Турбина как работает – Как работает турбина на бензиновом двигателе — устройство турбокомпрессора

Как работает турбина, принцип действия турбины — DRIVE2

Термин «турбо» практически у всех на слуху. Свистит турбина, ревёт прямоток. Хоть единожды в жизни любому автолюбителю приходила в голову идея заиметь «турбомонстрика». Любому хочется увеличить поголовье «коняшек» под капотом. Но чаще всего приходится отказываться от мечты по причине мнимой дороговизны и непрактичности. Соответствует ли это реальности? Давайте разберёмся, как работает турбина, принцип действия турбины, обратившись к теории. Мощность движка напрямую зависит от рабочего объёма цилиндров, от количества подаваемой воздушно-топливной смеси, от эффективности её сгорания, а также от энергетической части топлива. Назначение турбины — увеличить подачу воздушно-топливной смеси. Мощность мотора повышается пропорционально увеличению количества сжигаемого за единицу времени топлива. Но для горения бензина необходим недюжинный запас воздуха в моторе. То есть, чем больше сжигаем бензина, тем большее количество воздуха нужно, которое необходимо «впихнуть» в мотор (именно, «впихнуть», так как сам мотор не справится с забором такого количества воздуха, и фильтры нулевого сопротивления в этом ему не помощники). Вот тут и выходит на сцену устрашающая маленькая деталь — турбина.

У турбины нагнетатель-крыльчатка размещён на едином валу с турбиной-крыльчаткой, встроенной в выпускной коллектор, и приводимой в движение вращения с помощью отработанных газов. Величина частоты вращения часто выше 200 тыс. об/мин.
И здесь проявляется один минус: при резком нажатии газа, надо ждать увеличение оборотов мотора, увеличение давления выхлопных газов, раскрутку турбины, и загонку воздуха. Это явление называется turbo-lag (турбо-яма), и сегодня его умеют укрощать, справляться с данным эффектом. Для этих целей применяются два клапана. Один — для перепускания излишнего воздуха в компрессор через трубопровод из двигательного коллектора. Другой клапан — для отработанных газов. Управление первым клапаном осуществляем, помимо прочего, давлением, возникающим во впускном коллекторе. Благодаря этому при сбросе газа немного снижается частота вращения турбинного ротора, а при очередном нажимании на педаль, подача воздуха задерживается на крохотные доли секунды — время, пока закрывается клапан.
В современных технологиях используется такой метод регулировки воздухоподачи, как изменение угла наклона компрессорных лопаток. Эта методика разработана давно, но долгое время не получалось применять её на практике. Примером может послужить в данном случае новое устройство наддува дизелей «Экотек» фирмы Opel. Основной недостаток применения турбин — короткий срок службы. Это происходит из-за высокой частоты вращения турбинного ротора, которая составляет 150-200 тыс. об/мин.
До сегодняшнего дня ограничение срока службы происходило благодаря долговечности подшипников. Практически, это были особые вкладыши, похожие на вкладыши коленчатого вала, смазываемые под давлением маслом. Степень износа таких подшипников была велика, но шарикоподшипники не могли выдержать высоких температур и высокой частоты вращения. Недавно был найден оптимальный выход. А именно, были разработаны подшипники с применением керамических шариков, заполненных постоянно имеющимся резервом смазки, что делало ненужным канал от нормативной масляной системы движка. В проектах — турбинный ротор из металлокерамики, обладающий меньшей инерцией и более лёгким весом (на 20% легче).
Существуют термины «твин-турбо» и «би-турбо». Бывает, что используют параллельно или последовательно две установки турбокомпрессоров, вместо одной. Диапазоны работ роторов управляются разными способами при последовательном наддуве.
Понятие «интеркулер» означает, что при неизбежном нагревании воздуха, который сжимается, в нём уменьшается содержание кислорода и плотность. Поэтому воздух перед подачей нуждается в охлаждении в радиаторе, дополнительно встроенном, который называется интеркулером.
Как обеспечить максимально эффективную работу турбонаддува в сложных конструктивных условиях? При запуске двигателя вал начинает обильно смазываться маслом, подающимся на подшипники по каналам. Во время вращения двигателя создаётся давление, под которым турбина нормально действует. При остановке двигателя перестаёт функционировать и масляный насос, а вот вал мгновенно затормозить не может, и работает по инерции уже без смазки. Чтобы дольше сохранить от износа вал, надо регулярно менять фильтры и масло, которое предназначено именно для турбонаддувных двигателей. И обязательно надо давать двигателю прогреться, не глушить его в один момент, а дать поработать на холостом ходу какое-то время. Это обеспечит запас времени для охлаждения деталей. Целесообразна также установка турбо-таймера, если он не предусмотрен конструктивно в автомобиле.
Первые сигналы того, что надо обращаться в ремонтную контору — появление густого белого дыма из глушителя и падение мощности. Это означает износ подшипников и уплотнительного кольца возле турбинной крыльчатки. Резко возрастает расход масла. Случается, что дыма нет, но мощность всё равно низка, а у дизелей — регулярный чёрный дым, свидетельствующий об износе наддува и скоплении нагара, что приводит к недостатку воздуха и торможению рабочих оборотов компрессора.
Очевидно, что эксплуатация турбонаддува не является сложной процедурой, необходимо лишь следующее:
1) Аккуратность;
2) Своевременная смена фильтров и масла;
3) Применение определённых сортов масла;
4) Осторожность в отношении перегрева турбонаддува по причине долгой езды на высоких оборотах, или дефектов в системе впрыска и зажигания.
Не менее важные моменты — состояние воздушного фильтра, его чистота. Нарушение целостности фильтра приводит к прониканию частиц пыли, разрушительно влияющих на срок службы компрессорной крыльчатки и двигателя.
В целом, от того, как мы обращаемся с турбонаддувом, зависит то, какой срок он прослужит. Следует помнить, что погубить турбонаддув можно в течение двух дней, если при появлении первых симптомов не обратиться сразу в ремонтную фирму. Поэтому не следует затягивать с ремонтом, и желательно выполнять все вышеперечисленные рекомендации для предотвращения возникновения неполадок.

www.drive2.ru

Как работает турбина, принцип действия турбины. — Hyundai Lantra, 1.6 л., 1992 года на DRIVE2

Как работает турбина, принцип действия турбины.

Термин «турбо» практически у всех на слуху. Свистит турбина, ревёт прямоток. Хоть единожды в жизни любому автолюбителю приходила в голову идея заиметь «турбомонстрика». Любому хочется увеличить поголовье «коняшек» под капотом. Но чаще всего приходится отказываться от мечты по причине мнимой дороговизны и непрактичности. Соответствует ли это реальности? Давайте разберёмся, как работает турбина, принцип действия турбины, обратившись к теории. Мощность движка напрямую зависит от рабочего объёма цилиндров, от количества подаваемой воздушно-топливной смеси, от эффективности её сгорания, а также от энергетической части топлива. Назначение турбины — увеличить подачу воздушно-топливной смеси. Мощность мотора повышается пропорционально увеличению количества сжигаемого за единицу времени топлива. Но для горения бензина необходим недюжинный запас воздуха в моторе. То есть, чем больше сжигаем бензина, тем большее количество воздуха нужно, которое необходимо «впихнуть» в мотор (именно, «впихнуть», так как сам мотор не справится с забором такого количества воздуха, и фильтры нулевого сопротивления в этом ему не помощники). Вот тут и выходит на сцену устрашающая маленькая деталь — турбина.

У турбины нагнетатель-крыльчатка размещён на едином валу с турбиной-крыльчаткой, встроенной в выпускной коллектор, и приводимой в движение вращения с помощью отработанных газов. Величина частоты вращения часто выше 200 тыс. об/мин.
И здесь проявляется один минус: при резком нажатии газа, надо ждать увеличение оборотов мотора, увеличение давления выхлопных газов, раскрутку турбины, и загонку воздуха. Это явление называется turbo-lag (турбо-яма), и сегодня его умеют укрощать, справляться с данным эффектом. Для этих целей применяются два клапана. Один — для перепускания излишнего воздуха в компрессор через трубопровод из двигательного коллектора. Другой клапан — для отработанных газов. Управление первым клапаном осуществляем, помимо прочего, давлением, возникающим во впускном коллекторе. Благодаря этому при сбросе газа немного снижается частота вращения турбинного ротора, а при очередном нажимании на педаль, подача воздуха задерживается на крохотные доли секунды — время, пока закрывается клапан.
В современных технологиях используется такой метод регулировки воздухоподачи, как изменение угла наклона компрессорных лопаток. Эта методика разработана давно, но долгое время не получалось применять её на практике. Примером может послужить в данном случае новое устройство наддува дизелей «Экотек» фирмы Opel. Основной недостаток применения турбин — короткий срок службы. Это происходит из-за высокой частоты вращения турбинного ротора, которая составляет 150-200 тыс. об/мин.
До сегодняшнего дня ограничение срока службы происходило благодаря долговечности подшипников. Практически, это были особые вкладыши, похожие на вкладыши коленчатого вала, смазываемые под давлением маслом. Степень износа таких подшипников была велика, но шарикоподшипники не могли выдержать высоких температур и высокой частоты вращения. Недавно был найден оптимальный выход. А именно, были разработаны подшипники с применением керамических шариков, заполненных постоянно имеющимся резервом смазки, что делало ненужным канал от нормативной масляной системы движка. В проектах — турбинный ротор из металлокерамики, обладающий меньшей инерцией и более лёгким весом (на 20% легче).
Существуют термины «твин-турбо» и «би-турбо». Бывает, что используют параллельно или последовательно две установки турбокомпрессоров, вместо одной. Диапазоны работ роторов управляются разными способами при последовательном наддуве.
Понятие «интеркулер» означает, что при неизбежном нагревании воздуха, который сжимается, в нём уменьшается содержание кислорода и плотность. Поэтому воздух перед подачей нуждается в охлаждении в радиаторе, дополнительно встроенном, который называется интеркулером.
Как обеспечить максимально эффективную работу турбонаддува в сложных конструктивных условиях? При запуске двигателя вал начинает обильно смазываться маслом, подающимся на подшипники по каналам. Во время вращения двигателя создаётся давление, под которым турбина нормально действует. При остановке двигателя перестаёт функционировать и масляный насос, а вот вал мгновенно затормозить не может, и работает по инерции уже без смазки. Чтобы дольше сохранить от износа вал, надо регулярно менять фильтры и масло, которое предназначено именно для турбонаддувных двигателей. И обязательно надо давать двигателю прогреться, не глушить его в один момент, а дать поработать на холостом ходу какое-то время. Это обеспечит запас времени для охлаждения деталей. Целесообразна также установка турбо-таймера, если он не предусмотрен конструктивно в автомобиле.
Первые сигналы того, что надо обращаться в ремонтную контору — появление густого белого дыма из глушителя и падение мощности. Это означает износ подшипников и уплотнительного кольца возле турбинной крыльчатки. Резко возрастает расход масла. Случается, что дыма нет, но мощность всё равно низка, а у дизелей — регулярный чёрный дым, свидетельствующий об износе наддува и скоплении нагара, что приводит к недостатку воздуха и тор

www.drive2.ru

ЧТО ТАКОЕ ТУРБИНА И КАК РАБОТАЕТ ТУРБО МОТОР Часть 2. — DRIVE2

Термин Trim.
Trim это общепринятый термин, используемый при описании турбинного или компрессорного колеса турбины. Например вы часто могли слышать фразу «У меня стоит турбина GT2871R с 56 Trim». Так что это такое? Trim это величина, показывающая соотношение между индюсером (inducer) и эксдюсером (exducer) турбинного или копрессорного колеса. Еще более точно, это соотношение их площадей.

Диаметр индюсера, это диаметр колеса крыльчатки в той ее части, где воздух входит в крыльчатку, а эксдюсер это диаметр колеса где воздух из него выходит.
Конструкция турбины такова, что индюсер компрессорного колеса меньше чем его индюсер, а турбинного наоборот:
Например:
Турбина GT2871R (Garrett part number 743347-2) имеет компрессорное колесо с:
Диаметр индюсера: 53.1мм
Диаметр эксдюсера: 71.0мм

Таким образом Trim для него будет:


Trim крыльчатки, как компрессора так и турбины напрямую влияет на ее производительность. Чем больше величина trim тем, как правило, больший поток воздуха может пройти через крыльчатку.

Понятие A/R хаузинга
A/R (Area/Radius) описывет геометрическую характеристику компрессорного или турбинного хаузинга. Технически A/R означает отношение сечения канала хаузинга, деленное на расстояние от центра вала до центра этого сечения:


Значение A/R имеет разное влияние на производительность турбинной части и компрессорной.
A/R компрессора практически не влияет на его производительность. Как правило хаузинги с большим A/R применяются для оптимизации отдачи в приложениях с малым наддувом, а хаузинги с меньшим A/R компрессора используются для больших значений наддува.
A/R турбины наоброт, значительно влияет на ее производительность, определяя ее способность пропустить тот или иной поток воздуха. Использование меньшего A/R увеличивает скорость потока в турбинном хаузинге приходящий на турбинное колесо. Это дает возможность увеличить отдачу турбины на низких нагрузках, приводит к более быстрому отклику на дроссель и снижает значение минимальных оборотов двигателя, требуемые для выхода турбины на рабочий наддув. Тем не менее, меньший A/R приводит к тому что газ попадает на крыльчатку практически по касательной, что уменьшает максимальный поток газа который турбинное колесо способно пропустить. Это так же увеличивает подпор газа перед турбиной, ухудшает продувку мотора на высоких оборотах, повышает EGT и как результат всего этого снижает максимальную пиковую мощность.
При выборе конкретного хаузинга для вашего мотора в любом случае приходится идти на компромис балансируя между ранним наддувом и пиковой мощностью. Так же надо учитывать внутреннюю конструкцию хаузинга. Далекая от оптимально форма канала, неточности литья, возможные переходы с прямоугольного сечения на круглое, все это в определенной мере влияет на эффективность горячего хаузинга. Опытным путем установлено что, например, турбинные хаузинги TiAL с круглым входом имеют лучшую аэродинамику и при том же A/R обеспечивают лучшую продувку на верхах по сравнению с традиционными чугунными хаузингами с прямоугольным входом.
Так же при выборе A/R следует принимать во внимание эффективность всего выпускного тракта после турбины. Использование прямоточных выхлопных систем большого сечения позволяет использовать чуть меньший А/Р турбины и при той же пиковой мощности получить более ранний выход на наддув.
Виды выпускных коллекторов и их влияние
В основном все турбо-коллектора деляться на два типа: литые log-style и трубные сварные:
Дизайн турбо коллектора довльно сложный процесс т.к. очень много факторов должно быть приянто во внимание. Ниже приведены общие советы для достижения максимальной производительности:
— Старайтесь использовать максимально возможный радиус поворотов, т.к. как каждый крутой изгиб ранера поглащает часть полезной энергии потоков газа.
— Добивайтесь равной длины ранеров для избежания перекрестного наложения выхлопных импульсов.
— Избегайте резких изменений сечения
— В сводах ранеров избегайте резких углов для сохранения направления и скорости потока
— Для лучшей отзывчивости турбины избегайте больших объемов коллектора, для большей пиковой мощности, наоборот может использован больший объем коллектора
— Оптимально выбирайте длину ранеров и объем коллектора в зависимости от объема мотора и диапазона оборотов на которой необходимо получить наилучшую отдачу
Литые коллектора чаще всего применяются в заводских гражданских компоновках, в то время как сварные трубные коллектора чаще применяются в спортивных вариантах моторов. Оба вида имеют свои достоинства и недостатки.
Литые коллектора обычно весьма компактны и более дешевы при массовом производстве.
Трубные коллектора могут быть изготовлены в малых сериях или единичных экземплярах для конкретного случая и не требуют такой сложной предварительной организации производства как литые. Правильно разработанный и изготовленный трубный коллектор обеспечивает длительный срок эксплуатации и значительное улучшение производительности по сравнению с литым log-style коллектором.
Прежде чем приступить у обсуждению степени сжатия и давлению наддува, важно понять что такое кнок или детонация. Детонация это опасный процес вызванный спонтанным быстротекущим сгоранием топливно-воздушной смеси в цилиндрах. Этот процесс вызывает резкие и большие по величине всплески давления в камере сгорания ведущие со временем к механическому разрушению поршневой группы и износу вкладышей.

Основными факторами вызывающими детонацию являются:
— Естественная склонность самого мотора к детонации. Поскольку все моторы имеют свои конструкционные особенности, нет простого и однозначного ответа как лучше. Форма камеры сгорания, расположение в ней свечи зажигания, диаметр цилиндра и степень сжатия, качество распыла топлива, все это влияет на склонность или наоборот устойчивость конкретного мотора к детонации.
— Внешние условия. В турбо моторах параметры всысываемого турбиной воздуха, его температура и влажность, а так же параметры воздуха который попадает в цилиндры после турбины влияют на склонность к детонации. Чем выше наддув, тем больше температура воздуха поступающего в цилиндры и тем больше вероятность возникновения кнока. Интеркулер с хорошей эффективностью охлаждения сжатого воздуха значительно помогает в борьбе с детонацией.
— Октановое число топлива. Октан это величина показывающая стойкость топлива к возникновению детонации. Октан типовых гражданских бензинов находится в диапазоне 92-98 единиц. Специальные спортивные виды топлива имеют октан 100-120 и выше единиц. Чем выше октан, тем более стойким является топливо к возникновению детонации.
— Настройки блока управления. Угол зажигания и соотношение воздух/топливо значительным образом влияет на склонность или устойчивость мотора к детонации в различных режимах.

www.drive2.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *