Устройство кривошипно шатунного механизма: Общее устройство кривошипно-шатунного механизма (КШМ)

Содержание

Кривошипно-шатунный механизм (КШМ) двигателя

Кривошипно-шатунным называется такой механизм, который осуществляет рабочий процесс силового агрегата. Главное предназначение кривошипно-шатунного механизма – преобразование возвратно-поступательного перемещения всех поршней во вращательное движение коленвала.

Кривошипно-шатунный механизм определяет тип силового агрегата по рас­по­ло­же­нию цилиндров. В автомобильных двигателях ( см. устройство двигателя автомобиля ) ис­поль­зу­ют­ся различные варианты кривошипно-шатунных механизмов:

  • Однорядные кривошипно-шатунные механизмы. Перемещение поршней может быть вертикальным либо под углом. Используются в рядных двигателях;
  • Двухрядные кривошипно-шатунные механизмы. Перемещение поршней только под углом. Используются в V-образных двигателях;
  • Одно- и двухрядные кривошипно-шатунные механизмы. Перемещение поршней горизонтальное. Применяются в случае, если габаритные размеры мотора по высоте ограничены.

 

Составляющие кривошипно-шатунного механизма подразделяются на

  • Подвижные – поршни, пальцы и поршневые кольца, маховик и коленчатый вал, шатуны;
  • Неподвижные – цилиндры, головка блока цилиндров (ГБЦ), блок цилиндров, картер, прокладка ГБЦ и поддон.

 

Кроме этого к кривошипно-шатунному механизму относятся разнообразные кре­пеж­ные элементы, а также шатунные и крепежные подшипники.

Устройство КШМ

При рассмотрении устройства КШМ необходимо выделить основные элементы его конструкции: коленвал, коренная шейка, шатунная шейка, шатуны, вкладыши, поршневые кольца (маслосъемные и компрессионные), пальцы и поршни ( см. работа поршня ).

Сложная конструкция вала обеспечивает получение и передачу энергии от поршня с шатуном на последующие узлы и агрегаты. Сам вал собран из элементов, называемых коленами. Колена соединены цилиндрами, расположенными со смещением относительно основной центральной оси в определенном порядке. На техническом языке название этих цилиндров — шейки. Те шейки, что смещены, крепятся к шатунам, соответственно и название — шатунные. Шейки, расположенные вдоль основной оси — коренные. За счет расположения шатунных шеек со смещением относительно центральной оси образуется рычаг. Поршень, опускаясь вниз, через шатун заставляет проворачиваться коленчатый вал.

Варианты конструкций вала представлены на следующем рисунке.

В зависимости от числа цилиндров, а также конструктивных решений ДВС по рас­по­ло­же­нию цилиндров бывает однорядный или двухрядный.

В первом случае (1) цилиндры расположены в одной плоскости относительно коленчатого вала. Если конкретнее, то все они на двигателе расположены вертикально, по центральной оси, а сам вал находится внизу. В двухрядном двигателе (поз. 2 и 3), цилиндры размещены в два ряда под углом друг к другу 60, 90 или 180°, то есть противоположно друг к другу. Возникает вопрос: «А зачем?». Обратимся к физике. Энергия от сгорания рабочей смеси очень большая и значительная доля ее погашения приходится на коренные шейки коленчатого вала, которые хоть и железные, но имеют определенный запас прочности и ресурса. В четырехцилиндровом двигателе автомобиля этот вопрос решается просто: 4 цилиндра — 4 такта рабочего цикла по очереди. В итоге нагрузка на коленвал равномерно распределяется на всех участках. В тех ДВС, где цилиндров больше, или требуется большая мощность, их размещают в «V»-образном виде, дополнительно смягчая нагрузку на коленчатый вал. Таким образом, энергия гасится не вертикально, а под углом, что зна­чи­тель­но смягчает нагрузку на коленчатый вал.

После краткого рассмотрения устройства КШМ необходимо также уделить внимание коленчатому валу. Говоря о нагрузке на коленчатый вал, стоит остановиться на под­шип­ни­ках шеек коленвала. Рассмотрим соединение шатуна с коленчатым валом двигателя.

Те перегрузки, что испытывает вал, не под силу шариковым подшипникам. Здесь и огромное давление, высокая температура, труднодоступность смазки трущихся элементов и высокая скорость вращения. Поэтому именно для шеек применяются подшипники сколь­же­ния, которые обеспечивают работу всего двигателя. Вращение коленчатого вала происходит на вкладышах. Вкладыши делятся на коренные и шатунные. Из коренных вкладышей образуется кольцо вокруг коренных шеек вала. Из шатунных вкладышей по аналогии — вокруг шатунных шеек. Для уменьшения трения скользящие поверхности подшипников и шеек смазываются маслом, подаваемым через отверстия в коленвале под высоким дав­ле­ни­ем.

Значительную работу по обеспечению равномерности и плавности работы двигателя автомобиля выполняет маховик, о котором упоминалось ранее. Это зубчатое колесо на конце вала сглаживает перебои во вращении коленвала и обеспечивает совершение всех «холостых» тактов рабочего цикла каждого цилиндра ДВС.

Теперь обратимся к конструкции поршня двигателя.

Сам поршень представляет собой перевернутую вверх дном банку. Это самое дно имеет плавно вогнутую форму, что улучшает равномерность нагрузки на поршень при совершении рабочего хода и образование рабочей смеси. Поршень крепится к шатуну через палец с подшипником, обеспечивающим колебательные движения шатуна. Стенки поршня носят название «юбка». Она имеет, на первый взгляд, округлую форму, но есть едва заметные отличия.

Первое — это утолщение стенок юбки в направлениях движения шатуна. Поршень с шатуном через палец крепления давят поочередно друг на друга в одной плоскости. В той, которой собственно и двигается шатун относительно поршня. Следовательно, стенки поршня испытывают там большую нагрузку и давление, поэтому и сделаны толще.

Второе — это сужение диаметра юбки к низу. Сделано это для недопущения заклинивания поршня в цилиндре при нагреве и обеспечения смазки трущихся поверхностей юбки поршня и стенки цилиндра. Сами стенки цилиндра настолько гладко и ювелирно выполнены, что сравнимы с поверхностью зеркала. Но тогда остается зазор, который существенно влияет на герметичность цилиндра при такте сжатия и рабочего хода.

Для решения этих противоположных по смыслу проблем, на юбке поршня пре­дус­мот­ре­ны кольца. Именно через них сам поршень соприкасается со стенками цилиндра. На каждом поршне имеется два типа колец — компрессионные и маслосъемные. Комп­рес­си­он­ные кольца обеспечивают герметичность за счет давления сгораемых газов.

Маслосъемные кольца говорят сами за себя. Остатков масла, поступающего для смягчения трения в связке поршень-цилиндр, не должно оставаться при процессе горения топливно-воздушной смеси. Иначе возможна детонация, засорение свечей или форсунок остатками тяжелых фракций нефтяных продуктов, присутствующих в масле. А все это нарушает весь рабочий цикл. Поэтому масло, впрыскиваемое на стенки цилиндра при «холостых» тактах, снимается маслосъемными кольцами при рабочем ходе поршня.

Все цилиндры двигателя размещены в едином корпусе, который называется блоком цилиндров двигателя. Его конструкция довольно сложна. В нем многочисленное количество каналов для всех систем двигателя, а также он выполняет несущую основу для многих деталей и компонентов для силовой установки в целом.

 

 

Работа КШМ

Рассмотрим схему работы КШМ.

Поршень располагается на максимально удаленном расстоянии от коленчатого вала. Шатун и кривошип выстроены в одной линии. В тот момент, когда в цилиндр проникает горючее, происходит процесс возгорания. Продукты горения, в частности, расширяющие газы, способствуют перемещению поршня к коленчатому валу. Одновременно с этим перемещается также и шатун, нижняя головка которого проворачивает коленчатый вал на 180°. Затем шатун и его нижняя головка перемещаются и проворачиваются обратно, занимая исходную позицию. Поршень тоже возвращается в свое первоначальное положение. Такой процесс происходит в круговой последовательности.

По описанию работы КШМ видно, что кривошипно-шатунный механизм является главным механизмом мотора, от работы которого полностью зависит исправность транс­порт­но­го средства. Таким образом, этот узел необходимо постоянно контролировать, и при любом подозрении на неисправность, следует вмешиваться и устранять ее незамедлительно, так как результатом различных поломок кривошипно-шатунного механизма может ока­зать­ся полная поломка силового агрегата, ремонт которого очень дорогостоящий.

Неисправности КШМ

К основным признакам неисправности КШМ относятся следующие:

  • Падение мощностных показателей двигателя;
  • Появление посторонних шумов и стуков;
  • Увеличенный расход масла;
  • Возникновение дыма в отработанных газах;
  • Перерасход топлива.

 

Шумы и стуки в моторе возникают из-за износа его главных составляющих и возникновение между сопряженными составляющими увеличенного зазора. При износе цилиндра и поршня, а также при возникновении большего зазора между ними появляется металлический стук, который удается отчетливо услышать при работе холодного мотора. Резкий и звонкий металлический стук при любых режимах работы мотора говорит об увеличенном зазоре между втулкой, верхней головки шатуна и поршневым пальцем. Усиление стука и шума при быстром увеличении числа оборотов коленвала свидетельствует об износе вкладышей шатунных или коренных подшипников, причем более глухой стук говорит об износе вкладышей коренных подшипников. Если износ вкладышей достаточно большой, то, вероятнее всего, давление масла резко понизится. В таком случае экс­плу­а­ти­ро­вать мотор не рекомендуется.

Падение мощности мотора возникает при износе цилиндров и поршней, износе или залегании в канавах поршневых колец, некачественной затяжке головки цилиндров. Подобные неисправности способствуют падению компрессии в цилиндре. Чтобы проверить компрессию, существует специальный прибор – компрессометр, измерения необходимо выполнять на теплом моторе. Для этого необходимо выкрутить все свечи, после чего установить наконечник компрессометра на место одной из них. При абсолютно открытом дросселе проворачивают мотор стартером в течение трех секунд. Подобным методом последовательно выполняют проверку всех остальных цилиндров. Значение компрессии должно быть в рамках, указанных в технических характеристиках мотора. Разница компрессии между цилиндрами не должна быть не выше 1 кг/см2.

Увеличенное потребление масла, перерасход топлива, образование дыма в отработанных газах обычно происходит при износе цилиндров и колец или при залегании поршневых колец. Вопрос с залеганием кольца можно решить без разборки мотора, залив в цилиндр через специальные отверстия для свечи соответствующую жидкость.

Отложение нагара на камерах сгорания и днищах поршней уменьшает теп­ло­про­вод­ность, что способствует перегреву мотора, повышению топливного расхода и падению мощности.

Трещины на стенках рубашки охлаждения блока, а также головки блока цилиндров могут образоваться в связи с замерзанием охлаждающей жидкости, в результате перегрева мотора, в результате заполнения охлаждающей системы ( см. система охлаждения двигателя) горячего мотора холодной охлаждающей жидкостью. Трещины на блоке цилиндров могут пропускать охлаждающую жидкость в цилиндры. В связи с этим выхлопные газы приобретают белый цвет.

Выше рассмотрены основные неисправности КШМ.

 

Крепежные работы

 

Чтобы предотвратить пропуск охлаждающей жидкости и газов через прокладку головки цилиндров, следует периодически контролировать крепление головки ключом со специальной динамометрической рукояткой с определенной последовательностью и усилием. Положение затяжки и последовательность затягивания гаек обозначают ав­то­мо­биль­ные заводы.

Головку цилиндров из чугуна прикрепляют, когда мотор находится в нагретом положении, алюминиевую голову, наоборот, на холодный двигатель. Необходимость затягивания крепления алюминиевых головок в холодном состоянии объясняется разным коэффициентом линейного расширения материала шпилек и болтов и материала головки. В связи с этим подтягивание гаек на сильно разогретом моторе не обеспечивает после остывания мотора должной плотности прилегания к блоку головки цилиндров.

Затяжку болтов прикрепления поддона картера для предотвращения деформации картера, нарушения при герметичности также проверяют с соблюдением пос­ле­до­ва­тель­нос­ти, то есть поочередным затягиванием диаметрально противоположных болтов.

 

Проверка состояния кривошипно-шатунного механизма

 

Техническое состояние кривошипно-шатунных механизмов определяется:

  • По компрессии (изменению давления) в цилиндрах мотора в конце хода сжатия;
  • По расходу масла в процессе эксплуатации и уменьшению давления в системе смазки двигателя;
  • По разрежению в трубопроводе впуска;
  • По утечке газов из цилиндров;
  • По объему газов, проникающих в картер мотора;
  • По наличию стуков в моторе.

 

Расход масла в малоизношенном моторе незначителен и может равняться 0,1-0,25 литра на 100 км пути. При общем значительном износе мотора расход масла может составлять 1 литр на 100 км и больше, что, как правило, сопровождается обильным дымом.

Давление в масляной системе мотора должно соответствовать пределам, ус­та­нов­лен­ным для данного типа мотора и используемого сорта масла. Уменьшение давления масла на незначительных оборотах коленвала прогретого силового агрегата указывает на неисправность в смазочной системе или на присутствие недопустимых износов под­шип­ни­ков мотора. Падение масляного давления по манометру до 0 говорит о не­исп­рав­нос­ти редукционного клапана или манометра.

Компрессия является показателем герметичности цилиндров мотора и ха­рак­те­ри­зу­ет состояние клапанов, цилиндров и поршней. Герметичность цилиндров можно установить с помощью компрессометра. Изменение давления (компрессию) проверяют после пред­ва­ри­тель­но­го разогрева мотора до 80°C при выкрученных свечах. Установив наконечник компрессометра в отверстия для свечей, проворачивают стартером коленвал мотора на 10 – 14 оборотов и фиксируют показания компрессометра. Проверка выполняется по 3 раза для каждого цилиндра. Если показания компрессии на 30 – 40% ниже установленной нормы, это говорит о неисправностях (пригорание поршневых колец или их поломка, повреждение прокладки головки цилиндров или негерметичность клапанов).

Разрежение в трубопроводе впуска мотора измеряют вакуумметром. Значение разрежения у работающего на установившемся режиме моторов может меняться от изношенности цилиндро–поршневой группы, а также от состояния элементов га­зо­расп­ре­де­ле­ния ( см. газораспределительный механизм ), регулировки карбюратора ( см. устройство карбюратора ) и установки зажигания. Таким образом, такой метод проверки является об­щим и не дает возможности выделить конкретную неисправность по одному показателю.

Объем газов, проникающих в картер мотора, изменяется из–за неплотности сопряжений цилиндр + поршень + поршневое кольцо, увеличивающейся по степени изнашивания данных деталей. Количество проникающих газов измеряют при полной нагрузке мотора.

 

 

Обслуживание КШМ

Обслуживание КШМ заключается в постоянном контроле креплений и подтягивании ослабевших гаек и болтов картера, а также головки блока цилиндров. Болты крепления головки блока и гайки шпилек следует подтягивать на разогретом моторе в определенной последовательности.

Двигатель следует содержать в чистоте, каждый день протирать или промывать кисточкой, смоченной в керосине, после этого протирать сухой ветошью. Необходимо помнить, что грязь, пропитанная маслом и бензином, представляет серьезную опасность для возгорания при наличии каких–либо неисправностей в системе зажигания двигателя исистеме питания двигателя, также способствует образованию коррозии.

Периодически нужно снимать головку блока цилиндров и удалять весь нагар, об­ра­зо­вав­ший­ся в камерах сгорания.

Нагар плохо проводит тепло. При определенной величине слоя нагара на клапанах и поршнях отвод тепла в охлаждающую жидкость резко ухудшается, происходит перегрев мотора и уменьшение его мощностных показателей. В связи с этим, возникает потребность в более частом включении низких передач и потребность в топливе возрастает. Интенсивность формирования нагара полностью зависит от вида и качества используемого для мотора масла и топлива. Самое интенсивное нагарообразование выполняется при использовании низкооктанового бензина с достаточно высокой температурой конца выкипания. Стуки, возникающие в таком случае при работе двигателя, имеют детонационный характер и в конечном итоге приводят к уменьшению срока работоспособности двигателя.

Нагар необходимо удалять с камер сгорания, со стержней и головок клапанов, из впускных каналов блока цилиндров, с днищ поршней. Нагар рекомендуется удалять с по­мощью проволочных щеток или металлических скребков. Предварительно нагар раз­мяг­ча­ет­ся керосином.

При последующей сборке мотора прокладку головки блока необходимо ус­та­нав­ли­вать таким образом, чтобы сторона прокладки, на которой наблюдается сплошная окантовка перемычек между краешками отверстий для камер сгорания, была направлена в сторону головки блока.

Стоит учесть, что во время движения машины за городом в течении 60–ти минут со скоростью 65–80 км/ч происходит выжигание (очистка) цилиндров от нагара.

При должном регулярном обслуживании КШМ его срок службы продлится на долгие годы.

1.Общее устройство кривошипно-шатунного механизма двигателя камаз-740

Кривошипно-шатунный механизм предназначен для преобразования поступательного движении поршня во вращательное движение коленвала.

Кривошипно-шатунный механизм состоит из подвижных и неподвижных деталей:

Неподвижные детали: Подвижные детали:

1.Блок цилиндров 1.Поршень с поршневыми кольцами

2.Головка блока цилиндров 2.Шатуны

3.Картер 3.Коленчатый вал

4.Маховик

5.Коренные и шатунные вкладыши

Рис. 1. Шатунно-поршневая группа:

1 — маслосъемное поршневое кольцо;

2 — нижнее компресси­онное кольцо; 3 — верхнее компрессионное кольцо;

4 — кольцо поршневого пальца; 5 — поршневой па­лец; 6 — поршень с вставкой в

сборе; 7 — втулка шатуна; 8 — шатун; 9 — болт крепления крышки шатуна

10 — крышка шатуна; 11 — гайка; 12 — вкладыш нижней головки шатуна;

13 — маслосъемное кольцо в сбо­ре; 14 — расширитель маслосъемного кольца

РИС.2 Коленчатый вал и маховик

1 — коленчатый вал в сборе; 2 – передний

противовес; 3 — шестерня привода масляного насоса; 4 — ввертыш;

5, 6, 10 — сегментные шпонки; 7 — коленчатый вал; 8 — втулка; 9 — заглушка

шатунной шейки; 11 — задний противовес; 12 — шестерня в сборе; i; 14 — задний

маслоотражатель; 15 — верхний вкладыш подшипника; 16 — верхнее полукольцо

подшипника; 17 — манжета в сборе; 18 – фиксатор в сборе;

20 — корпус фиксатора; 21 — пружина; 22 — фиксатор; 23,34, 41 — болты;

24 — маховик; 25 — установочная втулка; 26 — пружинное упорное кольцо

27 — зубчатый обод; 28 — маховик в сборе; 29 — нижний вкладыш подшипника;

30 — установочный штифт; 31 – плоская шайба; 32, 33 — стяжной болт;

36 — крышка подшипника; 37 — передняя крышка подшипника;

38 — нижнее полукольцо подшипника; 39 — полумуфта отбора

мощности; 40-замковая шайба; 42 — шайба носка

2. Работы, выполняемые при техеничском обслуживании кривошипно-шатунного мехнизма двигателя камаз-740

При ЕО двигатель очищают от грязи, проверяют его

состояние визуально и прослушивают работу в разных режимах.

При ТО-1

случае необходимости расшплинтовывают гайки, подтягивают их до отказа и

вновь зашплинтовывают.

элементов, последние заменяют. У автомобилей КамАЗ по мере усадки резиновых амортизаторов задних опор двигателя положение поддерживающей опоры силового агрегата регулируют с помощью регулировочных накладок, устанавливаемых между поперечиной и кронштейнами на лонжеронах рамы.

Проверяют:

  • герметичность соединения головок цилиндров (отсутствие потеков на стенках блока цилиндров), поддона картера и сальников коленчатого вала (отсутствие потеков масла).

  • Прослушивают работу клапанного механизма и при

необходимости регулируют зазоры между клапанами и коромыслами.

  • После пробега первых 1500…2000 км, а в дальнейшем только после снятия головок блока цилиндров, а также при появлении признаков прорыва газов или подтекания охлаждающей жидкости в соединениях необходимо подтягивать гайки шпилек и болты головок блока цилиндров в установленной последовательности. В эти же сроки подтягивать винты или болты поддона катера двигателя.

При ТО-2

  • проверить и при необходимости подтянуть болты и гайки крепления опор двигателя, очистить от грязи и масла их резиновые подушки. По мере загрязнения, а при езде по пыльным и загрязненным дорогам ежедневно, протирать поверхность двигателя ветошью, смоченной специальным очистителем

Кривошипно-шатунный механизм — Pddtut.com

Устройство кривошипно-шатунного механизма

Кривошипно-шатунный механизм (далее сокращенно – КШМ) – механизм двигателя. Основным назначением КШМ является преобразование возвратно-поступательных движений поршня цилиндрической формы во вращательные движения коленчатого вала в двигателе внутреннего сгорания и наоборот.

 

Кривошипно-шатунный механизм

Устройство КШМ

Поршень

Поршень

Поршень имеет вид цилиндра, изготовленного из сплавов алюминия. Основная функция этой детали заключается в превращении в механическую работу изменение давления газа, или наоборот, – нагнетание давления за счет возвратно-поступательного движения.

Поршень представляет собой сложенные воедино днище, головку и юбку, которые выполняют совершенно разные функции. Днище поршня плоской, вогнутой или выпуклой формы содержит в себе камеру сгорания. Головка имеет нарезанные канавки, где размещаются поршневые кольца (компрессионные и маслосъемные). Компрессионные кольца исключают прорыв газов в картер двигателя, а поршневые маслосъемные кольца способствуют удалению излишков масла на внутренних стенках цилиндра. В юбке расположены две бобышки, обеспечивающие размещение соединяющего поршень с шатуном поршневого пальца.

Шатун

Шатун

Изготовленный штамповкой или кованый стальной (реже – титановый) шатун имеет шарнирные соединения. Основная роль шатуна состоит в передаче поршневого усилия к коленчатому валу. Конструкция шатуна предполагает наличие верхней и нижней головки, а также стержня с двутавровым сечением. В верхней головке и бобышках находится вращающийся («плавающий») поршневой палец, а нижняя головка – разборная, позволяющая, тем самым, обеспечить тесное соединение с шейкой вала. Современная технология контролируемого раскалывания нижней головки позволяет обеспечить высокую точность соединения ее частей.

Коленчатый вал

Коленчатый вал

Изготовленный из стали или чугуна высокой прочности коленчатый вал состоит из шатунных и коренных шеек, соединенных щеками и вращающихся в подшипниках скольжения. Щеки создают противовес шатунным шейкам. Основная функция коленчатого вала состоит в восприятии усилия от шатуна для преобразования его в крутящий момент. Внутри щек и шеек вала предусмотрены отверстия для подачи под давлением масла системой смазки двигателя.

Маховик

Маховик

Маховик устанавливается на конце коленчатого вала. На сегодняшний день находят широкое применение двухмассовые маховики, имеющие вид двух, упруго соединенных между собой, дисков. Зубчатый венец маховика принимает непосредственное участие в запуске двигателя через стартер.

Блок и головка блока цилиндров

Блок и головка блока цилиндров

Блок цилиндров и головка блока цилиндров отливаются из чугуна (реже – сплавов алюминия). В блоке цилиндров предусмотрены рубашки охлаждения, постели для подшипников коленчатого и распределительного валов, а также точки крепления приборов и узлов. Сам цилиндр выполняет функцию направляющей для поршней. Головка блока цилиндра располагает в себе камеру сгорания, впускные-выпускные каналы, специальные резьбовые отверстия для свечей системы зажигания, втулки и запрессованные седла. Герметичность соединения блока цилиндров с головкой обеспечены прокладкой. Кроме того, головка цилиндра закрыта штампованной крышкой, а между ними, как правило, устанавливается прокладка из маслостойкой резины.


 

В целом, поршень, гильза цилиндров и шатун формируют цилиндр или цилиндропоршневую группу кривошипно-шатунного механизма. Современные двигатели могут иметь до 16 и более цилиндров.

Кривошипно-шатунный механизм / Автомобили Камаз-6460. Руководство по устройству, техническому обслуживанию и ремонту / Техсправочник / Кама-Автодеталь

Кривошипно-шатунный механизм

Коленчатый вал (рис. 21) изготовлен из высококачественной стали и имеет пять коренных и четыре шатунные шейки, связанные щеками и сопряженные переходными галтелями. Для равномерного чередования рабочих ходов шатунные шейки коленчатого вала расположены под углом 90°.

Рис. 21. Коленчатый вал:

1 — противовес;2 — шестерня привода масляного насоса; 3 — заглушка; 4 — шпонка; 5- отверстия подвода масла к шатунным шейкам; 6 — отверстия подвода масла в коренных шейках.

К каждой шатунной шейке присоединяются два шату на (рис. 22) — один для правого и один для левого рядов цилиндров.

Упрочнение коленчатого вала производится азотированием на глубину 0,5…0,7 мм, твердость упрочненного слоя не менее 600 HV. Подвод масла к шатунным шейкам производится через отверстия в коренных шейках 6 и отверстия 5 (рис. 21).

Для уравновешивания сил инерции и уменьшения вибраций коленчатый вал имеет шесть противовесов, отштампованных заодно со щеками коленчатого вала. Кроме основных противовесов, имеется дополнительный съемный противовес 1, напрессованный на вал, его угловое расположение относительно коленчатого вала определяется шпонкой 4. Для обеспечения требуемого дисбаланса, на маховике выполняется выборка 6 (рис. 25).

На хвостовике коленчатого вала выполнена шейка 9 (рис. 23), по которой центрируется шестерня коленчатого вала 8 и маховик 1 (рис. 26). На заднем торце коленчатого вала выполнено десять резьбовых отверстий М16х1,5-6Н для крепления шестерни коленчатого вала и маховика, на переднем торце выполнено восемь резьбовых отверстий М12х1,25-6Н для крепления гасителя крутильных колебаний.

В полость носка коленчатого вала установлена заглушка 3 (рис. 21), через калиброванное отверстие которой осуществляется смазка шлицевого валика переднего привода отбора мощности.

От осевых перемещений коленчатый вал зафиксирован двумя верхними полукольцами1 и двумя нижними полукольцами 2 (рис. 23), установленными в проточках задней коренной опоры блока цилиндров, так, что сторона с канавками прилегает к упорным торцам вала.

На носке коленчатого вала (рис. 21) установлены шестерни привода масляного насоса 2 и привода газораспределительного механизма 8 (рис. 23).

Уплотнение коленчатого вала осуществляется резиновой манжетой 8 (рис. 26). с дополнительным уплотняющим элементом — пыльником 9. Манжета размещена в картере маховика 4. Манжета изготовлена из фторкаучука по технологии формования рабочей уплотняющей кромки непосредственно в прессформе.

Номинальные диаметры шеек коленчатого вала:

— коренных 95-0,015 мм:

— шатунных 80-0,013 мм.

Для восстановления двигателя предусмотрены восемь ремонтных размеров вкладышей. Обозначение вкладышей подшипников коленчатого вала, диаметр коренных шеек коленчатого вала, диаметр отверстия в блоке цилиндров под эти вкладыши указаны в приложении 11.

Обозначение вкладышей нижней головки шатуна, диаметр шатунных шеек коленчатого вала, диаметр отверстия в кривошипной головке шатуна под эти вкладыши указаны в приложении 12.

Вкладыши 7405.1005170Р0, 7405.1005171Р0, 7405.1005058Р0 применяются при восстановлении двигателя без шлифовки коленчатого вала. При необходимости шейки коленчатого вала заполировать.

При шлифовке коленчатого вала по коренным шейкам до диаметра 94 мм и менее или по шатунным шейкам до диаметра 79 мм и менее, необходимо коленчатый вал подвергнуть повторному азотированию.

Пределы допусков по диаметрам шеек коленчатого вала, диаметру отверстия в блоке цилиндров и диаметру отверстия в кривошипной головке шатуна при восстановлении двигателя должны быть такими же, как у номинальных размеров.

Коленчатый вал для двигателей 740.50-360 имеет значительные отличия от коленчатых валов других моделей двигателей, эти отличия делают невозможным использование коленчатых валов двигателей КАМАЗ других моделей.

Маркировка коленчатого вала, выполненная в поковке на третьем противовесе, должна быть 740.50-1005020.

Рнс. 22. Шатун:

1 — стержень шатуна; 2 — крышка шатуна; 3 — втулка верхней головки шатуна; 4 — вкладыш нижней головки шатуна; 5 — болт крепления крышки шатуна;6 — гайка болта крепления крышки шатуна.

Коренные и шатунные подшипники (рис. 22 и 23) изготовлены из стальной ленты, покрытой слоем свинцовистой бронзы толщиной 0,3 мм, слоем свинцовооловянистого сплава толщиной 0,022 мм, и слоем олова толщиной 0,003 мм. Верхние 3 и нижние 4 вкладыши коренных подшипников не взаимозаменяемы. В верхнем вкладыше имеется отверстие для подвода масла и канавка для его распределения.

Рис. 23. Установка упорных полуколеци вкладышейколенчатого вала:

1 — полукольцо упорного подшипника верхнее; 2 — полукольцо упорного подшипника нижнее; 3 — вкладыш подшипника коленчатого вала верхний; 4 — вкладыш подшипника коленчатого вала нижний; 5 — блок цилиндров;6 — крышка подшипника коленчатого вала задняя; 7 — коленчатый вал; 8 — шестерня привода газораспределительного механизма; 9 — центрирующая шейка коленчатого вала.

Оба вкладыша 4 нижней головки шатуна взаимозаменяемы. От проворачивания и бокового смещения вкладыши фиксируются выступами (усами), входящими в пазы, предусмотренные в постелях блока и шатуна, а также крышках подшипников.

Вкладыши имеют конструктивные отличия, направленные на повышение их работоспособности при форсировке двигателя турбонаддувом, при этом изменена маркировка вкладышей на 7405.1004058 (шатунные), 7405.1005170 и 7405.1005171 (коренные).

Не рекомендуется замена вкладышей при ремонте на серийные с маркировкой 740, так как при этом произойдет существенное сокращение ресурса двигателя.

Крышки коренных подшипников (рис. 24) изготовлены из высокопрочного чугуна. Крепление крышек осуществляется с помощью вертикальных и горизонтальных стяжных болтов 3, 4, 5, которые затягиваются по определенной схеме с регламентированным моментом (приложение 8).

Рис. 24. Установка крышек подшипников коленчатого вал:

1 — крышка подшипника; 2 — коленчатый вал; 3 — болт крепления крышки; 4 — болт стяжной крепления крышки подшипника левый; 5 — болт стяжной крепления крышки подшипника правый;6 — шайба; 7 — блок; 8 — штифт.

Шатун (рис. 22) стальной, кованый, стержень 1 имеет двутавровое сечение. Верхняя головка шатуна неразъемная, нижняя выполнена с прямым и плоским разъемом. Шатун окончательно обрабатывают в сборе с крышкой 2, поэтому крышки шатунов невзаимозаменяемы. В верхнюю головку шатуна запрессована сталебронзовая втулка 3, а в нижнюю установлены сменные вкладыши 4. Крышка нижней головки шатуна крепится с помощью гаек 6, навернутых на болты 5, предварительно запрессованные в стержень шатуна. Затяжка шатунных болтов осуществляется по схеме, определенной в приложении 8. На крышке и стержне шатуна нанесены метки спаренности — трехзначные порядковые номера. Кроме того, на крышке шатуна выбит порядковый номер цилиндра.

Рис. 25. Маховик:

1 — кольцо; 2 — втулка дистанционная; 3 — обод зубчатый маховика; 4 — штифт установочный; 5 — подшипник; 6 — выборка под дисбаланс.

Маховик (рис. 25) закреплен десятью болтами 7 (рис. 26), изготовленными из легированной стали, на заднем торце коленчатого вала и зафиксирован штифтом 10 (рис. 26) на центрирующей шейке коленчатого вала 9 (рис. 23). С целью исключения повреждения поверхности маховика, под головки болтов устанавливается шайба 6 (рис. 26). Величина момента затяжки болтов крепления маховика указана в приложении 8. На обработанную цилиндрическую поверхность маховика напрессован зубчатый обод 3 (рис. 25). с которым входит в зацепление шестерня стартера при пуске двигателя. Под манжету уплотнения коленчатого вала устанавливается кольцо 1 с наружной хромированной поверхностью.

Маховик выполняется под одно или двух дисковое диафрагменные сцепления. Во внутреннюю расточку маховика установлен подшипник 5 первичного вала коробки передач.

При регулировках угла опережения впрыска топлива и тепловых зазоров в клапанах, маховик фиксируется фиксатором (рис. 27).

Конструкция маховика имеет следующие основные отличия от маховиков двигателей 740.10 и 7403.10:

— изменен угол расположения паза под фиксатор на наружной поверхности маховика;

— увеличен диаметр расточки для размещения шайбы под болты крепления маховика;

— введена серповидная выборка для обеспечения требуемого дисбаланса;

— крепление маховика к торцу коленчатого вала осуществляется десятью болтами М16×1.5;

Перечисленные изменения делают невозможной установку маховиков двигателей других моделей при проведении ремонтных работ.

Рис. 26. Установка маховика:

1 — маховик; 2 — блок цилиндров; 3 — коленчатый вал; 4 — картер маховика; 5 — подшипник первичного вала коробки передач; 6 — шайба; 7 — болт; 8 — манжета уплотнения коленчатого вала; 9 — пыльник манжеты; 10 — штифт установочный маховика.

Рис. 27. Положение ручки фиксатора маховика:

а) — при эксплуатации; б) — при регулировке, в зацеплении с маховиком.

Рис. 28. Гаситель крутильных колебаний коленчатого вала:

1 — корпус гасителя; 2 — маховик гасителя; 3 — крышка; 4 — пробка заправочного отверстия; 5 — высоковязкостная силиконовая жидкость;6 — центровочная шайба.

Гаситель крутильных колебаний (рис. 28) закреплен восемью болтами 2 (рис. 29) на переднем носке коленчатого ваиа. Гаситель состоит из корпуса 1 (рис. 28), в который установлен с зазором маховик гасителя 2. Снаружи корпус гасителя закрыт крышкой 3. Герметичность обеспечивается сваркой по стыку корпуса гасителя и крышки. Между корпусом гасителя и маховиком гасителя находится высоковязкая силиконовая жидкость, дозировано заправленная перед заваркой крышки. Центровка гасителя осуществляется шайбой 6, приваренной к корпусу.

Рис. 29. Установка гасителя крутильных колебаний:

1 — гаситель; 2 — болт крепления гасителя; 3 — полумуфта отбора мощности; 4 — шайба; 5 — коленчатый вал; 6 — блок цилиндров.

Гашение крутильных колебаний коленчатого вала происходит путем торможения корпуса гасителя, закрепленного на носке коленчатого вала, относительно маховика в среде силиконовой жидкости. При этом энергия торможения выделяется в виде теплоты.

КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ при проведении ремонтных работ деформировать корпус и крышку гасителя. Гаситель с деформированным корпусом или крышкой к дальнейшей эксплуатации не пригоден.

После установки гасителя проверить наличие зазора между гасителем и противовесом.

Поршень 1 (рис. 30) отлит из алюминиевого сплава со вставкой из износостойкого чугуна под верхнее компрессионное кольцо. В головке поршня выполнена тороидальная камера сгорания с вытеснителем в центральной части, которая смещена относительно оси поршня в сторону от выточек под клапаны на 5 мм.

Рис. 30. Поршень с шатуном и кольцами в сборе:

1 — поршень; 2 — маслосъемное кольцо; 3 — поршневой палец; 4,5- компрессионные кольца;6 — стопорное кольцо.

Боковая поверхность представляет собой сложную овально-бочкообразную форму с занижением в зоне отверстий под поршневой палец. На юбку нанесено графитовое покрытие В нижней части юбки поршня выполнен паз, исключающий, при правильной сборке, контакт поршня с форсункой охлаждения при нахождении его в нижней мертвой точке.

Поршень комплектуется двумя компрессионными и одним маслосъемным кольцами. Отличительной его особенностью является уменьшенное расстояние от днища до нижнего торца верхней канавки, которое составляет 17 мм. На двигателе аналогично другим моделям двигателей КАМАЗ, с целью обеспечения топливной экономичности и экологических показателей, применен селективный подбор поршней для каждого цилиндра по расстоянию от оси поршневого пальца до днища. По указанному параметру поршни разбиты на четыре группы 10, 20, 30 и 40. Каждая последующая группа от предыдущей отличается на 0,11 мм.

В запасные части поставляются поршни наибольшей высоты — для двигателей 740.51-320 размер от оси поршневого пальца до днища поршня 40 группы (наибольшей) составляет 71,04-0,04мм.

Во избежание возможного контакта между ними и головками цилиндров, в случае замены, необходимо контролировать надпоршневой зазор. Если зазор между поршнем и головкой цилиндра после затяжки болтов ее крепления будет менее 0,87 мм, необходимо подрезать днище поршня на недостающую до этого значения величину.

Установка поршней с двигателей КАМАЗ других моделей недопустима. Маркировка поршня 740.51-1004015 выполняется в литье на внутренней полости поршня.

Компрессионные кольца (рис. 30) изготавливаются из высокопрочного, а маслосъемное — из серого чугунов. Верхнее компрессионное кольцо имеет форму двухсторонней трапеции. с внутренней выборкой со стороны верхнего торца, а второе имеет форму односторонней трапеции. При монтаже торец с отметкой «верх» должен располагаться со стороны днища поршня.

Рабочая поверхность верхнего компрессионного кольца 4 покрыта молибденом и имеет бочкообразную форму. На рабочей поверхности второго компрессионного 5 и маслосъемного колец 2 нанесен хром. Ее форма на втором кольце представляет собой конус с уклоном к нижнему торцу, по этому характерному признаку кольцо получило название «минутное». Минутные кольца применены для снижения расхода масла на угар, их установка в верхнюю канавку недопустима.

Маслосъемное кольцо коробчатого типа, высотой 4 мм, с пружинным расширителем, имеющим переменный шаг витков и шлифованную наружную поверхность. Средняя часть расширителя с меньшим шагом витков при установке на поршень должна располагаться в замке кольца.

Установка поршневых колец с других моделей двигателей КАМАЗ может привести к увеличению расхода масла на угар и, как следствие, ухудшению экологических показателей.

Форсунки охлаждения (рис. 19) устанавливаются в картерной части блока цилиндров и обеспечивают подачу масла из главной масляной магистрали, при достижении в ней давления 80… 120 кПа (0.8… 1.2 кг/см2), на внутреннюю полость поршней. На такое давление отрегулирован клапан, расположенный в каждой из форсунок.

При сборке двигателя необходимо контролировать правильность положения трубки форсунки относительно гильзы цилиндра и поршня. Контакт с поршнем недопустим.

Поршень с шатуном (рис. 30) соединен пальцем 3 плавающего типа, его осевое перемещение ограничено стопорными кольцами 6. Палец изготовлен из хромоникелевой стали, диаметр отверстия 16 мм. Применение пальцев с диаметром отверстия 22 и 25 мм недопустимо, так как это нарушает балансировку двигателя.

Привод отбора мощности передний (рис. 31) осуществляется с носка коленчатого вала через полумуфту отбора мощности 2, прикрепленную к носку коленчатого вала 13 восемью специальными болтами M12x1,25. Центрирование полу муфты относительно коленчатого вала осуществляется по внутренней расточке выносного противовеса. Крутящий момент от полумуфты передается посредством вала привода агрегатов 1 и вала отбора мощности 3 на шкив 4. Вал отбора мощности 3 устанавливается на двух шариковых подшипниках 11 и 12. Уплотнение полости осуществляется манжетой 8 и заглушкой 10 с резиновым кольцом 14. Для уменьшения износа шлицевых соединений, ват привода агрегатов удерживается от осевых перемещений пружиной 9.

Рис. 31. Установка привода отбора мощности переднего и шкива:

1 — вал привода агрегатов, 2 — полумуфта отбора мощности; 3 — вал отбора мощности; 4 — шкив; 5 — болт; 6 — передняя крышка блока, 7 -корпус подшипника; 8 — манжета; 9 — пружина; 10 — заглушка; 11, 12 — подшипники; 13 — коленчатый вал; 14 — резиновое кольцо уплотнения заглушки; 15 — стопорное кольцо.

Кривошипно-шатунный механизм двигателя трактора

Основное свойство деталей механизма — устойчивость к высокому давлению. Второе важное качество — способность переносить температуру от 350С. Такие особенности обусловлены элементами состава. Детали изготовлены из высококачественных сплавов и прочных металлов. Кроме того, все запчасти из чугуна и стали подвергаются закалке или цементации.

Состав механизма:

  • цилиндр;
  • шатун;
  • поршневый палец;
  • поршень с кольцами;
  • вал коленчатый с противовесами;
  • маховик.

Устройство отдельных деталей механизма

Перечень деталей, из которых состоит двигатель:

  • головки цилиндров;
  • блок-картеры;
  • цилиндр;
  • прокладки;
  • картер;
  • гильза;
  • поршень;
  • стопорное кольцо;
  • поддон;
  • крышка шатуна;
  • коренной подшипник;
  • поршневой палец;
  • вкладыши;
  • болт;
  • шплинт;
  • шатун;
  • втулка.

Цилиндр двигателя

Ключевая деталь двигателя — цилиндр. Элемент представляет собой отливку, зафиксированную на коробке из чугуна. Именно там происходит процесс сгорания топлива. Второй вариант цилиндра — сменная гильза, которую нужно поместить в блок цилиндров.

Цилиндр изготавливают исключительно из чугуна. Внутреннюю поверхность детали обязательно полируют и шлифуют.

В двигателе может быть 1, 2, 3, 4, 6 гильз или цилидров. Некоторые модели предполагают наличие большего числа элементов. Детали могут быть расположены в один или два ряда строго под углом в 90 градусов. Снизу блоки закрыты поддоном и укреплены прокладками.

Поршень

Внутри цилиндра устанавливается поршень из алюминиевого сплава. На боковых стенках детали располагаются бобышки с отверстиями для размещения поршневого пальца. В днище поршня имеется камера для перемешивания воздуха и топлива. Функции поршня — сжатие поступающего воздуха и передача давления на коленчатый вал.

Чтобы поршень не заклинило в цилиндре, деталь делают меньшего диаметра. Зазор между цилиндром и поршнем — 0,25-0,40 мм.

Поршневые кольца

Пружинные кольца из чугуна предназначены для предотвращения попадания смазки в камеру сжатия. Элементы расположены в специальных канавках на поверхности поршня. Для удобной фиксации на кольцах сделаны вырезы.

Типы колец по назначению:

  • компрессионные. Предназначены для восприятия силы давления газа. Наибольшая нагрузка приходится на первое кольцо. Чтобы оно медленнее изнашивалось, его поверхность покрывают хромом. Другие кольца оставляют без специальной обработки;
  • маслосъемные. Элементы в виде коробчатого сечения с отверстиями. Они предназначены для отвода масла, стекающего со стенок цилиндра. Чтобы повысить показатель упругости детали, между кольцом и канавкой фиксируют расширитель.

Шатуны

Шатун предназначен для соединения поршня с коленчатым валом. Деталь состоит из стержня и головок. Верхняя служит для фиксации поршневого пальца. Нижняя головка представляет собой разъемную конструкцию с крышкой, элементы которой соединяются с помощью шатунных болтов. Для уменьшения трения в нижнюю головку вставляют специальные вкладыши.

Поршневой палец

Этот элемент предназначен для соединения поршня с шатуном. Деталь изготавливают из прочной стали и подвергают термической обработке.

Палец может перемещаться, поэтому его называют плавающим. Чтобы элемент не царапал зеркало цилиндра, его движения ограничивают стопорными пружинными кольцами.

Вал коленчатый

Вал — деталь, преобразующая силу расширяющихся газов во вращательное усилие. Элемент запускает трансмиссию и другие узлы двигателя.

Вал изготавливают из стали или чугуна. Некоторые элементы узла подвергают закалке. Составляющие детали: подшипники, шатунные, опорные и коренные шейки, щеки, фланец,

Маховик

Маховик — чугунный диск, зафиксированный на фланце задней части коленчатого вала. Функции детали: накопление кинетической энергии, облегчение работы двигателя, выведение поршней из мертвых точек, выравнивание частоты вращения вала. Такие свойства обусловлены наличием зубчатого венца, расположенного на маховике.

Где купить запчасти для кривошипно-шатунного механизма двигателя трактора

Если какой-то элемент механизма выходит из строя, нарушается работа техники. Чтобы вернуть трактор в режим эксплуатации, необходимо заменить детали. На нашем сайте можно купить запчасти отличного качества.

Санкционная политика — наши внутренние правила

Эта политика является частью наших Условий использования. Используя любой из наших Сервисов, вы соглашаетесь с этой политикой и нашими Условиями использования.

Как глобальная компания, базирующаяся в США и осуществляющая деятельность в других странах, Etsy должна соблюдать экономические санкции и торговые ограничения, включая, помимо прочего, те, которые введены Управлением по контролю за иностранными активами («OFAC») Департамента США. казначейства. Это означает, что Etsy или любое другое лицо, использующее наши Сервисы, не может принимать участие в транзакциях, в которых участвуют определенные люди, места или предметы, происходящие из определенных мест, как это определено такими агентствами, как OFAC, в дополнение к торговым ограничениям, налагаемым соответствующими законами и правилами.

Эта политика распространяется на всех, кто пользуется нашими Услугами, независимо от их местонахождения. Ознакомление с этими ограничениями зависит от вас.

Например, эти ограничения обычно запрещают, но не ограничиваются транзакциями, включающими:

  1. Определенные географические области, такие как Крым, Куба, Иран, Северная Корея, Сирия, Россия, Беларусь, Донецкая Народная Республика («ДНР») и Луганская Народная Республика («ЛНР») области Украины, или любое физическое или юридическое лицо, работающее или проживающее в этих местах;
  2. Физические или юридические лица, указанные в санкционных списках, таких как Список особо обозначенных граждан (SDN) OFAC или Список иностранных лиц, уклоняющихся от санкций (FSE);
  3. Граждане Кубы, независимо от местонахождения, если не установлено гражданство или постоянное место жительства за пределами Кубы; и
  4. Предметы, происходящие из регионов, включая Кубу, Северную Корею, Иран или Крым, за исключением информационных материалов, таких как публикации, фильмы, плакаты, грампластинки, фотографии, кассеты, компакт-диски и некоторые произведения искусства.
  5. Любые товары, услуги или технологии из ДНР и ЛНР, за исключением подходящих информационных материалов и сельскохозяйственных товаров, таких как продукты питания для людей, семена продовольственных культур или удобрения.
  6. Ввоз в США следующих товаров российского происхождения: рыбы, морепродуктов, непромышленных алмазов и любых других товаров, время от времени определяемых министром торговли США.
  7. Вывоз из США или лицом США предметов роскоши и других предметов, которые могут быть определены США.S. Министр торговли, любому лицу, находящемуся в России или Беларуси. Список и описание «предметов роскоши» можно найти в Приложении № 5 к Части 746 Федерального реестра.
  8. Товары, происходящие из-за пределов США, на которые распространяется действие Закона США о тарифах или связанных с ним законов, запрещающих использование принудительного труда.

Чтобы защитить наше сообщество и рынок, Etsy принимает меры для обеспечения соблюдения программ санкций. Например, Etsy запрещает участникам использовать свои учетные записи в определенных географических точках.Если у нас есть основания полагать, что вы используете свою учетную запись из санкционированного места, такого как любое из мест, перечисленных выше, или иным образом нарушаете какие-либо экономические санкции или торговые ограничения, мы можем приостановить или прекратить использование вами наших Услуг. Участникам, как правило, не разрешается размещать, покупать или продавать товары, происходящие из санкционированных районов. Сюда входят предметы, которые были выпущены до введения санкций, поскольку у нас нет возможности проверить, когда они были действительно удалены из места с ограниченным доступом. Etsy оставляет за собой право запросить у продавцов дополнительную информацию, раскрыть страну происхождения товара в списке или предпринять другие шаги для выполнения обязательств по соблюдению.Мы можем отключить списки или отменить транзакции, которые представляют риск нарушения этой политики.

В дополнение к соблюдению OFAC и применимых местных законов, члены Etsy должны знать, что в других странах могут быть свои собственные торговые ограничения и что некоторые товары могут быть запрещены к экспорту или импорту в соответствии с международными законами. Вам следует ознакомиться с законами любой юрисдикции, когда в сделке участвуют международные стороны.

Наконец, члены Etsy должны знать, что сторонние платежные системы, такие как PayPal, могут независимо контролировать транзакции на предмет соблюдения санкций и могут блокировать транзакции в рамках своих собственных программ соответствия.Etsy не имеет полномочий или контроля над независимым принятием решений этими поставщиками.

Экономические санкции и торговые ограничения, применимые к использованию вами Услуг, могут быть изменены, поэтому участники должны регулярно проверять ресурсы по санкциям. Для получения юридической консультации обратитесь к квалифицированному специалисту.

Ресурсы: Министерство финансов США; Бюро промышленности и безопасности Министерства торговли США; Государственный департамент США; Европейская комиссия

Последнее обновление: 18 марта 2022 г.

Механическая конструкция кривошипно-ползункового механизма для коленного ортопедического устройства с использованием алгоритма Jaya


13.1 ВВЕДЕНИЕ

Походка человека представляет собой сложную функцию, требующую повторяющихся и скоординированных ритмичных движений нижних конечностей. Его контроль зависит от координации опорно-двигательного аппарата, механизма передвижения и моторного контроля. Любое нарушение их координации может привести к инсульту. Инсульт разрушает многие корковые нейроны, в то время как оставшиеся нейроны временно поражаются. Временно пораженные нейроны могут до некоторой степени восстановить свою функцию. Поэтому постинсультным пациентам предлагается пройти реабилитацию и попытаться заново научиться ходить.Как правило, это делается с помощью мануальной физиотерапии и вспомогательных средств [1, 2]. Традиционные методы лечения выполняются вручную с помощью терапевтов, беговых дорожек, систем поддержки веса тела и т. д. Однако они физически требовательны к терапевтам. Кроме того, частые и последовательные тренировки могут быть недоступны, что может привести к постоянной инвалидности пациента [3].

На протяжении многих лет исследовались различные экзоскелеты на основе беговых дорожек. Как правило, это устройства с несколькими степенями свободы (DF), которые содержат механизмы, приводы и технологию управления для манипулирования движениями нижних конечностей пользователей при ходьбе.Здесь обсуждаются некоторые реабилитационные устройства на основе беговой дорожки. ReoAmbulatorTM, который коммерциализируется Motorika USA Inc., приводится в действие, чтобы поднимать пациента с инвалидной коляски и перемещать пациента по беговой дорожке [4]. Lokomat разработан на основе прототипа ортеза для управляемой походки и снабжен средой виртуальной реальности, а также аудио- и визуальной биологической обратной связью, которая доступна в продаже [5] при использовании ортеза для управляемой походки [6], LokoHelp [7], Alex [8] и Lopes [9] относятся к числу других реабилитационных устройств на основе беговой дорожки.Кроме того, экзоскелеты на основе беговой дорожки громоздки и часто используются в реабилитационных центрах и больницах. Другими категориями экзоскелетов могут быть наземные и переносные экзоскелеты. Надземные реабилитационные экзоскелеты мобильной базы могут состоять из мобильной базы, BWS и системы помощи на уровне суставов для обеспечения комфорта пациентов во время реабилитации. Они не ограничивают тренировку беговой дорожкой или ограниченным пространством, а позволяют пациентам восстановить свою естественную походку. Кроме того, пациенты двигаются добровольно, несмотря на то, что рассматривают заранее определенный шаблон движения.Некоторые из надземных экзоскелетов исследуются, чтобы определить механизм, используемый для суставов. EXPOS, разработанный Университетом Соганга, используется специально для пожилых людей и пациентов [10]. Другая версия EXPOS, известная как SUBAR (биомедицинский вспомогательный робот Университета Соганга), также может использоваться для наземной реабилитации [11]. LEER (экзоскелетный робот для нижних конечностей) [12], NatTUre-gaits [13], WalkTrainer TM [14] и роботизированное устройство Kine Assist [15] входят в число других реабилитационных устройств, которые также можно использовать.

Еще одной категорией роботизированных устройств для нижних конечностей являются портативные реабилитационные экзоскелеты или вспомогательные устройства. Эти экзоскелеты мобильны и не требуют никакой базы или беговой дорожки. В отличие от экзоскелетов на беговой дорожке, они легкие, их легко надевать и снимать. Их простая и небольшая конструкция делает их относительно более удобными по сравнению с наземными экзоскелетами на беговой дорожке и мобильными. Кроме того, одной из наиболее примечательных особенностей портативных экзоскелетов является то, что они обеспечивают естественную ходьбу, а источник питания прикреплен к экзоскелету для приведения в действие суставов.Кроме того, пользователям требуются костыли вместе с экзоскелетом во время ходьбы из-за их ограниченных физических возможностей. Некоторые из этих портативных экзоскелетов с несколькими степенями свободы рассматриваются здесь. ReWalk [16] и HAL [17] — коммерчески доступные портативные экзоскелеты, которые можно использовать с костылями для реабилитации. Другие портативные реабилитационные устройства, разработанные исследователями, включают механический ортез Университета Вандербильта [18], модифицированный двигательный ортез для ходьбы [19], механический ортез для ходьбы (PGO) [20], коленно-голеностопный робот [3] и т. д.

Установлено, что рычажные механизмы играют жизненно важную роль в приведении в действие механизма, скорости ходьбы, длине шага и т. д. Следовательно, при синтезе механизма опоры также целесообразно исследовать область вспомогательных устройств или ортезов для коленного сустава. травмированное колено или реабилитация походки. Как правило, его применяют для коррекции функций у пациентов с ограниченными физическими возможностями. Некоторыми из важных особенностей ортеза являются ограничение подвижности суставов, исправление пороков развития конечностей, помощь в передвижении, стабильность и т. д.[21]. Исследуются различные ортезы, которые используются для оказания помощи травмированному колену или восстановления походки. Ортез/наколенник использует трехточечную систему фиксации, чтобы избежать гиперэкстензии и эффективно контролировать гиперэкстензию [22]. Другое устройство представляет собой готовый коленный бандаж с шарниром между бедром и голенью, который может использоваться пациентами с остеоартритом [23]. Другим ортезом, который можно использовать для облегчения состояния пациентов с остеоартритом, может быть регулируемый разгрузочный коленный бандаж, в котором используется полицентрическое соединение между сегментами бедра и ноги.Кроме того, этот новый коленный бандаж не требует ремней для создания необходимого момента [24].

Кроме того, ортезы могут быть расширены до голеностопного сустава и стопы, и такие типы ортезов называются ортезами колено-голеностоп-стопа (KAFO). KAFO содержит кулачковый механизм с фрикционными кольцами и замком, которые позволяют KAFO блокировать коленный сустав в любом положении, чтобы помочь пациентам со сгибательными контрактурами коленного сустава [25]. Другой KAFO использует четырехзвенниковую связь для соединения движения колена и лодыжки [26].Кроме того, встречаются актуаторы с рычажным механизмом в коленных суставах [27–29]. Привод с четырьмя звеньями для устройств помощи колену можно использовать для имитации движения коленного сустава человека для реабилитации пациентов с гемиплегией [30]. Устройства, которые соединяют движение колена и лодыжки с помощью рычажных механизмов и которые используют рычажные механизмы для приведения в действие, среди прочих. Таким образом, механизмы играют жизненно важную роль в функционировании экзоскелета и вспомогательных устройств. Механизм может быть использован в реабилитационных устройствах, двуногих, экзоскелетах и ​​т. д.

Шагающий механизм Single DF — еще одна область, над которой активно работают исследователи. Для их разработки были изучены различные методы и механизмы синтеза. Механизм с кулачковым приводом, в котором кулачковая система, прикрепленная к раме тела, соединяет ноги робота через механизм пантографа, который можно использовать [31]. Шестистержневая связь может использоваться для аппроксимации движений бедра и голени, а третья нога может быть включена для обеспечения фронтальной стабильности [32]. В качестве альтернативы можно использовать шестизвенниковый механизм Стивенсона III для создания шагающего рычажного механизма.Механизм может быть синтезирован в два этапа; на первом этапе следует синтезировать четырехзвенниковую связь, формирующую перевернутую походку, за которой следует синтез диады, инвертирующей и усиливающей походку [33]. Другая шестизвенниковая связь, т. е. связь Кланна, также может быть использована для создания разнообразных походок [34].

Установлено, что большинство устройств представляют собой системы реабилитации ходьбы на основе беговой дорожки, наземные и портативные устройства, которые имеют несколько степеней свободы, кроме того, в них используется одноосный вращающийся шарнир в колене, который позволяет только вращательное движение.Устройства, в которых используются рычажные механизмы на колене, бедре, лодыжке и стопе, встречаются редко, и они требуют большого значения пикового крутящего момента для своей конструкции срабатывания. Поэтому в этой главе предлагается оптимизированная конструкция кривошипно-ползункового ортопедического устройства для коленного сустава. Его механическая конструкция вдохновлена ​​конструкцией компактного портативного робота колено-лодыжка-нога, о котором можно подробно рассказать из Ref. [3].

Оставшаяся часть главы имеет следующую структуру. В разделе 13.2 обсуждается биомеханика коленного сустава человека.Раздел 13.3 иллюстрирует разработку механизма и постановку задачи оптимизации. Алгоритм оптимизации, необходимый для решения задачи оптимизации, представлен в разделе 13.4. Наконец, выводы изложены в Разделе 13.5.


13.3 КОНСТРУКЦИЯ МЕХАНИЗМА И ПОСТАНОВКА ЗАДАЧИ ОПТИМИЗАЦИИ

В данной конструкции коленного сустава используется кривошипно-ползунковый механизм. Принципиальная схема ползунково-кривошипного механизма ортопедического коленного сустава показана на рис. 13.4. Задача оптимизации сформулирована так, чтобы минимизировать требуемое пиковое усилие привода.Чтобы получить адекватный и безопасный диапазон движения, физическая структура и геометрические ограничения адаптированы из Ref. [3]. На рисунках 13.3 и 13.4 показаны различные определения ползунково-кривошипного механизма для коленного сустава. — угол кривошипа, когда относительный угол между бедром и большеберцовой костью, θ колено , , становится равным 0. Кроме того, чтобы гарантировать, что при пиковом значении требуемого крутящего момента кривошип и шатун становятся перпендикулярными, следовательно, это максимизирует длину рычага для приложения силы ограничение используется следующим образом:

(13.1)

, в котором θ Kneemax представляет ориентацию коленного сустава, соответствующую максимальному крутящему моменту.

Для оптимизации геометрических параметров четырехзвенникового кривошипно-кривошипного механизма и обеспечения допустимого диапазона движения рассматривается следующая кинематика кривошипно-кривошипного механизма:

(13.2)

РИСУНОК 13.3 Различные определения ползунково-кривошипного механизма.

РИСУНОК 13.4 Схема ортопедического коленного сустава с кривошипно-ползунковым механизмом.

(13.3)

где, ; также θ k 2 = α k + θknee

Крутящий момент, создаваемый в коленном суставе, может быть представлен как:

(13.4) (13.4) есть. Таким образом, она ставится как задача минимизации пиковой силы актуатора в виде бесконечной нормы следующим образом:[3]. задача, сформулированная в предыдущем разделе (заимствованная из [3]). Jaya [37] представляет собой простой алгоритм, который пытается сдвинуть решение-кандидат в сторону лучшего кандидата и от худшего кандидата.

Алгоритмы начинаются с инициализации случайной популяции с помощью уравнения.(135) в котором x t ij , является j th кандидатом на j = 1 ,…, c , который содержит проектные переменные (

i д ). L i и U i являются нижним и верхним пределом для i th проектной переменной, а t представляет t 1-ю итерацию

.

(13.5)

Из совокупности кандидатов выделяются лучшие и худшие кандидаты.Эти лучшие и худшие кандидаты используются для продвижения решения-кандидата к лучшему и от худшего решения. Это может быть достигнуто с помощью уравнения. (13.6) следующим образом:

(13.6)

В котором ранд 1 и ранд 2 — случайные числа между [0, 1].

Обновленная совокупность кандидатов затем сравнивается с предыдущей совокупностью кандидатов. Новая популяция формируется жадным отбором кандидатов между двумя популяциями.Наконец, проверяется критерий завершения, и на этом шаге завершается первая итерация алгоритма Jaya. Детали алгоритма Jaya представлены на рис. 13.5.

РИСУНОК 13.5 Блок-схема алгоритма Jaya.

Алгоритм реализован для минимизации пиковой силы для конструкции кривошипно-ползункового механизма. Алгоритм помог уменьшить необходимое усилие привода. Результаты нового дизайна после оптимизации представлены в таблице 13.1.


ТАБЛИЦА 13.1 Оптимизированные параметры Роботизированная коленного сустава















73,17







177,6







Параметры коленного сустава [3] коленного сустава Предложенный
начальный угол а к () градусов 70
θ θ ekneemix_req kneemax_req (предельный диапазон) 0-120 8.67-74
с 1 (мм) 168
с 2 (мм) 45 53
Пиковое усилие (Н) 687 554,176
Только участники со статусом Gold могут продолжить чтение. Войдите или зарегистрируйтесь, чтобы продолжить

Родственные

Вращательное движение в линейное | Блог МИСУМИ

Кривошипно-ползунковый механизм представляет собой типичную конструкцию, преобразующую вращательное движение в поступательное.Это достигается соединением ползуна и кривошипа со штоком. Этот механизм также используется как система, которая преобразует возвратно-поступательное движение автомобильного двигателя во вращательное движение. (Рис. а)

Второй рисунок (рис. b) представляет собой пример механизма, который выполняет те же функции, что и кривошип на первом рисунке (рис. a), в дополнение к функции регулировки скользящего хода ползуна. Чтобы добавить эту функцию, винт регулировки скользящего хода расположен в верхней части центра вала вращения вращающегося диска.Ход скольжения можно отрегулировать с помощью регулировочной гайки, расположенной на одном конце регулировочного винта хода скольжения.

Кроме того, если требуется высокоскоростное вращение или работа в течение длительного времени, необходимо учитывать элементы конструкции, связанные с вопросами надежности, описанными здесь.

1.  Вращательный баланс вращающегося тела (все конструкции на диске)
2. Прочность вращающегося вала
3.  Предотвращение ослабления регулировочной гайки (например, система двойной гайки)
4.  Подбор износостойких деталей для зоны, подверженной износу


На рисунке ниже показан механизм со сменными частями штока/ползуна. U-образный крюк установлен таким образом, чтобы кончик стержня можно было легко соединить с шарнирным штифтом на шарнирном конце кривошипа.

Примеры применения

Для простых устройств автоматизации или приспособлений, совместимых с несколькими моделями путем подключения блока обработки к блоку ползунка, замена блока ползунка после подготовки блока обработки в автономном режиме может минимизировать время, необходимое для переключения режима.

1.  Приводной механизм узла ракеля для простой машины для трафаретной печати:
При замене материалов из-за срока годности или при замене материалов для печати можно быстро переключаться между моделями, если снять части ползунка со встроенным ракелем и замените его деталями ползунка с отрегулированным в автономном режиме положением швабры.
2.  Простой нажимной механизм с совместимостью с несколькими моделями
Проблемы с приложениями

Из-за этого простого метода соединения, при котором только U-образный крюк помещается на вращающийся кривошип, этот механизм не совместим со следующими типами движения:

1.  Вращающийся кривошип с высокой скоростью.
Собственный вес штока может быть недостаточным для отслеживания движения.
2.  Большой радиус вращения.
Движение от коленчатого вала к U-образному крюку в некоторых местах не передается эффективно.
3.  Движение с нестабильной скоростью или колебаниями.
U-образный крюк может выпасть.
Как пользоваться кривошипно-ползунковым механизмом

Ниже приведен умный механизм автоматизации, который преобразует вращение кривошипа в линейное движение и делает ход линейного движения в два раза больше исходного.

В этой конструкции ползун используется в стандартном кривошипно-шатунном механизме ползунка с зубчатой ​​передачей. Кроме того, направляющая слайдера разделена на фиксированную и подвижную стойки. Движение кривошипа на ведущем валу передается на зубчатую шестерню. Затем ход качения (L) по неподвижной рейке увеличивается на 100% (2L), когда он достигает вершины шестерни. Этот ход (2L) воздействует на подвижную рейку, установленную на верхней части редуктора.

Другие примеры применения

Конструкция имеет тенденцию быть длиннее, чем первоначально предполагалось, если используются пневматический цилиндр и линейная направляющая или если принимается конструкция, в которой шариковые винты используются для соединения двигателя.Этот умный механизм автоматизации является эффективным решением для того, чтобы сделать светильник коротким и компактным.

  1. Колебательные движения обрабатывающей машины
  2. Поступательно-поступательный механизм линейного перемещения для приспособления для производства моноблочных потоков
    (печать, протирка и прижим)
  3. Инспекционные приспособления

Вращательное движение можно преобразовать в поступательное с помощью винта. В этом томе представлен умный механизм автоматизации, который позволяет управлять линейным движением различными способами, используя различные типы винтовых конструкций.В качестве кулачка используются «резьбовые» и «нарезные» винты.

Если ручку, установленную на правом краю, повернуть, это вызывает прямолинейное движение ползунка, расположенного на двух винтах с резьбой, которые собраны с двумя противоположными винтами. Эта конструкция также может быть применена для двухскоростного механизма, в котором однократное вращение рукоятки преобразуется в движение с удвоенным шагом вращения.

Примеры применения
1.  Позиционирование или сканирование электрического терминала для инспекционного оборудования
2.  Механизм регулировки положения краев приспособлений, совместимых с различными продуктами
3.  Двухскоростной механизм
Кулачки

Кулачок является типичным механическим компонентом, используемым в механизме преобразования вращательного движения в линейное. В этом томе мы рассмотрим примеры применения кулачка.

Кулачки

являются отличным выбором благодаря следующим характеристикам:

Кулачки
1. Характеристики движения, такие как скорость, ускорение и силы, могут свободно управляться выходным концом, на который передается движение кулачка.
2. В сочетании с рычажным механизмом включение кулачка в конструкцию позволяет спроектировать компактный, легкий, но очень жесткий механизм в простой конструкции.
3. могут сократить общее время цикла, поскольку они могут перекрываться и управлять несколькими движениями.
4. Высокая надежность.

Основываясь на этих характеристиках, кулачки применяются в различных приложениях, включая механизм запрессовки клемм высокоскоростной машины запрессовки клемм, а также высокоскоростное и сложное управление синхронизацией клапана выпуска воздуха для автомобильный двигатель.(См. [Фото 1].) На фотографии ниже смещение кулачка пластины увеличено за счет рычажного механизма. Для обеспечения скоростных откликов установлены пружины, предотвращающие прыжки.

Кулачок, представленный здесь как основа автоматизации, умные механизмы работают как поддерживающий элемент, позволяющий быстро прикреплять/отсоединять приспособления за счет преобразования смещения линейного движения в силы, а не преобразования вращательного движения в линейное движение, что было объяснено ранее как превосходная характеристика кулачков, используемых в управлении движением.
На [Рис.1] слева показан механизм преобразования вращательно-линейного движения с использованием типичного пластинчатого кулачка и возвратно-поступательного толкателя, а рядом с ним — механизм зажима одним касанием.

Преобразование вращательного движения в прямолинейное может быть сконфигурировано с помощью различных компонентов и достигнуто с различной степенью точности и мощности. Мы надеемся, что вас вдохновили эти простые механизмы.

Кривошипно-шатунный механизм|Интернет-галерея Autodesk

© 2014 Autodesk, Inc.Все права защищены.

Любое использование этой Услуги регулируется положениями и условиями применимых условий обслуживания Autodesk, принятых при доступе к этой Услуге.

Эта Служба может включать или использовать фоновые технологические компоненты Autodesk. Для получения информации об этих компонентах щелкните здесь: http://www.autodesk.com/cloud-platform-components

Товарные знаки

Autodesk, логотип Autodesk и Fusion 360 являются зарегистрированными товарными знаками или товарными знаками Autodesk, Inc., и/или ее дочерние компании и/или аффилированные лица.

Все другие торговые марки, названия продуктов или товарные знаки принадлежат их соответствующим владельцам.

Авторские права и ссылки на стороннее программное обеспечение

Ruby gems защищены авторским правом (c) Чада Фаулера, Рича Килмера, Джима Вейриха и других. Авторские права на части (c) Engine Yard и Andre Arko

bootstrap-select.js — Copyright (C) 2013 bootstrap-select

Backbone.js — Copyright (c) 2010–2013 Jeremy Ashkenas, DocumentCloud

Apple-Style Flip Counter Авторское право (c) 2010 Chris Nanney

imagesLoaded is Copyright © 2013 Дэвид ДеСандро

jQuery is Copyright 2013 jQuery Foundation и другие участники http://jquery.com/

Надстройка jQuery timepicker защищена авторским правом (c) 2013 Trent Richardson

jQuery ColorBox защищена авторским правом (c) 2013 Jack Moore

jQuery.gritter защищена авторским правом (c) 2013 Jordan Boesch

Masonry защищена авторским правом (c) 2013 David DeSandro

Подчеркивание — авторское право (c) 2009–2013 Джереми Ашкенас, DocumentCloud and Investigative

Репортеры и редакторы

underscore_string — авторское право (c) 2011 Эса-Матти Сууронен [email protected]

Icanhaz.02 Icanhaz.02js — ICanHaz.js — Copyright (c) Хенрик Йоретег, 2010 (Mustache и Mustache.js — Copyright (c) 2009 Chris Wanstrath (Ruby) и Copyright (c) Jan Lehnardt, 2010 (JavaScript) соответственно)

Calendario — Copyright (c) ) Codrops 2014 by tympanus

Все вышеуказанные программные компоненты лицензируются по лицензии MIT.

Настоящим предоставляется бесплатное разрешение любому лицу, получившему копию этого программного обеспечения и связанных с ним файлов документации («Программное обеспечение»), работать с Программным обеспечением без ограничений, включая, помимо прочего, права на использование, копирование, изменение , объединять, публиковать, распространять, сублицензировать и/или продавать копии Программного обеспечения, а также разрешать лицам, которым предоставляется Программное обеспечение, делать это при соблюдении следующих условий:

включены во все копии или существенные части Программного обеспечения.

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ПРЕДОСТАВЛЯЕТСЯ «КАК ЕСТЬ», БЕЗ КАКИХ-ЛИБО ГАРАНТИЙ, ЯВНЫХ ИЛИ ПОДРАЗУМЕВАЕМЫХ, ВКЛЮЧАЯ, ПОМИМО ПРОЧЕГО, ГАРАНТИИ КОММЕРЧЕСКОЙ ПРИГОДНОСТИ, ПРИГОДНОСТИ ДЛЯ ОПРЕДЕЛЕННОЙ ЦЕЛИ И НЕНАРУШЕНИЯ ПРАВ. НИ ПРИ КАКИХ ОБСТОЯТЕЛЬСТВАХ АВТОРЫ ИЛИ ОБЛАДАТЕЛИ АВТОРСКИМ ПРАВОМ НЕ НЕСУТ ОТВЕТСТВЕННОСТИ ЗА ЛЮБЫЕ ПРЕТЕНЗИИ, УЩЕРБ ИЛИ ИНУЮ ОТВЕТСТВЕННОСТЬ, БУДУТ СВЯЗАННЫЕ С ДОГОВОРОМ, ДЕЛОМ ИЛИ ИНЫМ ОБРАЗОМ, ВОЗНИКАЮЩИЕ ИЗ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ ИЛИ ИСПОЛЬЗОВАНИЯ ИЛИ ИНЫХ СДЕЛОК В СВЯЗИ С ПРОГРАММНЫМ ОБЕСПЕЧЕНИЕМ ИЛИ ИСПОЛЬЗОВАНИЕМ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ.


Части, относящиеся к лайтбоксу, находятся под лицензией Creative Commons Attribution 2.5 Лицензия (http://creativecommons.org/licenses/by/2.5/). Лайтбокс был создан Локешем Дхакаром (lokeshdhakar.com).

Кривошип (механизм)

Кривошип представляет собой рычаг, прикрепленный под прямым углом к ​​вращающемуся валу, с помощью которого возвратно-поступательное движение передается валу или принимается от него. Он используется для преобразования кругового движения в возвратно-поступательное или возвратно-поступательного движения в круговое. Рычаг может представлять собой изогнутую часть вала или прикрепленный к нему отдельный рычаг. К концу кривошипа шарниром прикреплен стержень, обычно называемый шатуном.Конец стержня, прикрепленный к кривошипу, движется круговым движением, в то время как другой конец обычно вынужден двигаться линейным скользящим движением внутрь и наружу.

Этот термин часто относится к кривошипу с приводом от человека, который используется для ручного поворота оси, как в шатуне велосипеда или в скобе и дрели. В этом случае рука или нога человека служит шатуном, прикладывающим возвратно-поступательную силу к кривошипу. Часто имеется штанга, перпендикулярная другому концу руки, часто со свободно вращающейся ручкой для удержания в руке или в случае работы ногой (обычно второй рукой для другой ноги), с свободно вращающаяся педаль.

Примеры

рукоятка Ручная рукоятка на точилке для карандашей

Знакомые примеры включают:

Рукоятки с ручным приводом

Двигатели

Почти во всех поршневых двигателях используются кривошипы для преобразования возвратно-поступательного движения поршней во вращательное движение. Шатуны встроены в коленчатый вал.

Механика

Смещение конца шатуна примерно пропорционально косинусу угла поворота кривошипа при измерении от верхней мертвой точки (ВМТ).Таким образом, возвратно-поступательное движение, создаваемое постоянно вращающимся кривошипом и шатуном, приблизительно представляет собой простое гармоническое движение:

, где x — расстояние конца шатуна от оси кривошипа, l — длина шатуна, r — длина кривошипа, α — угол кривошип измеряется от верхней мертвой точки (ВМТ). Технически возвратно-поступательное движение шатуна немного отличается от синусоидального из-за изменения угла шатуна во время цикла.

Механическое преимущество кривошипа, соотношение между усилием на шатуне и крутящим моментом на валу, меняется на протяжении цикла кривошипа. Отношения между ними примерно:

где крутящий момент и F сила на шатуне. Для данной силы на кривошипе крутящий момент максимален при углах кривошипа α = 90° или 270° от ВМТ. Когда кривошип приводится в движение шатуном, возникает проблема, когда кривошип находится в верхней мертвой точке (0°) или нижней мертвой точке (180°).В эти моменты цикла кривошипа сила, действующая на шатун, не вызывает крутящего момента на кривошипе. Следовательно, если кривошип неподвижен и находится в одной из этих двух точек, он не может быть приведен в движение шатуном. По этой причине в паровозах, колеса которых приводятся в движение кривошипами, два шатуна прикреплены к колесам в точках, отстоящих друг от друга на 90°, так что независимо от положения колес при запуске двигателя хотя бы один шатун будет быть в состоянии приложить крутящий момент, чтобы начать поезд.

История

Западный мир

Классическая древность

Эксцентрично установленная рукоятка вращающейся ручной мельницы, которая появилась в 5 веке до нашей эры в кельтиберской Испании и в конечном итоге распространилась по Римской империи, представляет собой кривошип. [2] [3] [4] Римский железный коленчатый вал неизвестного назначения, датируемый 2 веком нашей эры, был раскопан в Августе Раурике, Швейцария. На одном конце куска длиной 82,5 см установлена ​​бронзовая ручка длиной 15 см, другая ручка утеряна. [5] [1]

А ок. Настоящая железная рукоятка длиной 40 см вместе с парой разбитых жерновов диаметром 50–65 см и различными железными изделиями была раскопана в Ашхайме, недалеко от Мюнхена. Римская мельница с кривошипным приводом датируется концом 2 века нашей эры. [6] Часто цитируемая современная реконструкция ковшового цепного насоса, приводимого в движение ручными маховиками кораблей Неми, была отвергнута как «археологическая фантазия». [7]

Римская лесопилка Иераполиса 3 века нашей эры, самая ранняя из известных машин, в которой кривошип сочетается с шатуном. [8]

Самые ранние в мире свидетельства того, что кривошип в сочетании с шатуном в машине появляется в позднеримской лесопилке Иераполиса с 3-го века нашей эры и двух римских каменных лесопилках в Герасе, римская Сирия, и Эфесе, Малая Азия ( оба 6 века нашей эры). [8] На фронтоне мельницы Иераполиса показано водяное колесо, приводимое в движение мельничной дорожкой, приводящее в действие через зубчатую передачу две рамные пилы, которые разрезают прямоугольные блоки с помощью каких-то шатунов и, по механической необходимости, кривошипов. .Сопроводительная надпись на греческом языке. [9]

Кривошипно-шатунные механизмы двух других археологически засвидетельствованных лесопилок работали без зубчатой ​​передачи. [10] [11] В древней литературе мы находим упоминание о работах поэта Авзония конца 4-го века с водяными мраморными пилами недалеко от Трира, ныне Германия; [8] Примерно в то же время эти типы мельниц, по-видимому, также указаны христианским святым Григорием Нисским из Анатолии, демонстрируя разнообразное использование гидроэнергии во многих частях Римской империи [12] Три находит отодвинуть дату изобретения кривошипа и шатуна на целое тысячелетие назад; [8] Впервые все основные компоненты гораздо более позднего парового двигателя были собраны одной технологической культурой:

С кривошипно-шатунной системой все элементы конструкции паровой машины (изобретен в 1712 г.) — эолипил Героя (производящий силу пара), цилиндр и поршень (в металлических силовых насосах), обратные клапаны (в водяных насосах), зубчатые передачи (в водяных мельницах и часах) — были известны еще во времена Римской империи. [13]
Средневековье

Вращающийся точильный камень — самое раннее его изображение — [14] , который приводится в действие кривошипной рукояткой, показан в каролингской рукописи Утрехтская псалтирь ; рисунок пером около 830 года восходит к позднему античному оригиналу. [15] В музыкальном трактате, приписываемом аббату Одо из Клюни (ок. 878–942 гг.), описывается ладовый струнный инструмент, звук которого звучал с помощью колеса из смолы, вращаемого рукояткой; позже это устройство появляется в двух иллюминированных рукописях XII века. [14] Есть также две фотографии Фортуны, крутящей колесо судьбы из этого и следующего веков. [14]

Использование кривошипных рукояток в трепанационных сверлах было описано в издании Dictionnaire des Antiquités Grecques et Romaines 1887 года в честь испанского хирурга-мусульманина Абу аль-Касима аль-Захрави; однако существование такого устройства не может быть подтверждено оригинальным освещением, и поэтому его следует не принимать во внимание. [16] Монах-бенедиктинец Феофил Пресвитер (ок.1070−1125) описал кривошипные рукоятки, «используемые при токарной обработке литейных стержней». [17]

Итальянский врач Гвидо да Виджевано (ок. 1280–1349 гг.), планируя новый крестовый поход, нарисовал гребную лодку и военные повозки, которые приводились в движение составными кривошипами и зубчатыми колесами, поворачиваемыми вручную (в центре изображения). [18] В Псалтири Латтрелла , датируемой примерно 1340 годом, описывается точильный камень, который вращался двумя кривошипами, по одному на каждом конце его оси; зубчатая ручная мельница с одним или двумя кривошипами появилась позже, в 15 веке; [19]

Средневековые подъемные краны иногда приводились в движение рукоятками, но чаще лебедками. [20]

Ренессанс
Лодка с гребным колесом 15 века, весла которой вращаются одноходовыми коленчатыми валами ( Аноним гуситских войн )

Кривошип стал обычным явлением в Европе к началу 15 века, его часто можно увидеть в работах таких специалистов, как немецкий военный инженер Конрад Кайзер. [19] Устройства, изображенные в Bellifortis компании Kyeser, включают кривошипные лебедки (вместо спицованных колес) для натягивания осадных арбалетов, кривошипную цепь ковшей для подъема воды и кривошипы, прикрепленные к колесу колоколов. [19] Компания Kieser также оснастила винты Архимеда для подъема воды кривошипной рукояткой — новшество, которое впоследствии заменило древнюю практику работы с трубой путем наступания. [21] Самое раннее свидетельство оснащения колодезного подъемника кривошипами находится на миниатюре c. 1425 в немецком Hausbuch Фонда Менделя . [22]

Немецкий арбалетчик взводит свое оружие с помощью кривошипно-реечной передачи (ок. 1493 г.)

Первые изображения сложной рукоятки плотницкой скобы появляются между 1420 и 1430 годами в различных произведениях искусства Северной Европы. [23] Быстрое внедрение составного кривошипа можно проследить в работах Анонима гуситских войн, неизвестного немецкого инженера, пишущего о состоянии военной техники своего времени: во-первых, шатун, примененный к кривошипам, снова появились, во-вторых, кривошипы с двойным составом также стали оснащаться шатунами и, в-третьих, для этих кривошипов использовался маховик, чтобы вывести их из «мертвой точки».

На одном из рисунков Анонимуса гуситских войн изображена лодка с парой гребных колес на каждом конце, которые вращаются людьми, работающими с составными рукоятками (см. выше).Эта концепция была значительно улучшена итальянцем Роберто Вальтурио в 1463 году, который изобрел лодку с пятью комплектами, в которой все параллельные кривошипы соединены с единым источником энергии одним шатуном. Эту идею также подхватил его соотечественник Франческо ди Джорджио. . [24]

В Италии эпохи Возрождения самые ранние свидетельства составного кривошипа и шатуна можно найти в альбомах Такколы, но это устройство до сих пор неправильно понимается с точки зрения механики. [25] Хорошее представление о движении кривошипа демонстрирует немного позднее Пизанелло, нарисовавший поршневой насос, приводимый в движение водяным колесом и приводимый в действие двумя простыми кривошипами и двумя шатунами. [25]

В 15 веке также были введены кривошипно-реечные устройства, называемые журавлями, которые устанавливались на ложе арбалета как средство приложения еще большей силы при натягивании стрелкового оружия (см. справа). [26] В текстильной промышленности внедрены кривошипные катушки для намотки мотков пряжи. [19]

Около 1480 года раннесредневековый точильный камень был усовершенствован за счет педали и кривошипного механизма. Рукоятки, установленные на тележках, впервые появляются на немецкой гравюре 1589 года. [27]

Начиная с 16-го века, в технологических трактатах того периода становится много свидетельств того, что кривошипы и шатуны интегрированы в конструкцию машин: только в книге Агостино Рамелли «Разнообразные и искусственные машины » 1588 года изображено восемнадцать примеров, число которых возрастает в году. Theatrum Machinarum Novum от Георга Андреаса Бёклера до 45 различных машин, что составляет одну треть от общего числа. [28]

Дальний Восток

Тибетец, работающий на керне (1938 г.).Перпендикулярная рукоятка таких вращающихся ручных мельниц работает как рукоятка. [3] [4]

Самая ранняя настоящая кривошипная рукоятка в ханьском Китае встречается, как показывают модели гробниц из глазурованной глиняной посуды эпохи Хань, в сельскохозяйственном веялке, [29] , датированном не позднее 200 г. н.э. [30] После этого рукоятка использовалась в Китае для наматывания шелка и прядения конопли, в водяном сите для муки, для металлургических мехов с гидравлическим приводом и в лебедке для колодца. [31] Однако потенциал кривошипа по преобразованию кругового движения в возвратно-поступательное, похоже, так и не был полностью реализован в Китае, и кривошип, как правило, отсутствовал в таких машинах до начала 20-го века. [32]

Ближний Восток

В то время как американо-американский историк техники Линн Уайт не мог найти «твердых свидетельств даже самого простого применения рукоятки до книги аль-Джазари 1206 г. н.э.», [19] рукоятка появляется, согласно Бистону, в середине 9 век в нескольких гидравлических устройствах, описанных братьями Бану Муса в их Книге гениальных устройств . [33] Эти устройства, однако, совершали только частичные вращения и не могли передавать большую мощность, [34] , хотя для преобразования его в коленчатый вал потребовалась бы лишь небольшая модификация. [35]

Аль-Джазари (1136–1206) описал систему кривошипа и шатуна во вращающейся машине двух своих водоподъемных машин. [36] Его двухцилиндровый насос включал коленчатый вал, [37] , но устройство было излишне сложным, что указывало на то, что он все еще не полностью понимал концепцию преобразования энергии. [38] После аль-Джазари чудаки в исламской технологии не прослеживаются до начала 15-го века, копии Механики древнегреческого инженера Героя Александрийского. A B C D D Ritti, Greewe & Kessener 2007, с. 161:

Из-за находок в Эфесе и Герасе изобретение системы кривошипа и шатуна пришлось переносить с 13-го на 6-й век; теперь рельеф Иераполя переносит его еще на три столетия назад, что подтверждает, что каменные лесопилки с водяным приводом действительно использовались, когда Авзоний писал свою « Мозеллу» . Уайт-младший, 1962, с. 104:

Тем не менее, исследователь китайской технологии в начале двадцатого века отмечает, что даже поколение назад китайцы «не достигли той стадии, когда непрерывное вращательное движение заменяет возвратно-поступательное движение в таких технических устройствах, как дрель, токарный станок, пила и т. Чтобы сделать этот шаг, знакомство с кривошипом необходимо. Кривошип в его простой рудиментарной форме мы находим в [современной] китайской лебедке, использование которой, однако, по-видимому, не дало толчка к изменению возвратно-поступательного движения на круговое в других устройствах». Уайт-младший, 1962, с. 170:

Однако то, что аль-Джазари не вполне понял значение кривошипа для соединения возвратно-поступательного движения с вращательным, доказывает его необычайно сложный насос, приводимый в действие зубчатым колесом, установленным эксцентрично на его оси.

Библиография

  • Франкель, Рафаэль (2003), «Мельница Олинф, ее происхождение и распространение: типология и распространение», Американский журнал археологии 107 (1): 1–21
  • Холл, Берт С.(1979), Технологические иллюстрации так называемого «Анонима гуситских войн». Codex Latinus Monacensis 197, часть 1 , Висбаден: Dr. Ludwig Reichert Verlag, ISBN 3-920153-93-6 
  • Хагерманн, Дитер; Шнайдер, Хельмут (1997), Propyläen Technikgeschichte. Landbau und Handwerk, 750 v. Chr. до 1000 н. Хр. (2-е изд.), Берлин, ISBN 3-549-05632-X
  • аль-Хасан, Ахмад Ю.; Хилл, Дональд Р. (1992), Исламские технологии. Иллюстрированная история , издательство Кембриджского университета, ISBN 0-521-422396 
  • Лукас, Адам Роберт (2005), «Промышленное фрезерование в древнем и средневековом мире.Обзор свидетельств промышленной революции в средневековой Европе», Технология и культура 46 (1): 1–30, doi: 10.1353/tech.2005.0026
  • Laur-Belart, Rudolf (1988), Führer durch Augusta Raurica (5-е изд.), август
  • Мангарц, Фриц (2006), «Zur Rekonstruktion der wassergetriebenen byzantinischen Steinsägemaschine von Ephesos, Türkei. Vorbericht», Archäologisches Korrespondenzblatt 36 (1): 573–590
  • Нидхэм, Джозеф (1991), Наука и цивилизация в Китае: Том 4, Физика и физическая технология: Часть 2, Машиностроение , Издательство Кембриджского университета, ISBN 0521058031 .
  • Олесон, Джон Питер (1984), Греческие и римские механические водоподъемные устройства: история технологии , University of Toronto Press, ISBN 90-277-1693-5
  • Вольперт, Ханс-Петер (1997), «Eine römische Kurbelmühle aus Aschheim, Lkr. München», Bericht der bayerischen Bodendenkmalpflege 38 : 193–199, ISBN 3-7749-29003-13 
  • Уайт-младший, Линн (1962), Средневековые технологии и социальные изменения , Оксфорд: в Clarendon Press
  • Ритти, Тулия; Греве, Клаус; Кессенер, Пол (2007), «Рельеф каменной лесопилки с водным приводом на саркофаге в Иераполисе и ее последствия», Journal of Roman Archaeology 20 : 138–163
  • Шиолер, Торкильд (2009 г.), «Die Kurbelwelle von Augst und die römische Steinsägemühle», Helvetia Archaeologica 40 (159/160): 113–124

Внешние ссылки

Еще

ветрогенераторов Еще

ветрогенераторов

НАЖМИТЕ ЗДЕСЬ, ЧТОБЫ ПОЛУЧИТЬ ИНДЕКСНУЮ СТРАНИЦУ

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ О ВЕТРЯНЫХ УСТРОЙСТВАХ

В.Райан 2006 — 2009

 

Виден еще один пример ветряного устройства ниже. Простой кривошипный механизм, показанный в центре анимации, ключевой механизм. (нажмите здесь, чтобы узнать больше о механизмы, включая кривошипы)

При вращении винта кривошипно-шатунный механизм вращается.Скорость ветра определяет число оборотов в минуту (об/мин) кривошипа.

Небольшую легкую модель можно прикрепить/зафиксировать на верхняя часть кривошипно-шатунного механизма. При вращении рукоятки модель движется из стороны в сторону относительно плавным движением.

НАЖМИТЕ ЗДЕСЬ, ЧТОБЫ ПОЛУЧИТЬ ИНДЕКС ТЕХНОЛОГИЙ И ОКРУЖАЮЩЕЙ СРЕДЫ

Кривошип (механизм) — Formulasearchengine

{{#invoke:см. также|см.также}}

Кривошип представляет собой рычаг, прикрепленный под прямым углом к ​​вращающемуся валу, с помощью которого возвратно-поступательное движение передается валу или принимается от него.Он используется для преобразования кругового движения в возвратно-поступательное или наоборот. Рычаг может быть изогнутой частью вала или прикрепленным к нему отдельным рычагом или диском. К концу кривошипа шарниром прикреплен стержень, обычно называемый шатуном. Конец стержня, прикрепленный к кривошипу, движется круговым движением, в то время как другой конец обычно вынужден двигаться линейным скользящим движением.

Этот термин часто относится к кривошипу с приводом от человека, который используется для ручного поворота оси, например, в шатуне велосипеда или в скобе и дрели.В этом случае рука или нога человека служит шатуном, прикладывающим возвратно-поступательную силу к кривошипу. Обычно есть штанга, перпендикулярная другому концу руки, часто со свободно вращающейся ручкой или прикрепленной педалью.

Примеры

Ручная рукоятка на точилке для карандашей

Знакомые примеры включают:

Рукоятки с ручным приводом

Двигатели

Анимация, показывающая движение поршня и коленчатого вала в двигателе внутреннего сгорания, таком как автомобильный двигатель.

Почти во всех поршневых двигателях используются кривошипы (с шатунами) для преобразования возвратно-поступательного движения поршней во вращательное движение.Шатуны встроены в коленчатый вал.

Механика

Смещение конца шатуна примерно пропорционально косинусу угла поворота кривошипа при измерении от верхней мертвой точки (ВМТ). Таким образом, возвратно-поступательное движение, создаваемое постоянно вращающимся кривошипом и шатуном, приблизительно представляет собой простое гармоническое движение:

x=r⁢cos⁡α+l{\displaystyle x=r\cos\alpha +l}

где x — расстояние конца шатуна от оси кривошипа, l — длина шатуна, r — длина кривошипа, а α — угол кривошипа, измеренный от верхней мертвой точки (ВМТ).{2}\alpha }}}

Эта разница становится существенной в высокоскоростных двигателях, которым могут потребоваться уравновешивающие валы для уменьшения вибрации из-за этого «вторичного дисбаланса».

Механическое преимущество кривошипа, соотношение между силой, действующей на шатун, и крутящим моментом на валу, меняется на протяжении цикла кривошипа. Соотношение между ними примерно такое:

τ = F⁢r⁢sin⁡α{\displaystyle \tau =Fr\sin\alpha \,}

, где τ{\displaystyle \tau \,} – крутящий момент, а  F  – сила, действующая на шатун.{2}\alpha }}}}

Например, для длины штока 6 дюймов и радиуса кривошипа 2 дюйма численное решение приведенного выше уравнения находит минимум скорости (максимальная скорость движения вниз) при угле кривошипа 73,17615° после ВМТ. . Затем, используя закон синусов треугольника, обнаруживается, что угол между кривошипом и шатуном составляет 88,21738 °, а угол шатуна составляет 18,60647 ° от вертикали (см. Уравнения движения поршня#Пример).

Когда кривошип приводится в движение шатуном, проблема возникает, когда кривошип находится в верхней мертвой точке (0°) или нижней мертвой точке (180°).В эти моменты цикла кривошипа сила, действующая на шатун, не вызывает крутящего момента на кривошипе. Следовательно, если кривошип неподвижен и находится в одной из этих двух точек, он не может быть приведен в движение шатуном. По этой причине в паровозах, колеса которых приводятся в движение кривошипами, шатуны крепятся к колесам в точках, отстоящих друг от друга на некоторый угол, так что независимо от положения колес при запуске двигателя хотя бы один шатун будет быть в состоянии приложить крутящий момент, чтобы начать поезд.

История

Западный мир

Классическая древность

{{#invoke:см. также|см.также}}

Эксцентрично установленная рукоятка вращающейся ручной мельницы, которая появилась в 5 веке до нашей эры в кельтиберской Испании и в конечном итоге распространилась по Римской империи, представляет собой кривошип. [2] [3] [4] Римский железный коленчатый вал неизвестного назначения, датируемый 2 веком нашей эры, был раскопан в Августе Раурике, Швейцария. 82.К одному концу куска длиной 5 см присоединена бронзовая ручка длиной 15 см, другая ручка утрачена. [1] [5]

А ок. Настоящая железная рукоятка длиной 40 см вместе с парой разбитых жерновов диаметром 50–65 см и различными железными изделиями была раскопана в Ашхайме, недалеко от Мюнхена. Римская мельница с кривошипным приводом датируется концом 2 века нашей эры. [6] Часто цитируемая современная реконструкция ковшового цепного насоса, приводимого в движение ручными маховиками кораблей Неми, была отвергнута как «археологическая фантазия». [7]

Римская лесопилка Иераполиса 3 века нашей эры, самая ранняя из известных машин, в которой кривошип сочетается с шатуном. [8]

Самые ранние в мире свидетельства того, что кривошип в сочетании с шатуном в машине появляется в позднеримской лесопилке Иераполиса с 3-го века нашей эры и двух римских каменных лесопилках в Герасе, римская Сирия, и Эфесе, Малая Азия ( оба 6 века нашей эры). [8] На фронтоне мельницы Иераполиса показано водяное колесо, приводимое в движение мельничной дорожкой, приводящее в действие через зубчатую передачу две рамные пилы, которые разрезают прямоугольные блоки с помощью каких-то шатунов и, по механической необходимости, кривошипов. .Сопроводительная надпись на греческом языке. [9]

Кривошипно-шатунные механизмы двух других археологически подтвержденных лесопильных заводов работали без зубчатой ​​передачи. [10] [11] В древней литературе мы находим упоминание о работах поэта Авзония конца 4-го века с водяными мраморными пилами недалеко от Трира, ныне Германия; [8] Примерно в то же время эти типы мельниц, по-видимому, также указаны христианским святым Григорием Нисским из Анатолии, демонстрируя разнообразное использование гидроэнергии во многих частях Римской империи [12] Три отодвигает дату изобретения кривошипно-шатунного механизма на целое тысячелетие; [8] Впервые все основные компоненты гораздо более поздней паровой машины были собраны одной технологической культурой:

С кривошипно-шатунной системой, все элементы для построения паровой машины (изобретена в 1712 г.) — эолипил Героя (производящий силу пара), цилиндр и поршень (в металлических силовых насосах), обратные клапаны (в водяных насосах ), зубчатые передачи (в водяных мельницах и часах) — были известны еще во времена Римской империи. [13]

Средневековье

{{#invoke:см. также|см.также}}

Вращающийся точильный камень — самое раннее его изображение — [14] , который приводится в действие кривошипной рукояткой, показан в каролингской рукописи Утрехтская псалтирь ; рисунок пером около 830 года восходит к позднему античному оригиналу. [15] В музыкальном трактате, приписываемом аббату Одо из Клюни (ок. 878–942 гг.), описывается ладовый струнный инструмент, звук которого звучал с помощью колеса из смолы, вращаемого рукояткой; позже это устройство появляется в двух иллюминированных рукописях XII века. [14] Есть также две фотографии Фортуны, крутящей колесо судьбы из этого и следующего веков. [14]

Использование кривошипных рукояток в трепанационных сверлах было описано в издании Dictionnaire des Antiquités Grecques et Romaines 1887 г. за счет испанского хирурга-мусульманина Абу аль-Касима аль-Захрави; однако существование такого устройства не может быть подтверждено оригинальным освещением, и поэтому его следует не принимать во внимание. [16] Монах-бенедиктинец Феофил Пресвитер (ок.1070−1125) описал кривошипные рукоятки, «используемые при токарной обработке литейных стержней». [17]

Итальянский врач Гвидо да Виджевано (ок. 1280–1349 гг.), планируя новый крестовый поход, нарисовал гребную лодку и военные повозки, которые приводились в движение составными кривошипами и зубчатыми колесами, вращаемыми вручную (в центре изображение). [18] В Псалтири Латтрелла , датируемой примерно 1340 годом, описывается точильный камень, который вращался двумя кривошипами, по одному на каждом конце его оси; зубчатая ручная мельница с одним или двумя кривошипами появилась позже, в 15 веке; [19]

Средневековые подъемные краны иногда приводились в движение рукоятками, хотя чаще лебедками. [20]

Ренессанс

{{#invoke:см. также|см.также}}

Лодка с гребным колесом 15 века, весла которой вращаются одноходовыми коленчатыми валами ( Аноним гуситских войн )

Кривошип стал обычным явлением в Европе к началу 15 века, его часто можно увидеть в работах таких специалистов, как немецкий военный инженер Конрад Кайзер. [19] Устройства, изображенные в Bellifortis компании Kyeser, включают кривошипные лебедки (вместо спицованных колес) для натягивания осадных арбалетов, кривошипную цепь ковшей для подъема воды и кривошипы, прикрепленные к колесу колоколов. [19] Kieser также оснастил винты Архимеда для подъема воды кривошипной рукояткой, нововведение, которое впоследствии заменило древнюю практику работы с трубой путем наступания. [21] Самое раннее свидетельство оснащения колодезного подъемника кривошипами находится на миниатюре c. 1425 в немецком Hausbuch Фонда Менделя . [22]

Немецкий арбалетчик взводит свое оружие с помощью кривошипно-реечной передачи (ок. 1493 г.)

Первые изображения сложной рукоятки плотницкой скобы появляются между 1420 и 1430 годами в различных произведениях искусства Северной Европы. [23] Быстрое внедрение составного кривошипа можно проследить в работах Анонима гуситских войн, неизвестного немецкого инженера, пишущего о состоянии военной техники своего времени: во-первых, шатун, примененный к кривошипам, снова появились, во-вторых, кривошипы с двойным составом также стали оснащаться шатунами и, в-третьих, для этих кривошипов использовался маховик, чтобы вывести их из «мертвой точки».

На одном из рисунков Анонимных Гуситских войн изображена лодка с парой гребных колес на каждом конце, вращаемых людьми, управляющими составными рукоятками (см. выше).Эта концепция была значительно улучшена итальянцем Роберто Вальтурио в 1463 году, который изобрел лодку с пятью комплектами, в которой все параллельные кривошипы соединены с единым источником энергии одним шатуном. Эту идею также подхватил его соотечественник Франческо ди Джорджио. . [24]

В Италии эпохи Возрождения самые ранние свидетельства составного кривошипа и шатуна можно найти в альбомах Такколы, но это устройство до сих пор неправильно понимается с точки зрения механики. [25] Четкое представление о движении кривошипа демонстрирует чуть позже Пизанелло, нарисовавший привод с поршневым насосом. водяным колесом и приводился в действие двумя простыми кривошипами и двумя шатунами. [25]

В 15 веке также были введены кривошипно-реечные устройства, называемые кранкинами, которые устанавливались на приклад арбалета как средство приложения еще большей силы при натягивании стрелкового оружия (см. справа). . [26] В текстильной промышленности внедрены кривошипные катушки для намотки мотков пряжи. [19]

Около 1480 года раннесредневековый вращающийся точильный камень был усовершенствован с помощью педали и кривошипного механизма. Рукоятки, установленные на тележках, впервые появляются на немецкой гравюре 1589 года. [27]

Начиная с 16-го века, в технологических трактатах того периода становится много свидетельств того, что кривошипы и шатуны интегрированы в конструкцию машин: только в книге Агостино Рамелли «Разнообразные и искусственные машины» 1588 года изображено восемнадцать примеров, число, которое возрастает в Theatrum Machinarum Novum Георга Андреаса Бёклера до 45 различных машин, что составляет одну треть от общего числа. [28]

Дальний Восток

Тибетец, работающий на керне (1938 г.).Перпендикулярная рукоятка таких вращающихся ручных мельниц работает как рукоятка. [3] [4]

Самая ранняя настоящая кривошипная рукоятка в ханьском Китае встречается, как показывают модели гробниц из глазурованной глиняной посуды эпохи Хань, в сельскохозяйственном веялке, [29] , датированном не позднее 200 г. н.э. [30] После этого рукоятка использовалась в Китае для наматывания шелка и прядения конопли, в водяном сите для муки, для металлургических мехов с гидравлическим приводом и в лебедке для колодца. [31] Однако потенциал кривошипа по преобразованию кругового движения в возвратно-поступательное, похоже, так и не был полностью реализован в Китае, и кривошип, как правило, отсутствовал в таких машинах до начала 20-го века. [32]

Ближний Восток

В то время как американо-американский историк техники Линн Уайт не мог найти «твердых свидетельств даже самого простого применения рукоятки до книги аль-Джазари 1206 г. н.э.», [19] рукоятка появляется, согласно Бистону, в середине 9 век в нескольких гидравлических устройствах, описанных братьями Бану Муса в их Книге гениальных устройств . [33] Эти устройства, однако, совершали только частичные вращения и не могли передавать большую мощность, [34] , хотя для преобразования его в коленчатый вал потребовалась бы лишь небольшая модификация. [35]

Аль-Джазари (1136–1206) описал кривошипно-шатунную систему во вращающейся машине двух своих водоподъемных машин. [36] Его двухцилиндровый насос включал коленчатый вал, [37] , но устройство было излишне сложным, что указывало на то, что он все еще не полностью понимал концепцию преобразования энергии. [38] После аль-Джазари чудаки в исламской технологии не прослеживаются до начала 15-го века копии Механики древнегреческого инженера Героя Александрийского. [16]

20 век

Шатуны раньше использовались на некоторых машинах в начале 20 века; например, почти все фонографы до 1930-х годов приводились в действие заводными двигателями с заводными рукоятками. В поршневых двигателях используются кривошипы для преобразования линейного движения поршня во вращательное движение. Двигатели внутреннего сгорания автомобилей начала 20-го века обычно запускались с помощью рукоятки (известной как пусковая рукоятка в Великобритании), прежде чем электрические стартеры стали широко использоваться.

В руководстве по эксплуатации Reo 1918 года описывается, как проворачивать автомобиль вручную:

  • Первое: Убедитесь, что рычаг переключения передач находится в нейтральном положении.
  • Секунда: педаль сцепления разблокирована, а сцепление включено. Педаль тормоза максимально выдвинута вперед, тормозя заднее колесо.
  • В-третьих: обратите внимание на то, чтобы рычаг управления искрой, который представляет собой короткий рычаг, расположенный сверху рулевого колеса с правой стороны, был максимально отведен назад к водителю, а длинный рычаг наверху рулевой колонки управляет карбюратором. толкается вперед примерно на один дюйм от своего запаздывающего положения.
  • Четвертое: Поверните ключ зажигания в точку с маркировкой «В» или «М»
  • Пятое: Установите регулятор карбюратора на рулевой колонке в положение с пометкой «СТАРТ». Убедитесь, что в карбюраторе есть бензин. Проверьте это, нажимая на маленький штифт, выступающий из передней части чаши, пока карбюратор не заполнится. Если он не заливает, это показывает, что топливо не подается в карбюратор должным образом, и нельзя ожидать, что двигатель запустится. См. инструкции на стр. 56 для заполнения вакуумного резервуара.
  • Шестое: Убедившись, что в карбюраторе есть запас топлива, возьмитесь за рукоятку пусковой рукоятки, нажмите на нее до упора, чтобы храповик зацепился со штифтом коленчатого вала, и переверните двигатель, быстро потянув вверх. Никогда не нажимайте вниз, потому что, если по какой-либо причине двигатель даст обратный ход, это может представлять опасность для оператора.

Коленчатая ось

Коленчатый вал представляет собой коленчатый вал, который также служит в качестве оси. Используется на паровозах с внутренними цилиндрами.

См. также

Ссылки

  1. 1.0 1.1 Шаблон:Harvnb
  2. ↑ Дата: Шаблон:Harvnb
  3. 3.0 3.1 Шаблон:Harvnb
  4. 4.0 4.1 Шаблон:Harvnb
  5. ↑ Шаблон:Harvnb
  6. ↑ Шаблон:Harvnb
  7. ↑ Шаблон:Harvnb; Шаблон:Harvnb
  8. 8.0 8.1 8.2 8.3 Template:Harvnb:

    Из-за находок в Эфесе и Герасе изобретение кривошипно-шатунной системы пришлось отредактировать до 6-го c3; теперь рельеф Иераполя переносит его еще на три столетия назад, что подтверждает, что каменные лесопилки с водяным приводом действительно использовались, когда Авзоний писал свою « Мозеллу» .

  9. ↑ Шаблон:Harvnb
  10. ↑ Шаблон:Harvnb
  11. ↑ Шаблон:Harvnb
  12. ↑ Шаблон:Harvnb
  13. ↑ Шаблон:Harvnb
  14. 14,0 14,1 14,2 Шаблон:Harvnb
  15. ↑ Шаблон:Harvnb
  16. 16,0 16,1 Шаблон:Harvnb
  17. ↑ Шаблон:Harvnb.
  18. ↑ Шаблон:Harvnb
  19. 19,0 19,1 19.2 19,3 19,4 Шаблон:Harvnb
  20. ↑ Шаблон:Harvnb
  21. ↑ Шаблон:Harvnb
  22. ↑ Шаблон:Harvnb; Шаблон:Harvnb
  23. ↑ Шаблон:Harvnb
  24. ↑ Шаблон:Harvnb
  25. 25,0 25,1 Шаблон:Harvnb
  26. ↑ Шаблон:Harvnb
  27. ↑ Шаблон:Harvnb
  28. ↑ Шаблон:Harvnb
  29. ↑ {{#вызвать:цитирование/CS1|цитирование |CitationClass=цитирование }}
  30. ↑ Шаблон:Harvnb
  31. ↑ Шаблон:Harvnb.
  32. ↑ Template:Harvnb:

    Тем не менее, исследователь китайской технологии в начале двадцатого века отмечает, что даже поколение назад китайцы «не достигли той стадии, когда непрерывное вращательное движение заменяет возвратно-поступательное движение в таких технических устройствах, как дрель. , токарный станок, пила и т. д. Чтобы сделать этот шаг, необходимо знакомство с кривошипом. Кривошип в его простой рудиментарной форме мы находим в [современной] китайской лебедке, использование которой, однако, по-видимому, не дало толчка к изменению возвратно-поступательного движения на круговое в других устройствах».В Китае кривошип был известен, но оставался бездействующим по крайней мере девятнадцать столетий, его взрывной потенциал для прикладной механики оставался непризнанным и неиспользованным.

  33. ↑ {{#вызвать:цитирование/CS1|цитирование |CitationClass=цитирование }}
  34. ↑ Шаблон:Harvnb
  35. ↑ {{#вызвать:цитирование/CS1|цитирование |CitationClass=цитирование }}
  36. ↑ Ахмад И Хассан. Кривошипно-шатунная система в машине с непрерывным вращением.
  37. ↑ {{#вызвать:цитирование/CS1|цитирование |CitationClass=цитирование }}
  38. ↑ Template:Harvnb:

    Однако то, что аль-Джазари не совсем понял значение кривошипа для соединения возвратно-поступательного движения с вращательным, доказывается его необычайно сложным насосом, приводимым в действие через зубчатое колесо, эксцентрично установленное на его оси.

Библиография

  • {{#invoke:citation/CS1|цитирование

|CitationClass=citation }}

  • {{#invoke:citation/CS1|цитирование

|CitationClass=citation }}

  • {{#invoke:citation/CS1|цитирование

|CitationClass=citation }}

  • {{#invoke:citation/CS1|цитирование

|CitationClass=citation }}

  • {{#invoke:citation/CS1|цитирование

|CitationClass=citation }}

  • {{#invoke:citation/CS1|цитирование

|CitationClass=citation }}

  • {{#invoke:citation/CS1|цитирование

|CitationClass=citation }}

  • {{#invoke:citation/CS1|цитирование

|CitationClass=citation }}.

  • {{#invoke:citation/CS1|цитирование

|CitationClass=citation }}

  • {{#invoke:citation/CS1|цитирование

|CitationClass=citation }}

  • {{#invoke:citation/CS1|цитирование

|CitationClass=citation }}

  • {{#invoke:citation/CS1|цитирование

|CitationClass=citation }}

  • {{#invoke:citation/CS1|цитирование

|CitationClass=citation }}

Внешние ссылки

Шаблон:Конфигурации поршневого двигателя Шаблон:Автомобильный двигатель Шаблон:Конфигурации парового двигателя

.

Добавить комментарий

Ваш адрес email не будет опубликован.