.
  • Полуоси. Передают крутящий момент от зубчатого колеса дифференциала непосредственно на колесо (через ступицу).

  • Шарниры угловых скоростей. Передают крутящий момент, идущий от дифференциала к ведущим колесам. ШРУСы в отличие от передачи способны беспрепятственно работать с существенными углами поворота (до 70 градусов).

  • Раздаточная коробка («раздатка»).  Устройство, направленное на распределение усилия двигателя по ведущим колесам. Раздаточная коробка помогает нарастить крутящий момент при езде по плохим дорогам, бездорожью, распределить крутящий момент между приводными осями транспортного средства.
Для повышения функциональности, эргономичности, конкурентоспособности устройство трансмиссии автомобиля постоянно совершенствуют. Рассмотрим популярные полноприводные МТ 4Matic, xDrive, 4Motion, Quattro.

Особенности популярных трансмиссий 4Matic, xDrive, 4Motion, Quattro

  • Системы полного привода 4Matic (установлены на многочисленные легковые модели Mercedes-Benz) с постоянным полным приводом включают межколесный и межосевой дифференциалы свободного типа, позволяющих разделить крутящий момент ДВС на две оси. Каждая из осей благодаря свободным дифференциалам может беспрепятственно вращаться с различной скоростью. Кроме того, у 4Matic предусмотрен контроль за движением посредством системы курсовой устойчивости (предусмотрен контроль тягового усилия, антиблокировочная система тормозов и антипробуксовочный механизм).
  • Полноприводные трансмиссии xDrive (разработка BMW) отличаются наличием фрикционной многодисковой муфты. Она выполняет роль дифференциала. Также одна из главных особенностей решения состоит в том, что системой обеспечена возможность перераспределения межосевого крутящего момента в максимально широком диапазоне (0 до 100%).
  • Система Quattro (Audi). Отличительная особенность – МТ и ДВС расположены продольно. У большинства трансмиссий Quattro присутствует свободный дифференциал с электронной блокировкой. Благодаря ней автоматически отпадает проблема пробуксовки ведущих колёс при разгоне на скользком дорожном полотне.
  • 4 Motion (популярный МТ Volkswagen). Особенность схемы — крутящий момент ДВС распределяется по осям в зависимости от ситуации на дороге. 
У большинства трансмиссий Quattro и 4Motion присутствует свободный дифференциал с электронной блокировкой. Благодаря ней автоматически отпадает проблема пробуксовки ведущих колёс при разгоне на скользком дорожном полотне.

Классификация 

Трансмиссии принято классифицировать в зависимости от способа передачи энергии (типа преобразователя крутящего момента, привода транспортного средства использованной коробки передач.

В зависимости от способа передачи энергии выделяются следующие виды трансмиссии автомобиля:

  • Механическая. Энергия передаётся посредством механического трения в сцеплении, взаимодействия шарниров, зубчатых колёс.
  • Гидромеханическая. Крутящий момент возникает за счёт механического трения и работы гидравлики. ТМ здесь работают благодаря гидромуфте, гидротрансформатору.
  • Гидравлическая. Вращение обязано нагнетания масла к гидротурбине под высоким давлением. То есть передача энергии осуществляется посредством жидкости.
В зависимости от привода выделяют переднеприводную, заднеприводную и полноприводную трансмиссию. О том, как они отличаются, можно судить, исходя из особенностей схемы устройств, приведённых в начале нашего материала.

В зависимости от коробки передач трансмиссия бывает: 

1. Механическая.
2.  Автоматическая. 
3. Роботизированная.
4. Вариативная (бесступенчатая) – с вариатором.

Подробнее о трансмиссиях с разными типами коробок передач читайте в нашем материале «Коробка передач».

Механическая трансмиссия

Передача мощности производится за счёт механических передач вращательного движения.

Плюсы:

  • Низкая стоимость.
  • Высокий КПД.
  • Малые габариты.
Механические системы обладают наивысшим КПД среди прочих, наименьшей массой, наиболее просты в производстве.

Важно! Не нужно путать механический способ передачи энергии и механическую коробку передач. Да, чаще всего решения с механической коробкой – это именно решения с механической передачей энергией. И именно её все и называют механическая трансмиссия автомобиля. Но это не аксиома. Среди гусеничной техники есть решения, где энергия передаётся через мехпередачи, при этом коробки стоят отнюдь не механические.

Гидромеханическая трансмиссия

Для агрегата характерно наличие гидромеханической коробки передач (в конструкции объединены механический редуктор + гидродинамический преобразователь крутящего момента). Наибольшая эффективность от системы наблюдается при наличии в ней автоматического управления.

Гидротрансформатор с колёсами с криволинейными лопатками, являющийся обязательным элементом такого агрегата, автоматически изменяет крутящий момент, передаваемый от двигателя.

Процесс передачи крутящегося момента подчиняется изменениям нагрузки на выходном валу КП.

  • Муфта свободного хода запускает процесс вращения колеса реактора только в одном направлении. Оно совпадает с траекторией вращения насосного колеса.
  • Рабочая зона под давлением заполняется маслом. 
  • Насосное колесо вращается.
  • Лопатки насосного захватывают масло.
  • Под влиянием центробежной силы масло оказывается на турбинном колесе.
  • Масло поступает в реакторе.
  • Направление потока жидкости изменяется.
  • Масло снова поступает в насосное колесо.
Таким образом, на лицо – замкнутая циркуляция масла.
Плюсы и минусы гидромеханических решений

Гидромеханические решения ценят за широкий диапазон регулирования передаточных чисел, возможность обеспечить бесступенчатое изменение параметров потока энергии, реверсирование, быстрое реагирование на изменение условий эксплуатации, ситуацию на дороге. Предоставляется возможность автоматизировать процесс переключения скоростей, установить полный контроль за фильтрацией крутильных колебаний.

Гидромеханические МТ очень популярны у сельскохозяйственных, коммунальных машин, автопоездов большой проходимости. Решение отлично подходит для передачи мощностного потока от ДВС на привод ведущих мостов.
Распространена установка таких агрегатов и на карьерные самосвалы. Удаётся исключить динамические нагрузки на валы, превышение трения дисков.

Самые популярные и эффективные – гидромеханические автоматические трансмиссии.

Правда, при множестве достоинств, есть у них и недостатки:

  • Отношение крутящего момента на ведомом звене по отношению к крутящему моменту на ведущем звене (то есть коэффициент трансформации) достаточно низок (не превышает 3).
  • Есть сложности с нарастанием тормозного усилия (эта проблема остро чувствуется при вхождении в режим торможения ДВС.
  • Высокая материалоемкость.

Гидравлическая трансмиссия

Вместо сухого трения механических МТ задействован гидротрансформатор. Для передачи крутящего момента применяются планетарные ряды, помогающие создать идеальные условия для реализации широкого спектра передаточных отношений. В том числе, такие решения не боятся сильной вибронагруженности.

Огромные преимущества решения:

  • При переключениях передач не происходит разрыва потока мощности.
  • Решение отлично обеспечивает передачу крутящегося момента.
  • Для плавной работы с передачами не нужно прикладывать ударные усилия.
Но чтобы получить отдачу от агрегата с гидротрансформатором, приходится заботиться о монтаже 
своей гидромуфты для каждой передачи.

Гидростатическая трансмиссия

ГСТ передаёт энергию вращения от ДВС к колесу или шнеку через насос с помощью направления рабочей жидкости к гидромотору. 

Решение чаще всего монтируется на транспорте, если важно обеспечить большое передаточное число. Главные объекты, где устанавливаются МТ такого типа – зерноуборочные комбайны, дорожно-строительные машины, бульдозеры.

ГСТ не препятствует пробуксовке машин на вязких грунтах, а при движении вперед-назад легко обеспечить прямолинейность движения. Даже если отвал бульдозера максимально отпущен, то при медленном продвижении вперёд транспортное средство не глохнет. При работе на бульдозере это особенно ценно.


    
   
ГСТ не отличается высоким уровнем КПД, но ДВС у таких ТМ работает более экономично, если сравнивать с механической трансмиссией.

Электромеханическая трансмиссия

Электромеханическая трансмиссия – это решение с тяговым генератором, тяговым мотором (или несколькими моторами).

Объекты установки:

  • cамосвалы большой грузоподъёмности,
  • автобусы большой вместимости,
  • транспорт высокой проходимости (вездеходы, уборочно-транспортные машины),
  • гусеничные трактора,
  • многозвеньевые поезда высокой проходимости,
  • карьерные самосвалы
Главная особенность – энергия передаётся на генератор и при необходимости может использоваться повторно. Торможение происходит с возвратом энергии. Если монтирована аккумуляторная система, можно производить замедленное движение с отключенным ДВС. В электроэнергию может преобразовываться вся мощь ДВС.

Среди недостатков – внушительные габариты, высокая себестоимость, КПД ниже, нежели у механических систем.

Наиболее частые поломки трансмиссии

  • Сильный шум при включении сцепления – «симптом» износа пружин (вилки, демпфера) или возникновение зазора в шлицевом соединении. Чаще всего решение проблемы – замена ведомого диска или пружин, но иногда достаточно просто основательней закрепить пружину вилки.
  • Увеличение шума при выключении сцепления – сигнал о износе, повреждении подшипников вала КПП. Как правило, проблема решается заменой подшипника.
  • «Смазанное» включение передач. Возникает как ответная реакция на износ многих деталей. Важна детальная диагностика и замена одной или нескольких деталей – пружин фиксаторов, шариков, «сухарей», шестерни, муфты, рычага выбора передач, блокирующих колец синхронизаторов.
  • Из коробки передачи течёт масло. Чаще всего проблема – в износе сальников или уплотнительных прокладок, и они нуждаются в замене. Но проблема может быть и в ослаблении крепления картера или его крышек. В этом случае требуется регулировка крепежа (гаек).
  • КПП издаёт гул, шум. Такое нередко бывает при недостатке уровня масла в коробке. И здесь важно понять причину утечки масла, устранить ее, а затем восстановить уровень масла до требуемых норм. Кроме того, проблема может быть связана с износом синхронизаторов, подшипников, шестерен. В этом случае требуется их замена.
  • При подъёме транспортного средства в гору начинается пробуксовка. Переключение на пониженную передачу начинается раньше времени. Здесь, как и в предыдущем случае, причина чаще всего – падение уровня масла. Но нельзя исключать и одновременный износ манжет поршня и дисков муфты. Это может быть прямым стимулом к их замене.
  • Cтук на холостом ходу ДВС. Это свидетельство окончания времени эксплуатации дисков фрикционных муфт. Решить проблему можно только их заменой.
Интерактивное обучение! На базе LCMS ELECTUDE доступен специальный обучающий курс-тренинг и тестовая система проверки знаний «Трансмиссия автомобиля». 

29 учебных модулей – это отличные возможности для того, чтобы изучить устройство, принцип работы разных трансмиссий. Огромное внимание уделяется устройству и сервисному обслуживанию.

Видеообзор интерактивного тренинга «Трансмиссия»

Дополнительную информацию вы всегда можете уточнить в LCMS ELECTUDE. Это не только обширная база знаний для тех, кто постигает транспортные технологии, но и площадка, которая позволяет прокачать навыки посредством симулятора, оценить знания с помощью системы тестов. Платформа отлично подходит для обучения  автодиагностов и автомехаников.


Современные трансмиссии: коробочка с секретом — журнал За рулем

Постоянное и неуклонное ужесточение экологических норм вынуждает производителя модернизировать не только двигатели, но и трансмиссии. В результате чего автомобиль становится все сложнее…

201204211636_zf_test_drive_11

Эти автомобили уже сейчас комплектуются новой 8-ступенчатой АКП 8НР

Эти автомобили уже сейчас комплектуются новой 8-ступенчатой АКП 8НР

Каких-то 80–90 лет назад люди более всего ценили комфорт. Им пришелся по вкусу телефон и, конечно, автомобиль. Следуя моде, автомобили тех лет строили максимально комфортабельными, с мягкой подвеской и легким рулем. Для удобства конструкторы уменьшили количество передач в КП до трех, а то и до двух. Например, у «Бугатти 28», тип 30, КП была трехступенчатая, причем для трогания с места и вообще езды использовалась вторая, прямая передача. На ней же «Бугатти» разгонялась до 150 км/ч. Первую передачу пускали в ход только при трогании в горку, а на третьей, скоростной, машину можно было разогнать до 200 км/ч. У Гитлера был «Хорьх» с двумя передачами, причем ездили (и трогались) на второй.

В последние годы тенденция изменилась в корне, сейчас в почете управляемость и экология. Подвески стали жестче, руль — острее, мотор — живее и быстроходнее. Количество же передач в коробках неуклонно растет, есть КП для легковых автомобилей с семью, восемью и даже девятью ступенями. Понятно, что жесткие подвески и острый руль дают автомобилю лучшую управляемость, из-за чего скорость движения по той же дороге увеличивается. Быстроходный оборотистый мотор наделяет автомобиль хорошей динамикой. А зачем нужна многоступенчатая коробка, какой в ней толк?

Дело в том, что коробка передач строится под конкретный двигатель. На старых моторах они были совсем не такими, как на современных — крутящий момент достигал максимума чуть ли не на оборотах холостого хода. За что расплачивались никудышной литровой мощностью, невероятными размерами и весом, вялой динамикой и  зверским аппетитом. Современные моторы в погоне за экономией топлива имеют куда меньшие рабочие объемы и как следствие — меньший крутящий момент. Для поддержания двигателя в диапазоне рабочих оборотов и были созданы многоступенчатые КП. С увеличением числа передач конструкторы добиваются наиболее эффективной работы двигателя по экономичности и тяговым возможностям, а нормы экологии только подстегивают процесс. В качестве примера приведу две новые коробки, сконструированные одним из мировых лидеров по производству КП — немецким концерном ZF.

201204211640_1_1_9hp_zf_resize

Автоматическая 9-ступенчатая коробка 9НР

Автоматическая 9-ступенчатая коробка 9НР

201204211641_1_2_9hp_schnittbild_zf_resize

Коробка 9НР в разрезе

Коробка 9НР в разрезе

Именно ZF Friedrichshafen AG разработала первую в мире 9-ступенчатую автоматическую коробку (9НР). Это АКП для переднеприводных автомобилей с поперечным расположением двигателя. Две модели коробки перекрывают крутящий момент от 200 до 480 Нм (9НР28 и 9 НР48 соответственно). Интересно, что в коробке предусмотрен апгрейд до  гибридной трансмиссии или реализации функции «старт-стоп». Реализуется это просто — достаточно заменить гидротрансформатор стандартным стартер-генератором.

Стоит ли игра свеч, ведь девять передач — не шутка, агрегат получается сложным и, значит, дорогостоящим? По всей видимости, стоит. По утверждению ZF, по сравнению с обычным 6-ступенчатым «автоматом», экономия топлива у автомобиля с новой коробкой доходит аж до 16%. Такая эффективность достигается, прежде всего, благодаря весьма высокому общему передаточному числу коробки — 9,84. То есть большое количество ступеней АКП позволяет очень точно выбрать нужное передаточное отношение, ведь различие между соседними передачами маленькое, а чем меньше это различие — тем точнее можно выбрать передачу для заданного режима работы двигателя. Эта особенность положительно влияет на комфорт при езде и заодно позволяет двигателю работать в более экономичном режиме. Так, при движении на девятой передаче при скорости 120 км/ч частота вращения двигателя — 2170 об/мин, а с 6-ступенчатой АКП — 2890  об/мин.

201204211644_48

Обороты двигателя при движении 120 км/ч

Обороты двигателя при движении 120 км/ч

Раcход топлива, кроме того, минимизируется блокированием гидротрансформатора на довольно низких оборотах, уменьшая тем самым гидравлические потери. При этом не только уменьшается расход топлива, но и растет динамика, поскольку момент от двигателя передается напрямую. Кроме того, этот новый алгоритм работы гасителя крутильных колебаний усиливает чувство слияния с автомобилем — скорость работы элементов системы управления и переключения ниже порога восприятия водителя.

Возможность быстрого переключения передач, в свою очередь, придает новой коробке спортивный характер. Интересно, что настраивать точки и динамику переключения передач, задавая разные режимы, от комфортного и экономного до спортивного, может не только производитель автомобилей, но и водитель, то есть система управления режимами движения коробки весьма гибкая. Система автоматического управления трансмиссией ATSYS включает в себя все устройства управления сцеплением, функцию адаптации, функции защиты коробки передач. Кроме того, система ASIS (алгоритм переключения передач) незаметно для водителя выбирает оптимальную передачу в зависимости от дорожной ситуации.

201204211648_44

Алгоритм переключения передач

Алгоритм переключения передач

201204211649_46

Соотношение передаваемого момента и веса различных АКП

Соотношение передаваемого момента и веса различных АКП

Одно из важнейших преимуществ новой коробки — модульный принцип, по которому она создана. Например, для привода на все колеса может быть установлена дополнительная раздаточная коробка. Для этого разработан автоматически подключаемый полный привод (по терминологии ZF — AWD Disconnect). Эта система включает привод на задние колеса только при необходимости и экономит до 5% топлива по сравнению с постоянным полным приводом. Кроме того, коробка уже в серийном исполнении приспособлена к работе в режиме «стоп-старт» без вспомогательного масляного насоса. Так как при повторном старте блокируется только фрикционный механизм переключения, время реакции оказывается весьма незначительным. Важно, что коробка совместима и с гибридной версией: в параллельной архитектуре гибридного привода гидротрансформатор заменяется электромотором.

201204211651_50

Основные особенности коробок 9НР

Основные особенности коробок 9НР

Большое число передач коробка реализует с помощью четырех комплектов шестерен и шести переключающих устройств. Очень сложной задачей была компоновка всех этих узлов в корпусе коробки, так как в легковом автомобиле с поперечным расположением двигателя пространство весьма и весьма ограниченно. Выход был найден оригинальный: коробка состоит из двух планетарок с общей солнечной шестерней, а механизм переключения использовали кулачковый, с гидроприводом. У такого механизма высокий КПД, и он мало влияет на монтажную длину коробки. Если у многодискового механизма переключения в разомкнутом положении действуют моменты инерции, вызывающие потери мощности, то у кулачкового потери очень малы. Это важно именно для коробки с большим числом передач: благодаря точному подбору передач здесь нет таких потерь при передаче потока мощности от двигателя, как в других трансмиссиях.

201204211722_8_1_8hp_zf_resize

новая 8-ступенчатая коробка (8НР)

новая 8-ступенчатая коробка (8НР)

В отличие от 9-ступенчатой, новая 8-ступенчатая коробка (8НР) предназначена для автомобилей с продольным расположением двигателя.

Два модельных ряда этой коробки покрывают очень широкий диапазон крутящих моментов — от 300 до 1000 Нм. 8HP — это первый «автомат», позволяющий реализовывать функцию «старт-стоп» без вспомогательного насоса. Уже сейчас коробка 8HP устанавливается серийно на некоторые модели Alpina, Audi, Bentley, Chrysler, BMW, Jaguar, Lancia, Land Rover, Range Rover и Rolls-Royce.

Широкий охват уровня входного крутящего момента позволяет применять коробку передач в самых разных классах автомобилей и с самыми разными типами двигателей. Эта 8-ступенчатая коробка снижает расход топлива автомобиля даже по сравнению с 6-ступенчатым «автоматом» второго поколения, который еще совсем недавно был образцом топливной экономичности.

201204211725_33

Устройство коробки 8НР

Устройство коробки 8НР

Техническое решение основывается на концепции с четырьмя планетарными рядами шестерен и пятью элементами переключения. Поскольку на каждой передаче только два элемента переключения находятся в разомкнутом положении, потери тягового усилия из-за моментов инерции внутри коробки существенно снижаются. Кроме того, более высокое общее передаточное число (7,05 по сравнению с 6,04  у предшествующей модели) обеспечивает работу двигателя на более низких оборотах, что снижает расход топлива. Экономит топливо и уровень выбросов CO2 и системы гашения крутильных колебаний в гидротрансформаторе, в частности, быстрой его блокировкой при старте. Как и 9-ступенчатая коробка, новый 8-ступенчатый «автомат» отличается высокой скоростью переключения — ниже порога восприятия.

201204211727_34

Зависимость веса и передаваемого крутящего момента для разных АКП

Зависимость веса и передаваемого крутящего момента для разных АКП

201204211728_38

Гидроаккумулятор (система HIS)

Гидроаккумулятор (система HIS)

8НР — первая модель ступенчатой трансмиссии, в которой можно реализовать функцию «старт — стоп». Дело в том, что при выключенном ДВС в коробке не будет давления масла, поэтому она не может функционировать. Однако в ней есть особое устройство — гидроаккумулятор, который создает давление в коробке, и автомобиль может немедленно тронуться. Благодаря этому гидроаккумулятору импульсного действия автомобиль может повторно тронуться с места спустя всего 350 миллисекунд после отключения двигателя. Пружинный поршневой аккумулятор в доли секунды нагнетает гидравлическое масло, необходимое для старта, во внутренние узлы коробки. Режим «Старт — стоп» позволяет снизить расход топлива с этой коробкой в общей сложности до 11% по сравнению с прежней 6-ступенчатой.

201204211730_39

Экономия топлива с разными модификациями коробки 8НР

Экономия топлива с разными модификациями коробки 8НР

Новая коробка может работать и в гибридной, и в полугибридной (со стартер-генератором) версиях, причем для этого не требуется никаких изменений, простой заменой гидротрансформатора на электромашину. Полугибрид позволяет сэкономить до 15% топлива, а полный гибрид — до 25%.

Коробка может быть дополнена полноприводной версией и другими разными элементами трансмиссии. Например, гидродинамическое сцепление с охлаждением (hydrodynamically cooled clutch — HCC) обеспечивает плавный старт и быстрое переключение передач. При этом в картере сцепления вместо гидротрансформатора устанавливается «мокрая» многодисковая муфта. У такой муфты момент инерции массы меньше, чем у гидротрансформатора, а это позволяет передавать больший крутящий момент и делает его привлекательным для спортивных автомобилей. Версий полного привода несколько. Во первых, это классический вариант с «навешиванием» дополнительной раздаточной коробки, как это обычно делается во внедорожниках. Во-вторых — интеграция раздаточной коробки с включением привода на переднюю ось, так конструкция получается компактнее, легче и с лучшим КПД. И в-третьих — интегрированная полноприводная версия, в которой кроме раздаточной коробки в  корпус автоматической коробки передач встроен еще и дифференциал.

201204211731_50

Экономия топлива с разными модификациями 8НР

Экономия топлива с разными модификациями 8НР

Итог прост. Количество передач в коробках неуклонно растет и будет расти, а коробки будут все сложнее и сложнее. И главная причина тому — экологические требования. По всей видимости, и девять ступеней — не предел.

Масла Mobil Delvac™ для гидроусилителей рулевого управления и трансмиссий

На основании ваших предпочтений, касающихся файлов cookie, вам могут быть доступны не все функции веб-сайта. Нажмите здесь, чтобы обновить настройки.

Масла Mobil™ ATF помогают обеспечить долгий срок службы и оптимальную работу гидроусилителя рулевого управления, повышенную чистоту трансмиссии, плавное переключение передач и продление ресурса КПП даже в самых сложных условиях эксплуатации.

  • Mobil 1™ Synthetic ATF

    Mobil 1 Synthetic ATF представляет собой универсальный полностью синтетический продукт, разработанный для удовлетворения высоких требований современных автоматических трансмиссий пассажирских автомобилей.

    Дополнительная информация
  • Mobil Delvac 1 ATF

    Mobil Delvac 1 ATF является полностью синтетической жидкостью, рекомендованной компанией «Allison Transmission, Inc» и одобренной по спецификации Allison TES-295.

    Дополнительная информация
  • Mobil ATF SHC

    Mobil ATF SHC представляет собой синтетическую жидкость для автоматических трансмиссий с превосходными эксплуатационными характеристиками, предназначенную для удовлетворения жестких требований автоматических трансмиссий, работающих в условиях высоких температур и высоких нагрузок.

    Дополнительная информация
  • Mobil ATF 3309

    Рекомендована для применения в трансмиссиях, где требуются жидкости с уровнем качества JWS 3309 или GM 9986195. Она также рекомендована для применения в трансмиссиях, в которых требуется жидкость Toyota T-IV.

    Дополнительная информация
  • Mobil ATF 320

    Высококачественная рабочая жидкость для автоматических трансмиссий, рекомендованная для большинства пассажирских и грузовых транспортных средств.

    Дополнительная информация
  • Mobil ATF 220

    Mobil ATF™ 220 — это жидкость с высоким уровнем рабочих свойств для автоматических трансмиссий автомобилей предыдущих годов выпуска, для которых требуются масла по спецификации Dexron IID.

    Дополнительная информация
  • Mobil ATF 200

    Продукт Mobil ATF 200 разработан для применения в качестве как трансмиссионной жидкости в гидротрансформаторах , так и гидравлической жидкости в системах управления и сервоприводах. Рекомендована под спецификацию MB 236.2, а также GM Тип A суффикс A.

    Дополнительная информация
  • Mobil ATF 134

    Жидкость Mobil ATF 134 рекомендована для использования в 7-ступенчатых АКПП Mercedes Benz последнего поколения. Она одобрена по спецификации MB 236.14.

    Дополнительная информация
  • Mobil™ Dexron-VI ATF

    Mobil DEXRON-VI ATF — это синтетическая жидкость с высокими эксплуатационными характеристиками, которая соответствует жёстким требованиям технических условий DEXRON-VI компании GM или превосходит их. Продукт обеспечивает надежную защиту автоматических трансмиссий автомобилей GM 2006 и последующих годов выпуска.

    Дополнительная информация
  • Mobil™ ATF 134 FE

    Mobil™ ATF 134 FE — это жидкость для автоматических трансмиссий, разработанная специально для дальнейшей оптимизации работы коробки передач, которая применяется в автоматических трансмиссиях последнего поколения 7-G Tronic Plus на автомобилях фирмы Mercedes-Benz.

    Дополнительная информация
  • Mobil ATF™ LT 71141

    Продукт Mobil ATF LT 71141 представляет собой высокоэффективную жидкость с длительным интервалом замены для автоматических трансмиссий, применяемую в автоматических КПП автомобилей.

    Дополнительная информация

Трансмиссия

Трансмиссия Сортировать по:

Каталог продукции

Шумит трансмиссия? Не знаете, как просто и эффективно устранить неполадки КПП? Тогда присадки вкоробку передач – то, что вам нужно. Ревитализанты ХАДО для трансмиссии обеспечивают бережный уход за деталями, восстанавливая их геометрию. Средства для трансмиссии ХАДО действуют на атомарном уровне и эффективно защищают узлы автомобиля от преждевременного износа, создавая на поверхностях пар трения металлокерамический слой. Кроме того, применение ревитализанта способствует увеличению срока службы трансмиссии в 2-4 раза.

Присадки ХАДО для КПП: описание

Если вы хотите избавиться от шума и гула в КПП, не разбирая агрегат, попробуйте воспользоваться специальными средствами ХАДО. Существуют разные виды присадок для трансмиссии. Так, существуют классические, усиленные и присадки третьего поколения с кондиционером металла. Выгодным отличием продукции ХАДО является наличие в составе смазочных материалов восстанавливающего компонента, отвечающего за ревитализацию деталей механизма.

Даже моторные масла производства ХАДО оказывают восстанавливающее действие и увеличивают ресурс агрегата. Но учтите, что масло ХАДО может поддерживать заводские параметры трансмиссии только при условии заливки моторного масла одновременно с началом эксплуатации. Если же трансмиссия вашего автомобиля нуждается в ремонте, масло уже не поможет, необходимо использовать специальный гель-ревитализант.

Где купить присадки в трансмиссию?

В интернет-магазине автохимии ХАДО на сайте xado.ru вы можете купить различные средства по уходу за авто, включая моторные масла с ревитализантом и присадки в трансмиссию по самым выгодным ценам. Нашим клиентам гарантировано сочетание высокого качества продукции и демократичной цены, широкий ассортимент товаров и отличный сервис.

Вы вышли из Вашего Личного Кабинета.

Ваша корзина покупок была сохранена. Она будет восстановлена при следующем входе в Ваш Личный Кабинет.

Укажите ваши данные

Заполните все поля формы с подробной информацией о модели Вашей машины для того, чтобы наши эксперты смогли Вам помочь.

Ваш запрос отправлен

Бесплатный звонок

Ваш запрос отправлен

Ваша заявка принята.

С вами свяжется наш консультант в ближайшее время.

Часы работы: Пн-Пт: с 9:00 до 18:00
Суббота, воскресенье: выходной.

Трансмиссия автомобиля и её назначение. Основные узлы и детали трансмиссии. Типы трансмиссий, колёсные формулы


  1. Трансмиссия автомобиля и её назначение. Основные узлы и детали трансмиссии. Типы трансмиссий, колёсные формулы.

Трансмиссия автомобиля (силовая передача) обеспечивает передачу усилий (крутящего момента) от двигателя на ведущие колёса, а также преобразование (трансформацию) этих усилий в зависимости от условий движения. К трансмиссии относятся все узлы и механизмы автомобиля, связывающие двигатель с ведущими колёсами.

Следует различать трансмиссии автомобилей с приводом на заднюю ось (а/м классической компоновки), с приводом на передние колёса и полноприводных автомобилей. Так же, будет различаться трансмиссия полноприводного автомобиля, сконструированного для эксплуатации в условиях бездорожья (внедорожник), от трансмиссии полноприводного автомобиля, созданного для дорог с твёрдым покрытием.

Колёсные формулы автомобилей с приводом на задние или передние колёса, пишутся – 4х2 (т.е., четыре колеса, два из которых – ведущие). Колёсная формула автомобиля с приводом на переднюю и заднюю ось, пишется – 4х4 (т.е., четыре колеса – все ведущие).

К механизмам трансмиссии относятся: сцепление, коробка передач (в том числе, раздаточная коробка и коробка отбора мощности на вспомогательные механизмы), карданная передача, главная передача, дифференциал, приводы ведущих колёс и некоторые другие механизмы.

Главная передача, коробка передач и раздаточная коробка (при её наличии) обеспечивают суммарное передаточное число трансмиссии автомобиля.

1). Сцепление служит для соединения двигателя с трансмиссией, а также для временного их разъединения (например, в момент переключения передач).

На автомобилях находят применение «сухие», одно -, или двухдисковые фрикционные сцепления с механическим (чаще, тросовым), или гидромеханическим приводом, а также гидромуфты и гидротрансформаторы.

Работа фрикционных сцеплений основана на использовании сил трения между твёрдыми поверхностями, в частности – между нажимным диском сцепления, фрикционными накладками ведомого диска сцепления и маховиком двигателя. Устройство однодискового сухого фрикционного сцепления легкового автомобиля показано на рисунке. Схему гидравлического и тросового привода см. здесь.

Гидромеханические муфты и гидротрансформаторы передают крутящий момент от двигателя на трансмиссию посредством воздействия на рабочие детали механизма жидкости (как правило, специального масла), циркулирующей внутри корпуса гидротрансформатора. Устройство гидротрансформатора показано на рисунке. О работе простейшего гидротрансформатора можно почитать здесь.

2). Коробка передач служит для изменения тяговых усилий (крутящих моментов), передаваемых от двигателя на ведущие колёса, а также для отсоединения двигателя от трансмиссии (в том числе, долговременного) и обеспечения движения автомобиля задним ходом.

Необходимость изменения тяговых усилий на колёсах возникает при изменении условий движения автомобиля (дорожных условий). Наибольшие усилия на ведущих колёсах требуются при трогании автомобиля с места. При движении в сложных дорожных условиях (например, крутой подъём или бездорожье), мощность двигателя будет тратиться на преодоление сопротивления движению автомобиля. При движении в благоприятных дорожных условиях (например, ровное шоссе), мощность двигателя можно «расходовать» на разгон автомобиля.

В зависимости от условий движения водитель выбирает (включает) ту, или иную передачу в коробке передач, вводя в зацепление шестерни с различным передаточным отношением и, тем самым, изменяет крутящий момент на ведущих колёсах. В автоматических трансмиссиях управление передачами осуществляется посредством систем управления включением, без непосредственного участия водителя.

При изменении (увеличении/уменьшении) крутящего момента на ведущих колёсах, скорость их вращения изменяется в обратной пропорции, на ту же величину.

На современной автомобильной технике применяются двух, — трёхвальные коробки передач с простой зубчатой передачей и цилиндрическими шестернями внешнего зацепления, а также с зубчатыми передачами и редукторами планетарного типа и вариаторы. Число передач прямого хода может быть в пределах 3 – 7, заднего хода — 1 – 2. Передаточные числа передач приводятся в технической характеристике трансмиссии конкретного автомобиля.

Общее устройство вальной механической коробки передач можно посмотреть на рис.

Основными деталями вальной коробки передач являются валы (первичный, вторичный, промежуточный), шестерни передач, синхронизаторы, подшипники, детали механизма переключения передач (для «ручных» коробок – вилки, штоки и др.). Планетарные коробки передач имеют в своём составе валы (ведущий, ведомый, центральный), комплект планетарных передач, состоящего из набора шестерён (сателлитовых, солнечной и коронной) и водила, фрикционно-тормозные устройства, механизм гидравлического или электрогидравлического управления переключением передач.

Работа простой зубчатой и планетарной передачи рассматривается здесь.

Раздаточная коробка имеет устройство сходное с коробкой передач, устанавливается за основной коробкой передач (иногда, коробка передач и раздаточная коробка, конструктивно объединяется в одном корпусе) и служит для распределения (раздачи) усилия на все имеющиеся ведущие мосты автомобиля. Раздаточная коробка, как правило, имеет две передачи – высшую (прямую) и понижающую, что удваивает общее число передач и позволяет подбирать передаточные числа трансмиссии для движения в условиях тяжёлого бездорожья. В коробке помещают механизм для включения/выключения одного из мостов и главную передачу с междуосевым дифференциалом, если предусматривается постоянный привод на все колёса. Так же, может иметься механизм блокировки междуосевого дифференциала

3). Карданная передача служит для передачи вращения от коробки передач (раздаточной коробки) на главную передачу ведущего моста при постоянно изменяющихся углах наклона и расстоянии между осями автомобиля (базы).

Угол наклона карданного вала должен изменяться в связи с тем, что ведущий мост автомобиля прикреплён к кузову (раме) через элементы подвески (т.е., не жёстко) и имеет определённую степень свободы. По этой же причине изменяется и расстояние между осями автомобиля. Так, при ускорении автомобиля, задний ведущий мост стремится «догнать» переднюю часть кузова, а при торможении, наоборот, «отстать» от неё.

Карданная передача может иметь в своём составе один или несколько валов, карданные шарниры, эластичные соединительные и подвесные муфты.

Устройство карданной передачи легкового автомобиля можно посмотреть здесь.

4). Главная передача осуществляет передачу крутящего момента под углом 90º с карданного вала на приводы ведущих колёс, изменяет крутящий момент в соответствии со своим передаточным числом.

Имеют место одинарные и двойные главные передачи. Шестерни передач могут быть коническими и/или цилиндрическими. Одинарные простые передачи, имеют в своём составе ведущую и ведомую шестерню. Ведущая малая шестерня – коническая, со спиральными зубьями устанавливается в подшипниках качения и приводится в движение от карданного вала, либо, непосредственно от вала коробки передач. Ведомая большая шестерня, со спиральными зубьями, крепится болтами на коробку дифференциала. В гипоидных передачах, ось малой конической шестерни смещена вниз, относительно оси большой ведомой шестерни на 30 – 40 мм.

Шестерни гипоидных передач изготавливаются «парами» и маркируются. Замена шестерён должна проводиться только в комплекте.

Устройство главной передачи показано на рисунке.

е). Дифференциал распределяет крутящий момент между ведущими колёсами (осями) и позволяет ведущим колёсам автомобиля вращаться с различной скоростью, что необходимо при прохождении автомобилем поворотов и при попадании колёс в разные дорожные условия (например, одно колесо находится на ровном покрытии, а второе движется по неровностям).

Наибольшее применение получили дифференциалы с коническими шестернями. Дифференциал имеет корпус (коробку дифференциала) в котором размещаются конические полуосевые шестерни и сателлитовые шестерни, установленные на оси.

Указанное выше свойство дифференциала, в случае имеющихся отличий в сцеплении ведущих колёс с дорожным покрытием, часто приводит к пробуксовке одного из колёс (колеса с меньшим коэффициентом сцепления с дорогой). Для устранения данного нежелательного эффекта на машинах повышенной проходимости применяют дифференциалы повышенного трения (самоблокирующиеся дифференциалы) или используют механизмы блокировки дифференциала.

Устройство дифференциала показано на рисунке.

5). Приводы колёс.

Ведущие полуоси устанавливаются в полуосевых рукавах балки ведущего моста и служат для передачи вращения от дифференциала на колёса. По условиям работы полуоси разделяются на два основных типа: полуразгруженные и полностью разгруженные.

Полуразгруженная полуось одним концом лежит в коробке дифференциала, а другим в подшипнике полуоси.

Полностью разгруженная полуось одним концом лежит в коробке дифференциала, а другим, через фланец соединена со ступицей колеса. В свою очередь, ступица колеса на подшипниках установлена на конце полуосевого рукава. При такой установке полуось передаёт только крутящий момент. Все остальные силы воспринимаются балкой ведущего моста через подшипники.

Ведущий мост представляет собой общий кожух (балку) с центральным картером и полуосевыми рукавами. В картере размещаются главная передача и дифференциал. В полуосевых рукавах устанавливаются полуоси.

В приводах передних колёс присутствует такой элемент как шарнир равных угловых скоростей, обеспечивающий равномерное вращение колёс при их различных пространственных положениях во время поворота автомобиля.

Привод задних колёс автомобиля классической компоновки показан здесь, привод передних колёс показан на рисунке. О шарнире равных угловых скоростей можно почитать здесь.

что это, значение, принцип работы

Трансмиссия автомобиля — это взаимосвязанные узлы и агрегаты, обеспечивающие передачу крутящего момента от коленвала мотора на ведущие колеса.

Назначение и типы автомобильной трансмиссии

Трансмиссия выполняет три функции:

  • передача момента;

  • изменение величины крутящего момента и его направления;

  • перераспределения тяги между ведущими осями и колесами.

Типы автомобильной трансмиссии классифицируются на основании преобразуемой энергии:

  • Механическая. Агрегаты передают механическую энергию вращения, меняя скорость и крутящий момент. Самый простой и дешевый механизм, используемый больше века.

  • Электрическая. Энергия ДВС преобразуется в электричество, которое питает электродвигатели, соединенные с колесами. Такие решения используются на тяжелых карьерных самосвалах и прототипах гибридных автомобилей с ДВС и аккумуляторной батареей.

  • Гидрообъемная. Энергия мотора машины преобразуется в поток жидкости, который вращает крыльчатку, приводящую в движение ведущие колеса.

  • Комбинированная. К ней относятся электромеханические и гидромеханические устройства. Самая распространенная разновидность — автоматическая трансмиссия с гидротрансформатором.

В зависимости и способа управления преобразованием крутящего момента (типа КПП) различают ручную (МКПП) и автоматическую (АКПП) трансмиссию.

  • Механическая КПП отличается экономичностью, дешевизной, надежностью и более высоким КПД. Она позволяет завести авто «с толкача», буксировать авто и двигаться по дороге «накатом». Также машины с МКПП легче заводятся на морозе.
    Минусы «механики» — более сложное управление автомобилем и наличие сцепления, которое легко вывести из строя при неумелой эксплуатации.

  • Роботизированная КПП представляет собой классическую «механику», оснащенную сервоприводами. Они самостоятельно переключают передачи и отключают сцепление, делая третью педаль ненужной. Машины с роботизированной коробкой передач можно буксировать. Как и МКПП, «робот» помогает экономить топливо при движении «накатом». Даже новичку легко управлять авто с роботизированной КПП. Однако она менее надежна и отличается высокой ценой ремонта. В отличие от других АКПП, «робот» переключает передачи рывками, а не плавно меняет крутящий момент.

  • АКПП с гидротрансформатором передает крутящий момент от двигателя через крыльчатки, находящиеся в жидкости (масле). Гидротрансформатор отличается высокой надежностью и предохраняет двигатель от чрезмерной загрузки. При соблюдении регламента обслуживания он проходит 300-400 тысяч километров. Такие АКПП отличаются мягким изменением крутящего момента и не позволяют машине скатиться назад, трогаясь на горку. Однако ремонт этих агрегатов слишком сложный и дорогой. Отсутствие жесткой связи с двигателем ухудшает динамику и КПД.

  • Вариаторные АКПП изменяют крутящий момент за счет изменения размеров ведущей и ведомой шестеренок или шкивов. В зависимости от детали, передающей крутящий момент, различают ременные, клиномерные и торовые вариаторы. В легковых авто применяется преимущественно ременные передачи. Их преимущество — высокий КПД, хорошая динамика и отсутствие толчков и рывков при переключении. Однако они, как и АКПП с гидротрансформатором, не позволяют буксировать авто и отличаются сложностью и дороговизной ремонта.

Ведущие колеса, на которые трансмиссия передает энергию, могут быть передними или задними (передне- и заднеприводные машины). Также применяются полноприводные конструкции, в которых все четыре колеса являются ведущими.

Устройство трансмиссии

Крутящий момент от мотора автомобиля к колесам передают следующие детали и узлы:

  • коробка переключения передач;

  • сцепление;

  • главная передача;

  • кардан и (или) ШРУСы;

  • дифференциал либо несколько (2-3) дифференциалов.

Конструкция отличается в зависимости от установленной КПП и типа привода:

  • на машинах с АКПП отсутствует сцепление;

  • на заднеприводных авто зачастую нет ШРУСов;

  • автомобили с передними ведущими колесами не оборудуются карданами;

  • на полноприводных машинах устанавливается не один, а три дифференциала: передний, задний и межосевой.

Давайте отдельно рассмотрим функции каждого из агрегатов.

  • Сцепление служит для кратковременного отключения механической связи между двигателем и КПП. Оно позволяет плавно разъединять и соединять их, обеспечивая беспрепятственное переключение передач и предохраняя двигатель и КПП от перегрузок во время старта с места или смены передачи.

  • Коробка передач меняет крутящий момент, приходящий на колеса, скорость вращения приводных валов и направление движения машины. Она обеспечивает долговременное отключение вала двигателя от трансмиссии при буксировке или движении «накатом» (актуально для роботизированных и ручных КПП).

  • Карданная передача (кардан) передает вращение с вала КПП на шестерню ведущего моста заднеприводного авто (вернее, на его главную передачу). Он обеспечивает подвижность соединения и не препятствует свободному ходу моста при движении по неровной дороге.

  • Главная передача, расположенная в КПП или ведущем мосту, увеличивает крутящий момент двигателя, который передается на полуоси колес. На заднеприводных авто используется гипоидная передача, объединенная с дифференциалом. В переднеприводных авто главная передача совмещена с КПП.

  • Дифференциал перераспределяет вращающий момент между ведущими колесами либо осями (последнее актуально на полноприводном авто). Он позволяет колесам крутиться с разными скоростями. Это предотвращает снос оси при повороте и уменьшает расход топлива и износ шин во время движения по неровной дороге. Узел устанавливается в заднем мосту или КПП (в задне- и переднеприводных машинах соответственно). Полноприводные авто оснащаются межосевыми дифференциалами и устройствами блокировки дифференциала, повышающими проходимость на снегу, грязи, песке или льду.

  • Шарниры равных угловых скоростей передают вращение от дифференциала на ведущие колеса переднеприводных и полноприводных автомобилей. Различают внешние и внутренние ШРУСы. Первые устанавливаются со стороны колес, вторые — со стороны КПП. Детали соединяются приводными валами.

Трансмиссии полноприводных авто имеют несколько типов конструкции, включающих элементы передне- и заднеприводной компоновки, дополненные раздаточной коробкой. Особую нишу занимают появившиеся на рынке электромобили. В них отсутствуют КПП и дифференциалы, а электромоторы имеют прямую механическую связь с ведущими колесами.

Бесступенчатые трансмиссии CVT и их особенности

Современные автомобили проектируются с учетом множества факторов. Если отбросить выражение : что «автомобиль – это средство передвижения из пункта А в пункт Б», то комплектация, дизайн, характеристики и т.д. настолько важны для современного покупателя, что порой об изначальном назначении автомобиля можно и забыть.

Невозможно одной фразой обозначить все то, что сконцентрировано в автомобиле сегодня. Остановимся на одной – комфорт движения применительно к трансмиссии:

а именно – как бесступенчатая трансмиссия повышает комфорт при движении автомобиля.

Перед изготовителями стоят непростые задачи:

— как сделать комфортный и недорогой автомобиль в определенном сегменте (классе)

— как снизить расход топлива и добиться экономичности

— как снизить токсичность выхлопа и улучшить экологию производства

Ответом для многих изготовителей стало использование новых типов трансмиссий, так называемых бесступенчатых трансмиссий или CVT. Внедрение этих трансмиссий позволило улучшить и экологический вопрос – снижение токсичности выхлопа.

Изначально эти трансмиссии были созданы для улучшения плавности движения, так как в них не было фиксированных передач. В дальнейшем использование этих трансмиссий позволило решить задачи по топливной экономичности и экологичности.

Нынешние тенденции автомобилестроения связаны с экологией в большей мере. Это прослеживается не только в применяемых материалах при изготовлении автомобилей, но и во внедрении разработок комплексного характера, призванных уменьшить расход топлива. Иными словами – недостаточно поставить современный мотор в кузов 30 летней давности – это решит только часть проблем.

Например: если технология безсвинцовой пайки компонентов электронных блоков автомобилей носит только экологический характер, а материал, из которого изготовлены узлы, подлежит переработке – то это решение экологических вопросов, связанных с загрязнением окружающей среды. А снижение расхода топлива – это, в дополнении к экологическому, и экономический эффект. Однако суммируются все составляющие.

Как добиться экологии и экономии, не изменяя всю конструкцию автомобиля?

Инженеры модернизируют узлы, заменяя в них те компоненты, которые не соответствуют требованиям сегодняшнего дня. Один из таких узлов – трансмиссия, а именно – коробка передач. Первоначально коробки передач были механические, где выбор передачи был возложен на водителя. В соответствии с режимом движения, водитель обязан был включить ту или иную передачу (изменить передаточное число). Как показала практика, далеко не все водители могли это сделать вовремя. Часть водителей так и не научились в принципе управлять ручной коробкой передач. Это приводило к потере внимания и аварийности, особенно городах с интенсивным движением. Машина “управляла” водителем, так как “заставляла” выбирать передаточное число каждый раз при изменении режим движения. Кроме этого, неправильный выбор передаточного числа перегружал двигатель, чрезмерно изнашивая его и резко повышая токсичность выхлопа.

С внедрением автоматических коробок передач ситуация резко улучшилась. Теперь не машина управляла водителем – а водитель одной педалью выбирал режимы движения. Произошло снижение аварийности и за руль смогли сесть люди, которым не дано было освоить переключения ручной коробки на таком уровне, что бы их вождение не предоставляло опасности для окружающих. Токсичность выхлопа была снижена, так как водитель уже не мог совершить грубых ошибок выбора передаточного числа. Мотор мог работать в оптимальном режиме с точки зрения его ресурса и эмиссии выхлопа. Комфорт движения и легкость управления сделали автомобиль массовым.

Автоматическая трансмиссия работает таким образом, что все элементы находятся в постоянном зацеплении и в любой момент времени всегда включена определенная передача. Момент выбора передач был автоматизирован от условий движения.

С появлением электронно-управляемых автоматических трансмиссии, моменты переключения и выбора передаточных чисел стали, основаны — в том числе и на показаниях датчиков состава выхлопных газов. Таким образом, для современных автомобилей первоосновой являются ограничения по загрязнению окружающей среды. В моторах оборудованных электронными дроссельными заслонками и автоматическими трансмиссиями, учитывается только пожелания водителя изменить режим движения. Так как, нажимая на педаль акселератора, водитель непосредственно не открывает дроссельную заслонку двигателя, за него это делает компьютер, анализируя огромное количество параметров он принимает решение: есть возможность увеличить нагрузку на двигатель?, — и если «да» – то насколько? После этого компьютер выбирал оптимальную передачу в АКПП для этого режима, освободив водителя от этой задачи.

Тем не менее, все новые требования экологии выхлопа заставляют пересматривать и существующие концепции. Какие недостатки автоматических ступенчатых трансмиссий мешают сегодня снизить токсичность выхлопа и повысить комфорт движения? Да все те же передаточные числа, которые АКПП (AT) унаследовала от ручной коробки передач РКПП (MT). Принципиально АТ осталась МТ, только изменять передаточное число в ней стала автоматика, которая перестала ошибаться в “выборе передачи”. Если рассматривать вопросы комфорта движения – то толчки при переключении как MT, так и AT неизменны. Этих рывков лишена только CVT .

Рассмотрим скоростные и тяговые характеристики автоматической трансмиссии.
Рис 1. Скоростная характеристика трансмиссии 


Рис 2. Тяговая характеристика автоматической трансмиссии.

Как видно из графика, при разгоне автомобиля ступенчатые АТ и РКП имеют “ пилообразную” характеристику. Иными словами они приближаются в какой-то момент к оптимальной характеристике двигателя, но полностью повторить ее не могут. Частичная аппроксимация кривой достигается в многоскоростных АТ (известны 7-ми ступенчатые АКПП), но все равно в определенные моменты работа двигателя будет неэффективна с точки зрения оптимизации отбора максимального крутящего момента. Многоскоростные АКПП намного сложнее и дороже, кроме того, они обладают большей массой. Это не вписывается в экономику производства автомобиля – при стремлении сделать более дешевый экземпляр, который должен быть экономичным, в том числе и из-за снижения общего веса. Кроме всего моменты переключения в MT и AT можно назвать “перегазовками “ – резким скачком оборотов двигателя. В этих переходных моментах работа двигателя не оптимальна с точки зрения эмиссии, толчки и удары приводят к дополнительному износу механизмов. Комфорта эти рывки тоже не добавляют.

Тяговая характеристика крутящего момента на выходном валу трансмиссии CVT лишена провалов, так как передаточные числа меняются линейно, а не ступенчато. Тем самым обеспечивается плавность движения при разгоне. Неравномерность крутящего момента двигателя от оборотов в АТ только умножается на передаточное число каждой передачи. Этим объясняется рывки и толчки при наборе скорости с АТ.

Высокий крутящий момент при нулевой скорости (Рис.2) обусловлен работой гидротрансформатора (ГТ), который из-за особенности конструкции в режиме ГТ, (трансформации крутящего момента) способен увеличить его теоретически в 2 раза, по сравнению с входным моментом от двигателя.

Решение данных проблем возможно только бесступенчатой АКПП (или CVT). Повторить кривую крутящего момента с максимальным приближением может только CVT. Так как изначально такая трансмиссия не имеет фиксированных передаточных чисел, а диапазон изменения очень большой и линейный, то в принципе, посредством электронного управления, можно получить любое передаточное число в заданном диапазоне.

Какие преимущества имеет CVT перед ступенчатыми трансмиссиями:

— плавность хода, особенно в области малых скоростей

— топливная экономичность за счет оптимизации работы двигателя

— снижение токсичности выхлопа

— оптимизация скоростных и тяговых характеристик

Первые CVT на серийные автомобили стала устанавливать фирма NISSAN, и этим автомобилем была MICRA в Европе, или MARCH в Японии.

Модель этой трансмиссии была RE0F05A. В дальнейшем все остальные модели трансмиссий были усовершенствованием предыдущей. В начале 90-х годов не было технологий, позволяющих сделать дешевую CVT для автомобилей с большой мощностью мотора, и такие трансмиссии в основном ставились на маломощные моторы до 1300 см³. Трансмиссия первого поколения не способна была “переварить” большой крутящий момент. На сегодняшний момент эти машины почти не встретить на дороге из-за возраста. Но технологии не стояли на месте и фирме удалось разработать CVT, способную передавать крутящий момент от 2-х литрового двигателя  мощностью 150 – 190 сил. Таким мотором в базовой линейке NISSAN был SR20. И вот в конце 97 года                   NISSAN выпускает серийно легковой седан с CVT трансмиссией. Это был NISSAN BLUEBIRD (синяя птица) c трансмиссией REOFO6A. Инженерные разработки этой трансмиссии используются как базовые для остального модельного ряда 2000х годов. Основу всех модификаций составляет стальной клиновый ремень и два конусных шкива с раздвижными половинами. Шкивы сжимают ремень, и за счет силы трения, ремень передает крутящий момент с одного шкива на другой.

Схематично это выглядит так:


Рис.4 Конструкция ремня CVT NISSAN , структурная схема CVT

Пластины набраны в пакет, этот пакет от рассыпания удерживают стальные ленты, набранные в пакет. На звеньях цепи есть направляющие приливы, они предназначены для укладывания звеньев в пакет при перегибе ремня. Так как крутящий момент передается нижней ветвью ремня, то стягивающие пластины не несут нагрузки растяжения – сжатия. Это позволяет увеличить передаваемый момент без разрушения коробки – нагрузку воспринимают звенья нижней ветви, как бы толкая ведомый шкив.

Почему более правильно назвать эту конструкцию ремнем, а не цепью? Скорее всего, потому, что у цепи должны быть звенья, а у звеньев зацепы для соединения со звездочками. Если рассматривать велосипедную цепь или цепь привода ГРМ современных моторов – то в зацеплении участвуют зацепы, как со стороны цепи, так и со стороны приводимого ей вала. Здесь нет зацепов, так как основной критерий – это трение, за счет которого происходит передача момента со шкива на ремень и обратно. Но не все CVT выполнены по такой схеме. Например, на CVT AUDI используется совсем другая конструкция ремня от компании Luk – там звенья нанизаны на оси и имеют большую подвижность и радиус перегиба. Но в этом случае именно штоки и сегменты ремня Несут нагрузку, так как рабочей является верхняя часть – эта конструкция работает как велосипедная цепь – тянет верхней ветвью.

Преимущества ремня LUK – больший радиус перегиба – тем самым можно получить больший диапазон изменения передаточных чисел. Недостаток – более сложная конструкция, нагрузка на сегменты и штоки за счет перегибов приводит к износу и появлению зазора в сегментах цепи, так как штоки являются как шарнирами, так и фиксаторами.

Преимущества ремня NISSAN – более дешевая конструкция, отсутствие зазоров от времени. Недостаток – нельзя сделать малый радиус перегиба, так как снижается ресурс стальных лент, вследствие этого диапазон передаточных чисел ограничен.


Рис.5 Конструкция ремня CVT компании Luk

Ремень компании LUK позволяет передавать до 300 Nm крутящего момента, правда при давлении в шкивах 60 бар (пиковое 100 бар). Аналогичные CVT NISSAN RE0F09A устанавливаемые на моторы 3,5 литра могут передать такой момент при давлении 40 -50 бар, так как площадь контакта зацепления ремня и шкивов у NISSAN больше.

Дополнительные нагрузки на ремень обусловлены смещением дорожки — виртуальной линии зацепления со шкивами. Смещение дорожки вызвано силой выталкивания элементов ремня из выпуклого конического диска, деформацией диска под нагрузкой, угловому смещению и относительному скручиванию двух половинок конусного шкива.

Несмотря на то, что подвижная и неподвижная половинка шкива вращаются синхронно, за счет люфта в подвижном соединении возникает угловое смещение одной половины шкива относительно другой. Каждый ремень сконструирован так, чтобы компенсировать эти смещения. Если в LUK – это сферические торцы и вращение звеньев, то NISSAN оставляет зазор в пакете пластин, который выбирается в нижней части ветви при формировании радиуса дорожки.

В процессе работы любой трансмиссии возникают потери, которые снижают ее КПД.

О том, как разработчики снижают потери, улучшают динамические характеристики, снижают токсичность выхлопа и повышают топливную экономичность, вы узнаете в следующей статье.

По материалам сайта http://autodata.ru/


Автор статьи Гаджиев А.О.

часто задаваемых вопросов по восстановленной трансмиссии | Jasper Engines

В чем разница между бывшей в употреблении, отремонтированной и восстановленной трансмиссией?

ИСПОЛЬЗУЕМЫЕ

Использованные компоненты, как правило, вытаскиваются непосредственно со свалки и обычно даже не подвергаются очистке поверхности. Использованные трансмиссии обычно не разбираются, не очищаются и не проверяются. Подержанные или находящиеся на свалке компоненты часто имеют большой пробег и плохую историю обслуживания — это может быть неисправностью, ожидающей своего часа.Многие бывшие в употреблении или находящиеся на свалке компоненты поступают от автомобиля, попавшего в аварию. В этом случае трансмиссия может иметь невидимые повреждения.

ВОССТАНОВЛЕНИЕ

Восстановление включает в себя восстановление путем очистки, осмотра и замены сломанных или сильно изношенных деталей. Детали, подлежащие ремонту, обычно используются повторно в пределах допустимых пределов износа изготовителя. Качество восстановленных компонентов может варьироваться в широких пределах, и на многие восстановленные изделия предоставляется только краткосрочная гарантия.

ПРЕОБРАЗОВАННЫЙ

Восстановить — значит сделать как можно ближе к новому.Все основные материалы — корпус, удлинительный корпус, насос, корпус клапана, преобразователь и различные внутренние компоненты — тщательно проверяются, сравниваются с измеренными характеристиками оригинального оборудования на предмет правильных допусков на размеры и прецизионно модернизируются для обеспечения надлежащего рабочего давления. Запасные части новые или повторно аттестованные для соответствия строгим стандартам и допускам. Тестирование трансмиссии проводится в соответствии со спецификациями производителя и оригинальными производственными стандартами.

Какая гарантия на восстановленную коробку передач JASPER?

На большинство восстановленных трансмиссий JASPER® распространяется общенациональная гарантия сроком 3 года / 100 000 миль (в зависимости от того, что наступит раньше) — на детали и работу.Скорая помощь, использование внедорожных автомобилей, доставка посылок, полиция, уборка снега, такси, эвакуатор, транзитный автобус или любое транспортное средство весом более 1 тонны получают гарантию 18 месяцев или 100 000 миль, в зависимости от того, что наступит раньше. Вы можете найти полное описание гарантии на этом веб-сайте.

Где я могу узнать цену на восстановленную коробку передач JASPER?

Вы можете получить цену на трансмиссию JASPER, воспользовавшись несколькими опциями. Мы рекомендуем вам обсудить информацию о ценах с автомобильным техником, который обслуживает ваш автомобиль. Если у вас нет сервисного центра, с которым вы работаете на регулярной основе, вы можете найти установщика рядом с вами с помощью нашего локатора установщика. JASPER также предлагает онлайн-каталог с информацией о ценах для большинства приложений. Наконец, у нас есть вежливый и дружелюбный отдел продаж, который предоставит вам цены и любую дополнительную информацию, которая может вам понадобиться. С нашим отделом продаж можно связаться по телефону 800-827-7455.

Где я могу приобрести трансмиссии и раздаточные коробки?

Если вы занимаетесь установкой, автопарком или другим коммерческим пользователем, вы можете связаться с нашим отделом продаж по телефону 800-827-7455.Если вы владелец транспортного средства, вы можете приобрести восстановленные трансмиссии и раздаточные коробки JASPER в автомобильном сервисном центре, в котором вы часто бываете. Если у вас нет сервисного центра, с которым вы работаете на регулярной основе, вы можете найти установщик JASPER рядом с вами с помощью нашего локатора установщика.

Где найти установщик?

Вы можете найти установщика JASPER рядом с вами через наш локатор установщика. Введите свой почтовый индекс и выберите расстояние. Вы также можете выбрать вариант размещения установщика для автомобильных или морских приложений.

Предлагаете ли вы остаточную трансмиссию для моего автомобиля?

Скорее всего, у нас есть модернизированная трансмиссия и / или раздаточная коробка для вашего автомобиля. JASPER восстанавливает практически любую отечественную трансмиссию для легковых, грузовых автомобилей, фургонов и внедорожников, а также для ряда зарубежных применений. Мы также реконструируем трансмиссии, используемые для рабочих характеристик, промышленных предприятий и даже для проектов восстановления подбора номеров.

Как быстро я могу получить коробку передач для своего автомобиля?

Наиболее популярные приложения для передачи данных имеются в наличии, поэтому обычно мы можем доставить их к вашему установщику в течение одного или двух дней. Если нам нужно создать трансмиссию для вашего конкретного приложения, мы обычно можем получить ее в течение недели. JASPER имеет 48 филиалов и два распределительных центра по всей стране, чтобы обеспечить быструю и готовую работу, чтобы быстро вернуть вас в путь.

Что такое основная политика?

Все модернизированные трансмиссии JASPER имеют базовую и промежуточную плату, выставляемую в счет при продаже. Когда ядро ​​будет возвращено, сотрудник JASPER рассмотрит его и определит сумму, которая будет возвращена на счет клиента.Ядро, которое возвращается нам, должно быть аналогичной марки, модели и типа, но не ядра свалки. Сердечники должны быть возвращены осушенными от всех жидкостей и масла, собранными и прикрепленными к тому же неповрежденному шасси или контейнеру, в котором была отправлена ​​восстановленная трансмиссия. Ядра должны быть возвращены в течение 30 дней с даты доставки, чтобы получить кредит. Будет предоставлен полный основной кредит, если не будут обнаружены определенные убытки и исключения, указанные в нашей основной политике.

Какова основная политика в отношении ваших передач?

Основная политика в отношении транспортировки нашего остатка меняется в зависимости от ряда параметров.Лучше всего поговорить с одним из наших торговых представителей за информацией, касающейся вашего конкретного применения в трансмиссии.

Взимаете ли вы фрахт?

Большинство наших трансмиссий доставляются бесплатно через автомобильный парк, принадлежащий нашей компании, в один из наших филиалов. Затем трансмиссии доставляются одному из наших установщиков в вашем регионе. Бывают случаи, когда взимается плата за перевозку. Один из наших торговых представителей может предоставить конкретную информацию.Пожалуйста, позвоните по телефону 800-827-7455.

Определение передачи по Merriam-Webster

транс · миссия | \ tran (t) s-ˈmi-shən , транз- \ 1 : акт, процесс или экземпляр передачи передача нервного импульса через синапс

2 : прохождение радиоволн в пространстве между передающей и приемной станциями. также : акт или процесс передачи по радио или телевидению

3 : Комплект деталей, включая шестерни переключения скоростей и приводной вал, с помощью которого мощность передается от двигателя на ведущую ось. также : шестерни переключения скоростей в таком узле. 4 : то, что передается : сообщение

Восстановленные и восстановленные трансмиссии для продажи

ДОБРО ПОЖАЛОВАТЬ В РЕМОНТ ТРАНСМИССИИ

Если ваша трансмиссия не переключается, неконтролируемо вздрагивает или выходит из строя иным образом, вам, несомненно, необходимо заменить ее — и быстро.Вы столкнулись с дилеммой: вам нужна качественная восстановленная трансмиссия, которая не будет стоить вам целого состояния, но в то же время не подведет вас в будущем. К счастью, вы можете купить восстановленные трансмиссии и раздаточные коробки высочайшего качества на Reman-Transmission.com по самым доступным ценам.

Как ведущая компания по восстановлению трансмиссий, мы располагаем на складе для ремонта автоматических и механических коробок передач от всех основных отечественных и импортных производителей автомобилей. Мы не ограничиваемся реконструкцией, чтобы отремонтировать всю трансмиссию изнутри в соответствии с нашими строгими требованиями.

Наша команда профессионалов выполняет реконструкцию каждой трансмиссии, чтобы устранить широко известные заводские дефекты и гарантировать, что наши трансмиссии переживут совершенно новую трансмиссию OEM. Во время этого процесса мы заменяем все бывшие в употреблении детали внутри картера трансмиссии на отшлифованные или совершенно новые, надежные компоненты. Эти компоненты включают, но не ограничиваются ими, планетарные передачи, преобразователь крутящего момента, ленточный тормоз, выходной вал, корпус клапана и блоки сцепления. Перед отправкой трансмиссии мы тщательно проверяем и тестируем каждую деталь, чтобы убедиться, что все наши прецизионные компоненты соответствуют спецификациям OEM или превосходят их.Конечным результатом являются трансмиссии, которые профессионально изготовлены из запчастей высочайшего качества и готовы к использованию в вашей поездке.

Итак, когда вы приобретаете у нас надежные отремонтированные коробки передач для замены, вы можете быть уверены, что получаете лучшие компоненты по лучшей цене. Мы подтверждаем наше заявление о превосходстве 5-летней гарантией на запчасти и работу без ограничения пробега. Наша служба поддержки клиентов мирового класса готова помочь вам на каждом этапе вашего пути и замены трансмиссии вашего автомобиля.

Если вы готовы получить отремонтированную трансмиссию для своего американского или импортного автомобиля, грузовика или фургона, загляните в наш онлайн-каталог или позвоните нам, чтобы узнать о наших последних предложениях. С вашим заказом вы получите быструю и бесплатную доставку — без основной платы в течение 30 дней.

5 Коробки передач | Стоимость, эффективность и внедрение технологий экономии топлива для легковых автомобилей

EPA / NHTSA. 2010. Документ о совместной технической поддержке: разработка правил для установления стандартов выбросов парниковых газов для легковых автомобилей и корпоративных стандартов средней экономии топлива, апрель.

EPA / NHTSA. 2012. Документ о совместной технической поддержке, Окончательное нормотворчество на 2017–2025 гг. Стандарты выбросов парниковых газов малой мощности и корпоративные стандарты средней экономии топлива. EPA-420-R-12-901.

Эрикссон, Л., и Л. Нильсен. 2014. Моделирование и управление двигателями и трансмиссиями (автомобильная серия). John Wiley & Sons, SAE International, апрель.

Гарофало, Ф., Л. Глиельмо, Л. Яннелли и Ф. Васка. 2001. Плавное включение сухого автомобильного сцепления. Труды 40-й конференции IEEE по решениям и контролю, Орландо, Флорида, декабрь: 529-534.

Gartner, L. и M. Ebenhock. 2013. АКПП ZF 9HP48 Система трансмиссии, конструкция и механические детали. SAE Int. J. Passeng. Машины — мех. Syst. 6 (2): 908-917. DOI: 10.4271 / 2013-01-1276.

Говиндсвами К., К. Бэйли и Т. Д’Анна. 2013. Выбор правильной архитектуры передачи с учетом приемлемости клиентов. SAE Int. Вебинар, 18 сентября.

Gracey & Associates. нет данных Доза вибрации: определения, термины, единицы и параметры.Акустический глоссарий. http://www.acoustic-glossary.co.uk/vibration-dose.htm.

Греймель, Х. 2014. Генеральный директор ZF: Мы не гонимся за 10 скоростями. Автомобильные новости, 23 ноября.

Guzzella, L. и A. Sciarretta A. 2007. Двигательные системы транспортных средств: Введение в моделирование и оптимизацию, третье издание. Springer.

Хили, Дж. И К. Вудьярд. 2013. GM и Ford совместно разрабатывают 10-ступенчатые коробки передач. USA Today, 15 апреля.

Kiencke, U., and L. Nielsen.2000. Автомобильные системы управления. Springer, SAE International.

Ким Д., Х. Пэн, С. Бай и Дж. М. Магуайр. 2007. Управление интегрированной трансмиссией с электронной дроссельной заслонкой и автоматической коробкой передач. IEEE Transactions по технологии систем управления 15 (3), май.

Ли, Б. 2010. Система отключения полного привода. СИМПОЗИУМ Schaeffler 2010: 360-64. http://www.schaeffler.com/remotemedien/media/_shared_media/08_media_library/01_publications/schaeffler_2/symposia_1/downloads_11/Schaeffler_Kolloquium_2010_27_en.pdf.

Мартин, К. 2012. Развитие эффективности передачи. Симпозиум SAE по трансмиссиям и трансмиссиям: конкуренция за будущее, 17-18 октября. Детройт, штат Мичиган.

Моавад А. и А. Руссо. 2012. Влияние передающих технологий на топливную эффективность — Заключительный отчет. DOE HS 811 667, август.

Ngo, V.-D., A. Jose, C. Navarrete, T. Hofman, M. Steinbuch и A. Serrarens. 2013. Оптимальные стратегии переключения передач для экономии топлива и управляемости. Proc. IMechE Часть D, Журнал автомобильной инженерии 227 (10): 1398-1413, октябрь.

Ноулс, Дж. 2013. Разработка трансмиссионных жидкостей, обеспечивающих повышенную топливную эффективность за счет отображения реакции трансмиссии на изменения вязкости и присадок. Презентация на симпозиуме SAE Transmission & Driveline, Трой, Мичиган, 16-17 октября. http://www.sae.org/events/ctf/2013/2013_ctf_guide.pdf.

NSK Europe. 2014. Новое уплотнение TM-Seal с низким коэффициентом трения для автомобильных трансмиссий. http://www.nskeurope.com/cps/rde/dtr/eu_en/nsk_innovativeproduct_IP-E-2066.pdf.

О, Дж., и С. Цой. 2014. Оценка передаваемого крутящего момента на каждом сцеплении для наземных транспортных средств с коробками передач с двойным сцеплением в реальном времени. IEEE / ASME Transactions по мехатронике, февраль.

Пауэлл, Б., Дж. Куинн, В. Миллер, Дж. Эллисон, Дж. Хайнс и Р. Билс. Замена магнием алюминиевых литых компонентов в серийном двигателе V6 для эффективного снижения массы. http://energy.gov/sites/prod/files/2014/03/f8/deer10_powell.pdf. По состоянию на 13 апреля 2015 г.

Ricardo, Inc.2011. Компьютерное моделирование технологий легковых автомобилей для снижения выбросов парниковых газов в период 2020-2025 гг. Агентство по охране окружающей среды США, EPA-420-R-11-020.

Шерман Д. 2013. Коробки передач вариатора. Автомобиль и водитель, декабрь. http://www.caranddriver.com/features/how-cvt-transmissions-are-getting-their-groove-back-feature.

Shidore, N. et. al. 2014. Влияние передовых технологий на цели двигателей. Проект VSS128, Обзор заслуг Министерства энергетики США, июнь.

Шульвер Д.2013. Снижение расхода топлива благодаря оптимизированной технологии трансмиссионных насосов. Презентация на симпозиуме SAE Transmission & Driveline, Трой, Мичиган, 16-17 октября. http://www.sae.org/events/ctf/2013/2013_ctf_guide.pdf.

Skippon, S.M. 2014. Как водители-потребители понимают характеристики транспортных средств: последствия для электромобилей. Транспортные исследования, часть F: Психология дорожного движения и поведение 23: 15-31.

Ф. Васка, Л. Яннелли, А. Сенаторе и Г. Реале. 2011 г.Оценка передаваемого крутящего момента при включении сухого автомобильного сцепления. IEEE / ASME Transactions по мехатронике 16 (3): 564-573, июнь.

Wagner, U., R. Berger, M. Ehrlich, and M. Homm. 2006. Электромоторные приводы для коробок передач с двойным сцеплением. Материалы 8-го симпозиума LuK.

ZF. 2013. Движение и мобильность. Корпоративный отчет ZF. Фридрихсхафен, Германия.

Zoppi, M., C. Cervone, G. Tiso и F. Vasca. 2013. Программное обеспечение в модели контура и управления разъединением для автомобильных трансмиссий с двойным сцеплением.3-я Международная конференция по системам и контролю, Алжир, Алжир, октябрь.

Распознавание аэрозольной передачи инфекционных агентов: комментарий | BMC Infectious Diseases

  • 1.

    CIDRAP (Центр исследований и политики в области инфекционных заболеваний). Комментарий: Защита медицинских работников от БВРС-КоВ — обучение на примере SARS https://www.cdc.gov/coronavirus/mers/infection-prevention-control.html. По состоянию на 9 августа 2017 г.

  • 2.

    Kim SH, Chang SY, Sung M, et al.Обширное заражение коронавирусом жизнеспособного ближневосточного респираторного синдрома (MERS) в воздухе и окружающей среде в изоляторах MERS. Clin Infect Dis. 2016; 63: 363–9.

    Артикул Google Scholar

  • 3.

    CIDRAP (Центр исследований и политики в области инфекционных заболеваний). Комментарий: Работникам здравоохранения необходима оптимальная защита органов дыхания от Эболы https://www.cdc.gov/vhf/ebola/healthcare-us/ppe/guidance.html. По состоянию на 9 августа 2017 г.

  • 4.

    Остерхольм М.Т., Мур К.А., Келли Н.С., Бросо Л.М., Вонг Г., Мерфи Ф.А. и др. Передача вирусов Эбола: что мы знаем и чего не знаем. MBio. 2015; 6: e00137.

    PubMed PubMed Central Google Scholar

  • 5.

    Коул Е.С., Кук К.Э. Характеристика инфекционных аэрозолей в медицинских учреждениях: помощь в эффективном инженерном контроле и профилактических стратегиях. Am J Infect Control. 1998. 26: 453–64.

    CAS Статья Google Scholar

  • 6.

    Хиндс WC. Аэрозольная технология. 2-е изд. Нью-Йорк: John Wiley & Sons; 1999.

    Google Scholar

  • 7.

    Общество инфекционных болезней Америки (ISDA). Предотвращение передачи пандемического гриппа и других вирусных респираторных заболеваний: средства индивидуальной защиты для медицинского персонала: обновление 2010 г. Глава: 2 Понимание риска для медицинского персонала.2010. https://www.nap.edu/read/13027/chapter/4#30.

  • 8.

    Ян Дж., Грэнтам М., Пантелик Дж., Буэно де Мескита П.Дж., Альберт Б., Лю Ф. и др. Инфекционный вирус в выдыхаемом воздухе симптоматических случаев сезонного гриппа в колледже. Proc Natl Acad Sci U S. A. 2018; 115: 1081–86.

  • 9.

    Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, Munster VJ, et al. Передача вируса гриппа a / H5N1 воздушно-капельным путем между хорьками. Наука.2012; 336: 1534–41.

    CAS Статья Google Scholar

  • 10.

    Центры по контролю и профилактике заболеваний (CDC). Подходы к лучшему пониманию передачи гриппа у человека. 2010. https://www.cdc.gov/influenzatransmissionworkshop2010/

  • 11.

    Moser MR, Bender TR, Margolis HS, Noble GR, Kendal AP, Ritter DG. Вспышка гриппа на борту коммерческого авиалайнера. Am J Epidemiol.1979; 110: 1–6.

    CAS Статья Google Scholar

  • 12.

    Тан Дж. У., Ли Й, Имс И., Чан П. К., Риджуэй Г.Л. Факторы, участвующие в аэрозольном переносе инфекции и контроле вентиляции в медицинских учреждениях. J Hosp Infect. 2006; 64: 100–14.

    CAS Статья Google Scholar

  • 13.

    Xie X, Li Y, Chwang AT, Ho PL, Seto WH. Как далеко капли могут перемещаться в помещениях — вернемся к падающей кривой испарения Уэллса.Внутренний воздух. 2007; 17: 211–25.

    CAS Статья Google Scholar

  • 14.

    Li Y, Leung GM, Tang JW, Yang X, Chao CY, Lin JZ, et al. Роль вентиляции в воздушной передаче инфекционных агентов в искусственной среде — многопрофильный систематический обзор. Внутренний воздух. 2007; 17: 2–18.

    CAS Статья Google Scholar

  • 15.

    Джонс Р.М., Бросо Л.М.Аэрозольный перенос инфекционного заболевания. J Occup Environ Med. 2015; 57: 501–8.

  • 16.

    Лю Л., Ли Ю., Нильсен П.В., Вей Дж., Дженсен Р.Л. Передача капель на выдохе на короткие расстояния между двумя людьми. Внутренний воздух. 2017; 27: 452–62.

    CAS Статья Google Scholar

  • 17.

    Алиабади А.А., Рогак С.Н., Бартлетт К.Х., Грин С.И. Предотвращение передачи болезней, передаваемых воздушно-капельным путем: обзор методов проектирования вентиляции в медицинских учреждениях.Adv Prev Med. 2011; 2011: 124064.

    Артикул Google Scholar

  • 18.

    Джеветт Д.Л., Хейнсон П., Беннетт С., Розен А., Нейи К. Аэрозоли, содержащие кровь, образующиеся хирургическими методами: возможная инфекционная опасность. Am Ind Hyg Assoc J. 1992; 53: 228–31.

    CAS Статья Google Scholar

  • 19.

    Харрел С.К., Молинари Дж. Аэрозоли и брызги в стоматологии: краткий обзор литературы и значение инфекционного контроля.J Am Dent Assoc. 2004. 135: 429–37.

    Артикул Google Scholar

  • 20.

    Вэй Дж., Ли Ю. Распространение инфекционных агентов по воздуху в помещениях. Am J Infect Control. 2016; 44 (9 приложение): S102–8.

    Артикул Google Scholar

  • 21.

    Рой С.Дж., Милтон, округ Колумбия. Передача инфекционной инфекции воздушным путем — путь неуловимый. N Engl J Med. 2004; 350: 1710–2.

    CAS Статья Google Scholar

  • 22.

    Асано И, Иваяма С., Мията Т., Язаки Т., Одзаки Т., Цузуки К. и др. Распространение ветряной оспы среди госпитализированных детей, не имеющих прямого контакта с заболеванием, вызывающим опоясывающий лишай, и его профилактика живой вакциной. Бикен Дж. 1980; 23: 157–61.

    CAS PubMed Google Scholar

  • 23.

    Густавсон Т.Л., Лавели Г.Б., Браунер Э.Р. мл., Хатчесон Р.Х. мл., Райт П.Ф., Шаффнер В. Вспышка ветряной оспы, передающейся по воздуху. Педиатрия. 1982; 70: 550–6.

    CAS PubMed Google Scholar

  • 24.

    Сузуки К., Йошикава Т., Ихира М., Охаши М., Суга С., Асано Ю. Распространение ДНК вируса ветряной оспы в окружающую среду от пациентов с ветряной оспой, получавших пероральный ацикловир. Pediatr Int. 2003. 45: 458–60.

    Артикул Google Scholar

  • 25.

    Тан Дж. У., Имс И., Ли Й, Таха Ю. А., Уилсон П., Беллинган Дж. И др. Движение при открывании двери может потенциально привести к временному выходу из строя в условиях изоляции отрицательного давления: важность завихренности и плавучести воздушных потоков.J Hosp Infect. 2005; 61: 283–6.

    CAS Статья Google Scholar

  • 26.

    Wells WF, Wells WM, Wilder TS. Экологический контроль эпидемического заражения. I. Эпидемиологическое исследование лучистой дезинфекции воздуха в дневных школах Am J Hyg. 1942; 35: 97–121.

    Google Scholar

  • 27.

    Райли Э.С., Мерфи Дж., Райли Р.Л. Распространение кори в пригородной начальной школе воздушно-капельным путем.Am J Epidemiol. 1978; 107: 421–32.

    CAS Статья Google Scholar

  • 28.

    Bloch AB, Orenstein WA, Ewing WM, Spain WH, Mallison GF, Herrmann KL, et al. Вспышка кори в педиатрической практике: передача воздушно-капельным путем в условиях офиса. Педиатрия. 1985. 75: 676–83.

    CAS PubMed Google Scholar

  • 29.

    Remington PL, Hall WN, Davis IH, Herald A, Gunn RA.Передача кори воздушно-капельным путем в кабинете врача. ДЖАМА. 1985; 253: 1574–7.

    CAS Статья Google Scholar

  • 30.

    Райли Р.Л., Миллс С.К., Ника В., Вайншток Н., Стори ПБ, Султан Л.Ю., Райли М.К., Уэллс В.Ф. Воздушное распространение туберкулеза легких — двухлетнее исследование распространения инфекции в противотуберкулезном отделении. Am J Hyg. 1959; 70: 185–96.

    Google Scholar

  • 31.

    Райли Р.Л., Миллс С.К., О’Грейди Ф., Султан Л.У., Виттштадт Ф., Шивпури Д.Н.Зараженность воздуха туберкулезного отделения. Ультрафиолетовое облучение зараженного воздуха: сравнительная инфекционность разных пациентов. Am Rev Respir Dis. 1962; 85: 511–25.

    CAS PubMed Google Scholar

  • 32.

    Escombe AR, Moore DA, Gilman RH, Pan W., Navincopa M, Ticona E, et al. Инфекционность больных туберкулезом, инфицированных ВИЧ. PLoS Med. 2008; 5: e188.

    Артикул Google Scholar

  • 33.

    Houk VN. Распространение туберкулеза через рециркулирующий воздух на военном корабле: исследование Берда. Ann N Y Acad Sci. 1980; 353: 10–24.

    CAS Статья Google Scholar

  • 34.

    Hutton MD, Stead WW, Cauthen GM, Bloch AB, Ewing WM. Внутрибольничная передача туберкулеза при дренирующем абсцессе. J Infect Dis. 1990; 161: 286–95.

    CAS Статья Google Scholar

  • 35.

    Kenyon TA, Valway SE, Ihle WW, Onorato IM, Castro KG. Передача микобактерий туберкулеза с множественной лекарственной устойчивостью во время длительного полета на самолете. N Engl J Med. 1996; 334: 933–8.

    CAS Статья Google Scholar

  • 36.

    Эскомб А.Р., Мур Д.А., Гилман Р.Х., Навинкопа М., Тикона Е., Митчелл Б. и др. Ультрафиолетовое излучение в верхних комнатах и ​​отрицательная ионизация воздуха для предотвращения передачи туберкулеза. PLoS Med. 2009; 6: e43.

    Артикул Google Scholar

  • 37.

    Milton DK. Каков основной путь передачи оспы? Значение для биозащиты Front Cell Infect Microbiol. 2012; 2: 150.

    PubMed Google Scholar

  • 38.

    Верле П.Ф., Пош Дж., Рихтер К.Х., Хендерсон Д.А. Вспышка оспы, передаваемая воздушно-капельным путем, в немецкой больнице и ее значение по сравнению с другими недавними вспышками в Европе. Bull World Health Organ. 1970; 43: 669–79.

    CAS PubMed PubMed Central Google Scholar

  • 39.

    Wong TW1, Lee CK, Tam W, Lau JT, Yu TS, Lui SF и др. Группа атипичной пневмонии среди студентов-медиков, контактировавших с одним пациентом, Гонконг. Emerg Infect Dis. 2004. 10: 269–276.

  • 40.

    Olsen SJ, Chang HL, Cheung TY, Tang AF, Fisk TL, Ooi SP, et al. Передача тяжелого острого респираторного синдрома на самолетах. N Engl J Med. 2003; 349: 2416–22.

    CAS Статья Google Scholar

  • 41.

    Yu IT, Li Y, Wong TW, Tam W, Chan AT, Lee JH и др.Свидетельства передачи вируса тяжелого острого респираторного синдрома воздушно-капельным путем. N Engl J Med. 2004; 350: 1731–9.

    CAS Статья Google Scholar

  • 42.

    Стенд TF1, Курникакис Б., Бастьен Н., Хо Дж., Кобаса Д., Стадник Л. и др. Выявление переносимого по воздуху коронавируса тяжелого острого респираторного синдрома (SARS) и загрязнения окружающей среды в очагах вспышки SARS. J Infect Dis. 2005; 191: 1472–1477.

  • 43.

    Ассири А1, Аль-Тауфик Дж.А., Аль-Рабиах А.А., Аль-Рабиа Ф.А., Аль-Хаджар С., Аль-Баррак А. и др.Эпидемиологические, демографические и клинические характеристики 47 случаев коронавирусного заболевания ближневосточного респираторного синдрома из Саудовской Аравии: описательное исследование. Lancet Infect Dis. 2013; 13: 752–761.

  • 44.

    Хуэй Д.С., Мемиш З.А., Зумла А. Тяжелый острый респираторный синдром против респираторного синдрома Ближнего Востока. Curr Opin Pulm Med. 2014; 20: 233–41.

    Артикул Google Scholar

  • 45.

    Аль-Тауфик Дж.А., Зумла А., Мемиш З.А.Коронавирусы: коронавирус тяжелого острого респираторного синдрома и коронавирус ближневосточного респираторного синдрома у путешественников. Curr Opin Infect Dis. 2014; 27: 411–7.

    Артикул Google Scholar

  • 46.

    Guery B, Poissy J, el Mansouf L, Séjourné C, Ettahar N, Lemaire X, et al. Клинические особенности и вирусная диагностика двух случаев заражения коронавирусом ближневосточного респираторного синдрома: отчет о внутрибольничной передаче. Ланцет.2013; 381: 2265–72.

    Артикул Google Scholar

  • 47.

    Mailles A, Blanckaert K, Chaud P, van der Werf S, Lina B, Caro V, et al. Первые случаи заражения коронавирусом ближневосточного респираторного синдрома (БВРС-КоВ) во Франции, исследования и последствия для профилактики передачи от человека человеку, Франция, май 2013 г. Euro Surveill. 13; 18 (24).

  • 48.

    Човелл Г., Абдиризак Ф., Ли С., Ли Дж., Юнг Э, Нишюра Х. и др.Характеристики передачи MERS и SARS в условиях здравоохранения: сравнительное исследование. BMC Med. 2015; 13: 210.

    Артикул Google Scholar

  • 49.

    Омрани А.С., Матин М.А., Хаддад К., Аль-Нахли Д., Мемиш З.А., Альбаррак А.М. Семейный кластер коронавирусных инфекций ближневосточного респираторного синдрома, связанный с вероятным нераспознанным бессимптомным или легким случаем. Int J Infect Dis. 2013; 17: e668–72.

    Артикул Google Scholar

  • 50.

    Peiris JS, Chu CM, Cheng VC, Chan KS, Hung IF, Poon LL, et al. Клиническое прогрессирование и вирусная нагрузка при вспышке коронавирусной пневмонии, связанной с SARS: проспективное исследование. Ланцет. 2003; 361: 1767–72.

    CAS Статья Google Scholar

  • 51.

    Пуасси Дж., Гоффард А., Парментье-Декрук Е., Фавори Р., Каув М., Кипнис Е. и др. Кинетика и характер выделения вируса в биологических образцах двух случаев БВРС-КоВ.J Clin Virol. 2014; 61: 275–8.

    CAS Статья Google Scholar

  • 52.

    Memish ZA, Al-Tawfiq JA, Makhdoom HQ, Assiri A, Alhakeem RF, Albarrak A, et al. Образцы дыхательных путей, вирусная нагрузка и фракция генома у пациентов с респираторным синдромом Ближнего Востока. J Infect Dis. 2014; 210: 1590–4.

    CAS Статья Google Scholar

  • 53.

    Widagdo W, Raj VS, Schipper D, Kolijn K, van Leenders GJ, Bosch BJ, et al.Дифференциальная экспрессия рецептора MERS-коронавируса в верхних дыхательных путях человека и верблюдов-верблюдов. J Virol. 2016; 90: 4838–42.

    CAS Статья Google Scholar

  • 54.

    Теллье Р. Обзор аэрозольной передачи вируса гриппа А. Emerg Infect Dis. 2006; 12: 1657–62.

    Артикул Google Scholar

  • 55.

    Теллье Р. Аэрозольная передача вируса гриппа А: обзор новых исследований.Интерфейс J R Soc. 2009; 6 (Приложение 6): S783–90.

    PubMed PubMed Central Google Scholar

  • 56.

    Кожух BJ. Передача гриппа воздушно-капельным путем: последствия для контроля в медицинских и общественных учреждениях. Clin Infect Dis. 2012; 54: 1578–80.

    Артикул Google Scholar

  • 57.

    Cowling BJ, IP DK, Fang VJ, Suntarattiwong P, Olsen SJ, Levy J, et al. Передача через аэрозоль — важный способ распространения вируса гриппа.Nat Commun. 2013; 4: 1935.

    Артикул Google Scholar

  • 58.

    Alford RH, Kasel JA, Gerone PJ, Knight V. Человеческий грипп в результате вдыхания аэрозоля. Proc Soc Exp Biol Med. 1966; 122: 800–4.

    CAS Статья Google Scholar

  • 59.

    Тан Дж.В. Влияние параметров окружающей среды на выживаемость переносимых по воздуху инфекционных агентов. Интерфейс J R Soc. 2009; 6 (Приложение 6): S737–46.

    PubMed PubMed Central Google Scholar

  • 60.

    Центры США по контролю и профилактике заболеваний (CDC). Временное руководство по использованию масок для борьбы с передачей гриппа. https://www.cdc.gov/flu/professionals/infectioncontrol/maskguidance.htm. По состоянию на 9 августа 2017 г.

  • 61.

    O’Neil CA, Li J, Leavey A, Wang Y, Hink M, Wallace M, et al. Характеристика аэрозолей, образующихся при уходе за пациентами.Clin Infect Dis. 2017; doi.org/10.1093/cid/cix535

  • 62.

    Fabian P, McDevitt JJ, DeHaan WH, Fung RO, Cowling BJ, Chan KH, et al. Вирус гриппа в выдыхаемом воздухе человеком: обсервационное исследование. PLoS One. 2008; 3: e2691.

    Артикул Google Scholar

  • 63.

    Stelzer-Braid S, Оливер Б.Г., Блейзи А.Дж., Арджент Э., Ньюсом Т.П., Роулинсон В.Д. и др. Выдыхание респираторных вирусов при дыхании, кашле и разговоре.J Med Virol. 2009. 81: 1674–9.

    Артикул Google Scholar

  • 64.

    Линдсли В.Г., Ноти Д.Д., Блачер Ф.М., Тьюлис Р.Э., Мартин С.Б., Отумпангат С. и др. Жизнеспособный вирус гриппа в виде частиц, переносимых по воздуху при кашле человека. J Occup Environ Hyg. 2015; 12: 107–13.

    CAS Статья Google Scholar

  • 65.

    Линдсли WG, Blachere FM, Beezhold DH, Thewlis RE, Noorbakhsh B, Othumpangat S, et al.Жизнеспособный вирус гриппа A в виде частиц, выделяемых по воздуху при кашле, в сравнении с выдохами. Грипп Другие респираторные вирусы. 2016; 10: 404–13.

    Артикул Google Scholar

  • 66.

    Ян Дж., Грэнтэм М., Пантелик Дж., Буэно де Мескита П.Дж., Альберт Б., Лю Ф., Эрман С., Милтон Д.К. Консорциум EMIT Инфекционный вирус в выдыхаемом воздухе симптоматических случаев сезонного гриппа в колледже. Proc Natl Acad Sci U S A, 2018; 115: 1081–6.

  • 67.

    Yang W, Elankumaran S, Marr LC. Концентрация и распределение переносимых по воздуху вирусов гриппа a по размеру измеряются в помещениях медицинского центра, детского сада и в самолетах. Интерфейс J R Soc. 2011; 8: 1176–84.

    Артикул Google Scholar

  • 68.

    Bischoff WE, Swett K, Ленг I, Peters TR. Воздействие аэрозолей вируса гриппа во время обычного ухода за пациентами. J Infect Dis. 2013; 207: 1037–46.

    Артикул Google Scholar

  • 69.

    Леунг Н.Х., Чжоу Дж2, Чу Д.К., Ю Х., Линдсли В.Г., Бизхолд Д.Х. и др. Количественная оценка РНК вируса гриппа в аэрозолях в палатах пациентов PLoS One 2016; 11: e0148669.

  • 70.

    Тан Дж.В., Гао С.Х., Каулинг Б.Дж., Ко Г.К., Чу Д., Хейлбронн С. и др. Отсутствие детектируемой РНК гриппа, передаваемой через аэрозоль при различных респираторных процессах человека — эксперименты в Сингапуре и Гонконге. PLoS One. 2014; 9: e107338.

    Артикул Google Scholar

  • 71.

    Милтон Д.К., Фабиан М.П., ​​Каулинг Б.Дж., Грэнтэм М.Л., Макдевитт Дж.Дж. Аэрозоли вируса гриппа в выдыхаемом воздухе человеком: размер частиц, культивирование и действие хирургических масок. PLoS Pathog. 2013; 9: e1003205.

    CAS Статья Google Scholar

  • 72.

    Хатагиси Э., Окамото М., Омия С., Яно Х., Хори Т., Сайто В. и др. Создание и клиническое применение портативной системы для улавливания вирусов гриппа, выделяемых при кашле.PLoS One. 2014; 9: e103560.

    Артикул Google Scholar

  • 73.

    Koster F, Gouveia K, Zhou Y, Lowery K, Russell R, MacInnes H, et al. Передача пандемического и сезонного вирусов гриппа h2N1 через выдыхаемый аэрозоль у хорьков. PLoS One. 2012; 7: e33118.

    CAS Статья Google Scholar

  • 74.

    Гольдманн Д.А. Передача вирусных респираторных инфекций в домашних условиях.Pediatr Infect Dis J. 2000; 19 (10 Suppl): S97–102.

    CAS Статья Google Scholar

  • 75.

    Гольдманн Д.А. Эпидемиология и профилактика детских вирусных респираторных инфекций в учреждениях здравоохранения. Emerg Infect Dis. 2001; 7: 249–53.

    CAS Статья Google Scholar

  • 76.

    Салгадо С.Д., Фарр Б.М., Холл К.К., Хайден Ф.Г. Грипп в условиях стационара неотложной помощи.Lancet Infect Dis. 2002; 2: 145–55.

    Артикул Google Scholar

  • 77.

    Bridges CB, Kuehnert MJ, Hall CB. Передача гриппа: последствия для контроля в медицинских учреждениях. Clin Infect Dis. 2003. 37: 1094–101.

    Артикул Google Scholar

  • 78.

    Зал CB. Распространение гриппа и других респираторных вирусов: сложности и домыслы. Clin Infect Dis.2007; 45: 353–9.

    Артикул Google Scholar

  • 79.

    Mathur U, Bentley DW, Hall CB. Сопутствующие респираторно-синцитиальный вирус и инфекции гриппа А у пожилых и хронически больных в специализированных учреждениях. Ann Intern Med. 1980; 93: 49–52.

    CAS Статья Google Scholar

  • 80.

    Джефферсон Т., Дель Мар С.Б., Дули Л., Феррони Э., Аль-Ансари Л.А., Бавазир Г.А. и др.Физическое вмешательство для прерывания и сокращения распространения респираторных вирусов: Кокрановский обзор. Оценка медицинских технологий. 2010. 14: 347–476.

    Google Scholar

  • 81.

    Jaax N, Jarhlign P, Gesibert T., Geisbert S, Steele K, McKee K, et al. Передача вируса Эбола (штамм Заир) неинфицированным контрольным обезьянам в лаборатории биологического сдерживания. Ланцет. 1995; 346: 1669–71.

    CAS Статья Google Scholar

  • 82.

    Weingartl HM, Embury-Hyatt C, Nfon C, Leung A, Smith G, Kobinger G. Передача вируса Эбола от свиней нечеловеческим приматам. Sci Rep. 2012. https://doi.org/10.1038/srep00811.

  • 83.

    Twenhafel NA, Mattix ME, Johnson JC, Robinson CG, Pratt WD, Cashman KA, et al. Патология экспериментальной аэрозольной эболавирусной инфекции Заира у макак-резусов. Vet Pathol. 2012; 50: 514–29.

    Артикул Google Scholar

  • 84.

    Джонсон Э., Яакс Н., Уайт Дж., Джарлинг П. Летальные экспериментальные инфекции макак-резусов с помощью аэрозольного вируса Эбола. Int J Exp Path. 1995. 76: 227–36.

    CAS Google Scholar

  • 85.

    Herbert AS, Kuehne AI, Barth JF, Ortiz RA, Nichols DK, Zak SE и др. Вакцина с репликонными частицами вируса венесуэльского энцефалита лошадей защищает нечеловеческих приматов от внутримышечного и аэрозольного заражения эболавирусом. J Virol. 2013; 87: 4952–64.

    CAS Статья Google Scholar

  • 86.

    Пратт В.Д., Ван Д., Николс Д.К., Ло М., Вораратанадхарм Дж., Дай Дж. М. и др. Защита нечеловеческих приматов от заражения вирусом Эбола двух видов с помощью одного сложного аденовирусного вектора. Clin Vaccine Immunol. 2010; 17: 572–81.

    CAS Статья Google Scholar

  • 87.

    Towner JS, Rollin PE, Bausch DG, Sanchez A, Crary SM, Vincent M, et al.Быстрая диагностика геморрагической лихорадки Эбола с помощью ПЦР с обратной транскрипцией во время вспышки болезни, в которой оценка вирусной нагрузки пациента является предиктором исхода. J Virol. 2004; 78: 4330–41.

    CAS Статья Google Scholar

  • 88.

    Kreuels B, Wichmann D, Emmerich P, Schmidt-Chanasit J, de Heer G, Kluge S, et al. Случай тяжелой инфекции вирусом Эбола, осложненной грамотрицательной септицемией. N Engl J Med. 2014; 371: 2394–401.

    CAS Статья Google Scholar

  • 89.

    Franz DR, Jahrling PB, Friedlander AM, McClain DJ, Hoover DL, Bryne WR, et al. Клиническое распознавание и ведение пациентов, подвергшихся воздействию боевых биологических агентов. ДЖАМА. 1997. 278: 399–411.

    CAS Статья Google Scholar

  • 90.

    Литтл Дж. У., Дуглас Р. Дж. Мл., Холл, В. Дж., Рот, Ф. К.. Ослабленный грипп производят экспериментальной интраназальной инокуляцией. J Med Virol. 1979; 3: 177–88.

  • Ремонт трансмиссии — SLC, Draper, Sandy, Taylorsville, Ogden, Sunset

    Ремонт трансмиссии Taylorsville, SLC, Draper, Sandy, Ogden & Sunset

    Добро пожаловать в Tanner Transmissions! Мы являемся специалистами по ремонту и обслуживанию автомобильных трансмиссий в штате Юта.Мы обеспечиваем ремонт трансмиссии в Солт-Лейк-Сити и за его пределами, включая наше место ремонта трансмиссии в Сансет. Мы держим автомобили Юты на дорогах более 36 лет.

    Обеспокоены, возможно, проблемы с трансмиссией? Мы предлагаем бесплатную проверку Transguard и бесплатную буксировку по Wasatch Front. Не каждому автомобилю требуется ремонт трансмиссии, но на ваш автомобиль мы предоставляем лучшую в отрасли гарантию. Каждый ремонт автоматической коробки передач требует 5 лет или 100 000 миль беззаботного вождения.

    Специалисты по ремонту трансмиссий штата Юта

    Имея шесть удобных мест в штате Юта, велика вероятность, что одна из наших мастерских по ремонту трансмиссий находится поблизости. Нужен ремонт трансмиссии в Дрейпере? Были там. Нужен ремонт трансмиссии в Огдене? Мы тоже там. Наши мастерские по ремонту трансмиссий обслуживают: Sandy, Draper, Herriman, Daybreak, Riverton, South Jordan, West Jordan, Midvale, Murray, Kearns, Taylorsville, Salt Lake City, West Valley, Holladay, Millcreek, Park City, Clearfield, Layton, Sunset и Огден.

    Позвоните по телефону Tanner сегодня и назначьте встречу в одном из наших офисов. Наши специалисты по ремонту трансмиссии готовы решить любую вашу проблему с трансмиссией. Мы поможем вам снова отправиться в путь, наслаждаясь Ютой!

    Предлагаемые услуги

    Ремонт АКПП

    Наши специалисты по ремонту имеют многолетний опыт восстановления трансмиссий. Мы восстанавливаем вашу трансмиссию, чтобы выдержать испытание временем, и мы поддерживаем наши ремонтные работы с гарантией, которая дольше, чем у дилеров, дольше, чем у конкурентов, и дольше, чем на восстановленные трансмиссии.

    Находится в районе Дрейпер, штат Юта? Посетите нашу первую мастерскую по ремонту трансмиссий в центре Дрейпера. Это единственная в Юте мастерская по ремонту трансмиссий, имеющая лицензию AAA!

    API передачи — SparkPost

    Конечная точка передачи позволяет отправлять электронную почту. Каждая передача может быть отправлена ​​по электронной почте одному или тысячам получателей. SparkPost генерирует и отправляет сообщения, используя определенные вами параметры, список получателей и содержимое, указанное в вызове передачи.

    При создании передачи параметры позволяют настроить отслеживание взаимодействия, оптимизацию отправки, данные глобальной замены и многое другое для управления отправкой сообщений электронной почты.

    Чтобы задать получателей, вы можете включить всех получателей в запрос или использовать сохраненный список получателей. Для каждого получателя вы можете указать метаданные и замещающие данные, чтобы персонализировать каждое электронное письмо. Вы также можете настроить передачу для обработки определенных получателей как CC’d или BCC’d.

    Содержимое сообщений может быть установлено 4 различными способами: встроенное содержимое, сохраненный шаблон, A / B-тест или необработанное содержимое RFC822.У каждого метода есть разные варианты использования, для которых они лучше всего подходят. Все эти типы контента могут использовать замещающие данные и метаданные для создания уникального сообщения для каждого получателя.

    Узнайте, как оптимизировать отправку с помощью SparkPost.

    Домен песочницы

    Домен песочницы позволяет отправить первое электронное письмо без настройки домена отправителя. Вы можете отправить до 5 сообщений песочницы за время существования вашей учетной записи. Чтобы отправить сообщение из домена песочницы, установите из адреса на something @ sparkpostbox.com и установите options.sandbox на true . Как и в случае с любым отправляющим доменом, вы можете установить часть перед @ для любого почтового ящика.

    Для более обширного тестирования вашего собственного домена отправителя используйте сервер приема SparkPost.

    Домен песочницы недоступен для учетных записей Enterprise .

    Ограничения на отправку

    У вашей учетной записи есть песочница, дневной и ежемесячный лимит отправки в зависимости от вашего текущего уровня плана. Вы можете просмотреть свои текущие лимиты на панели управления (ЕС).

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *