Виды приводов: Типы приводов и их механизмы – Привод — Википедия

Содержание

Электрический привод — Википедия

Электрический привод (сокращённо — электропривод, ЭП) — управляемая электромеханическая система, предназначенная для преобразования электрической энергии в механическую и обратно и управления этим процессом.

Современный электропривод — совокупность множества электромашин, аппаратов и систем управления ими. Он является основным потребителем электрической энергии (до 60 %)[1] и главным источником механической энергии в промышленности.

В ГОСТ Р 50369-92 электропривод определён как электромеханическая система, состоящая из преобразователей электроэнергии, электромеханических и механических преобразователей, управляющих и информационных устройств и устройств сопряжения с внешними электрическими, механическими, управляющими и информационными системами, предназначенная для приведения в движение исполнительных органов рабочей машины и управления этим движением в целях осуществления технологического процесса[2].

Как видно из определения, исполнительный орган в состав привода не входит. Однако авторы авторитетных учебников

[1][3] включают исполнительный орган в состав электропривода. Это противоречие объясняется тем, что при проектировании электропривода необходимо учитывать величину и характер изменения механической нагрузки на валу электродвигателя, которые определяются параметрами исполнительного органа. При невозможности реализации прямого привода электродвигатель приводит исполнительный орган в движение через кинематическую передачу. КПД, передаточное число и пульсации, вносимые кинематической передачей, также учитываются при проектировании электропривода.

Электропривод Elprivod.svg

Функциональные элементы:

  • Регулятор (Р) предназначен для управления процессами, протекающими в электроприводе.
  • Электрический преобразователь (ЭП) предназначен для преобразования электрической энергии сети в регулируемое напряжение постоянного или переменного тока.
  • Электромеханический преобразователь (ЭМП) — двигатель, предназначен для преобразования электрической энергии в механическую.
  • Механический преобразователь (МП) может изменять скорость вращения двигателя.
  • Упр — управляющее воздействие.
  • ИО — исполнительный орган.

Функциональные части:

  • Силовая часть или электропривод с разомкнутой системой регулирования.
  • Механическая часть.
  • Система управления электропривода[4].

Статические характеристики[править | править код]

Под статическими характеристиками чаще всего подразумеваются электромеханическая и механическая характеристика.

Шляпа[править | править код]

Механическая характеристика — это зависимость угловой скорости вращения вала от электромагнитного момента M (или от момента сопротивления Mc). Механические характеристики являются очень удобным и полезным инструментом при анализе статических и динамических режимов электропривода.[1]

Электромеханическая характеристика двигателя[править | править код]

Электромеханическая характеристика — это зависимость угловой скорости вращения вала ω от тока I.

Динамическая характеристика[править | править код]

Динамическая характеристика электропривода — это зависимость между мгновенными значениями двух координат электропривода для одного и того же момента времени переходного режима работы.

По количеству и связи исполнительных, рабочих органов:

Классификация электроприводов по степени их автоматизации рабочих машин и механизмов и качеству выполняемых операций
  • Индивидуальный, в котором рабочий исполнительный орган приводится в движение одним самостоятельным двигателем, приводом.
  • Групповой, в котором один двигатель приводит в действие исполнительные органы РМ или несколько органов одной РМ.
  • Взаимосвязанный, в котором два или несколько ЭМП или ЭП электрически или механически связаны между собой с целью поддержания заданного соотношения или равенства скоростей, или нагрузок, или положения исполнительных органов РМ.
  • Многодвигательный, в котором взаимосвязанные ЭП, ЭМП обеспечивают работу сложного механизма или работу на общий вал.
  • Электрический вал, взаимосвязанный ЭП, в котором для постоянства скоростей РМ, не имеющих механических связей, используется электрическая связь двух или нескольких ЭМП.

По типу управления и задаче управления:

  • Автоматизированный ЭП, управляемый путём автоматического регулирования параметров и величин.
  • Программно-управляемый ЭП, функционирующий через посредство специализированной управляющей вычислительной машины в соответствии с заданной программой.
  • Следящий ЭП, автоматически отрабатывающий перемещение исполнительного органа РМ с заданной точностью в соответствии с произвольно меняющимся сигналом управления.
  • Позиционный ЭП, автоматически регулирующий положение исполнительного органа РМ.
  • Адаптивный ЭП, автоматически избирающий структуру или параметры устройства управления с целью установления оптимального режима работы.

По характеру движения:

  • ЭП с вращательным движением.
  • Линейный ЭП с линейными двигателями.
  • Дискретный ЭП с ЭМП, подвижные части которого в установившемся режиме находятся в состоянии дискретного движения.

По наличию и характеру передаточного устройства:

  • Редукторный ЭП с редуктором или мультипликатором.
  • Электрогидравлический с передаточным гидравлическим устройством.
  • Магнитогидродинамический ЭП с преобразованием электрической энергии в энергию движения токопроводящей жидкости.

По роду тока:

  • Переменного тока.
  • Постоянного тока.

По степени важности выполняемых операций:

  • Главный ЭП, обеспечивающий главное движение или главную операцию (в многодвигательных ЭП).
  • Вспомогательный ЭП.
  • Привод передач.

Автоматизированные электроприводы подразделяются еще на две подгруппы — разомкнутые и замкнутые. Работа разомкнутого привода заключается в том, что все внешние возмущения (для электрических приводов самым характерным из них является момент нагрузки) оказывают влияние на выходную переменную электрического привода, как пример — на его скорость. Иными словами, разомкнутый электрический привод не изолирован от влияния внешних возмущений, все изменения которых отражаются на его рабочих показателях. В разомкнутом приводе по этой причине не может обеспечиться высокий уровень качества регулирования переменных, хотя данный привод отличается простой схемой.

Основным отличием замкнутых электрических приводов является их общее или локальное удаление воздействий внешних возмущений на управляемую переменную электрического привода. В качестве примера можно привести тот факт что, скорость таких электрических приводов может оставаться практически неизменной при возможных колебаниях момента нагрузки. В силу этого обстоятельства замкнутый привод обеспечивает более качественное управление движением исполнительных органов, хотя его схемы являются более сложными и требуют, зачастую, применения силовых преобразователей энергии.

Замкнутый электропривод[править | править код]
Структура замкнутых электроприводов: а — с компенсацией возмущения; б — с обратной связью.

Замкнутый электрический привод может быть построен по принципам отклонения с использованием обратных связей или компенсации внешнего возмущения.

Принцип компенсации мы можем рассмотреть на примере компенсации наиболее явно выраженного внешнего возмущения электропривода — момента нагрузки Мс при регулировании его скорости (рис.а).Основным признаком такой замкнутой структуры электрического привода является наличие цепи, по которой на вход привода вместе с задающим сигналом скорости подается сигнал UM = kMMQ, пропорциональный моменту нагрузки Мс. В результате этого управление ЭП осуществляется суммарным сигналом ошибки, который автоматически изменяется в нужную сторону при колебаниях момента нагрузки, обеспечивая с помощью системы управления поддержание скорости ЭП на заданном уровне.

Несмотря на свою высокую эффективность, электрические приводы по данной схеме выполняются крайне редко из-за отсутствия простых и надежных датчиков момента нагрузки М

с (возмущающего воздействия).В связи с данным фактом подавляющее количество замкнутых структур электроприводов используют принцип обратной связи (отклонения). Он характеризуется тем что имеет цепь обратной связи, соединяющую выход электрического привода с его входом, отсюда и пошло название замкнутых схем.

Все виды применяемых в замкнутых электрических приводах обратных связей делятся на положительные и отрицательные, жесткие и гибкие, линейные и нелинейные.

Положительной называется обратная связь, в которой сигнал направлен согласно и складывается, с управляющим сигналом, в то время как сигнал отрицательной связи направлен в противоположную сторону (знак «минус» на рис. б).Жесткая обратная связь охарактеризована тем, что данная связь действует как в установившемся режиме, так и в переходном режиме электрического привода. Сигнал гибкой обратной связи производится только в переходных режимах электропривода и используется для обеспечения требуемого им качества, как пример устойчивости движения, допустимого перерегулирования и т.д.

Линейная обратная связь охарактеризована своей пропорциональной зависимостью между управляемой координатой и сигналом обратной свﮦязﮦи, в то время как при производстве нелинейной связи эта зависимость не будет пропорциональной.

Для регулирования движения исполнительных органов эксплуатируемых машин иногда требуется изменять несколько переменных электрического привода, например ток, момент и скорость. В таком случае замкнутые приводы создаются по одной из следующих структурных схем.

Электропривод с общим усилителем[править | править код]
Схема электропривода с общим усилителем.

Схема с общим усилителем представлена на рисунке справа в качестве примера, данная схема является схемой регулирования двух переменных двигателя, где Д — скорости тока I. Схема содержит в себе силовой преобразователь электроэнергии П, устройство управления УУ, механическую передачу МП и датчики тока ДТ, скорости ДС и устройство токоограничения (токовой отсечки) УТО. Данная схема обеспечивает хорошую характеристику двигателя. На интервале скорости 0 — СOj за счет действия обратной связи по току (сигнал U) обеспечивается ограничение тока и момента двигателя и характеристика имеет близкий к вертикальному участок. При скорости Со > 00j узел УТО заканчивает действие связи по току и за счет наличия обратной связи по скорости (ОСС) (сигнал U ОCC) характеристика двигателя становится жестче ,что обеспечивает регулирование скорости.

Совокупность обратных связей, число которых может быть от двух и более, в схеме с единым усилителем образует своего рода модальный регулятор, а переменные при этом называются переменными состояния электропривода. Главной задачей модального регулятора можно считать обеспечение заданного качества динамических процессов в электроприводе — быстродействия, устойчивости и степени затухания переходных процессов. Это достигается выбором видов и соответствующим исследованием коэффициентов обратных связей по переменным электрического привода. Следует отметить, что система с суммирующим усилителем относится к системам управления с так называемой параллельной коррекцией.

Электропривод с наблюдающим устройством[править | править код]
Схема электропривода с наблюдающим устройством

В сложных системах электроприводов, имеющих, в частных случаях, разветвленные кинематические цепи с упругими элементами, множество регулируемых переменных может оказаться весьма высоким. При данном факте измерение некоторых из них имеет некоторые затруднения по тем или иным причинам. В таких случаях прибегают к использованию так называемых наблюдающих устройств (наблюдателей).

Основную часть наблюдателя формируют совокупности моделей звеньев электрического привода, выполненных на основе операционных усилителей или элементов микропроцессорной техники. Выходные сигналы (напряжения) этих моделей, параметры которых соответствуют реально существующим звеньям электропривода, отображают близкие значения переменных.

Эксплуатация с применением наблюдателя на примере регулирования угла поворота вала двигателя поясняет структурная схема на рисунке 6, на которой приняты следующие обозначения: Д — двигатель, П — преобразователь, УУ — управляющее устройство, МП — механическая передача, НУ — наблюдающее устройство.

Электрический привод применяется для управления положением исполнительного органа φио. Это достигается соответствующим регулированием угла поворота φ вала двигателя, при котором необходимо также регулирование и других переменных — тока I, момента М и скорости двигателя.

Для применения рассматриваемого принципа управления, сигнал задания угла поворота фз подается на устройство управления УУ и одновременно на вход наблюдающего устройства НУ. Наблюдающее устройство НУ вырабатывает с помощью моделей звеньев привода сигналы, пропорциональные току, моменту и скорости, и направляет их устройству управления УУ.

Так же следует отметить, что модели звеньев не в состоянии учесть всех реальных возмущений, воздействующих на электрический привод и электрическую машину, и нестабильности параметров ЭП, НУ выдает в управляющее устройство не точные выражения переменных, а их оценки, что обозначено на схеме звездочкой «*».

Электропривод с подчиненной системой координат[править | править код]
Схема электропривода с подчиненным регулированием координат

Для увеличения точности получаемых оценок переменных состояния может применяться корректирующая обратная связь по управляемой переменной, показанная выше штриховой линией. В данном случае значение выходной управляемой переменной ф сравнивают при помощи обратной связи с ее оценкой ф* и только затем в функции ошибки (выявленного отклонения) Дф корректируют показания отдельных моделей.

Структура с подчиненным управлением координат отличается тем, что в данной структуре регулирование каждой отдельной координаты осуществляется отдельными регуляторами — тока РТ и скорости PC, которые в свою очередь совместно с соответствующими обратными связями формируют замкнутые контуры. Они встраиваются таким образом, что входным, задающим сигналом для внутреннего контура тока U является выходной сигнал внешнего по отношению к нему контура скорости. Исходя из этого, внутренний контур тока зависит от внешнего контура скорости — основной управляемой координате электрического привода.

Главное достоинство схемы изображенной на рисунке заключается в возможности эффективной настройки управления каждой переменной как в статичном, так и в динамичном режимах, в силу чего она представляет из себя в настоящее время основу применение в электроприводе. Кроме того, зависимость контура тока от контура скорости позволяет простыми методами осуществлять ограничение тока и момента, для чего достаточно ограничить на соответствующем уровне сигнал на выходе регулятора скорости (он же — сигнал задания тока)

Качество работы современного электропривода во многом определяется правильным выбором используемого электрического двигателя, что в свою очередь обеспечивает продолжительную надёжную работу электропривода и высокую эффективность технологических и производственных процессов в промышленности, на транспорте, в строительстве и других областях.

При выборе электрического двигателя для привода производственного механизма руководствуются следующими рекомендациями:

  • Исходя из технологических требований, производят выбор электрического двигателя по его техническим характеристикам (по роду тока, номинальным напряжению и мощности, частоте вращения, виду механической характеристики, продолжительности включения, перегрузочной способности, пусковым, регулировочным и тормозным свойствами др.), а также конструктивное исполнение двигателя по способу монтажа и крепления.
  • Исходя из экономических соображений, выбирают наиболее простой, экономичный и надёжный в эксплуатации двигатель, не требующий высоких эксплуатационных расходов и имеющий наименьшие габариты, массу и стоимость.
  • Исходя из условий окружающей среды, в которых будет работать двигатель, а также из требований безопасности работы во взрывоопасной среде, выбирают конструктивное исполнение двигателя по способу защиты.

Правильный выбор типа, исполнения и мощности электрического двигателя определяет не только безопасность, надёжность и экономичность работы и длительность срока службы двигателя, но и технико-экономические показатели всего электропривода в целом.

  1. 1 2 3 Ильинский Н. Ф. Основы электропривода: Учебное пособие для вузов. — 2-е изд., перераб. и доп. — М.: Издательство МЭИ, 2003. — С. 220. — ISBN 5-7046-0874-4.
  2. ↑ Электроприводы. Термины и определения.-М.- Издательство стандартов. −1993 [1]
  3. Онищенко Г.Б. Электрический привод. — М.: Академия, 2003.
  4. Анучин А.С. Системы управления электроприводов. — Москва: Издательский дом МЭИ, 2015. — 373 с. — ISBN 978-5-383-00918-5.
  • Соколовский Г. Г. Электроприводы переменного тока с частотным регулированием. — М.: «Академия», 2006. — ISBN 5-7695-2306-9.
  • Москаленко, В.В. Электрический привод. — 2-е изд. — М.: Академия, 2007. — ISBN 978-5-7695-2998-6.
  • Зимин Е. Н. и др. Электроприводы постоянного тока с вентильными преобразователями. Ленинград, Издательство «Энергоиздат», Ленинградское отделение, 1982
  • Чиликин М. Г., Сандлер А. С. Общий курс электропривода. — 6-е изд. — М.: Энергоиздат, 1981. — 576 с.
  • Тищенко О. Ф. Элементы приборных устройств. — М.: Высшая школа, 1982. — 263 с.

Типы приводов

Категория:

   Погрузочные машины для сыпучих материалов

Публикация:

   Типы приводов

Читать далее:



Типы приводов

Для трех основных рабочих узлов погрузочных машин различают привод и систему управления: рабочего органа, механизма передвижения и передаточных конвейеров. Кроме этого погрузочные машины оборудуются вспомогательными механизмами, предназначенными для выполнения таких операций, как повороты платформы, подъем и опускание приемной плиты, подъем и повороты конвейера, отталкивание вагонеток, опрокидывание бункера и др.

Погрузочные машины с независимым питанием отличаются высокой маневренностью и отсутствием силовых коммуникаций. Поэтому, в частности, аккумуляторные погрузчики и машины с дизельным приводом широко используются на складах, в портах, на железнодорожных станциях и т. д.

Общими недостатками машин с приводом независимого питания являются высокая стоимость энергии, необходимость создания зарядного хозяйства для аккумуляторов, ограниченная емкость аккумуляторных батарей и резервуаров горючего и большие габаритные размеры машин, что ограничивает их применение в стесненных подземных условиях или в судовых трюмах.

Рекламные предложения на основе ваших интересов:

Групповой привод погрузочных машин с механическими передачами (например, в машинах типа С-153, Е-100) значительно усложняет конструктивное исполнение машин, их управление и ремонт. Поэтому в современных конструкциях используется главным образом индивидуальный привод каждого рабочего механизма, что отчетливо видно из рассмотрения кинематической схемы мощной погрузочной машины непрерывного действия типа ПНР-1.

Привод рабочего органа I осуществлен от электродвигателя МАД-П/МГ мощностью 65 кет. Строгая синхронизация в работе правой и левой лапы достигается общей кинематической связью редукторов. Приводы приемного конвейера II и перегружателя IV осуществлены от четырех однотипных электродвигателей А051-4 с номинальной мощностью каждого 4,5 кет. Каждая гусеница оборудована индивидуальным приводом III от электродвигателя АОС63-4/2 мощностью 14 кет.

Индивидуальный привод не лишен существенных недостатков, к которым следует отнести большую установленную мощность двигателей, усложнение электрической схемы машин, повышенные требования к электрическому оборудованию, воспринимающему высокие динамические нагрузки непосредственно от рабочих механизмов. Указанные недостатки устраняются в погрузочных машинах, оборудованных групповым приводом с гидравлическими трансмиссиями. На машине типа ТПГР-1 (Торецкий машиностроительный завод) установлена гидравлическая станция, оборудованная насосами высокого давления типа Н-403 и электродвигателя типа КОФ41-4. Рабочая жидкость под давлением подводится ко всем механизмам машины (гребково-роторному рабочему органу, механизму передвижения, конвейерам и др.), осуществляя привод последних с помощью гидромоторов или гидроцилиндров.

Все отечественные шахтные погрузочные машины имеют электрический или пневматический привод; в наземных машинах преимущественно используются двигатели внутреннего сгорания. Начатые опытно-конструкторские работы указывают на полную возможность создания унифицированных ковшовых машин прямой погрузки с взаимозаменяемым электрическим и пневматическим приводом. Пневматические двигатели типа ДРП-16, которые изготовляются на заводе «Пневматика», являются взаимозаменяемыми с электрическими двигателями типа КТСВ 110/775М, применяемыми в погрузочных машинах ЭПМ. Такими двигателями снабжаются унифицированные машины типа МПУ-1.

Рис. 1. Кинематическая схема погрузочной машины типа ПНР-1.

Рис. 2. Схема рабочих механизмов погрузочной машины типа ПМС.

В связи с этим для каждой модели машин в соответствии с условиями их возможного применения должен быть рассмотрен вопрос о целесообразном типе привода и принято то или иное сочетание взаимозаменяемых типов привода (электрический, пневматический или дизельный). Как показывает опыт эксплуатации, для многих моделей шахтных погрузочных машин непрерывного действия с высокой производительностью и высокой частотой цикла работы погрузочного механизма должен быть использован только наиболее надежный и дешевый электропривод, а для наземных машин, работающих на больших складских или строительных площадках, — только дизельный привод.

Для электрического привода рабочих механизмов погрузочных машин применяются главным образом асинхронные электродвигатели общего назначения в закрытом обдуваемом исполнении с короткозамкнутым ротором. Для привода рабочих органов используются асинхронные двигатели того же исполнения с повышенным скольжением. Наземные погрузочные машины часто оборудуются электроприводом постоянного тока; при этом используются только сериесные двигатели.

Наиболее предпочтительным типом привода современных погрузочных машин является электрогидравлический как наиболее надежный, обеспечивающий плавное регулйрование усилий и скорости рабочих элементов машин и хорошо увязывающий работу основных (рабочий орган) и вспомогательных (гидроцилиндры подъема и поворота) элементов погрузочной машины. В погрузочных машинах, оборудованных гидравликой, для привода рабочих механизмов применяются гидравлические цилиндры и гидродвигатели. Так в гребковых погрузочных машинах типа ПМС цилиндры служат для подъема и опускания рукоятки цилиндры для складывания и выбрасывания гребка; цилиндры осуществляют подъем и опускание всего питателя цилиндр поворачивает платформу с питателем вправо и влево от среднего положения, что обеспечивает необходимый фронт погрузки у колесно-рельсовых машин и сокращает объем маневровых операций у машин на гусеничном ходу. Цилиндры поднимают и опускают перегружатель, а—9 поворачивают перегружатель в горизонтальной плоскости.

Размещение левого цилиндра на питателе погрузочной машины типа ПМС-2 видно на рис. 3. Корпус цилиндра укреплен шарнирно на раме конвейера, а шток закреплен на рукояти. При подаче масла в нижнюю полость цилиндра рукоять поднимается. Опускание гребка под действием собственного веса легко выполняется при помощи специальных гидравлических клапанов в системе.

Типовая конструкция гидроцилиндра (погрузчика Т-157) представлена на рис. 4. Гидроцилиндр состоит из гильзы, крышки с воздухоспускным клапаном, ступицы, уплотнительных манжет, штока с поршнем и уплотнительными манжетами

7. Манжеты изготовлены из маслостойкой резины. Цилиндры цапфами шарнирно устанавливаются в подшипниках верхней части опоры.

Рабочее давление масла в гидравлических системах погрузочных машин обычно принимается в пределах 80—120 кГ/см2, что диктуется высокими усилиями, характерными для рабочих механизмов и ограниченными габаритными размерами машин.

Для вращения рабочих механизмов (ходовой части, погрузочных органов, конвейера и т. д.) используются гидродвигатели. Гидродвигатель типа НПА-64, используемый для привода нагребающих лап погрузочной машины УП-2, состоит из разъемного корпуса, в котором размещены на подшипниках приводной вал, блок гидроцилиндров и маслораспреде-лительный механизм. Масло, подводимое под давлением к входному штуцеру, поступает в кольцевой канал распределительного механизма и далее — в рабочую полость цилиндров. Поршень со штоком перемещаясь поступательно, упирается сферической опорой в шайбу, размещенную под углом к плоскости цилиндров. Благодаря этому осуществляется поворот шайбы с валом. Распределительный механизм механически карданом связан с валом, вращается с ним вместе, и масло последовательно поступает в цилиндры, обеспечивая непрерывное вращение вала.

Рис. 3. Размещение гидроцилиндра на питателе погрузочной машины ПМС-2.

Высокомоментные радиально-поршневые гидродвигатели типа ВГД-410 установлены на привод гусеничного хода погрузочной машины ПНБ-3 (институт Гипроуглемаш). Крутящий момент на валу двигателя при давлении масла 100 кГ/см2 достигает 480 кГм, а максимальная скорость вращения вала не превышает 110 об/мин, что позволяет использовать двигатели в упрощенной безредукторной схеме.

Рис. 4. Гидравлический цилиндр.

Пневматический привод используется для шахтных погрузочных машин по условиям безопасности (в шахтах, особо опасных по газу) или же в тех случаях, когда весь комплекс проходческого оборудования работает на сжатом воздухе.

В погрузочных машинах применяются поршневые и ротационные пневматические двигатели. Отечественные серийные машины оборудуются поршневыми пневматическими двигателями типа МП-5 или ДР-10. Двигатель для удобства монтажа изготовляется во фланцевом исполнении. В корпусе I укреплены болтами пять рабочих цилиндров, расположенных по окружности под углом 72° друг к другу. В каждом цилиндре помещен поршень с кольцами. Для превращения возвратно-поступательного движения поршней двигатель оборудован кривошипно-шатунным механизмом, состоящим из шатунов и коленчатого вала. Каждый шатун головкой соединен пальцем с поршнем, а ножкой опирается на вкладыш. Коленчатый вал монтируется на двух шарикоподшипниках, укрепленных в корпусе и крышке. Конец коленчатого вала со стороны фланца имеет шлицевое отверстие, в которое входит вал редуктора погрузочной машины.

Для распределения сжатого воздуха по рабочим цилиндрам на двигателе смонтировано золотниковое устройство, состоящее из втулки, распределительного валика и коробки золотника. Золотник приводится во вращение коленчатым валом, сжатый воздух через каналы и прорези поступает в цилиндры или выходит из них.

Рис. 5. Гидродвигатель НПА-64.

С 1960 г. заводом «Пневматика» серийно выпускается двигатель ДР-10у мощностью до 12 л. е., спроектированный на базе двигателя ДР-10. Все основные узлы и детали унифицированы с двигателями ДР-5у и ДР-13. Для новых погрузочных машин МПУ-1 создаются более мощные двигатели типа ДРП-16, имеющие большие сечения каналов, подводящих сжатый воздух к цилиндрам. Мощность двигателя 16 л. с. при 670 об/мин выходного вала. На заводе «Коммунист» изготовляются двигатели МП-18 мощностью 18 л. с. и номинальным числом оборотов 600 в минуту, предназначенные для ковшово-конвейерных тяжелых машин типа ПМЛ-8.

Основными тенденциями развития конструкций пневматических двигателей погрузочных машин являются увеличение мощности, усовершенствование конструкций воздухораспределения и повышение коэффициента полезного действия.

Ротационные двигатели проще по конструкции и меньше по размерам по сравнению с поршневыми, так как в них отсутствует кривошипно-шатунный механизм, а также ‘золотниковое воздухо-распределение. Недостатком ротационных двигателей является недостаточное уплотнение рабочих камер, быстрый износ лопаток и шум при работе.

Дизельный привод имеет особое значение применительно к машинам, предназначенным для геологоразведочных работ, а также для мощных ковшовых машин, работающих в камерах большого сечения, где затруднительна подводка к машине и малонадежна эксплуатация силовых коммуникаций (кабелей и воздухопроводов).

Рис. 6. Пневматический двигатель типа ДР-10.

Для наземных погрузочных машин обычно используются стандартные автотракторные двигатели внутреннего сгорания (карбюраторные или дизели). Недостатками их являются: чувствительность двигателя к неизбежным кратковременным перегрузкам, возникающим при погрузке насыпных грузов; сложность запуска двигателя при температуре ниже нуля; отсутствие плавного регулирования скорости; большая стоимость ремонта и эксплуатации.

Для подземных погрузочных машин необходимо создать специальные двигатели внутреннего сгорания левую часть приемной плиты по шарниру вместе с лапами и их приводами. Таким образом обеспечивается необходимый фронт захвата нагребающих лап при минимальной транспортной ширине машины.

Рис. 7. Привод рабочего органа погрузочной машины УП-2.

Верхняя крышка редуктора, закрепленная на болтах, открывает свободный доступ к шестерням и подшипникам, которые размещены в масляной ванне, а выходной вал внизу имеет Манжетное уплотнение. Лапы закреплены шарнирно, поэтому не наблюдается заклинивание материала при обратном движении лап.

Рис. 8. Редуктор привода лап погрузочной машины ПНР-1.

Индивидуальный гидропривод нагребающих лап значительно улучшает рабочую характеристику и позволяет уменьшить ширину машины. Однако недостатком схемы является нарушение синхронизации движения лап.

Для синхронизации движения парных рабочих органов (лап, дисков) их привод обычно осуществляется от общего редуктора. Конструкция редуктора привода правой лапы погрузочной машины типа ПНР-1 видна на рис. 8.

Аналогичный по конструкции редуктор расположен с левой стороны приемной плиты. Оба редуктора кинематически связаны общим валом, который передает движение на конические шестерни и далее через две пары цилиндрических шестерен на приводные диски лап. Редуктор размещается под приемной плитой, на уровень которой выводится лишь диск с пальцем для сообщения движения непосредственно лапе. Шестерни заключены в литой разъемный корпус.

Доступ к редуктору при такой компоновке усложняется, однако исключается опасность заклинивания кусков насыпного груза.

В связи с тем, что привод парных рабочих органов расположен в непосредственной близости к штабелю насыпного груза, повышаются требования к защите корпуса редуктора от попадания пыли и влаги. Это достигается с помощью лабиринтных и манжетных уплотнений.

Рис. 9. Кинематическая схема привода ковша погрузочной машины ПМЛ-8М.

В наиболее распространенных погрузочных машинах с ковшом; на катящейся рукояти привод рабочего органа осуществляется при помощи механических редукторов. На рис. 9 приведена кинематическая схема привода ковша погрузочной машины типа ПМЛ-8М. На закрепленном болтами к поворотной платформе корпусе редуктора прифланцован двигатель типа МП-18.

Редуктор обычно состоит из двух пар цилиндрических шестерен, снижающих число оборотов выходного вала, на котором располагается бобина на последнюю навивается многорядная пластинчатая цепь. Противоположный конец цепи закреплен к кулисам ковша; поэтому когда цепь наматывается на бобину, ковш поднимается. Опускание ковша происходит под действием силы тяжести..

Для электропривода особенно характерны динамические знакопеременные нагрузки, поэтому в электрических ковшовых погрузочных машинах применяются двигатели кранового типа, устанавливают фрикционные муфты и предусматриваются специальные пружинные предохранительные устройства.

Отмеченные недостатки отсутствуют в случае привода ковша от силовых пневматических цилиндров. На рис. 10 представлена схема привода погрузочной машины типа МПДР-0,12. Силовой пневматический цилиндр закреплен на цапфах, шток соединен с шарнирной рукоятью ковша. При включении сжатого воздуха ковш поворачивается вначале относительно нижнего шарнира, а затем — верхнего шарнира. В конце движения ковш разгружается в бункер. Подвеска цилиндра позволяет использовать его для разгрузки бункера. Ковш фиксируется в верхнем положении, открывается защелка бункера и при подаче сжатого воздуха в цилиндр бункер опрокидывается относительно шарни для разгрузки.

Рис. 10. Схема привода ковша и бункера погрузочно-доставочной машины МПДР-0,12.

Для увеличения усилий принят цилиндр со сдвоенными поршнями (рис. 11). Корпус цилиндра состоит из двух половин, соединенных жесткой перемычкой. На штоке закреплены поршень одностороннего действия и поршень двухстороннего действия. При подаче сжатого воздуха через вводы в левые полости цилиндра шток перемещается направо под действием удвоенных усилий, обеспечиваемых поршнями. Осуществляется вырыв ковша из штабеля насыпного груза. Поскольку для опускания ковша не требуется больших усилий, сжатый воздух подается через ввод в правую полость цилиндра над поршнем, левые же полости обеих половин цилиндров соединяются с атмосферой и шток под действием поршня перемещается влево.

Рис. 11. Силовой цилиндр машины МПДР-12.

В ковшовых машинах ступенчатой погрузки ковш укреплен шарнирно на рукояти при помощи двух корабельных цепей, которые наматываются на барабаны. При одновременном включении двух барабанов ковш поднимается в вертикальной плоскости. Опускание ковша происходит под действием силы тяжести.

Рис. 12. Привод рабочего органа погрузочной машины ППМ-5.

Механизм подъема ковша представляет собой два одинаковых планетарных редуктора, смонтированных на общем валу. Вращение барабану передается через ведущие шестерни, сателлитные шестерни, зубчатый венец. При торможении ленточным тормозом корпуса редуктора подъемный барабан приводится в движение. В расторможенном состоянии сателлитные шестерни совершают планетарные движения, свободно перекатываясь по внутренней шестерне зубчатого венца и ведущей шестерне.

Привод вибрационных лотков, захватывающих и транспортирующих насыпной груз, может осуществляться от гидровибраторов или от эксцентриковых механизмов. Конструкция приводного вала вибрационного лотка машины типа 2ПНВ-1 приведена на рис. 13. Приводной вал укреплен в роликовых подшипниках на опорах. Вращение от двигателя передается клиноременной передачей на шкив. Если включается фрикционная муфта при помощи механизма, то движение передается на приводной вал. На обоих концах вала размещены в подшипниках эксцентрики, сообщающие шатунам колебательные движения. Шатуны связаны непосредственно с вибрационным лотком.

Привод ходового механизма наиболее простое конструктивное решение имеет при колесно-рельсовом ходе погрузочной машины. Для получения максимальных напорных усилий все колеса рельсовых погрузочных машин выполняются приводными (ведущими), поэтому рамой машины чаще всего служит корпус редуктора. В качестве примера на рис. 14 представлен редуктор ходовой части машины 2ПНВ-1. Фланцевый электродвигатель укреплен непосредственно на корпусе редуктора. Движение от вала двигателя передается через четыре пары цилиндрических шестерен, понижающих число оборотов на приводной вал. Полускаты связаны с приводным валом закрытыми цепными передачами. Для отключения полускатов от двигателя, что бывает необходимо при транспортировании машины, редуктор снабжен кулачковыми муфтами. Эти же муфты обеспечивают включение маневровой и рабочей скорости движения машины.

Рис. 13. Привод вибрационного лотка погрузочной машины 2ПНВ-1.

В целях унификации и упрощения обслуживания мощность и марка ходового двигателя в отечественных погрузочных машинах часто принимается той же, что и для привода рабочего органа. В некоторых зарубежных конструкциях погрузочных машин мощность двигателя рабочего органа на 20—25% выше мощности двигателя ходового механизма; такое решение обеспечивает более надежное черпание и вывод ковша из штабеля.

Привод ходовой части современных гусеничных погрузочных машин осуществляется чаще отдельными двигателями на каждую гусеницу через индивидуальные редукторы, что упрощает управление при поворотах машины; кроме того, уменьшаются габариты и значительно облегчаются монтаж и ремонт машин. На рис. 15 помещена конструктивная компоновка редуктора ходовой части погрузочной машины типа УП-2.

Рис. 14. Редуктор ходовой части погрузочной машины 2ПНВ-1.

Каждая гусеница приводится от самостоятельной кинематической цепи редуктора. От приводной конической шестерни, связанной с двигателем, движение передается через две пары цилиндрических шестерен на звездочку гусеничного хода. Шестерни обеих передач размещены в общем корпусе, который используется в качестве рамы ходовой части.

Гусеничная ходовая часть малогабаритных погрузочных машин иногда компонуется в виде двух самостоятельных узлов, состоящих из двигателя, редуктора и гусеницы. При использовании общего двигателя на две гусеницы включение каждой из них производится через фрикционные муфты.

Привод пневмо-шинного хода погрузочных машин общего назначения, работающих на складах и в портах, обычно выполняется на базе серийных конструкций автомобилей или тракторов, В качестве двигателей пневмошинного хода используются электродвигатели или двигатели внутреннего сгорания. Наиболее прогрессивным решением является встроенный в колеса индивидуальный привод, отличающийся наибольшей компактностью, простотой монтажа и замены.

Привод передаточных конвейеров погрузочных машин осуществляется с отбором мощности от двигателя рабочего органа или от индивидуальных двигателей. В последних конструкциях погрузочных машин привод конвейеров обычно осуществляется от 212 двух двигателей небольшой мощности, что обеспечивает компактную конструкцию и удобное обслуживание машины.

Рис. 5. Редуктор ходовой части погрузочной машины УП-2.

Один из приводов пластинчатого конвейера погрузочной машины ПНР-1 приведен на рис. 6. Фланцевый электродвигатель мощностью 4,5 кет прикреплен болтами к корпусу редуктора. От двигателя движение передается через коническую передачу и две пары цилиндрических шестерен, снижающих число оборотов вала, который муфтой соединяется с пршюдрым валом конвейера. Редуктор размещается непосредственно на раме конвейера.

Рис. 6. Привод пластинчатого конвейера погрузочной машины ПНР-1,

При установке на машине двух тарвейеров для привода перегружателя, как правило, используется отдельной двигатель, который обычно размещается на стреле, около разгрузочной головки. Приводной барабан ленточных конвейеров иногда размещается ближе к месту крепления рамы конвейера и корпусу машины.

Приводы конвейеров работают в лучших условиях по сравнению с приводами рабочего органа и ходового механизма погрузочных машин, так как они не испытывают столь высоких динамических усилий. Механическая защита конвейерных двигателей обычно не предусматривается.

Поворот платформы с рабочим органом погрузочных машин с рельсовым перемещением осуществляется на 30—45° от продольной оси для погрузки породы с боков выработки. Платформа ковшовых погрузочных машин обычно поворачивается вручную в рабочее положение, а специальный механизм автоматически возвращает платформу с заполненным ковшом в центральное положение. Поворотный механизм состоит из барабана с профильным вырезом, рычага, соединенного с кулисой, и ролика, закрепленного на ходовой части машины. При опущенном положении ковша ролик размещен в широкой части выреза барабана, поэтому платформа может свободно поворачиваться. Одновременно с подъемом ковша ролик обегает профилированный скос барабана, поворачивая верхнюю часть машины в центральное положение.

В последних моделях ковшовых машин поворот платформы механизирован. Привод поворотного механизма состоит из 2—3 ступенчатых редукторов с пневмо- или гидроцилиндрами, а в отдельных конструкциях с индивидуальными двигателями.

Рис. 7. Привод поворотного механизма погрузочной машины ПМЛ-5М.

На рис. 7 помещена конструкция привода поворотного механизма погрузочной машины

Привод состоит из двух пневматических цилиндров, рычага, шарнирно закрепленного на двух полуосях и стопорного цилиндра. В зависимости от того, в какой цилиндр подводится сжатый воздух, происходит поворот платформы вправо или влево. Шток стопорного цилиндра под действием пружины фиксирует положение платформы. При подаче сжатого воздуха в нижнюю полость стопорного цилиндра шток поднимается, отсоединяя поворотную платформу от ходовой части. Возврат платформы в центральное положение автоматически выполняется этими же пневмоцилиндрами благодаря специальной блокировке кранов управления.

Погрузочные машины непрерывного действия чаще имеют гидравлическую систему для выполнения вспомогательных операций, поэтому повороты платформы осуществляются гидроцилиндрами. В погрузочных машинах с колесно-рельсовым передвижением часто устанавливаются дополнительные цилиндры для отталкивания загруженных вагонеток, для разравнивания породы в кузове вагонетки и других операций.

Рекламные предложения:


Читать далее: Колесно рельсовая ходовая часть

Категория: — Погрузочные машины для сыпучих материалов

Главная → Справочник → Статьи → Форум


состав, классификация, преимущества, область применения

Jump to Navigation
  • Информация
  • Производители
  • Каталог
  • Назад
  • Насосное оборудование
    • Насосы центробежные
      • Apex Pumps
    • Насосы винтовые
      • Насосы высокого давления
        • BFT
        • GEA
      • Погружные насосы
        • Houttuin
        • Vipom
      • Горизонтальные насосы
        • Apex Pumps
        • GE Oil & Gas Pressure Control
        • Houttuin
        • Inoxihp
        • Vipom
      • Насосы герметичные
        • Hermetic Pumpen
        • Zenith
      • Насосное оборудование прочее
        • AX System
        • Sanco
        • Servi Group
    • Фильтровальное оборудование
      • Воздушные фильтры
        • Jonell
      • Масляные и гидравлические фильтры
        • Parker Hannifin Corporation
        • Servi Group
      • Коалесцирующие фильтры
        • ASCO Filtri
        • Buhler Technologies
        • EUROFILL
        • Hydac
        • Jonell
        • Petrogas
        • Scam Filltres
        • Vokes Air
      • Водоподготовка
        • ASCO Filtri
        • Grunbeck
      • Фильтры КВОУ
        • Осушители
          • Компрессорное оборудование
            • Поршневые компрессоры
              • GE Oil & Gas
            • Винтовые компрессоры
              • GEA
              • Howden
              • Stewart & Stevenson
            • Центробежные компрессоры
              • GE Thermodyn
              • Stewart & Stevenson
          • Трубопроводная арматура
            • Запорная, регулирующая, запорно-регулирующая арматура
              • Bifold Group
              • Siekmann Econosto
              • Zimmermann & Jansen (Z&J)
            • Предохранительная арматура
              • Anderson Greenwood
              • Crosby
              • Sapag Industrial valves
              • Schroedahl
              • Servi Group
            • Приводы трубопроводной арматуры
              • Biffi
              • Keystone
          • Гидравлика
            • Гидроцилиндры
              • Servi Group
            • Гидроклапаны
              • Meggit
              • Servi Group
            • Гидронасосы
              • Riverhawk
              • Servi Group
            • Гидрораспределители
              • Servi Group
            • Пневмоцилиндры
              • Artec
              • Mec Fluid 2
          • Станочное оборудование
            • Станки шлифовальные
              • Robbi
            • Хонинговальные станки
              • CAR srl
              • Kadia
            • Станки зубо- и резьбо- обрабатывающие
              • Nagel Maschinen
            • Карусельные станки
              • Star Micronics
            • Шпиндели и фрезерные головки
              • Cytec
          • Приводная техника
            • Электрические приводы
              • Servi Group
            • Гидравлические приводы
              • Biffi
            • Пневматические приводы
              • Biffi
              • Keystone
            • Электромагнитные приводы
              • Danfoss
              • ECONTROL
              • Kendrion
            • Редукторы
              • Renk
              • VAR-SPE
            • Турборедукторы
              • Flender-Graffenstaden
              • Renk
          • КИП (измерительное оборудование)
            • Анализаторы влажности
              • Belimo
              • Scantech
            • Приборы измерения уровня
              • Endress+Hauser
            • Приборы контроля и регулирования технологических процессов
              • Itron
              • Reuter-Stokes
              • S. Himmelstein
            • Приборы измерения уровня расхода (расходомеры)
              • Belimo
              • Itron
              • Servi Group
            • Системы измерения неразрушающего контроля
              • HBM
              • Kavlico
              • Marposs
            • Устройства измерения температуры
              • Autrol
              • Belimo
              • Servi Group
              • VDO
            • Устройства измерения давления
              • Autrol
              • Servi Group
              • VDO
            • Устройства измерения перемещения и положения
              • Лабораторное оборудование
                • Микроскопия и спектроскопия
                  • Keyence
              • Электрооборудование
                • Аккумуляторные батареи
                  • Hoppecke
                • Противопожарное оборудование
                  • Reuter-Stokes
                  • Sanco
                  • Spectrex
                • Выключатели
                  • Metrol
                • Источники питания
                  • LAM Technologies
                • Кабели и коннекторы
                  • Axon’ Cable
                  • HiRel Connectors
                  • Murrplastik
                • Лазеры
                  • RIO
                • Лампы
                  • Nic
                  • Parat
                • Серийные преобразователи
                  • LAM Technologies
                • Электродвигатели
                  • Gamak Motors
                  • LAM Technologies
                • Электроника
                  • DUCATI Energia
                  • JOVYATLAS
                  • Luvata
                  • Murrplastik
              • Прочее оборудование
                • Абразивные изделия
                  • Abrasivos Manhattan
                  • Atto Abrasives
                • Буровое оборудование
                  • BVM Corporation
                  • Den-Con Tool
                  • MI Swaco
                  • Top-co
                  • WestCo
                • Валы
                  • GKN
                  • Jaure
                  • Rotar
                • Вентиляторы
                  • Reitz
                • Вибротехника
                  • JOST
                • Газовые турбины
                  • Alba Power
                  • GE Energy
                  • Meggit
                  • Score Energy
                  • Siemens energy
                  • Solar turbines
                • Горелки
                  • John Zink
                • Зажимные устройства
                  • Restech Norway
                  • SPIETH
                • Защита от износа, налипания, коррозии
                  • Rema Tip Top
                • Инструмент
                  • Deprag
                  • Knipex
                • Клапаны
                  • John Crane
                  • Mec Fluid 2
                  • Top-co
                  • Velan
                  • Versa
                  • W.T.A.
                  • Xomox
                  • Zimmermann & Jansen (Z&J)
                • Крановое оборудование
                  • Facco
                • Маркировочное оборудование
                  • Couth
                  • Espera
                • Мельницы
                  • Eirich
                • Металлообработка
                  • Agrati
                • Муфты
                  • Coremo Ocmea
                  • Esco Couplings
                  • Jaure
                  • John Crane
                  • Kendrion Linnig
                  • Top-co
                  • ZERO-MAX
                • Оси
                  • Jaure
                • Подшипники
                  • John Crane
                  • NTN-SNR
                  • SPIETH
                • Производственные линии
                  • Espera
                  • FIBRO
                  • Masa Henke
                • Робототехника
                  • Motoman Robotics
                • Системы обогрева
                  • Helios
                  • TYCO Thermal Controls
                • Системы охлаждения
                  • Gohl
                • Системы смазки
                • Строительные леса
                  • HAKI
                • Сушильные печи
                  • Eirich
                • Такелажное оборудование
                  • Casar
                  • Easy Mover
                  • Fetra
                • Тормоза и сцепления
                  • Coremo Ocmea
                • Упаковочное оборудование
                  • Espera
                  • Thimonnier
                • Уплотнения
                  • Flexitallic
                  • John Crane
                • Форсунки и эжекторы
                  • Exair
                • Центраторы
                  • Top-co
                • Электрографитовые щетки
                  • Morgan Advanced Materials
              • AX System
              • A.O. Smith – Century Electric
              • A.S.T.
              • Abrasivos Manhattan
              • Advanced Energy
              • Agilent Technologies
              • Agrati
              • Alba Power
              • Algi
              • Allweiler
              • Alphatron Marine
              • Amot
              • Anderson Greenwood
              • Apex Pumps
              • Apollo Valves
              • Ariana Industrie
              • Ariel
              • Artec
              • ASCO Filtri
              • Ashcroft
              • ATAS elektromotory
              • Atos
              • Atto Abrasives
              • Autrol
              • Autronica
              • Axis
              • Axon’ Cable
              • Bando
              • Baruffaldi
              • BAUER Kompressoren
              • Belimo
              • Berarma
              • BFT
              • BHDT
              • Biffi
              • Bifold Group
              • Brinkmann pumps
              • Buhler Technologies
              • BVM Corporation
              • Camfil FARR
              • Campen Machinery
              • CanaWest Technologies
              • CAR srl
              • Carif
              • Casar
              • CAT
              • Celduc Relais
              • Center Line
              • Clif Mock
              • Comagrav
              • Compressor Controls Corporation
              • CoorsTek
              • Coral engineering
              • Coremo Ocmea
              • Couth
              • CRANE
              • Crosby
              • Cubiscan
              • Cytec
              • Danaher Motion
              • Danfoss
              • Danobat Group
              • David Brown Hydraulics
              • Den-Con Tool
              • DenimoTECH
              • Deprag
              • Destaco
              • Dixon Valve
              • Donaldson
              • Donaldson осушители, адсорбенты
              • DUCATI Energia
              • Duplomatic
              • Duplomatic Oleodinamica
              • Dustcontrol
              • Dynasonics
              • E-tech Machinery
              • Easy Mover
              • Ebro Armaturen
              • ECONTROL
              • Eirich
              • EMIT
              • Endress+Hauser
              • Esco Couplings
              • Espera
              • Estarta
              • Euchner
              • EUROFILL
              • EuroSMC
              • Exair
              • Facco
              • FANUC
              • Farris
              • Fema
              • Ferjovi
              • Fetra
              • FIBRO
              • Fisher
              • Flender-Graffenstaden
              • Flexitallic
              • Flowserve
              • Fluenta
              • Flux
              • FPZ
              • Freudenberg
              • Fritz STUDER
              • Gali
              • Gamak Motors
              • GE Bently Nevada
              • GE Energy
              • GE Lufkin Industries
              • GE Nuovo Pignone
              • GE Oil & Gas
              • GE Oil & Gas Pressure Control
              • GE Panametrics
              • GE Rotoflow
              • GE Thermodyn
              • GEA
              • General Electric
              • General Electric Waukesha
              • GEORGIN
              • GKN
              • Gohl
              • Goulds Pumps
              • GPM Titan International
              • Graco
              • Grunbeck
              • Grundfos
              • Gustav Gockel
              • HAKI
              • Harting technology
              • HAWE Hydraulik SE
              • HBM
              • Heimbach
              • Helios
              • Hermetic Pumpen
              • Herose
              • HiRel Connectors
              • Hohner
              • Holland-Controls
              • Honsberg Instruments
              • Hoppecke
              • Horton
              • Houttuin
              • Howden
              • Howden CKD Compressors s.r.o.
              • HTI-Gesab
              • Hydac
              • Hydrotechnik
              • IMO
              • Inoxihp
              • iNPIPE Products
              • ISOG
              • Italmagneti
              • Itron
              • ITW Dynatec
              • Jaure
              • JDSU
              • Jenoptik
              • John Crane
              • John Zink
              • Jonell
              • JOST
              • JOVYATLAS
              • K-TEK
              • Kadia
              • Kavlico
              • Kellenberger
              • Kendrion
              • Kendrion Linnig
              • Keyence
              • Keystone
              • Kitagawa
              • Knipex
              • Knoll
              • Kordt
              • Krombach Armaturen
              • KSB
              • Kumera
              • Labor Security System
              • LAM Technologies
              • Lapmaster Wolters
              • Luvata
              • M.G.M. motori elettrici S.p.A.
              • Mahle
              • Marposs
              • Masa Henke
              • Masoneilan
              • Mec Fluid 2
              • MEDIT Inc.
              • Meggit
              • Mercotac
              • Metrix
              • Metrol
              • MI Swaco
              • Minco
              • MMC International Corporation
              • MOOG
              • Moore Industries
              • Morgan Advanced Materials
              • Motoman Robotics
              • Moyno
              • Mud King
              • MULTISERW-Morek
              • Munters
              • Murr elektronik
              • Murrplastik
              • Nagel Maschinen
              • National Oilwell Varco
              • Netzsch
              • Nexoil srl
              • Nic
              • NOV Mono
              • NTN-SNR
              • Ntron
              • O’Drill/MCM
              • Oerlikon
              • Oilgear
              • Omal Automation
              • Omni Flow Computers
              • OMT
              • Opcon
              • Orange Research
              • Orwat filtertechnik
              • OTECO
              • Pacific valves
              • Pageris AG
              • Paktech
              • PALL
              • Parat
              • Parker Hannifin Corporation
              • PENTAIR
              • Peter Wolters
              • Petrogas
              • ProMinent
              • Quick Soldering
              • Reitz
              • Rema Tip Top
              • Renk
              • Renold
              • Repar2
              • Resatron
              • Resistoflex
              • Restech Norway
              • Reuter-Stokes
              • Revo
              • Rexnord
              • Rheonik
              • Rineer Hydraulics
              • RIO
              • Riverhawk
              • RMG Honeywell
              • Robbi
              • ROS
              • Rota Engineering
              • Rotar
              • Rotork
              • Ruhrpumpen
              • S. Himmelstein
              • Sanco
              • Sapag Industrial valves
              • Saunders
              • Scam Filltres
              • Scantech
              • Schroedahl
              • Score Energy
              • Sermas Industrie
              • Servi Group
              • Settima
              • Siekmann Econosto
              • Siemens
              • Siemens energy
              • Simaco
              • Solar turbines
              • Solberg
              • SOR
              • Spectrex
              • SPIETH
              • SPX
              • Stamford | AvK
              • Star Micronics
              • Stewart & Stevenson
              • Stockham
              • Sumitomo
              • Supertec Machinery
              • Tamagawa Seiki
              • Tartarini
              • TEAT
              • Thimonnier
              • Top-co
              • Truflo
              • Turbotecnica
              • Tuthill
              • TYCO Thermal Controls
              • Vanessa
              • VAR-SPE
              • VDO
              • Velan
              • Versa
              • Vibra Schultheis
              • Vipom
              • Vokes Air
              • Voumard
              • W.T.A.
              • Warren
              • Weatherford
              • Weiss GmbH
              • Wenglor
              • WestCo
              • Woodward
              • Xomox
              • Yarway
              • Zenith
              • ZERO-MAX
              • Zimmermann & Jansen (Z&J)

              Электрические приводы. Виды и устройство. Применение и работа

              Электропривод – электромеханическая система, служащая для привода в движение функциональных органов машин и агрегатов для выполнения определенного технологического процесса. Электрические приводы состоят из электродвигателя, устройства преобразования, управления и передачи.

              С прогрессом промышленного производства электрические приводы заняли в быту и на производстве лидирующую позицию по числу электродвигателей и общей мощности. Рассмотрим структуру, типы, классификацию электроприводов, и предъявляемые к нему требования.

              Устройство
               

              1 — Передний крепеж
              2 — Винтовая передача
              3 — Концевой датчик
              4 — Электродвигатель
              5 — Зубчатая передача
              6 — Задний крепеж

              Функциональные компоненты

              • Р – регулятор служит для управления электроприводом.
              • ЭП – электрический преобразователь служит для преобразования электроэнергии в регулируемую величину напряжения.
              • ЭМП – электромеханический преобразователь электричества в механическую энергию.
              • МП – механический преобразователь способен изменять быстродействие и характер движения двигателя.
              • Упр – управляющее действие.
              • ИО – исполнительный орган.
              Функциональные части
              • Электропривод.
              • Механическая часть.
              • Система управления.

              Исполнительный механизм является устройством, которое смещает рабочую деталь по поступающему сигналу от управляющего механизма. Рабочими деталями могут быть шиберы, клапаны, задвижки, заслонки. Они изменяют количество поступающего вещества на объект.

              Рабочие органы могут двигаться поступательно, вращательно в определенных пределах. С их участием производится воздействие на объект. Чаще всего электропривод с исполнительным механизмом состоят из электропривода, редуктора, датчиков положения и узла обратной связи.

              Сегодня электрические приводы модернизируются по их снижению веса, эффективности действия, экономичности, долговечности и надежности.

              Свойства привода
              • Статические. Механическая и электромеханическая характеристика.
              • Механические. Это зависимость скорости вращения от момента сопротивления. При анализе динамических режимов механические характеристики полезны и удобны.
              • Электромеханические. Это зависимость скорости вращения от тока.
              • Динамические. Это зависимость координат электропривода в определенный момент времени при переходном режиме.
              Классификация

              Электрические приводы обычно классифицируются по различным параметрам и свойствам, присущим им. Рассмотрим основные из них.

              По виду движения:
              • Вращательные.
              • Поступательные.
              • Реверсивные.
              • Возвратно-поступательные.
              По принципу регулирования:
              • Нерегулируемый.
              • Регулируемый.
              • Следящий.
              • Программно управляемый.
              • Адаптивный. Автоматически создает оптимальный режим при изменении условий.
              • Позиционный.
              По виду передаточного устройства:
              • Редукторный.
              • Безредукторный.
              • Электрогидравлический.
              • Магнитогидродинамический.
              По виду преобразовательного устройства:
              • Вентильный. Преобразователем является транзистор или тиристор.
              • Выпрямитель-двигатель. Преобразователем является выпрямитель напряжения.
              • Частотный преобразователь-двигатель. Преобразователем является регулируемый частотник.
              • Генератор-двигатель.
              • Магнитный усилитель-двигатель.
              По методу передачи энергии:
              • Групповой. От одного мотора через трансмиссию приводятся в движение другие исполнительные органы рабочих машин. В таком приводе очень сложное устройство кинематической цепи. Электрические приводы такого вида являются неэкономичными из-за их сложной эксплуатации и автоматизации. Поэтому такой привод сегодня не нашел широкого применения.
              • Индивидуальный. Он характерен наличием у каждого исполнительного органа отдельного электродвигателя. Такой привод является одним из основных на сегодняшний день, так как кинематическая передача имеет простое устройство, улучшены условия техобслуживания и автоматизации. Индивидуальный привод нашел популярность в современных механизмах: сложных станках, роботах-манипуляторах, подъемных машинах.
              • Взаимосвязанный. Такой привод имеет несколько связанных электроприводов. При их функционировании поддерживается соотношение скоростей и нагрузок, а также положение органов машин. Взаимосвязанные электрические приводы необходимы по соображениям технологии и устройству. Для примера можно назвать привод ленточного конвейера, механизма поворота экскаватора, или шестерни винтового пресса большой мощности. Для постоянного соотношения скоростей без механической связи применяется схема электрической связи нескольких двигателей. Такая схема получила название схемы электрического вала. Такой привод используется в сложных станках, устройствах разводных мостов.
              По уровню автоматизации:
              • Автоматизированные.
              • Неавтоматизированные.
              • Автоматические.
              По роду тока:
              • Постоянного тока.
              • Переменного тока.
              По важности операций:
              • Главный привод.
              • Вспомогательный привод.
              Подбор электродвигателя

              Чтобы приводы производили качественную работу, необходимо правильно выбрать электрический двигатель. Это создаст условия долгой и надежной работы, а также повысит эффективность производства.

              При подборе электродвигателя для привода агрегатов целесообразно следовать некоторым советам по:
              • Требованиям технологического процесса выбирают двигатель с соответствующими характеристиками, конструктивного исполнения, а также метода фиксации и монтажа.
              • Соображениям экономии подбирают надежный, экономичный и простой двигатель, который не нуждается в больших расходах на эксплуатацию, имеет малый вес, низкую цену и небольшие размеры.
              • Условиям внешней среды и безопасности подбирают соответствующее исполнение мотора.

              Правильный подбор электродвигателя обуславливает технико-экономические свойства всего привода, его надежность и длительный срок работы.

              Преимущества
              • Возможность более точного подбора мощности двигателя для электропривода.
              • Электрический мотор менее пожароопасен в отличие от других типов двигателей.
              • Приводы дают возможность быстрого пуска и остановки механизма, его плавного торможения.
              • Нет необходимости в специальных регуляторах питания для электродвигателя. Все процессы происходят в автоматическом режиме.
              • Приводы дают возможность подбора мотора, свойства которого лучше других моделей сочетаются с характеристиками агрегата.
              • С помощью электрического привода можно плавно регулировать обороты механизма в определенных пределах.
              • Электродвигатель может преодолеть большие и долговременные перегрузки.
              • Электропривод дает возможность получения максимальной скорости и производительности рабочего механизма.
              • Электродвигатель дает возможность экономить электричество, а при определенных условиях даже генерировать ее в сеть.
              • Полная и простая автоматизация установок и механизмов возможна только с помощью электроприводов.
              • КПД электромоторов имеет наибольший показатель по сравнения с другими моделями двигателей.
              • Моторы производят с повышенной уравновешенностью. Это дает возможность встраивания их в механизмы машин, делать менее массивным фундамент.

              Инновационные электрические приводы все автоматизированы. Системы управления приводом дают возможность рационального построения технологических процессов, увеличить производительность и эффективность труда, оптимизировать качество продукции и уменьшить ее цену.

              Технические требования

              К любым техническим механизмам и агрегатам предъявляются определенные требования технического плана. Не стали исключением и электроприводы. Рассмотрим основные предъявляемые к ним требования.

              Надежность

              В соответствии с этим требованием привод должен исполнять определенные функции и заданных условиях в течение некоторого интервала времени, с расчетной вероятностью работы без возникновения неисправностей.

              При невыполнении этих требований остальные свойства оказываются бесполезными. Надежность может значительно отличаться в зависимости от характера работы. В некоторых механизмах не требуется долгого времени работы, однако отказ механизма не должен иметь место. Такой пример можно найти в военной промышленности. И другой пример, где наоборот, время службы должно быть большим, а отказ устройства вполне возможен, и не приведет к серьезным последствиям.

              Точность

              Это требование связано с отличием показателей от заданных. Они не могут превышать допустимые величины. Электроприводы должны обеспечивать перемещение рабочего элемента на определенный угол или за некоторое время, а также поддерживать на определенном уровне скорость, ускорение или момент вращения.

              Быстродействие

              Это качество привода обеспечивает быструю реакцию на разные воздействия управления. Быстродействие связано с точностью.

              Качество

              Такая характеристика обеспечивает качество процессов перехода, исполнение определенных закономерностей их выполнения. Качественные требования создаются вследствие особенностей работы машин с электроприводами.

              Энергетическая эффективность

              Любые производственные процессы преобразования и передачи имеют потери энергии. Наиболее важным это качество стало в применении электроприводов механизмов, приводах значительной мощности, долгим режимом эксплуатации. Эффективность использования энергии определяется КПД.

              Совместимость

              Электрические приводы должны совмещаться с работой аппаратуры, в которой они применяются, с их системой снабжения электроэнергией, информационными данными, а также с рабочими элементами. Наиболее остро стоит требование совместимости электроприводов для медицинской и бытовой техники, в радиотехнике.

              Похожие темы:

              В чем разница между приводами автомобиля и какой привод лучше выбрать для своего авто

              Каждый автомобилист знает ну или, по крайней мере, слышал про различные виды приводов автомобилей. Но если все таки есть такие, кто про это не слышал, то попробуем разобраться. Дело в том, что крутящий момент от двигателя передается на колеса (это необходимо, чтобы автомобиль поехал), так вот в зависимости от того сколько колес этот крутящий момент будет принимать, зависит и тип привода. Существует три вида привода: полный, задний и передний. Подробнее поговорим о каждом из них и выясним, чем они хороши и какие у них недостатки.

              Виды приводов автомобиля

              Если энергия двигателя передается на все четыре колеса, такой привод будет называться полным. Он, в свою очередь, тоже бывает разный. Бывает что распределение энергии между задней и передней осями неравномерное. Например, у Lamborghini Gallardo, 70% энергии приходится на заднюю ось и лишь 30% на переднюю. Возможен и вариант принятия энергии только передними колесами, но в случае возникновения скольжения, в работу включаются и задние. Одно из представителей такого авто – Mitsubishi Outlander. Бывает также распределение энергии в абсолютно равных долях.

              Плюсы полноприводных авто заключаются в отличной проходимости и возможности стартовать с места без пробуксовки колес почти на любом покрытии.  Минусы – достаточно тяжелый и дорогой тип привода. А самое главное, что в некоторые моменты поведение машины на дороге может стать непредсказуемым. Происходить это может из-за неравномерного распределения крутящего момента на колеса, что возможно в ситуации, когда, например, одно колесо теряет сцепление с дорогой. Поэтому можно сказать, что данный тип привода требует аккуратного вождения и гонки по серпантину в исполнении непрофессионального гонщика противопоказаны (впрочем, как и на любом другом приводе 🙂 ).

              При заднем приводе, как можно догадаться, энергия двигателя целиком поступает на задние колеса. Характерен такой тип для американских авто. Встречается такой привод также на высокого класса европейских и японских автомобилях. К плюсам этого привода можно отнести отличную динамику и управляемость. Отсутствие вибрации, передаваемой на кузов и руль, положительно сказывается на комфорте как для водителя, так и пассажиров. Из минусов следует отметить склонность к заносу при трогании на скользкой дороге.

              Переднеприводнные автомобили получают всю энергию двигателя на передние колеса. Обладателем такого являются большинство современных автомобилей бюджетного класса, да и дорогие модели попадаются. Отсутствие кардана, создает меньший вес, но передняя часть автомобиля все таки тяжелее задней, в результате чего автомобиль подвержен заносу в поворотах на неоднородном покрытии, хотя и гораздо в меньшей степени чем автомобили с задним приводом. К плюсам можно отнести простоту в использовании, дешевизну и практичность. Научиться управлять автомобилем с передним приводом проще, чем заднеприводным и полноприводным, что хорошо для начинающих водителей.

              Какой привод предпочесть

              НО! Все эти рассуждения насчет привода на сегодняшний день, по большому счету, бессмысленны, поскольку большинство современных автомобилей оснащаются множеством систем стабилизации, и если сесть за руль заднеприводного BMW, то можно сразу же почувствовать насколько приятно им управлять и как предсказуемо он себя ведет в сложных дорожных условиях в отличии от ВАЗ Калина с передним приводом, к примеру.

              Поэтому, отвечая на вопрос, какой привод лучше, приходится констатировать, что не существует лучшего привода. Нужно учиться хорошо управлять автомобилем и чувствовать его поведение на дороге. Быть внимательным за рулем и вовремя реагировать на изменение дорожного покрытия и дорожной ситуации в целом.

              типы приводов передних рулевых колёс, устройство и схема детали, его назначение в конструкции машины

              Привод руля авто предназначен для обеспечения поворота колёс в стороны. Этот механизм имеет разные виды в зависимости от строения конструкции. Из статьи вы узнаете о составных элементах и деталях каждого из типов, а также получите необходимые теоретические знания для проведения плановых и внеплановых ремонтных работ на этом участке. Схема системы достаточно сложна, однако каждый автолюбитель должен следить за исправностью её деталей.

              Что называют рулевым приводом

              Рулевой привод — сложная система организации деталей, представляющая собой целый механизм. Он функционирует с целью переноса определённого усилия от руля к колёсам. Это необходимо для выполнения поворота авто в соответствующем направлении.

              Эта сложная конструкция предназначена для обеспечения взаимодействия системы механического управления авто путём преобразования оборотов вала рассматриваемого механизма в движение колёс по вертикальной оси для реализации поворотного манёвра. Также она помогает снизить колебания колёс и предотвращает их самостоятельную смену траектории во время нормального функционирования процесса обеспечения связи колёсной базы и кузова, а также упругости авто.

              Рулевой привод1 — рулевой механизм; 2—рулевая сошка; 3 и 6—продольная и поперечная рулевые тяги; 4— верхний поворотный рычаг; 5 — поворотная цапфа; 7— нижние рычаги поворотных цапф

              Виды рулевого привода и их конструкция

              Данная структурированная система имеет разное строение, которое различается по типу установленной подвески и рулевого механизма.

              Соответственно, приводы классифицированы на несколько видов:

              1. Конструкция «шестерня-рейка».
              2. Рулевая трапеция.
              3. Рулевой наконечник и шаровый шарнир.

              Знаете ли вы? Для настройки звука выхлопной системы Audi RS4 были привлечены специалисты звукозаписывающей студии. Эта машина звучит как глубокий бас внизу, сильный тенор в середине и звонкое сопрано вверху.

              Рулевой привод механизма «шестерня-рейка»

              Этот вид используется в современных авто наиболее часто. Благодаря ему передние колёса машины совершают поворот под определённым углом. В состав несложной конструкции входят две горизонтальные тяги. Помимо этого, ещё поворотные рычаги стоек передней подвески и наконечники. Рейка соединена шарнирами с тягами. Данная система позволяет передним колёсам выполнять углы разной величины при повороте.

              Рулевой привод механизма «шестерня-рейка»

              Рулевая трапеция

              Такую трапецию чаще используют в винтовом и червячном механизмах. Данная система включает в себя:

              1. Маятниковый рычаг, а также по одному поворотному для каждой стороны.
              2. Боковую и среднюю тяги.
              3. Сошку.
              4. Шаровые шарниры.

              Свободное вращение деталей обеспечивает тяга, на концах которой расположены шарниры, так называемые опоры. Также она способствует совершению поворота управляемых колёс на различные углы. Классификация трапеций подразумевает цельную или разрезную конструкцию. Первая используется в зависимой подвеске, а вторая применяется в независимой. Устанавливается чаще всего на грузовых авто впереди оси или после неё.

              Рекомендуем для прочтения:

              Рулевой наконечник с шаровым шарниром

              Данная конструкция представляет собой съёмный наконечник тяги. Он состоит из:

              • шарнира, имеющего заглушку, заключённых в корпус;
              • шарового пальца, имеющего резьбу;
              • вкладышей, благодаря которым происходит ограничение перемещения при вращении шарового пальца;
              • защитного кожуха с кольцом, позволяющим фиксировать его на пальце;
              • пружины.

              Рулевой наконечник с шаровым шарниромТехническая неисправность наконечника неизбежно приведёт к выходу из строя тяги, что влияет на безопасность движения. Обязательно необходимо провести замену детали во избежание повреждений связных элементов узла.

              Что касается шарнира, он нужен для перенесения применяемых усилий от механизма управления авто к колёсам и должен обеспечивать подвижность тех деталей, которые соединяют элементы всего привода. Именно шаровые опоры берут на себя роль буфера, т. к. на низ машины приходится основной удар от всех неровностей на дороге.

              Электрогидравлический рулевой привод

              Основным преимуществом электрогидравлического типа является простая и лаконичная конструкция. Насос приводится в действие электродвигателем, а не двигателем внутреннего сгорания. Таково его назначение. Модуль управления представлен в виде единого механизма с электромотором насоса и гидравлическим механизмом.

              Одним из главных плюсов такой системы является автоматическое отключение насоса при утечке масла, что предотвращает выход его из строя. Слабо изучено влияние параметров настройки привода на его характеристики. В связи с этим проблема исследования автономных электрогидравлических приводов с комбинированным регулированием скорости является актуальной и острой для современной автомобильной промышленности.

              Знаете ли вы? Спорткар Aston Martin Vantage — мощный и яркий представитель именитого бренда. В режиме форсажа на оборотах двигателя около 7000 об/мин звук его выхлопной трубы слышно на расстоянии 6 км.

              Основные детали рулевого привода

              Механизм управления машиной представляет собой сложно структурированную конструкцию, которая состоит из нескольких элементов:

              • поперечная и продольная тяги;
              • нижний и верхний рычаги;
              • поворотная цапфа;
              • сошка;
              • вал;
              • рулевая передача;
              • руль.

              Основные детали рулевого привода

              Строение рулевого привода может разниться, зависимо от принципов положения рычагов и тяг. Эти детали образуют собой рулевую трапецию, что может находиться спереди или сзади. Конструкция также отличается, исходя из вида подвески, которая может быть зависимой и независимой.

              Основное назначение

              Основополагающее предназначение этого привода состоит в обеспечении безопасного движения машины. Конструкция и план управления является достаточно важным механизмом наряду с системой торможения. На авто курс движения меняется путём поворота передних колёс в нужную сторону, что становится возможным благодаря слаженному взаимодействию деталей в конструкции управления. Силовой способ во время совершения поворота лежит в основе работы механизма курсовой устойчивости.

              Вспомогательный рулевой привод

              Деталь рулевой системы должна обеспечивать кинематическую связь рулевого механизма и колёс. Само название этого элемента даёт понять для чего он предназначен. Каждый совестливый производитель какого-либо механизма всегда позаботиться о безопасности людей, поэтому и дополняет его полезными элементами. Вспомогательный привод — это система для управления авто, которая понадобится при выходе из строя главного рулевого управления.

              Как выглядит рулевой привод при независимой подвеске колес

              Если рассматривать механизм с независимой подвеской, то важно отметить, что он имеет некоторые особенности. Можно наблюдать другое строение поперечной тяги, что соединяется с рычагами и тягой шарнирами, благодаря которым и создаётся независимое движение колёс. Ниже рассмотрен управляющий привод, имеющий независимую подвеску и червячный механизм.

              Схема рулевого привода при независимой подвеске колес1 – стойка;2 – поворотные цапфы;3 – рычаг поворотной цапфы;4 и 9 – боковые тяги;5 – маятниковый рычаг;6 – сошка;7 – рулевой механизм;8 – средняя тяга.

              Итак, он состоит из:

              • сошки;
              • маятникового рычага;
              • средней тяги, соединённой первыми двумя элементами, 2-х боковых тяг, что в комплексе представляет собой механизм составной поперечной тяги;
              • поворотных рычагов (правого и левого).

              Чаще всего такой тип привод используется на легковых авто.

              Нужно ли обслуживание и замена деталей

              От исправности деталей и точности конструкции зависит не только отменная работоспособность автомобиля, но и жизнь водителя, и других участников дорожного движения. Устройства машин имеют свойство изнашиваться, независимо от того, как вы к ним относитесь, хотя и это немаловажно. Техническое обслуживание может предотвратить беду. Пренебрегая этим, можно обеспечить себе большие убытки и проблемы.

              Важно! Любое вмешательство в ходовую систему должно сопровождаться регулировкой развала схождения. Если пренебречь этим правилом, наблюдается неравномерное изнашивание шин, некорректная работа ходовой и сложность в управлении авто.

              При проведении ремонтных работ рекомендуется обратить внимание на все элементы механизма, даже те, что исправно работают, и проверить их техническое состояние. Каждая деталь имеет граничный срок эксплуатации или рекомендуемый пробег, по истечении которого стоит побеспокоится о замене узла.

              Замена деталей в автомобиле

              Привод является важной составляющей рулевого управления. Необходимо постоянно следить за исправностью всех его элементов и своевременно производить замену на запасные, т. к. от их технического состояния зависит безопасность движения. Теперь вы знаете о видах рулевых приводов, их составляющих компонентах и о том, каков алгоритм работы системы.

              Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

      Добавить комментарий

      Ваш адрес email не будет опубликован. Обязательные поля помечены *