Устройство турбонаддува – ОСНОВЫ ТУРБОНАДДУВА часть 1-2 — DRIVE2

ОСНОВЫ ТУРБОНАДДУВА часть 1-2 — DRIVE2

Основные принципы работы турбодвигателя.

Как известно, мощность двигателя пропорциональна количеству топливовоздушной смеси, попадающей в цилиндры. При прочих равных, двигатель большего объема пропустит через себя больше воздуха и, соответственно, выдаст больше мощности, чем двигатель меньшего объема. Если нам требуется, чтобы маленький двигатель выдавал мощности как большой или мы просто хотим, чтобы большой выдавал еще больше мощности, нашей основной задачей станет поместить больше воздуха в цилиндры этого двигателя. Естественно, мы можем доработать головку блока и установить спортивные распредвалы, увеличив продувку и количество воздуха в цилиндрах на высоких оборотах. Мы даже можем оставить количество воздуха прежним, но поднять степень сжатия нашего мотора и перейти на более высокий октан топлива, тем самым подняв КПД системы. Все эти способы действенны и работают в случае, когда требуемое увеличение мощности составляет 10-20%. Но когда нам нужно кардинально изменить мощность мотора — самым эффективным методом будет использование турбокомпрессора.

Каким же образом турбокомпрессор позволит нам получить больше воздуха в цилиндрах нашего мотора? Давайте взглянем на приведенную ниже диаграмму:

Рассмотрим основные этапы прохождения воздуха в двигателе с турбокомпрессором:

— Воздух проходит через воздушный фильтр (не показан на схеме) и попадает на вход турбокомпрессора (1)
— Внутри турбокомпрессора вошедший воздух сжимается и при этом увеличивается количество кислорода в единице объема воздуха. Побочным эффектом любого процесса сжатия воздуха является его нагрев, что несколько снижает его плотность.
— Из турбокомпрессора воздух поступает в интеркулер (3) где охлаждается и в основной мере восстанавливает свою температуру, что кроме увеличения плотности воздуха, ведет еще и к меньшей склонности к детонации нашей будущей топливовоздушной смеси.
— После прохождения интеркулера воздух проходит через дроссель, попадает во впускной коллектор (4) и дальше на такте впуска — в цилиндры нашего двигателя.

Объем цилиндра является фиксированной величиной, обусловленной его диаметром и ходом поршня, но так как теперь он заполняется сжатым турбокомпрессором воздухом, количество кислорода зашедшее в цилиндр становится значительно больше чем в случае с атмосферным мотором. Большее количество кислорода позволяет сжечь большее количество топлива за такт, а сгорание большего количества топлива ведет к увеличению мощности выдаваемой двигателем.
— После того как топливо-воздушная смесь сгорела в цилиндре, она на такте выпуска уходит в выпускной коллектор (5), где этот поток горячего (500С-1100С) газа попадает в турбину (6)
— Проходя через турбину, поток выхлопных газов вращает вал турбины на другой стороне которого находится компрессор, и, тем самым совершает работ

www.drive2.ru

Все о принципах работы турбонаддува. — DRIVE2

Турбонаддув – это система, позволяющая увеличить максимальную мощность двигателя автомобиля, используя для этого энергию выхлопных газов. Эту систему еще часто называют просто «турбина» – по названию основного агрегата, который под давлением нагнетает отработанные мотором газы в турбокомпрессор, а тот, в свою очередь, подает в цилиндры двигателя большее количество воздуха, чем атмосферный мотор.

История

Многие водители полагают, что турбированные моторы появились относительно недавно — во второй половине ХХ века, когда турбонагнетателями стали оснащать силовые установки автомобилей немецких марок Mercedes-Benz и BMW. На самом деле датой рождения турбированного двигателя считают 1911 год, когда американец Альфред Бюхи получил патент на промышленное изготовление системы, позволявшей в несколько раз увеличить мощность обычного двигателя. Надо отметить, что за 15 лет до этого события двое немцев, Готлиб Даймлер и Рудольф Дизель уже проводили испытание агрегатов, которые помогали более эффективно нагнетать воздух в цилиндры двигателя, но да патентования этой технологии дело так и не дошло.

Впрочем, первые турбины хотя и давали весьма ощутимую прибавку в мощности, но из-за своей громоздкости во много раз увеличивали и без того немаленький вес двигателей автомобилей тех лет. Так что распространение технологии турбонаддува для легковых автомобилей застопорилось на долгие годы, тогда как турбины довольно активно применялись на грузовом и специальном транспорте. В США, фактической и юридической родине турбонагнетательной системы, производители легкового транспорта не спешили применять ее в серийном производстве, сделав ставку на большие по объему и прожорливые атмосферные моторы. Хотя первые серийные модели, на которых устанавливался турбонаддув, появились именно в Соединенных Штатах – это были Chevrolet Corvair Monza и Oldsmobile Jetfire.

Более экономная Европа, по которой, к тому же, в середине ХХ века ударил бензиновый кризис, начала склоняться к популярной ныне идее даунсайзинга – уменьшения рабочего объема двигателя с одновременным повышением его мощности. Добиться такого результата помогала система турбонаддува. За прошедшие с момента изобретения системы годы конструкторы усовершенствовали технологию, сделав элементы системы более легковесными, одновременно повысив ее производительность. Но одним из существенных недостатков, который так и не был искоренен по прошествии времени, являлся повышенный расход топлива. И именно поэтому модели, оборудовавшиеся турбированными бензиновыми моторами, не снискали популярности в народе.

Выход из ситуации был найден в 1970-х годах, когда компания Mercedes-Benz выпустила на рынок свою первую модель, оснащенную дизельным двигателем с турбонаддувом – 300 SD.

Конструкторам удалос

www.drive2.ru

ЧТО ТАКОЕ ТУРБИНА И КАК РАБОТАЕТ ТУРБО МОТОР Часть 1. — DRIVE2

Основы турбо-наддува. Часть 1.

Основные принципы работы турбо двигателя.

Как известно, мощность двигателя пропорциональна количеству топливо-воздушной смеси попадающей в цилиндры. При прочих равных, двигатель большего объема пропустит через себя больше воздуха и, соответственно, выдаст больше мощности, чем двигатель меньшего объема. Если нам требуется что бы маленький двигатель выдавал мощности как большой или мы просто хотим что бы большой выдавал еще больше мощности, нашей основной задачей станет поместить больше воздуха в цилиндры этого двигателя. Естественно, мы можем доработать головку блока и установить спортивные распредвалы, уеличив продувку и количество воздуха в цилиндрах на высоких оборотах. Мы даже можем оставить количество воздуха прежним, но поднять степень сжатия нашего мотора и перейти на более высокий октан топлива, тем самым подняв КПД системы. Все эти способы действенны и работают в случае когда требуемое увеличение мощности составляет 10-20%. Но когда нам нужно кардинально изменить мощность мотора — самым эффективным методом будет использование турбокомпрессора.

Каким же образом турбокомпрессор позволит нам получить больше воздуха в цилиндрах нашего мотора? Давайте взгянем на приведенную ниже диаграмму:

Рассмотрим основные этапы прохождения воздуха в двигателе с турбокомпрессором:

— воздух проходит через воздушный фильтр (не показан на схеме) и попадает на вход турбокомпрессора (1)

— внутри турбокомпрессора вошедший воздух сжимается и при этом увеличивается количество кислорода в единице объема воздуха. Побочным эффектом любого процесса сжатия воздуха является его нагрев, что несколько снижает его плотность.
— Из турбокомпрессора воздух поступает в интеркулер (3) где охлаждается и в основной мере восстанавливает свою температуру, что кроме увеличения плотности воздуха ведет еще и к меньшей склонности к детонации нашей будущей топливо-воздушной смеси.
— После прохождения интеркулера воздух проходит через дросеель, попадает во впускной коллектор (4) и дальше на такте впуска — в цилиндры нашего двигателя.
Объем цилиндра является фиксированной величиной, обусловленной его диаметром и ходом поршня, но так как теперь он заполняется сжатым турбокомпрессором воздухом, количество кислорода зашедшее в цилиндр становится значительно больше чем в случае с атмосферным мотором. Большее количество кислорода позволяет сжечь большее количество топлива за такт, а сгорание большего количества топлива ведет к увеличению мощности выдаваемой двигателем.
— После того как топливо-воздушная смесь сгорела в цилиндре, она на такте выпуска уходит в выпускной коллекторе (5) где этот поток горячего (500С-1100С) газа попадает в турбину (6)
— Проходя через турбину поток выхлопных газов вращает вал турбины на другой стороне которого находится компрессор и тем самым совершает работу по сжатию очередной порции воздуха. При этом происходит падение давления и температуры выхлопного газа, поскольку часть его энергии ушла на обеспечение работу компрессора через вал турб

www.drive2.ru

Турбонаддув: что это такое, зачем нужен, как устроен и как работает турбонагнетатель

Турбонаддув представляет собой разновидность наддува, позволяющий подавать воздух в цилиндры ДВС под высоким давлением, которое обеспечивается высвобождаемой от сгорания топлива энергией выхлопных газов.

За счет турбонаддува повышается рабочая мощность двигателя, при этом не увеличивается внутренние объемы цилиндров двигателя и количество оборотов, совершаемых коленвалом. Кроме всего прочего турбонаддув позволяет снизить прожорливость двигателя, а также уменьшить токсичность газов благодаря более эффективному сгоранию топливовоздушной смеси.

Турбонаддув довольно широко используется на ДВС, работающих как на бензине так и на дизтопливе. При этом использование системы турбонаддува на дизелях считается более выгодным благодаря высокому показателю сжатия ДВС и малой частоте оборотов коленвала.

В бензиновых двигателях высока вероятность возникновения детонирующего эффекта вследствие значительного увеличения количества оборотов двигателя и высокого температурного режима газов при сгорании топлива (до 1000 °C, у дизеля лишь 600 °C).

Устройство системы турбонаддува

Система турбонаддува состоит из следующих элементов:

  • воздушный заборник и фильтр;
  • дроссельная заслонка;
  • турбинный компрессор;
  • интеркулер;
  • коллектор впускной;
  • соединительные патрубки;
  • напорные шланги

Турбинный компрессор (нагнетатель)

Основной элемент устройства турбонаддува, который предназначен для увеличения рабочего давления воздушной массы в системе впуска. Турбокомпрессор состоит из турбинного и компрессорного колес, которые установлены на роторном валу. Все элементы турбокомпрессора находятся в специальных защитных корпусах.

Турбинное колесо используется для переработки энергии, выделяемой отработанными газами. Колесо и его корпус изготавливаются из высокопрочных и жароустойчивых материалов – стальных и керамических сплавов.

Компрессорное кольцо применяется для всасывания воздушной массы, с дальнейшим ее сжатием и нагнетанием в цилиндры ДВС.

Кольца турбокомпрессора установлены на роторном валу, который совершает вращательные движения в плавающих подшипниках. Для более эффективной работы подшипники постоянно смазываются маслом, которое поступает по канальцам, расположенным в подшипниковом корпусе.

Интеркулер

Интеркулер – воздушный или жидкостной радиатор, который применяется для своевременного охлаждения предварительно сжатого воздуха, вследствие чего происходит увеличивается давление и плотность воздушного потока.

Регулятор давления наддува

Ключевым элементом управления турбонаддувом является регулятор давления наддува, который по сути своей является перепускным клапаном. Основным назначением клапана является сдерживание и перенаправление части вырабатываемых газов в обход турбинного колеса для снижения давления наддува. 

Перепускной клапан может быть оснащен приводом электрического или пневматического типа. Активация клапана происходит вследствие приема сигналов от датчика давления.

Предохранительный клапан

Клапан предохранительный используется для предотвращения скачков давления воздушной массы, которое часто возникает при быстром закрытии дроссельной заслонки. Избыточное давление либо стравливается в атмосферу, либо переподается на вход компрессора.

Принцип действия турбонаддува

Система турбонаддува использует энергию газов, которые образуются при сгорании топлива. Газы обеспечивают вращательные движения колеса турбинного типа, которое в свою очередь запускает компрессорное колесо, отвечающее за сжатие и нагнетание воздушной массы в систему. Далее происходит охлаждение воздуха при помощи интеркулера и подача его в цилиндры.

Очевидно, что хотя турбонаддув механически никак не связан с коленвалом двигателя, однако его работа и ее эффективность находится в прямой зависимости от скорости вращения коленчатого вала. Чем выше обороты двигателя, тем эффективнее работает турбонаддув.

Несмотря на свою практичность и эффективность, система турбонаддува имеет некоторые недостатки. Ключевым из них является появление турбоям – задержка в увеличении мощности ДВС.

Подобное явление проявляется вследствие инерционности системы – задержки в увеличении давления наддува при достаточно резком нажатии на газ, что может привести к разрыву между требуемой мощностью двигателя и производительностью турбины.

Для устранения эффекта турбоямы используются три основных метода:

  • Использование системы с двумя (и более) турбокомпрессорами. Турбины могут устанавливаться параллельно – это допускается на двигателях V-образного типа. При этом каждая турбина устанавливается на свой ряд цилиндров. Идея данного метода в том, что две турбины меньшего размера обладают более низкой инерционностью, чем одна большая турбина. Турбины так же могут устанавливаться и последовательно, причем их может быть от двух до четырех (Bugatti). Увеличение производительности и максимальная эффективность турбонаддува в этом случае достигаются за счет того, что при разных оборотах двигателя используется свой турбокомпрессор.
  • Использование турбины с изменяемой геометрией. Подобный метод обеспечивает более рациональное использование энергии отработанных газов за счет изменения площади сечения входного канала турбины. Данный метод весьма часто используется на дизельных двигателях, например всем известная система TDI от Volkswagen.
  • Использование комбинированного типа турбонаддува. Данный метод позволяет применять симбиоз двух систем – механического и турбинного наддува. Механический наддув эффективен на малых оборотах коленвала, при которых сжатие воздуха обеспечивается нагнетателем механического типа. Турбонаддув применяется при высоких оборотах коленвала, где функцию нагнетания воздуха берет на себя турбинный компрессор. Наиболее распространенной системой комбинированного наддува является наддув двигателя TSI от Volkswagen.

autodromo.ru

Теория турбонаддува — DRIVE2

Кто из автолюбителей не слышал волшебное слово «турбо»? Звенит в ушах, воображение рисует нечто мощное, стремительное. На этом фоне как-то скучно звучат термины «механический компрессор» или, хуже того — «объемный нагнетатель». На деле — не совсем так. Или совсем не так.

Какой водитель не мечтал о том что бы в его автомобиле жило намного больше лошадок под капотом чем есть. Если кто-то заявит, что он не из таких, то наверняка слукавит. Благо последнее время данную проблему довольно легко решить, вариантов увеличения мощности двигателя, да и комплектующих как грязи. В нашу жизнь плотно вошло слово «тюнинг» и многие тюнинговых ателье берутся сделать с вашим любимцем все, что угодно.

В русский язык с давних пор вошел термин «форсировка» (от английского force — сила), который означает «увеличение мощности». Стоит вспомнить, что мощность двигателя напрямую связана со следующими его основными параметрами:

— рабочим объемом цилиндров;

— количеством подаваемой топливо-воздушной смеси;

— эффективностью ее сжигания;

— энергетической «заряженностью» топлива.

Стоит заметить, что есть ещё несколько вариантов увеличения мощности — полировка впускного/выпускного каналов, применение фильтров нулегого сопротивления, применение прямоточной системы выхлопа, изменение параметров программного обеспечения (чип-тюнинг), расточка цилиндров или переходе с бензина на «нитру» (закись азота).

Перечисленные решения позволяют увеличить мощность, но не существенно, раз ве что это не касается «нитроса». Кардинальное решение одно — увеличение подачи топливо-воздушной смеси. Чем больше топлива сжигается в единицу времени, тем выше мощность мотора. Но бензин не горит «просто так», для этого нужен воздух (кислород) — во вполне определенных количествах. Чтобы увеличить подачу топлива, вначале придется соответствующим образом увеличить подачу воздуха. Сам мотор с этой задачей не справится — его возможности по всасыванию воздуха ограничены (даже при применении фильтров с нулевым сопротивлением). Поэтому и появились те самые «турбо», «компрессоры» и «нагнетатели». Они разные, и дают разные результаты.

Для начала немного теории:

Представим себе такт впуска двигателя внутреннего сгорания: мотор в это время работает как насос, к тому же весьма неэффективный — на пути воздуха (горючей смеси) находится воздушный фильтр, изгибы впускных каналов, в бензиновых моторах — еще и дроссельная заслонка. Все это, безусловно, снижает наполнение цилиндра. Ну а что требуется, чтобы его повысить? Поднять давление перед впускным клапаном — тогда горючей смеси (для дизелей — воздуха) в цилиндре «поместится» больше. Энергия сгорания заряда с большим количеством топлива, само собой, станет выше; вырастет и общая мощность двигателя.

Для этих целей было придумано довольно много решений, но распространение получили не многие. 1. Роторный нагнетатель Roots.

Создан Фрэнсисом Рутсом еще в 1860 году. Первоначально использовался как вентилятор для проветривания промышленных помещений. Суть конструкции: две вращающиеся в противоположных направлениях прямозубые «шестерни», помещенные в общий кожух (напоминает современный маслонасос). Объемы воздуха в пространстве между зубьями шес

www.drive2.ru

Turbo для чайников — DRIVE2

Принцип работы основан на использовании энергии отработавших газов. Поток выхлопных газов попадает на крыльчатку турбины (закреплённой на валу), тем самым раскручивая её и находящиеся на одном валу с нею лопасти компрессора, нагнетающего воздух в цилиндры двигателя. Так как при использовании наддува воздух в цилиндры подаётся принудительно (под давлением), а не только за счёт разрежения, создаваемого поршнем (это разрежение способно взять только определённое количество смеси воздуха с топливом), то в двигатель попадает большее количество смеси воздуха с топливом. Как следствие, при сгорании увеличивается объём сгораемого топлива с воздухом, образовавшийся газ занимает больший объём и соответственно возникает большая сила, давящая на поршень.

Правильно собранный турбо мотор выдаёт до 900 л/с с литра объёма, при наддуве 5,5 атмосфер. Такие моторы применялись на Формуле-1 во времена турбо-эры с 1977 по 1988 г, с мотора объёмом 1,5 литра снимали от 700 до 1400 л/с (на фото).

Подобные моторы сейчас применяются в драг рейсинге класса «top fuel» в США, с мотора объёмом 8,2 литра снимается 7000 л/с.
От куда же берутся эти лошадиные силы? Ведь обычный мотор внутреннего сгорания имеет около 60 л/с с литра.
Обычный мотор расчитан на езду в городских условиях, с крутящим моментом на низких оборотах. Такая компоновка имеет свои ограничения в максимальной мощности и скорости. Цилиндры двигателя имеют огромный потенциал для увеличения мощности без увеличения объёма двигателя.

На сколько можно повысить мощность двигателя с помощью турбины? При увеличении наддува на 1 атмосферу, мощность увеличивается примерно на 100%. То есть если двигатель имел изначально 100 л/с, то при давлении турбонаддува 3 атмосферы (3 бар), его мощность возрастёт на 300 л/с. Естественно двигатель должен быть подготовлен к такой нагрузке: резко возрастает тепловой режим работы мотора — повышается температура клапанов, поршней, масла, охлаждающей жидкости, выпускной системы. Эти элементы должны быть доработаны к условиям возросшей температуры. Возрастает нагрузка на поршни, шатуны, коленвал, блок двигателя, сцепление, трансмиссию. Эти элементы автомобиля должны быть подобраны в соответствии с возросшей мощностью.

Клапан вестгейт (Wastegate).

www.drive2.ru

Основы турбонаддува. Часть 2. — DRIVE2

Термин Trim.

Trim это общепринятый термин, используемый при описании турбинного или компрессорного колеса турбины. Например, вы часто могли слышать фразу У меня стоит турбина GT2871R с 56 Trim. Так что же это такое? Trim это величина, показывающая соотношение между индюсером (inducer) и эксдюсером (exducer) турбинного или компрессорного колеса. Еще более точно, это соотношение их площадей.

Диаметр индюсера — это диаметр колеса крыльчатки в той ее части, где воздух входит в крыльчатку, а эксдюсер это диаметр колеса, где воздух из него выходит.

Конструкция турбины такова, что индюсер компрессорного колеса меньше чем его эксдюсер, а турбинного — наоборот:

Например:
Турбина GT2871R (Garrett part number 743347-2) имеет компрессорное колесо с:
Диаметр индюсера: 53.1мм
Диаметр эксдюсера: 71.0мм

Таким образом Trim для него будет:

Trim крыльчатки, как компрессора, так и турбины напрямую влияет на ее производительность. Чем больше величина trim тем, как правило, больший поток воздуха может пройти через крыльчатку.

Понятие A/R хаузинга

A/R (Area/Radius) описывает геометрическую характеристику компрессорного или турбинного хаузинга. Технически A/R означает отношение сечения канала хаузинга, деленое на расстояние от центра вала до центра этого сечения:

Значение A/R имеет разное влияние на производительность турбинной части и компрессорной.

A/R компрессора практически не влияет на его производительность. Как правило, хаузинги с большим A/R применяются для оптимизации отдачи в приложениях с малым наддувом, а хаузинги с меньшим A/R компрессора используются для больших значений наддува.

A/R турбины, наоборот, значительно влияет на ее производительность, определяя ее способность пропустить тот или иной поток воздуха. Использование меньшего A/R увеличивает скорость потока в турбинном хаузинге, приходящего на турбинное колесо. Это дает возможность увеличить отдачу турбины на низких нагрузках, приводит к более быстрому отклику на дроссель и снижает значение минимальных оборотов двигателя, требуемых для выхода турбины на рабочий наддув. Тем не менее, меньший A/R приводит к тому, что газ попадает на крыльчатку практически по касательной, что уменьшает максимальный поток газа который турбинное колесо способно пропустить. Это также увеличивает подпор газа перед турбиной, ухудшает продувку мотора на высоких оборотах, повышает EGT и как результат всего этого снижает максимальную пиковую мощность.

При выбо

www.drive2.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *